WO2003000619A1 - Ceramic component and production method therefor - Google Patents

Ceramic component and production method therefor Download PDF

Info

Publication number
WO2003000619A1
WO2003000619A1 PCT/JP2002/006077 JP0206077W WO03000619A1 WO 2003000619 A1 WO2003000619 A1 WO 2003000619A1 JP 0206077 W JP0206077 W JP 0206077W WO 03000619 A1 WO03000619 A1 WO 03000619A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass ceramic
conductor
ceramic
sintering
laminate
Prior art date
Application number
PCT/JP2002/006077
Other languages
French (fr)
Japanese (ja)
Inventor
Hidenori Katsumura
Ryuichi Saito
Tsukasa Wakabayashi
Hiroshi Kagata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE60217866T priority Critical patent/DE60217866T2/en
Priority to KR10-2003-7002540A priority patent/KR20030059109A/en
Priority to US10/344,606 priority patent/US20040041309A1/en
Priority to EP02736160A priority patent/EP1403228B1/en
Publication of WO2003000619A1 publication Critical patent/WO2003000619A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4867Applying pastes or inks, e.g. screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/02Noble metals
    • B32B2311/08Silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/56Using constraining layers before or during sintering
    • C04B2237/562Using constraining layers before or during sintering made of alumina or aluminates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Definitions

  • the present invention relates to a ceramic component typified by a ceramic multilayer substrate on which, for example, a semiconductor IC, a chip component, and the like are mounted and interconnected, and a method of manufacturing the same.
  • Ceramic multilayer substrates are gaining importance in today's electronics industry because of the required high-density wiring and the ability to be made thinner.
  • a general method for manufacturing a ceramic multilayer substrate is as follows.
  • the ceramic multilayer substrate undergoes shrinkage due to sintering.
  • Shrinkage due to sintering differs depending on the substrate material used, green sheet composition, powder mouth, etc. For this reason, there are some problems in the production of the multilayer substrate.
  • One important issue is the shrinkage error.
  • the innermost wiring is fired and then the uppermost wiring is formed. For this reason, when the contraction error of the substrate material is large, connection with the inner layer electrode cannot be performed due to a dimensional error with the uppermost wiring pattern.
  • Patent Publication No. 2785554 describes that a desired number of green sheets each formed of a low-temperature sintered glass-ceramic mixed powder and having an electrode pattern formed thereon are laminated on both sides or one side of the laminated body.
  • the glass-ceramic mixed powder is laminated so as to be sandwiched between heat-shrinkage suppressing green sheets (hereinafter referred to as heat-shrinkage suppression sheets) made of an inorganic composition that does not sinter at the firing temperature of the glass-ceramic mixed powder.
  • heat-shrinkage suppression sheets heat-shrinkage suppressing green sheets
  • the method described in the above publication can provide a substrate that is unlikely to shrink in the planar direction, it has a problem that remains. That is, since a large amount of substrate shrinkage occurs in the thickness direction, cracks and other defects occur around the internal electrodes of the fired substrate.
  • the cause of this problem is considered to be largely due to the difference in the sintering timing or heat shrinkage behavior between the conductor paste and the green sheet laminate during the firing process. Since there is a large difference in the sintering shrinkage behavior between the green sheet laminate and the conductive paste, excessive stress and strain are generated between the fired substrate and the electrode, and the above-described defects such as cracks are generated. Occurs.
  • the present invention solves the above-mentioned problems of the conventional manufacturing method.
  • the purpose of the present invention is to provide a high dimensional accuracy firing method in which a glass-ceramic laminate is sandwiched between heat shrinkage suppressing sheets and fired.
  • An object of the present invention is to provide a ceramic component having high reliability and high dimensional accuracy, which suppresses generation of defects such as cracks around internal electrodes in a fired substrate without causing the substrate to fire.
  • a method for manufacturing a ceramic component according to the present invention comprises: a conductor printing step of printing a conductor paste having a sintering rate equivalent to that of the glass ceramic green sheet on a glass ceramic green sheet; A laminating step of laminating glass ceramic green sheets to form a laminate, and further laminating a heat shrinkage suppressing green sheet mainly composed of an inorganic material on one or both sides of the laminate to form a composite laminate.
  • a method for producing a ceramic component comprising: a firing step; and a step of removing an inorganic substance in the heat-shrinkable green sheet. Reliable ceramic components with high dimensional accuracy can be obtained.
  • FIG. 1 is a cross-sectional view illustrating a firing method of the present invention in which a ceramic laminate is sandwiched between heat shrinkage suppressing sheets and fired.
  • FIG. 2 is a cross-sectional view illustrating a defect occurrence location near a conductor layer.
  • the glass-ceramic mixed material used this time was alumina A1203, magnesium oxide AM g
  • a main component is a mixture of samarium Sm203 (hereinafter AMS mixture) and glass (Si02-B203-CaO-based glass powder, softening point 780 ° C).
  • AMS mixture samarium Sm203
  • Si02-B203-CaO-based glass powder, softening point 780 ° C High purity A1233, MgO, Sm203 raw material powder is weighed at a molar ratio of 11: 1: 1, put into a pole mill, mixed for 20 hours, and dried.
  • This mixed powder was calcined at 1300 ° C. for 2 hours, and the calcined powder was ground with a pole mill for 20 hours to obtain AMS powder.
  • the AMS powder and the Si ⁇ 2-B203-CaO-based glass powder were weighed in a weight ratio of 50:50, mixed with a pole mill for 20 hours, and then dried to obtain a glass-ceramic mixed material (hereinafter, referred to as “a”).
  • AMSG material glass-ceramic mixed material
  • this AMS G material is densely fired in the temperature range of 880 ° C to 950 ° C, it can be fired simultaneously with the silver electrode.
  • the relative permittivity is 7.5 (1MHz).
  • Alumina powder (purity: 99.9%, average particle size: 1.0 ⁇ m) was used as a material of the heat shrinkage suppression green sheet 10 shown in FIG.
  • PVB resin as a binder and dibutyl phthalate as a plasticizer are added to the above-mentioned AMSG material and alumina powder, and a slurry is prepared using butyl acetate as a solvent.
  • AMS green sheet 20 and heat shrinkage suppression (alumina) green sheet 10 were produced.
  • the additives are mixed in an arbitrary ratio, an organic vehicle (Tabineoru lysate E chill cellulose) 20 by weight 0/0 applied to the entire paste, three of these ceramics
  • the mixture was kneaded with a roll to obtain a conductor paste.
  • This conductor paste is printed on the AMSG green sheet 20 as a pattern for measuring electric resistance (conductor layer 30) using a screen printing machine, and then the required number of AMSG green sheets 20 are laminated as shown in FIG. Then, an alumina green sheet 10 is laminated on both sides. In this state, the laminate was formed by thermocompression bonding.
  • the thermocompression bonding conditions were a temperature of 80 ° C and a pressure of 500 kg / cm2.
  • the laminate is cut to a size of 10 x 1 Omm, placed on an alumina sheath, and placed in a box furnace. Heat-treat at 0 ° C for 10 hours. After incineration of the resin components by heat treatment, the temperature was raised to 900 ° C in air at a temperature rising rate of 300 ° CZh (however, in Embodiment 3 the temperature raising rate was changed). The firing was performed under the condition of maintaining the temperature at 900 ° C. for 30 minutes. The alumina of the heat shrinkage suppressing green sheet 10 remained on the surface of the fired laminate without firing, and this was completely removed by ultrasonic cleaning in butyl acetate.
  • Table 1 shows the amounts of molybdenum trioxide (average particle size 2.5 ⁇ ) added to silver powder (average particle size 4.O ⁇ m) and the results of analysis and evaluation of the obtained ceramic multilayer substrates. See Table 1.
  • the “mode of defects such as cracks” indicates that the substrate 11 was polished and the cross section of the substrate was observed with an optical microscope as shown in FIG.
  • the defects 13 such as cracks generated in the above are classified into the modes A, B and C shown below.
  • the sheet resistance is defined by applying a silver electrode paste to the side surface of the inner conductor layer and baking to form a terminal electrode. It is a value calculated from the DC resistance value measured using a meter and the measured electrode thickness value, in terms of an electrode area of 1 mm2 and an electrode thickness of 10 ⁇ m.
  • the sheet resistance value of the conductor layer exceeds 6 ⁇ and increases rapidly. It generated effectively suppressed defects and to maintain a low resistance value, the amount of the trioxide molybdenum 0. 1% by weight to 5. 0 wt 0/0 is preferred.
  • the effect of the particle size of the silver powder constituting the conductive paste was examined. As shown in Table 2, silver powder having an average particle size of 2.2 to 0.2 ⁇ was used, and 1.0% by weight of molybdenum trioxide was added to 100% by weight of each conductor powder. Prepared and evaluated conductive paste
  • the particle size of the silver powder constituting the conductor layer is 3 ⁇ ! It is desirable to be in the range of ⁇ 8 / zm.
  • the paste used had a silver powder particle size of 4.0 m and an added amount of molybdenum trioxide of 1.0 weight 0 /. This is the paste of sample number 4 of the sample. Table 3
  • the average temperature rise rate in the firing treatment step is 200 ° C / h to 5500 ° CZh.
  • the mixing ratio of the other molybdenum oxide is preferably from 0.1% by weight to 5.0% by weight in terms of dimolybdenum trioxide.
  • (A 1203—Mg O—Sm2 ⁇ 3) + glass-based material is used as the glass ceramic material.
  • Tanoid oxide LnxOy (Ln is at least one selected from La, Ce, Nd, Sm, Eu, Gd, and Tb, and X and y are stoichiometrically determined according to the valence of Ln. It has been confirmed that the same effect can be obtained because the sintering shrinkage behavior does not change even if the value is used.
  • the production method of the present invention can be used for other glass ceramics other than the glass ceramic comprising the above (A1203-MgO-LnOx) and a glass-based material.
  • a high dimensional accuracy firing method in which a glass ceramic laminate is sandwiched between heat shrinkage suppressing sheets and fired without significantly deteriorating electrical characteristics, It is possible to provide a highly reliable and high dimensional accuracy ceramic component which suppresses generation of defects such as cracks around the internal electrode.

Abstract

A high-reliability, high-dimension-accuracy ceramic component having electric characteristics thereof not significantly deteriorated and defects such as cracks restricted in the vicinity of an internal electrode in a substrate after firing when subjected to a high-dimension-accuracy firing method in which a glass ceramic laminate is fired while being held between heat shrinkage restricting sheets. A method of producing a ceramic component comprising the conductor printing step of printing on a glass ceramic green sheet a conductor paste having a sintering speed equivalent to that of the glass ceramic green sheet, the laminating step of laminating a plurality of the glass ceramic green sheets to form a laminate, a composite laminating step of further laminating on the one or both surfaces of the laminate heat shrinkage restricting green sheets mainly containing inorganic matters, a binder removing step of removing by burning organic matters from the composite laminate, the firing step of sintering the organic matter-removed composite laminate with sintering behaviors of the glass ceramic green sheets and the conductor paste matched, and the step of removing inorganic matters in the heat shrinkage green sheets.

Description

セラミック部品とその製造方法 技術分野  Ceramic parts and manufacturing method
本発明は、 例えば半導体 I C、 チップ部品などを搭載し、 かつそれらを相互配 線するセラミック多層基板に代表されるセラミック部品とその製造方法に関する。 背景技術  The present invention relates to a ceramic component typified by a ceramic multilayer substrate on which, for example, a semiconductor IC, a chip component, and the like are mounted and interconnected, and a method of manufacturing the same. Background art
近年、 半導体 I C、 チップ部品等は小型、 軽量化が進んでおり、 これらを実装 する配線基板も小型、 軽量ィヒが望まれている。 セラミック多層基板は、 必要とさ れるされる高密度配線が得られ、 かつ薄膜化が可能なことより、 今日のエレク ト ロニタス業界において重要視されている。  In recent years, semiconductor ICs, chip components, and the like have been reduced in size and weight, and small and light-weight wiring boards for mounting them have been desired. Ceramic multilayer substrates are gaining importance in today's electronics industry because of the required high-density wiring and the ability to be made thinner.
セラミック多層基板の一般的な製造方法は以下の工程による。  A general method for manufacturing a ceramic multilayer substrate is as follows.
( 1 ) セラミック材料の調合、 混合工程。  (1) Mixing and mixing of ceramic materials.
( 2 ) セラミックダリ一ンシートの成形工程。  (2) Forming process of ceramic dust sheet.
( 3 ) 導体ペーストの作製工程。  (3) Conductive paste preparation process.
( 4 ) グリーンシート層および導体層からなる複合積層体の焼成工程。  (4) A firing step of the composite laminate including the green sheet layer and the conductor layer.
上記の焼成工程において、 セラミック多層基板には焼結に伴う収縮が生じる。 焼結に伴う収縮は、 使用する基板材料、 グリ一ンシート組成、 粉体口ットなどに より異なる。 このため多層基板の作製においていくつかの問題が生じている。 重要な問題の一つが、 収縮誤差である。 セラミック多層基板の作製工程では、 内層配線の焼成を行つてから最上層配線の形成を行う。 このため基板材料の収縮 誤差が大きい場合には、 最上層配線パターンとの寸法誤差のため内層電極との接 続が行えない。 それを回避するため、 収縮誤差をあらかじめ許容するように最上 層電極部に必要以上の大きい面積のランドを形成しなければならず、 高密度の配 線を必要とする回路に使用するには適さない。 その対策として、 収縮誤差に合わせて最上層配線のためのスクリーン版をいく つか用意しておき、 基板の収縮率に応じて使用する方法が採られることもあるが、 この方法はスクリーン版を数多く用意しなければならず不経済である。 一方、 最 上層配線の形成を内層配線の焼成と同時に行なう同時焼成法を用いれば大きなラ ンドを必要としないが、 別の問題が残る。 すなわち、 基板そのものの収縮誤差は そのまま存在するので、 最後の部品搭載時のクリーム半田印刷工程において、 収 縮誤差のために必要な部分に印刷できない場合が起こる。 In the above firing step, the ceramic multilayer substrate undergoes shrinkage due to sintering. Shrinkage due to sintering differs depending on the substrate material used, green sheet composition, powder mouth, etc. For this reason, there are some problems in the production of the multilayer substrate. One important issue is the shrinkage error. In the manufacturing process of the ceramic multilayer substrate, the innermost wiring is fired and then the uppermost wiring is formed. For this reason, when the contraction error of the substrate material is large, connection with the inner layer electrode cannot be performed due to a dimensional error with the uppermost wiring pattern. In order to avoid this, a land with an unnecessarily large area must be formed on the uppermost electrode to allow for the shrinkage error in advance, which is suitable for use in circuits that require high-density wiring. Absent. As a countermeasure, there is a method of preparing several screen plates for the top layer wiring according to the shrinkage error and using it according to the shrinkage ratio of the board. It must be prepared, which is uneconomical. On the other hand, if the simultaneous firing method in which the formation of the top wiring is performed simultaneously with the firing of the inner wiring is used, a large land is not required, but another problem remains. In other words, since the shrinkage error of the substrate itself exists as it is, in the cream solder printing process at the time of the final component mounting, printing may not be performed on a necessary portion due to the shrinkage error.
また、 特許公報第 2 7 8 5 5 4 4号には、 低温焼結ガラスセラミック混合粉体 よりなるグリーンシートに電極パターンを形成したものを所望枚数積層し、 この 積層体の両面、 もしくは片面に前記ガラスセラミック混合粉体の焼成温度では焼 結しない無機組成物よりなる熱収縮抑制グリーンシート (以下、 熱収縮抑制シー トと呼ぶ) で挟み込むように積層し、 前記積層体を焼成後、 熱収縮抑制層を取り 除くという方法が開示されている。 効果として、 基板材料の焼成が厚み方向に多 く起こり、 平面方向の収縮が抑制される基板が作製でき上記問題を解決できる。 上記公報記載の方法により平面方向の収縮が起こりにくい基板を得ることはでき るが、 残された問題がある。 それは基板収縮が厚み方向に多く起こるため、 焼成 後の基板の内部電極周辺にクラック等の欠陥が発生してしまうことである。  Further, Patent Publication No. 2785554 describes that a desired number of green sheets each formed of a low-temperature sintered glass-ceramic mixed powder and having an electrode pattern formed thereon are laminated on both sides or one side of the laminated body. The glass-ceramic mixed powder is laminated so as to be sandwiched between heat-shrinkage suppressing green sheets (hereinafter referred to as heat-shrinkage suppression sheets) made of an inorganic composition that does not sinter at the firing temperature of the glass-ceramic mixed powder. A method of removing the constrain layer is disclosed. As an effect, a large amount of firing of the substrate material occurs in the thickness direction, and a substrate in which shrinkage in the planar direction is suppressed can be manufactured, and the above problem can be solved. Although the method described in the above publication can provide a substrate that is unlikely to shrink in the planar direction, it has a problem that remains. That is, since a large amount of substrate shrinkage occurs in the thickness direction, cracks and other defects occur around the internal electrodes of the fired substrate.
この問題が生じる原因は、 焼成過程において、 導体ペーストとグリーンシート 積層体との焼結タイミングあるいは熱収縮挙動のズレに大きな原因があるものと 考えられる。 グリーンシート積層体と導体ペーストとの焼結収縮挙動に大きなズ レがあるために、 焼成された基板と電極との間に過大な応力やひずみが生じて、 前記したクラック等の欠陥の発生が生じる。  The cause of this problem is considered to be largely due to the difference in the sintering timing or heat shrinkage behavior between the conductor paste and the green sheet laminate during the firing process. Since there is a large difference in the sintering shrinkage behavior between the green sheet laminate and the conductive paste, excessive stress and strain are generated between the fired substrate and the electrode, and the above-described defects such as cracks are generated. Occurs.
通常の焼成方法であれば、 焼成過程において三次元方向に収縮が起こり、 発生 したクラックは微小なものであれば焼成中に修復するが、 上記公報記載の製造方 法では、 焼成過程において平面方向に収縮が起こらないため、 一旦発生したクラ ック等の欠陥は修復しにくい。 このクラック等の欠陥が基板に発生してしまうと、 基板の信頼性が低下してしまい問題である。 発明の開示 In the case of a normal firing method, shrinkage occurs in the three-dimensional direction in the firing process, and the generated cracks are repaired during firing if the cracks are minute. Since the shrinkage does not occur, defects such as cracks that occur once are difficult to repair. If defects such as cracks occur in the substrate, there is a problem in that the reliability of the substrate is reduced. Disclosure of the invention
本発明は上述した従来の製造方法の問題点を解決するものであり、 その目的は、 ガラスセラミック積層体を熱収縮抑制シートで挟んで焼成する高寸法精度焼成ェ 法において、 電気特性を大きく劣化させることなく、 焼成後の基板において内部 電極周辺にクラック等の欠陥の発生を抑えた高信頼性で高寸法精度のセラミック 部品を提供することである。  The present invention solves the above-mentioned problems of the conventional manufacturing method. The purpose of the present invention is to provide a high dimensional accuracy firing method in which a glass-ceramic laminate is sandwiched between heat shrinkage suppressing sheets and fired. An object of the present invention is to provide a ceramic component having high reliability and high dimensional accuracy, which suppresses generation of defects such as cracks around internal electrodes in a fired substrate without causing the substrate to fire.
この目的を達成するために本発明のセラミック部品の製造方法は、 ガラスセラ ミックグリーンシート上に前記ガラスセラミックグリーンシートと同等の焼結速 度を有する導体ペーストを印刷する導体印刷工程と、 複数の前記ガラスセラミッ クグリ一ンシートを積層して積層体を形成する積層工程と、 前記積層体の片面ま たは両面に無機物を主成分とする熱収縮抑制グリ一ンシートを更に積層して複合 積層体を作成する複合積層工程と、 前記複合積層体から有機物を焼却除去する脱 バインダー工程と、 前記有機物除去後の複合積層体を前記ガラスセラミックグリ 一ンシートと導体ペーストの焼結挙動を整合させて焼結する焼成工程と、 前記熱 収縮グリーンシート中の無機物を除去する工程とを含むセラミック部品の製造方 法であって、 高寸法精度で高信頼性のセラミック部品を得ることができる。 図面の簡単な説明  In order to achieve this object, a method for manufacturing a ceramic component according to the present invention comprises: a conductor printing step of printing a conductor paste having a sintering rate equivalent to that of the glass ceramic green sheet on a glass ceramic green sheet; A laminating step of laminating glass ceramic green sheets to form a laminate, and further laminating a heat shrinkage suppressing green sheet mainly composed of an inorganic material on one or both sides of the laminate to form a composite laminate. A composite laminating step, a binder removing step of incinerating and removing organic matter from the composite laminated body, and sintering the composite laminated body after removing the organic matter while matching the sintering behavior of the glass ceramic green sheet and the conductive paste. A method for producing a ceramic component, comprising: a firing step; and a step of removing an inorganic substance in the heat-shrinkable green sheet. Reliable ceramic components with high dimensional accuracy can be obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1はセラミック積層体を熱収縮抑制シートで挟んで焼成する本発明の焼成ェ 法を説明する断面図。  FIG. 1 is a cross-sectional view illustrating a firing method of the present invention in which a ceramic laminate is sandwiched between heat shrinkage suppressing sheets and fired.
図 2は導体層近傍の欠陥の発生箇所を説明する断面図。 発明を実施するための最良の形態  FIG. 2 is a cross-sectional view illustrating a defect occurrence location near a conductor layer. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described.
まずガラスセラミック混合材料の作製方法について説明する。 今回用いたガラ スセラミック混合材料は、 アルミナ A 1 203、 酸化マグネシゥ AM g〇及ぴ酸ィ匕 サマリウム Sm203の混合物 (以下 AMS混合物。 ) と、 ガラス (S i 02— B2 03-C a O系ガラス粉体、 軟化点 780°C) とを主成分とする。 高純度の A 12 03, MgO, Sm203原料粉体をモル比で 1 1 : 1 : 1の割合で秤量したもの を、 ポールミルに投入し 20時間混合した後、 乾燥する。 この混合粉を 1 30 0°Cで 2時間仮焼し、 この仮焼粉をポールミルで 20時間粉碎したものが、 AM S粉である。 この AMS粉と S i〇2— B203— C a O系ガラス粉末を重量比で 50 : 50の割合で秤量し、 ポールミルで 20時間混合した後、 乾燥することに よりガラスセラミック混合材料 (以下、 AMSG材。 ) が得られる。 この AMS G材は 880°C〜950°Cの温度範囲で緻密に焼成されるため、 銀電極と一体同 時焼成が可能である。 また、 比誘電率は 7. 5 (1MHz) である。 First, a method for manufacturing a glass ceramic mixed material will be described. The glass-ceramic mixed material used this time was alumina A1203, magnesium oxide AM g A main component is a mixture of samarium Sm203 (hereinafter AMS mixture) and glass (Si02-B203-CaO-based glass powder, softening point 780 ° C). High purity A1233, MgO, Sm203 raw material powder is weighed at a molar ratio of 11: 1: 1, put into a pole mill, mixed for 20 hours, and dried. This mixed powder was calcined at 1300 ° C. for 2 hours, and the calcined powder was ground with a pole mill for 20 hours to obtain AMS powder. The AMS powder and the Si〇2-B203-CaO-based glass powder were weighed in a weight ratio of 50:50, mixed with a pole mill for 20 hours, and then dried to obtain a glass-ceramic mixed material (hereinafter, referred to as “a”). AMSG material) is obtained. Since this AMS G material is densely fired in the temperature range of 880 ° C to 950 ° C, it can be fired simultaneously with the silver electrode. The relative permittivity is 7.5 (1MHz).
図 1に示す、 熱収縮抑制グリーンシート 10の材料として、 アルミナ粉 (純度 99. 9%、 平均粒径 1. 0 ^m) を用いた。  Alumina powder (purity: 99.9%, average particle size: 1.0 ^ m) was used as a material of the heat shrinkage suppression green sheet 10 shown in FIG.
上記 AMSG材およびアルミナ粉に、 それぞれバインダとして PVB樹脂、 可 塑剤としてジブチルフタレートを添加し、 酢酸プチルを溶剤としてスラリーを作 製して、 周知のドクタープレード法により所望の厚みのガラスセラミックグリー ンシート (AMS Gグリ一ンシート) 20およぴ熱収縮抑制 (アルミナ) グリ一 ンシート 10をそれぞれ作製した。  PVB resin as a binder and dibutyl phthalate as a plasticizer are added to the above-mentioned AMSG material and alumina powder, and a slurry is prepared using butyl acetate as a solvent. (AMS green sheet) 20 and heat shrinkage suppression (alumina) green sheet 10 were produced.
次に、 導体ペーストの作製方法について説明する。  Next, a method for producing the conductor paste will be described.
銀粉末 1 00重量%に対して、 添加物を任意の比率で混合し、 有機ビヒクル (ェチルセルロースのタービネオール溶解物) をペースト全体に対して 20重 量0 /0加え、 これらをセラミック 3本ロールにより混練し、 導体ペーストを得た。 この導体ペーストをスクリーン印刷機を用いて、 前記 AMSGグリーンシート 20上に、 電気抵抗測定用パターン (導体層 30) として印刷後、 図 1の構成と なるように、 AMSGグリーンシート 20を必要枚数積層し、 両面にアルミナグ リーンシート 10を積層する。 この状態で熱圧着して積層体を形成した。 熱圧着 条件は、 温度が 80 °C、 圧力は 500 k g / c m2とした。 この積層体を 10 X 1 Ommの大きさに切断し、 アルミナ製のさやの上に置き、 箱型炉において 50 0 °Cで 1 0時間熱処理する。 熱処理により樹脂成分を焼却後、 空気中で 9 0 0 °C まで昇温速度 3 0 0 °CZ h (ただし、 実施の形態 3では昇温速度を変化させてい る。 ) で昇温し、 その後 9 0 0 °Cで 3 0分間保持する条件で焼成を行った。 この焼成積層体の表面には、 熱収縮抑制グリーンシート 1 0のアルミナが焼成 することなく残存しており、 これを酢酸ブチル中で超音波洗浄することにより完 全に除去した。 Of silver powder 1 00% by weight, the additives are mixed in an arbitrary ratio, an organic vehicle (Tabineoru lysate E chill cellulose) 20 by weight 0/0 applied to the entire paste, three of these ceramics The mixture was kneaded with a roll to obtain a conductor paste. This conductor paste is printed on the AMSG green sheet 20 as a pattern for measuring electric resistance (conductor layer 30) using a screen printing machine, and then the required number of AMSG green sheets 20 are laminated as shown in FIG. Then, an alumina green sheet 10 is laminated on both sides. In this state, the laminate was formed by thermocompression bonding. The thermocompression bonding conditions were a temperature of 80 ° C and a pressure of 500 kg / cm2. The laminate is cut to a size of 10 x 1 Omm, placed on an alumina sheath, and placed in a box furnace. Heat-treat at 0 ° C for 10 hours. After incineration of the resin components by heat treatment, the temperature was raised to 900 ° C in air at a temperature rising rate of 300 ° CZh (however, in Embodiment 3 the temperature raising rate was changed). The firing was performed under the condition of maintaining the temperature at 900 ° C. for 30 minutes. The alumina of the heat shrinkage suppressing green sheet 10 remained on the surface of the fired laminate without firing, and this was completely removed by ultrasonic cleaning in butyl acetate.
(実施の形態 1 )  (Embodiment 1)
実施の形態 1では導体ペーストに対する酸化モリブデンの添加の効果について 検討する。 表 1に銀粉末 (平均粒径 4. O ^ m) に対する三酸化モリブデン (平 均粒径 2 . 5 μ πι) の添加量と、 それぞれ得られたセラミック多層基板を分析し て評価した結果を表 1に示す。  In the first embodiment, the effect of adding molybdenum oxide to the conductor paste will be examined. Table 1 shows the amounts of molybdenum trioxide (average particle size 2.5 μπι) added to silver powder (average particle size 4.O ^ m) and the results of analysis and evaluation of the obtained ceramic multilayer substrates. See Table 1.
Figure imgf000007_0001
Figure imgf000007_0001
表中、 *印は本発明に対する比較例を示す。 なお、 評価項目中、 「クラック等の欠陥のモード」 は、 図 2に示すように、 基 板 1 1を研磨して基板の断面を光学顕微鏡で観察し、 内部電極 1 2近傍の基板 1 1に生じるクラック等の欠陥 1 3を以下に示すモード A、 B、 Cの各モードに分 類したものである。 In the table, * indicates a comparative example for the present invention. In the evaluation items, the “mode of defects such as cracks” indicates that the substrate 11 was polished and the cross section of the substrate was observed with an optical microscope as shown in FIG. The defects 13 such as cracks generated in the above are classified into the modes A, B and C shown below.
(欠陥 1 3のモード分類)  (Defect 13 mode classification)
「モー -ド AJ -- ---欠陥なし。  "Mode AJ---- No defects.
「モー - KB J —一 - --欠陥の最大長さが 5 /z m未満の小さい場合。  "Mo-KB J-one--if the maximum length of the defect is small, less than 5 / z m.
「モ - CJ -- —欠陥の最大長さが 5 μ πι以上の大きい場合。 シート抵抗値とは、 内部導体層の側面に銀電極ペーストを塗布し、 焼き付けて端 子電極を形成しデジタルマルチメータを用いて測定した直流抵抗値と、 電極厚み の実測値から、 電極面積 1 mm2、 電極厚み 1 0 μ m換算の抵抗値を算出した値 である。  “M-CJ-— When the maximum length of the defect is 5 μππ or more. The sheet resistance is defined by applying a silver electrode paste to the side surface of the inner conductor layer and baking to form a terminal electrode. It is a value calculated from the DC resistance value measured using a meter and the measured electrode thickness value, in terms of an electrode area of 1 mm2 and an electrode thickness of 10 μm.
三酸化モリブデンを全く添加しなレ、試料番号 1、 添加量の少なレ、試料番号 2で は、 導体層の近傍に大きな欠陥が発生した (モード C) 。 これに対し、 三酸化モ リブデンを 0 . 1重量%以上添加した試料番号 3〜7では、 クラック等の欠陥は 観察されなかった (モード A) 。 三酸ィ匕モリブデン添加により、 導体層の焼結を 遅らせ、 ガラスセラミック積層体の焼結挙動に近づけることができたためと考え られる。 添加量が 0 . 1重量%未満では導体ペーストの焼結を十分に遅らせるこ とができない。 一方、 試料番号 7のように添加量が 6 . 0重量%と多くなりすぎ ると、 導体層のシート抵抗値が 6 πιΩを越えて急激に増大する不具合が生じる。 欠陥の発生を効果的に抑制し、 かつ低抵抗値を維持するためには、 三酸化モリ ブデンの添加量は 0 . 1重量%〜5 . 0重量0 /0が望ましい。 In the case of adding no molybdenum trioxide, Sample No. 1, the addition amount was small, and in Sample No. 2, a large defect occurred near the conductor layer (Mode C). In contrast, cracks and other defects were not observed in Sample Nos. 3 to 7 in which molybdenum trioxide was added in an amount of 0.1% by weight or more (Mode A). It is considered that the addition of molybdenum trioxide makes it possible to delay the sintering of the conductor layer and to approximate the sintering behavior of the glass ceramic laminate. If the amount is less than 0.1% by weight, the sintering of the conductor paste cannot be sufficiently delayed. On the other hand, when the amount of addition is too large as 6.0% by weight as in Sample No. 7, the sheet resistance value of the conductor layer exceeds 6πιΩ and increases rapidly. It generated effectively suppressed defects and to maintain a low resistance value, the amount of the trioxide molybdenum 0. 1% by weight to 5. 0 wt 0/0 is preferred.
(実施の形態 2 )  (Embodiment 2)
実施の形態 2では、 導体ペーストを構成する銀粉末の粒径の影響について検討 した。 表 2に示されるように平均粒径が 2 . 2〜1 0 . 2 μ πιの銀粉末を用い、 それぞれの導体粉末 1 0 0重量%に対し三酸化モリブデンを 1 . 0重量%添加し た導体ペーストを作製し評価した In the second embodiment, the effect of the particle size of the silver powder constituting the conductive paste was examined. As shown in Table 2, silver powder having an average particle size of 2.2 to 0.2 μππ was used, and 1.0% by weight of molybdenum trioxide was added to 100% by weight of each conductor powder. Prepared and evaluated conductive paste
(表 2 ) (Table 2)
Figure imgf000009_0001
銀粉末粒径が 3 μ m〜 8 μ mである試料番号 4, 8〜 1 0では導体層近傍に欠 陥は観察されなかったが、 銀粉末粒径が 2 . 2 と細かい試料番号 1 2、 1 0 . 2 mと大きい試料番号 1 1では内部電極の先端に欠陥がわずかに発生 (モード B ) していた。 銀粉末の粒径が小さすぎる場合は銀粉末の表面が活性ィヒするため 銀粉末の焼成収縮開始温度が早くなり、 また銀粉末の粒径が大きすぎる場合は、 銀粉末の収縮開始温度が遅くなりすぎて、 導体層とガラスセラミック積層体との 収縮挙動差が大きく、 電極近傍に欠陥を生じさせると考えられる。 なお銀粉末の 粒径による抵抗値の変化はほとんどなかつた。
Figure imgf000009_0001
No defects were observed in the vicinity of the conductor layer in Sample Nos. 4 and 8 to 10 in which the silver powder particle diameter was 3 μm to 8 μm, but in Sample No. 12 in which the silver powder particle diameter was 2.2. In sample No. 11 as large as 10.2 m, a small defect was generated at the tip of the internal electrode (mode B). If the particle size of the silver powder is too small, the surface of the silver powder is activated, so that the temperature at which silver powder starts shrinking and shrinking becomes faster. If the particle size of the silver powder is too large, the temperature at which silver powder shrinks starts. It is thought that the difference in shrinkage behavior between the conductor layer and the glass-ceramic laminate is too large to cause a defect near the electrode. The resistance value hardly changed with the particle size of the silver powder.
以上の結果から導体層を構成する銀粉末の粒径は 3 μ π!〜 8 /z mの範囲である ことが望ましい。  From the above results, the particle size of the silver powder constituting the conductor layer is 3 μπ! It is desirable to be in the range of ~ 8 / zm.
(実施の形態 3 )  (Embodiment 3)
実施の形態 3では、 焼成処理工程における昇温速度の影響について検討した。 用いたペーストは、 銀粉末粒径 4 . 0 m、 三酸化モリブデンの添加量 1 . 0重 量0 /。の試料番号 4のぺーストである。 表 3 In the third embodiment, the effect of the heating rate in the firing process was examined. The paste used had a silver powder particle size of 4.0 m and an added amount of molybdenum trioxide of 1.0 weight 0 /. This is the paste of sample number 4 of the sample. Table 3
Figure imgf000010_0001
表 3に示されるように平均昇温速度が 200°C/時間〜 5500°CZ時間の範 囲内とした試料番号 4及ぴ 14〜1 7では導体層近傍に欠陥は観察されなかった が、 平均昇温速度が 1 00°CZhと遅い試料番号 1 3では欠陥がわずかに発生 (モー KB) していた。 また 9000°C/hと非常に速い昇温速度の試料番号 1 8にも欠陥が観察された。 昇温速度を遅くすると、 焼成時において導体層とガラ スセラミック積層体の収縮挙動の時間差が大きくなるため欠陥が生じたと考えら れる。 また昇温速度が速くなりすぎると、 導体層近傍に急激な収縮力が作用する ため、 欠陥が生じたものと推定される。
Figure imgf000010_0001
As shown in Table 3, in Sample Nos. 4 and 14 to 17 where the average heating rate was in the range of 200 ° C / hour to 5500 ° CZ time, no defects were observed near the conductor layer, but the average Sample No. 13 with a slow heating rate of 100 ° CZh had a slight defect (M KB). Defects were also observed in Sample No. 18, which had a very fast heating rate of 9000 ° C / h. If the rate of temperature rise is reduced, it is considered that defects occurred because the time difference between the shrinkage behavior of the conductor layer and the glass ceramic laminate during firing increased. If the rate of temperature rise is too fast, a sudden contraction force acts near the conductor layer, and it is assumed that defects have occurred.
以上の結果から、 焼成処理工程における平均昇温速度は、 200°C/h〜55 00°CZhであるのが望ましい。 上記実施の形態では三酸化モリブデンを用いて説明したが、 これ以外の酸化モ リブデンを用いても同様の効果が得られる。 なお、 他の酸化モリブデンの配合比 は、 三酸ィヒモリブデンに換算して 0. 1重量%〜5. 0重量%が望ましい。 なお、 ガラスセラミック材料として本発明の実施の形態では (A 1203— Mg O— Sm2〇3) +ガラス系材料を用いているが、 Sm203だけでなく特定のラン タノイド酸化物 LnxOy (Lnは L a, C e, N d, Sm, Eu, Gd, Tbか ら選ばれる少なくとも一種類、 X, yは前記 Lnの価数に応じて化学量論的に定 まる数値) を用いてもその焼結収縮挙動は変化がないため、 同等の効果が得られ ることを確認している。 From the above results, it is desirable that the average temperature rise rate in the firing treatment step is 200 ° C / h to 5500 ° CZh. Although the above embodiment has been described using molybdenum trioxide, similar effects can be obtained by using other molybdenum oxide. The mixing ratio of the other molybdenum oxide is preferably from 0.1% by weight to 5.0% by weight in terms of dimolybdenum trioxide. In the embodiment of the present invention, (A 1203—Mg O—Sm2〇3) + glass-based material is used as the glass ceramic material. Tanoid oxide LnxOy (Ln is at least one selected from La, Ce, Nd, Sm, Eu, Gd, and Tb, and X and y are stoichiometrically determined according to the valence of Ln. It has been confirmed that the same effect can be obtained because the sintering shrinkage behavior does not change even if the value is used.
また本発明の製造方法は、 上記 (A 1203— MgO— LnOx) とガラス系材 料とからなるガラスセラミック以外の他のガラスセラミックにも用いることがで さる。 産業上の利用可能性  Further, the production method of the present invention can be used for other glass ceramics other than the glass ceramic comprising the above (A1203-MgO-LnOx) and a glass-based material. Industrial applicability
本発明のセラミック部品の製造方法を用いることにより、 ガラスセラミック積 層体を熱収縮抑制シートで挟んで焼成する高寸法精度焼成工法において、 電気特 性を大きく劣化させることなく、 焼成後の基板において内部電極周辺にクラック 等の欠陥の発生を抑えた高信頼性で高寸法精度のセラミック部品を提供すること ができる。  By using the method for manufacturing a ceramic component of the present invention, a high dimensional accuracy firing method in which a glass ceramic laminate is sandwiched between heat shrinkage suppressing sheets and fired without significantly deteriorating electrical characteristics, It is possible to provide a highly reliable and high dimensional accuracy ceramic component which suppresses generation of defects such as cracks around the internal electrode.

Claims

請求の範囲 The scope of the claims
1 . ガラスセラミックグリ一ンシート上に前記ガラスセラミックグリ一ンシート と同等の焼結速度を有する導体ペーストを印刷する導体印刷工程と、 複数の前記 ガラスセラミックグリーンシートを積層して積層体を形成する積層工程と、 前記 積層体の片面または両面に無機物を主成分とする熱収縮抑制グリーンシートを更 に積層して複合積層体を作成する複合積層工程と、 前記複合積層体から有機物を 焼却除去する脱バインダー工程と、 前記有機物除去後の複合積層体を前記ガラス セラミックグリーンシートと導体ペーストの焼結挙動を整合させて焼結する焼成 工程と、 前記熱収縮グリーンシート中の無機物を除去する工程とを含むセラミツ ク部品の製造方法。  1. A conductor printing step of printing a conductor paste having a sintering rate equivalent to that of the glass ceramic green sheet on the glass ceramic green sheet, and laminating a plurality of the glass ceramic green sheets to form a laminate. A composite laminating step of further laminating a heat-shrinkage-suppressing green sheet containing an inorganic substance as a main component on one or both surfaces of the laminate to form a composite laminate; and removing the organic matter from the composite laminate by incineration. A binder step, a firing step of sintering the composite laminate after removing the organic substance by matching the sintering behavior of the glass ceramic green sheet and the conductive paste, and a step of removing an inorganic substance in the heat-shrinkable green sheet. Manufacturing method for ceramic parts, including
2 . 前記焼成工程が、 前記導体ペースト中に混合される酸化モリプデンにより前 記導体ペーストの焼結速度を抑制し、 前記ガラスセラミックの焼結速度と整合さ せて焼結する工程である請求項 1記載のセラミック部品の製造方法。  2. The sintering step is a step of suppressing the sintering speed of the conductor paste by molybdenum oxide mixed in the conductor paste, and performing sintering in accordance with the sintering speed of the glass ceramic. 1. The method for producing a ceramic component according to 1.
3 . 前記導体印刷工程で用いる前記導体ペーストが銀粉末と酸化モリプデンを含 み、 前記酸化モリブデンの配合比が導体粉末全体の 0 . 1〜5重量% (三酸化モ リプデン換算) である請求項 1記載のセラミック部品の製造方法。  3. The conductor paste used in the conductor printing step contains silver powder and molybdenum oxide, and the compounding ratio of the molybdenum oxide is 0.1 to 5% by weight (in terms of molybdenum trioxide) of the entire conductor powder. 1. The method for producing a ceramic component according to 1.
4. 前記焼成工程が、 前記導体ペーストに用いる銀粉末として平均粒径 3 μ n!〜 8 μ mの銀粉末を選択することにより、 前記導体ペーストの収縮開始温度を制御 し、 前記ガラスセラミックの収縮挙動と整合させて焼結する工程である請求項 1 記載のセラミック部品の製造方法。  4. In the firing step, the silver powder used for the conductor paste has an average particle size of 3 μn! The method for producing a ceramic part according to claim 1, wherein the step of controlling the shrinkage starting temperature of the conductive paste is performed by selecting silver powder having a size of 88 μm and matching the shrinkage behavior of the glass ceramic. .
5 . 前記導体印刷工程で用いる前記導体ペーストが銀粉末と酸化モリプデンを含 み、 前記銀粉末の平均粒径が 3 /X m〜 8 μ mである請求項 1記載のセラミック部 品の製造方法。  5. The method of claim 1, wherein the conductive paste used in the conductive printing step contains silver powder and molybdenum oxide, and the silver powder has an average particle size of 3 / Xm to 8 μm. .
6 . 前記焼成工程が昇温工程と高温保持工程を有し、 前記昇温工程での昇温速度 を 1時間当たり 2 0 0 °C〜5 5 0 0 °Cとする請求項 1記載のセラミック部品の製 造方法。  6. The ceramic according to claim 1, wherein the firing step includes a temperature raising step and a high temperature holding step, and the temperature raising rate in the temperature raising step is set to 200 ° C to 550 ° C per hour. The method of manufacturing the part.
7 . 酸ィ匕ァノレミ、 酸化マグネシウムおよび特定のランタノイド酸化物とガラスを 含む前記ガラスセラミックグリーンシートを用いてなる請求項 1〜 6記載のセラ ミック部品の製造方法。 7. Glass with acid oxide anoremi, magnesium oxide and specific lanthanoid oxide 7. The method for producing a ceramic component according to claim 1, wherein the glass ceramic green sheet is used.
8 . 所定のパターンの導体層を有する積層ガラスセラミック部品であって、 前記 ガラスセラミックは酸化アルミ、 酸化マグネシウムおょぴ特定のランタノィド酸 化物とガラスを含み、 前記導体は銀を主成分として有しかつ酸化モリプデンを 導体粉末全体の 0 . 1〜 5重量%含むセラミック電子部品。  8. A laminated glass ceramic component having a conductor layer of a predetermined pattern, wherein the glass ceramic includes aluminum oxide, magnesium oxide and a specific lanthanide oxide and glass, and the conductor has silver as a main component. A ceramic electronic component containing 0.1 to 5% by weight of molybdenum oxide in the entire conductor powder.
PCT/JP2002/006077 2001-06-25 2002-06-18 Ceramic component and production method therefor WO2003000619A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60217866T DE60217866T2 (en) 2001-06-25 2002-06-18 CERAMIC COMPONENT AND ITS MANUFACTURING METHOD
KR10-2003-7002540A KR20030059109A (en) 2001-06-25 2002-06-18 Ceramic component and production method therefor
US10/344,606 US20040041309A1 (en) 2001-06-25 2002-06-18 Ceramic component and production method therefor
EP02736160A EP1403228B1 (en) 2001-06-25 2002-06-18 Ceramic component and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-190966 2001-06-25
JP2001190966A JP3807257B2 (en) 2001-06-25 2001-06-25 Manufacturing method of ceramic parts

Publications (1)

Publication Number Publication Date
WO2003000619A1 true WO2003000619A1 (en) 2003-01-03

Family

ID=19029658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006077 WO2003000619A1 (en) 2001-06-25 2002-06-18 Ceramic component and production method therefor

Country Status (7)

Country Link
US (1) US20040041309A1 (en)
EP (1) EP1403228B1 (en)
JP (1) JP3807257B2 (en)
KR (1) KR20030059109A (en)
CN (1) CN1207249C (en)
DE (1) DE60217866T2 (en)
WO (1) WO2003000619A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200705481A (en) * 2005-04-28 2007-02-01 Tdk Corp Method of production of multilayer ceramic electronic device
US20090314989A1 (en) 2005-05-11 2009-12-24 Masaru Iwao Fluorescent substance composite glass, fluorescent substance composite glass green sheet, and process for producing fluorescent substance composite glass
CN100351208C (en) * 2005-09-01 2007-11-28 陕西科技大学 Ceramic parts quick making method
EP3908446A4 (en) * 2019-01-09 2022-03-09 Aselsan Elektronik Sanayi ve Ticaret Anonim Sirketi Three-dimensional printing of multilayer ceramic missile radomes by using interlayer transition materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185528A (en) * 1997-12-25 1999-07-09 Dai Ichi Kogyo Seiyaku Co Ltd Conductive paste for low temperature burned substrate
JPH11251723A (en) * 1998-02-26 1999-09-17 Kyocera Corp Circuit board
JP2000049431A (en) * 1998-07-30 2000-02-18 Kyocera Corp Ceramic circuit board
JP2000285731A (en) * 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd Manufacture of conductor paste and ceramic multilayer substrate
JP2001158670A (en) * 1999-11-29 2001-06-12 Kyocera Corp Method for producing glass-ceramic substrate

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109377A (en) * 1976-02-03 1978-08-29 International Business Machines Corporation Method for preparing a multilayer ceramic
GB2072707B (en) * 1980-03-31 1984-01-25 Hitachi Chemical Co Ltd Electroconductive paste and process for producing electroconductive metallized ceramics using the same
US4671928A (en) * 1984-04-26 1987-06-09 International Business Machines Corporation Method of controlling the sintering of metal particles
JPS61117163A (en) * 1984-06-01 1986-06-04 鳴海製陶株式会社 Manufacture of low temperature burnt ceramics and equipment therefor
US4861646A (en) * 1987-08-13 1989-08-29 Ceramics Process Systems Corp. Co-fired metal-ceramic package
US5254191A (en) * 1990-10-04 1993-10-19 E. I. Du Pont De Nemours And Company Method for reducing shrinkage during firing of ceramic bodies
US5370759A (en) * 1992-05-20 1994-12-06 Matsushita Electric Industrial Co., Ltd. Method for producing multilayered ceramic substrate
US5336444A (en) * 1992-05-29 1994-08-09 International Business Machines Corporation Ceramic via composition, multilayer ceramic circuit containing same, and process for using same
US5456778A (en) * 1992-08-21 1995-10-10 Sumitomo Metal Ceramics Inc. Method of fabricating ceramic circuit substrate
US5468694A (en) * 1992-11-21 1995-11-21 Yamamura Glass Co. Ltd. Composition for producing low temperature co-fired substrate
JPH06223623A (en) * 1992-12-28 1994-08-12 Internatl Business Mach Corp <Ibm> Paste using copper as blank and ceramic package
JP3209089B2 (en) * 1996-05-09 2001-09-17 昭栄化学工業株式会社 Conductive paste
US6146743A (en) * 1997-02-21 2000-11-14 Medtronic, Inc. Barrier metallization in ceramic substrate for implantable medical devices
EP1110647A3 (en) * 1999-12-22 2004-02-11 Mitsui Mining and Smelting Co., Ltd Paste to be fired for forming circuit board and method for preparing surface-modified silver powder
JP2002226259A (en) * 2000-11-29 2002-08-14 Murata Mfg Co Ltd Composition for substrate of ceramic electronic parts, ceramic electronic parts and method for manufacturing laminated type ceramic electronic parts
US6762369B2 (en) * 2001-10-29 2004-07-13 Matsushita Electric Industrial Co., Ltd. Multilayer ceramic substrate and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185528A (en) * 1997-12-25 1999-07-09 Dai Ichi Kogyo Seiyaku Co Ltd Conductive paste for low temperature burned substrate
JPH11251723A (en) * 1998-02-26 1999-09-17 Kyocera Corp Circuit board
JP2000049431A (en) * 1998-07-30 2000-02-18 Kyocera Corp Ceramic circuit board
JP2000285731A (en) * 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd Manufacture of conductor paste and ceramic multilayer substrate
JP2001158670A (en) * 1999-11-29 2001-06-12 Kyocera Corp Method for producing glass-ceramic substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1403228A4 *

Also Published As

Publication number Publication date
US20040041309A1 (en) 2004-03-04
KR20030059109A (en) 2003-07-07
JP3807257B2 (en) 2006-08-09
EP1403228B1 (en) 2007-01-24
JP2003002751A (en) 2003-01-08
CN1207249C (en) 2005-06-22
CN1463261A (en) 2003-12-24
DE60217866T2 (en) 2007-07-05
EP1403228A1 (en) 2004-03-31
EP1403228A4 (en) 2005-08-17
DE60217866D1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP5104761B2 (en) Ceramic substrate and manufacturing method thereof
JP4748435B2 (en) Laminated glass ceramic material and laminated glass ceramic sintered body
JPH09295827A (en) Glass for substrate and ceramic base using the same
JP2010100517A (en) Glass ceramic substrate
JP6474018B2 (en) Ceramic circuit board, ceramic green sheet for ceramic circuit board, and glass ceramic powder for ceramic circuit board
WO2003000619A1 (en) Ceramic component and production method therefor
JP2004319706A (en) Conductive paste, and multilayer substrate and its manufacturing method
JP4844317B2 (en) Ceramic electronic component and manufacturing method thereof
JP3630372B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JP2004087989A (en) Multilayer wiring substrate
JP5382514B2 (en) Photosensitive paste and electronic component
JP2005272163A (en) Method for producing electronic component
JP2002353626A (en) Multilayer wiring board and method of manufacturing the same
JP2008037675A (en) Low temperature-sinterable ceramic composition, ceramic substrate, method for manufacturing the same, and electronic component
JP2004273426A (en) Conductive paste and ceramic multilayer substrate using the same
JP2002299820A (en) Method of manufacturing ceramic component
JP5499766B2 (en) Glass ceramic substrate, method for manufacturing the same, and wiring substrate
JP5209563B2 (en) Manufacturing method of multilayer ceramic substrate
JP2003078245A (en) Method of manufacturing multilayer wiring substrate
JP4617691B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2005026722A (en) Multilayer ceramic substrate and method for manufacturing the same
JP2007266353A (en) Method of manufacturing multilayer ceramic substrate
JP2004207076A (en) Copper-metallized composition as well as wiring board and its manufacturing method
JPS63215548A (en) Electric resistor and manufacture
JP2004262741A (en) Glass-ceramic substrate and method for manufacturing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2002736160

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 028021304

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037002540

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020037002540

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10344606

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004104364

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2002736160

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002736160

Country of ref document: EP