JP2000260225A - Electroconductive paste - Google Patents

Electroconductive paste

Info

Publication number
JP2000260225A
JP2000260225A JP11058449A JP5844999A JP2000260225A JP 2000260225 A JP2000260225 A JP 2000260225A JP 11058449 A JP11058449 A JP 11058449A JP 5844999 A JP5844999 A JP 5844999A JP 2000260225 A JP2000260225 A JP 2000260225A
Authority
JP
Japan
Prior art keywords
rate
conductive paste
tensile elongation
shrinkage
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11058449A
Other languages
Japanese (ja)
Inventor
Shinichi Taira
伸一 平
Kunihiko Hamada
邦彦 浜田
Tamotsu Tokuda
有 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP11058449A priority Critical patent/JP2000260225A/en
Publication of JP2000260225A publication Critical patent/JP2000260225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Conductive Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electroconductive paste capable of forming a crack-free external electrode. SOLUTION: This electroconductive paste is composed of electroconductive powder chiefly including Ag, organic vehicle, and glass frit. When heating is made with the mean temp. rise rate between 200 and 500 deg.C over 100 deg.C/min and that from room temp. to 580 deg.C over 45 deg.C/min, the max. shrinking speed during heating to 580 deg.C should be below 7%/min and the tensile elongation at 500 deg.C be over 5%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性ペーストに
関するもので、特にチップ型電子部品の外部電極に好適
な導電性ペーストに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive paste, and more particularly to a conductive paste suitable for an external electrode of a chip-type electronic component.

【0002】[0002]

【従来の技術】従来より導電性ペーストは、主に金属粉
と有機ビヒクルとガラスフリットからなり、有機ビヒク
ル中に金属粉とガラスフリットを分散させて得られる。
2. Description of the Related Art Conventionally, a conductive paste mainly comprises a metal powder, an organic vehicle, and a glass frit, and is obtained by dispersing the metal powder and the glass frit in the organic vehicle.

【0003】また、チップ型電子部品の外部電極は、チ
ップ型素体上の所定の領域に導電性ペーストを塗布し、
乾燥後に焼付けることで導電性ペースト中のバインダー
成分を除去して形成される。
[0003] In addition, the external electrodes of the chip-type electronic component are formed by applying a conductive paste to a predetermined region on the chip-type body,
Baking after drying removes the binder component in the conductive paste and is formed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら従来の導
電性ペーストを塗布、乾燥後に焼付けしてチップ型電子
部品等の外部電極を形成する場合、導電性ペーストが焼
成時に収縮し、焼結中の電極膜に内部応力が発生して亀
裂が生じることがある。
However, in the case where a conventional conductive paste is applied, dried and baked to form an external electrode such as a chip-type electronic component, the conductive paste shrinks during firing and the electrode during sintering is formed. Internal stress may occur in the film and cracks may occur.

【0005】本発明の目的は、上述の問題を解消すべく
なされたもので、亀裂のない外部電極を形成することが
できる導電性ペーストを提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a conductive paste capable of forming a crack-free external electrode.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の導電性ペーストは、Agを主成分とする導
電粉末と、有機ビヒクルと、ガラスフリットからなり、
200〜500℃間の平均昇温速度が100℃/min
以上、室温〜580℃間の平均昇温速度が45℃/mi
n以上で加熱したとき、、580℃まで加熱する間の最
大収縮速度が7%/min以下、500℃における引張
り伸びが5%以上、であることを特徴とする。
Means for Solving the Problems To achieve the above object, a conductive paste of the present invention comprises a conductive powder mainly composed of Ag, an organic vehicle, and a glass frit.
Average temperature rise rate between 200 and 500 ° C is 100 ° C / min
As described above, the average heating rate between room temperature and 580 ° C is 45 ° C / mi.
When heated at n or more, the maximum shrinkage rate during heating to 580 ° C. is 7% / min or less, and the tensile elongation at 500 ° C. is 5% or more.

【0007】[0007]

【発明の実施の形態】チップ型電子部品の外部電極に発
生する亀裂は、導電性ペーストの塗布膜を焼付ける際
に、焼結収縮に伴なって発生する収縮応力がその温度に
おける塗布膜の強度を上回ることにより発生する。そこ
で、この塗布膜の強度を高めるか、収縮応力を小さくす
るという手段がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A crack generated in an external electrode of a chip-type electronic component is caused by shrinkage stress generated due to sintering shrinkage when a coating film of a conductive paste is baked. It is caused by exceeding the strength. Therefore, there is a means of increasing the strength of the coating film or reducing the contraction stress.

【0008】しかしながら、導電性ペーストを焼付けて
チップ型電子部品の外部電極を形成する場合、導電性ペ
ースト中のバインダー成分が燃焼し消失するため、焼結
時にできた隙間により昇温過程における塗布膜の連続性
が乏しくなり密度が低下し、塗布膜の膜強度は昇温途中
で弱くなる。
However, when the conductive paste is baked to form the external electrodes of the chip-type electronic component, the binder component in the conductive paste burns and disappears. And the density decreases, and the film strength of the coating film decreases during the temperature rise.

【0009】さらに、焼成過程においてバインダーの燃
焼が終わると、次にAg粉の焼結が始まる。前述のよう
に、バインダーの燃焼により塗布膜の密度が低下してい
るため、急激にAg粉の焼結が進行し、塗布膜に大きな
収縮応力が生じる。
Further, when the burning of the binder is completed in the firing process, the sintering of the Ag powder starts. As described above, since the density of the coating film is reduced by the burning of the binder, the sintering of the Ag powder rapidly progresses, and a large shrinkage stress is generated in the coating film.

【0010】ここで、種々の組成の導電性ペーストを用
いて塗布膜を形成し焼付けを行い、外部電極の亀裂の有
無について観察を行った。従来から一般に、導電性ペー
ストの焼付けにおける200〜500℃間の平均昇温速
度は60℃/min前後である。そこで、従来の導電性
ペーストを焼付けた場合に略100%の確率で外部電極
に亀裂が発生するよう、200〜500℃間の平均昇温
速度は100℃/min以上、室温〜580℃間の平均
昇温速度は45℃/min以上で580℃まで加熱し
て、確認実験を行った。その結果、500℃付近で最大
の収縮速度を示すことが分かった。また、実際にチップ
型素体に導電性ペーストを塗布し乾燥させ焼付けて外部
電極を形成した場合に、図2に示すように500℃付近
で外部電極に亀裂が発生した。従って、500℃におけ
る塗布膜の膜強度が十分に強いこと、この間の収縮速度
が小さいことを満たすことで、図1のように亀裂の発生
を防止できるという結論に至った。
[0010] Here, a coating film was formed using conductive pastes of various compositions and baked, and the presence or absence of cracks in the external electrodes was observed. Conventionally, generally, the average rate of temperature rise between 200 and 500 ° C. during baking of a conductive paste is about 60 ° C./min. Therefore, the average heating rate between 200 and 500 ° C. is 100 ° C./min or more, and between room temperature and 580 ° C. so that cracks occur in the external electrodes with a probability of approximately 100% when the conventional conductive paste is baked. A confirmation experiment was performed by heating to 580 ° C. at an average temperature rising rate of 45 ° C./min or more. As a result, it was found that a maximum contraction rate was exhibited at around 500 ° C. In addition, when a conductive paste was actually applied to the chip-type element body, dried and baked to form an external electrode, a crack occurred in the external electrode at around 500 ° C. as shown in FIG. Accordingly, it was concluded that the generation of cracks as shown in FIG. 1 can be prevented by satisfying that the coating film strength at 500 ° C. is sufficiently high and the shrinkage rate during this time is low.

【0011】本発明の導電性ペーストは、Agを主成分
とする導電粉末と、有機ビヒクルと、ガラスフリットか
らなる。導電粉末の粒径は特には限定しないが、例えば
1μm以下の粒状粉から5μ以上の球状粉および偏平粉
等を適宜用いることができる。有機ビヒクルは特には限
定しないが、例えばエチルセルロース樹脂等のバインダ
ーをケロシン等の溶剤に溶解したものを適宜用いること
ができる。ガラスフリットは特に限定はしないが、例え
ばB23−SiO2−PbO系、B23−SiO2−Zn
O系ガラスフリット等を適宜用いることができる。
The conductive paste of the present invention comprises a conductive powder mainly composed of Ag, an organic vehicle, and a glass frit. Although the particle size of the conductive powder is not particularly limited, for example, a granular powder of 1 μm or less, a spherical powder of 5 μ or more, a flat powder, or the like can be appropriately used. The organic vehicle is not particularly limited, and for example, a solution obtained by dissolving a binder such as ethyl cellulose resin in a solvent such as kerosene can be used as appropriate. Although the glass frit is not particularly limited, for example, B 2 O 3 —SiO 2 —PbO system, B 2 O 3 —SiO 2 —Zn
O-based glass frit or the like can be used as appropriate.

【0012】また、本発明の導電性ペーストは、200
〜500℃間の平均昇温速度が100℃/min以上、
室温〜580℃間の平均昇温速度が45℃/min以上
で580℃まで加熱する間の、最大収縮速度が7%/m
in以下であることが求められる。収縮速度が低いもの
は、単位時間あたりの発生する収縮応力が小さいことを
示すが、この最大収縮速度が7%/minを超えると焼
付け温度500℃付近における収縮応力が塗布膜の強度
を上回り、焼成後に得られる外部電極に亀裂が生じる。
Further, the conductive paste of the present invention comprises 200
An average temperature rising rate between 100 ° C. and 500 ° C. or more,
The maximum shrinkage rate is 7% / m during heating up to 580 ° C at an average temperature rising rate of 45 ° C / min or more between room temperature and 580 ° C.
It is required to be not more than in. When the shrinkage rate is low, the shrinkage stress generated per unit time is small. When the maximum shrinkage rate exceeds 7% / min, the shrinkage stress at around 500 ° C. of the baking temperature exceeds the strength of the coating film. Cracks occur in the external electrode obtained after firing.

【0013】また、本発明の導電性ペーストは、200
〜500℃間の平均昇温速度が100℃/min以上、
室温〜580℃間の平均昇温速度が45℃/min以上
で加熱したときの、500℃における引張り伸びが5%
以上であることが求められる。引張り伸びが高いもの
は、焼付け時に塗布膜が収縮しても収縮応力を緩和でき
る適応力に優れることを示すが、この引張り伸びが5%
を下回ると収縮応力を十分に緩和できず、焼成後に得ら
れる外部電極に亀裂が生じる。
[0013] The conductive paste of the present invention comprises 200
An average temperature rising rate between 100 ° C. and 500 ° C. or more,
5% tensile elongation at 500 ° C. when heated at an average temperature rising rate of 45 ° C./min or more between room temperature and 580 ° C.
That is required. Those with high tensile elongation indicate that they have excellent adaptability to relieve shrinkage stress even if the coating film shrinks during baking, but this tensile elongation is 5%.
If it is less than, the shrinkage stress cannot be sufficiently reduced, and the external electrode obtained after firing will crack.

【0014】[0014]

【実施例】まず、Ag粉末と、ガラスフリットと、エチ
ルセルロース樹脂を石油系炭化水素溶剤に溶解した有機
ビヒクルとを混合し、導電性ペースト1〜8を得た。こ
の導電性ペースト1〜8の組成については、表1にまと
めた。
EXAMPLES First, Ag powder, glass frit, and an organic vehicle in which ethyl cellulose resin was dissolved in a petroleum hydrocarbon solvent were mixed to obtain conductive pastes 1 to 8. The compositions of the conductive pastes 1 to 8 are summarized in Table 1.

【0015】[0015]

【表1】 [Table 1]

【0016】次に、導電性ペースト1〜8をPETフィ
ルム上にドクターブレードを用いて所定の厚みとなるよ
う塗布してそれぞれ塗布膜を形成し、これらを大気中1
50℃で乾燥した後、これをカッターで幅3mm、長さ
15mm、乾燥塗膜厚み0.15mmに切断、加工して
乾燥試験片1〜8を得た。次に、乾燥試験片1〜8を大
気中室温から500℃まで、200〜500℃間の平均
昇温速度は100℃/min、室温〜580℃間の平均
昇温速度は45℃/minで加熱し、500℃に達した
時点で50g/minの荷重速度で引張り試験を行い、
引張り伸びを測定した。引張り伸びの測定は、試験片を
チャックに固定し、セイコー電子製TMA/SS120
を使用して行った。
Next, the conductive pastes 1 to 8 are applied to a predetermined thickness on a PET film by using a doctor blade to form coating films, respectively.
After drying at 50 ° C., this was cut and processed by a cutter to a width of 3 mm, a length of 15 mm and a dry coating thickness of 0.15 mm to obtain dried test pieces 1 to 8. Next, the dried test pieces 1 to 8 were heated from room temperature to 500 ° C. in the air at an average temperature rising rate of 200 ° C./500° C./100° C./min and an average temperature rising rate of room temperature to 580 ° C. at 45 ° C./min. After heating, when the temperature reached 500 ° C., a tensile test was performed at a load speed of 50 g / min.
The tensile elongation was measured. For the measurement of tensile elongation, a test piece was fixed to a chuck, and TMA / SS120 manufactured by Seiko Denshi was used.
Performed using

【0017】次に、導電性ペースト1〜8を準備して、
これを上述同様に加工して乾燥試験片1〜8を得て、こ
れらを大気中室温から580℃まで、200〜500℃
間の平均昇温速度は100℃/min、室温〜580℃
間の平均昇温速度は45℃/minで加熱し、その間の
収縮量を測定して最大収縮速度を求めた。最大収縮速度
の測定は、試験片をチャックに固定し、セイコー電子製
TMA/SS120を使用して行った。最大収縮速度
は、縦軸を収縮率(%)、横軸を時間(min)として
グラフにおいて、最も収縮が急峻な領域において5%収
縮するのにかかった時間と収縮量から求められる平均収
縮速度とした。
Next, conductive pastes 1 to 8 are prepared,
This was processed in the same manner as described above to obtain dried test pieces 1 to 8, and these were heated from room temperature to 580 ° C in the air at 200 to 500 ° C.
The average temperature rise rate during the period is 100 ° C./min, room temperature to 580 ° C.
The average heating rate during the heating was 45 ° C./min, and the amount of shrinkage during the heating was measured to determine the maximum shrinking rate. The measurement of the maximum contraction rate was performed by fixing the test piece to the chuck and using TMA / SS120 manufactured by Seiko Denshi. The maximum contraction rate is the average contraction rate obtained from the time required for 5% contraction and the amount of contraction in the region where the contraction is the steepest in the graph with the vertical axis representing the contraction rate (%) and the horizontal axis representing time (min). And

【0018】次に、BaTiO3を誘電体主成分とする
セラミックグリーンシートと、Ag/Pdからなる内部
電極を所定枚数積層したものを焼成し、3.2×2.5
×1.5mmの大きさのチップ型素体を複数準備した。
Next, a ceramic green sheet mainly composed of BaTiO 3 as a dielectric main component and a predetermined number of internal electrodes made of Ag / Pd are laminated and fired.
A plurality of chip-type bodies having a size of 1.5 mm were prepared.

【0019】次に、このチップ型素体の内部電極が露出
した端部に、それぞれ導電性ペースト1〜8を塗布し厚
さは80μmの塗布膜を形成し、これを乾燥後に大気中
において室温から580℃まで、200〜500℃間の
平均昇温速度は100℃/min、室温〜580℃間の
平均昇温速度は45℃/minで加熱し、580℃で焼
付けて外部電極1〜8を形成し、それぞれ外部電極1〜
8の亀裂の有無を検査した。そこで、500℃における
引張り伸び、収縮速度、チップ型電子部品の外部電極に
おける亀裂の有無について表2にまとめた。また、試料
1と6については、それぞれ収縮率と焼成時間の関係を
図3のグラフにまとめた。
Next, conductive pastes 1 to 8 were applied to the exposed end portions of the chip-shaped element body to form coating films having a thickness of 80 μm. To 580 ° C, the average heating rate between 200 and 500 ° C is 100 ° C / min, the average heating rate between room temperature and 580 ° C is 45 ° C / min, and the external electrodes 1-8 are baked at 580 ° C. And external electrodes 1 to
No. 8 was inspected for cracks. Table 2 summarizes the tensile elongation at 500 ° C., the shrinkage rate, and the presence or absence of cracks in the external electrodes of the chip-type electronic component. For the samples 1 and 6, the relationship between the shrinkage ratio and the firing time is summarized in the graph of FIG.

【0020】[0020]

【表2】 [Table 2]

【0021】表2から明らかなように、引張り伸び5%
以上、収縮速度7%/min以下を満たす試料1〜5
は、何れも図1に示すように外部電極に亀裂が生じなか
った。他方、引張り伸び3.3%の試料6、引張り伸び
2.8%の試料7、引張り伸び0.7%かつ収縮速度
3.7%/minの試料8は、何れも図2に示すように
外部電極に亀裂が生じた。
As apparent from Table 2, the tensile elongation was 5%.
As described above, Samples 1 to 5 satisfying the shrinkage rate of 7% / min or less
In each case, no crack was generated in the external electrode as shown in FIG. On the other hand, Sample 6 having a tensile elongation of 3.3%, Sample 7 having a tensile elongation of 2.8%, and Sample 8 having a tensile elongation of 0.7% and a shrinkage rate of 3.7% / min were all as shown in FIG. The external electrode was cracked.

【0022】また、図3のグラフから明らかなように、
試料1は400℃付近で膨張が止まり収縮が始まるのに
対し、試料6は500℃付近から収縮が始まり550℃
付近で試料1と試料6の収縮率が略同じになるため、試
料6のグラフの傾きは試料1に比べて急峻であり最大収
縮速度も大きいことが分かる。
As is clear from the graph of FIG.
Sample 1 stops expanding around 400 ° C. and starts shrinking, whereas Sample 6 starts shrinking around 500 ° C. and 550 ° C.
Since the shrinkage ratios of the sample 1 and the sample 6 become substantially the same in the vicinity, it can be seen that the slope of the graph of the sample 6 is steeper than that of the sample 1 and the maximum shrinkage speed is larger.

【0023】なお、本発明の実施形態においては、表1
にまとめた組成の導電性ペーストを用いたが、焼成時の
最大収縮速度と引張り強度が所定範囲である限り、導電
性ペーストの組成について特に限定はされず、適宜用い
ることができる。
In the embodiment of the present invention, Table 1
The composition of the conductive paste is not particularly limited as long as the maximum shrinkage rate and the tensile strength at the time of firing are within a predetermined range.

【0024】[0024]

【発明の効果】以上のように本発明の導電性ペーストに
よれば、Agを主成分とする導電粉末と、有機ビヒクル
と、ガラスフリットからなり、200〜500℃間の平
均昇温速度が100℃/min以上、室温〜580℃間
の平均昇温速度が45℃/min以上で加熱したとき、
580℃まで加熱する間の最大収縮速度が7%/min
以下、500℃における引張り伸びが5%以上であるこ
とを特徴とすることで、焼付け時の塗布膜の膜強度が十
分に強く、焼付け後に亀裂のない外部電極を形成するこ
とができる。
As described above, according to the conductive paste of the present invention, it is composed of a conductive powder mainly composed of Ag, an organic vehicle, and a glass frit. When heated at an average temperature rising rate of 45 ° C./min or more between room temperature and 580 ° C.
Maximum shrinkage rate during heating to 580 ° C is 7% / min
Hereinafter, by being characterized in that the tensile elongation at 500 ° C. is 5% or more, the film strength of the coating film at the time of baking is sufficiently strong, and an external electrode without cracks after baking can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る導電性ペーストからなる外部電極
をチップ型電子部品の端面方向から観察した写真であ
る。
FIG. 1 is a photograph in which an external electrode made of a conductive paste according to the present invention is observed from an end surface direction of a chip-type electronic component.

【図2】従来の導電性ペーストからなる外部電極をチッ
プ型電子部品の端面方向から観察した写真である。
FIG. 2 is a photograph in which an external electrode made of a conventional conductive paste is observed from an end surface direction of a chip-type electronic component.

【図3】本発明に係る実施例1の導電性ペーストと比較
例6の導電性ペーストの収縮率と焼成時間の関係を示し
たグラフである。
FIG. 3 is a graph showing the relationship between the shrinkage ratio and the firing time of the conductive paste of Example 1 according to the present invention and the conductive paste of Comparative Example 6;

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J038 EA011 HA066 HA476 KA20 NA20 PB09 5E319 AB05 5G301 DA03 DA34 DA42 DD01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4J038 EA011 HA066 HA476 KA20 NA20 PB09 5E319 AB05 5G301 DA03 DA34 DA42 DD01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Agを主成分とする導電粉末と、有機ビ
ヒクルと、ガラスフリットからなり、 200〜500℃間の平均昇温速度が100℃/min
以上、室温〜580℃間の平均昇温速度が45℃/mi
n以上で加熱したとき、580℃まで加熱する間の最大
収縮速度が7%/min以下、500℃における引張り
伸びが5%以上、であることを特徴とする導電性ペース
ト。
1. An electroconductive powder containing Ag as a main component, an organic vehicle, and a glass frit, wherein an average temperature rising rate between 200 and 500 ° C. is 100 ° C./min.
As described above, the average heating rate between room temperature and 580 ° C is 45 ° C / mi.
a conductive paste having a maximum shrinkage rate of 7% / min or less during heating to 580 ° C. and a tensile elongation at 500 ° C. of 5% or more when heated at n or more.
JP11058449A 1999-03-05 1999-03-05 Electroconductive paste Pending JP2000260225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11058449A JP2000260225A (en) 1999-03-05 1999-03-05 Electroconductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11058449A JP2000260225A (en) 1999-03-05 1999-03-05 Electroconductive paste

Publications (1)

Publication Number Publication Date
JP2000260225A true JP2000260225A (en) 2000-09-22

Family

ID=13084738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11058449A Pending JP2000260225A (en) 1999-03-05 1999-03-05 Electroconductive paste

Country Status (1)

Country Link
JP (1) JP2000260225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187225A (en) * 2010-03-05 2011-09-22 Murata Mfg Co Ltd Electronic component, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187225A (en) * 2010-03-05 2011-09-22 Murata Mfg Co Ltd Electronic component, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4513981B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JPH107435A (en) Glass ceramic wiring substrate and its production
JPH10224004A (en) Thick film resistor paste
JP3237497B2 (en) Conductive paste, conductor and ceramic substrate using the same
JPH05235497A (en) Copper conductive paste
JP2006278162A (en) Conductive paste and electronic component using the same
JP2002110444A (en) Conductive paste and laminated ceramic electronic part
JPH08161931A (en) Conductive paste, and conductive body and multilayer ceramic board using it
JP2000260225A (en) Electroconductive paste
JP2005228610A (en) Conductive paste and ceramic electronic component
JPH0950708A (en) Conductive paste and layered ceramic electronic components
JP2009146732A (en) Conductive paste for ceramic electronic component and ceramic electronic component
JP3493665B2 (en) Conductive paste
JPH1092226A (en) Conductive composition
JP2003086449A (en) Manufacturing method for paste for laminated ceramic capacitor internal electrode
JPH0878267A (en) Inner electrode paste and multilayer ceramic capacitor employing it
JP2010225627A (en) Method of manufacturing resistor film, resistor film, and resistor
JPH09186044A (en) Inner electrode material paste for stacked electronic component, and stacked electronic part, and its manufacture
JP2699467B2 (en) Conductive paste and multilayer ceramic substrate
JPH11232927A (en) Conductive paste
JPH0768065B2 (en) Glass-coated aluminum nitride sintered body and method for producing the same
JP2006210399A (en) Conductive paste for ceramic electronic component, and ceramic electronic component
JP2615114B2 (en) Manufacturing method of multilayer ceramic capacitor
WO2003000619A1 (en) Ceramic component and production method therefor
JPH11177196A (en) Ceramic substrate with conductive pattern and its manufacture