JP2011154067A - 静電潜像現像用有機感光体と画像形成方法 - Google Patents

静電潜像現像用有機感光体と画像形成方法 Download PDF

Info

Publication number
JP2011154067A
JP2011154067A JP2010013910A JP2010013910A JP2011154067A JP 2011154067 A JP2011154067 A JP 2011154067A JP 2010013910 A JP2010013910 A JP 2010013910A JP 2010013910 A JP2010013910 A JP 2010013910A JP 2011154067 A JP2011154067 A JP 2011154067A
Authority
JP
Japan
Prior art keywords
image
electrostatic latent
fine particles
latent image
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010013910A
Other languages
English (en)
Inventor
Toshiyuki Fujita
俊行 藤田
Hiroko Yamaguchi
裕子 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2010013910A priority Critical patent/JP2011154067A/ja
Publication of JP2011154067A publication Critical patent/JP2011154067A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

【課題】高画質を得る為に無機微粒子を極めて均一に分散させた保護層を有し、画像ボケを起こさず、保護層の傷、削れ等がなく、極めて耐久性の高い静電潜像現像用有機感光体と画像形成方法を提供する。
【解決手段】導電性支持体上に感光層、その上に保護層を有する静電潜像現像用有機感光体において、該保護層が、少なくとも反応性有機基を有する表面処理剤とシリコーンオイルにより表面処理された金属酸化物微粒子の反応生成物を含有することを特徴とする静電潜像現像用有機感光体。
【選択図】なし

Description

本発明は、静電潜像現像用有機感光体とそれを用いた画像形成方法に関するものである。
近年、静電潜像現像用有機感光体(以下、有機感光体又は単に感光体ということもある)に課せられた最も大きな課題は、高画質の達成とそれを持続できる耐久性の向上である。
この課題を達成する手段としては、種々の対応策が検討されている。その有力なものとして、感光層の表面或いは保護層に、無機微粒子(フィラー)を添加すること、及び該微粒子の分散性を上げるため表面処理剤により微粒子を処理するという技術が開発されている。この技術は、有機感光体の大きな課題である耐磨耗性を向上させる為には有力な手段であることは、すでに確認されているといってよいであろう。
さらに、無機微粒子表面を反応性官能基を有する表面処理剤にて処理を施し、反応性硬化樹脂中に添加した分散液を有機感光体の表面保護層として塗布した後、光等で硬化製膜し、表面保護層中にフィラーを均一に分散し、しかも強固に固定する試みも成されている(特許文献1又は2)。
しかしながら、近い将来において市場で要求されるであろうレベルを基準にするなら、高画質の達成とそれを持続できる高耐久性を共に有する有機感光体は、現在得られていないのも、又、事実である。
特開平11−95474号公報 特開2008−96528号公報
本発明は、上記課題を解決するために成された。
即ち、本発明の目的は、高画質を得る為に無機微粒子を極めて均一に分散させた保護層を有し、画像ボケを起こさず、保護層の傷、削れ等がなく、極めて耐久性の高い静電潜像現像用有機感光体と画像形成方法を提供することである。
本発明の発明者が種々検討した結果、従来技術では、膜強度を向上させるために有機感光体保護層中にシリコーンオイル処理したフィラーを分散させている例はあるが、この場合、保護層の強度を満足な耐久性を有するまで高めることはできない。一方、保護層中に反応性処理剤にて処理したフィラーを単独で用いると耐久性が改善されても、その未反応基により疎水化が充分でなく、画像流れが発生する。さらに未反応官能基を多く保護層内に存在させると、画像ボケが激しく大きな問題であることがわかった。
しかしながら、検討を進めて、フィラーをシリコーンオイル処理と反応性処理剤にての処理を共に行ったものを用いたところ、有機感光体に極めて高いレベルでの高画質と高耐久性を付与できることを見いだし、さらに検討を進めて本発明に至った。
(1)
導電性支持体上に感光層、その上に保護層を有する静電潜像現像用有機感光体において、該保護層が、少なくとも反応性有機基を有する表面処理剤とシリコーンオイルにより表面処理された金属酸化物微粒子の反応生成物を含有することを特徴とする静電潜像現像用有機感光体。
本発明において、「少なくとも反応性有機基を有する表面処理剤とシリコーンオイルにより表面処理された金属酸化物微粒子の反応生成物」とは、該金属酸化物微粒子同士、或いは該金属酸化物微粒子とそのほかの化合物が反応して形成された生成物という意味である。無論、該金属酸化物微粒子或いはその他の化合物が3個以上の反応性基を有していて、3次元的に反応して形成された生成物も含まれる。
(2)
前記反応性有機基がアクリロイル基又はメタクリロイル基であることを特徴とする(1)に記載の静電潜像現像用有機感光体。
(3)
前記金属酸化物微粒子がアルミナ、酸化錫、チタニアのいずれかの微粒子であることを特徴とする(1)又は(2)に記載の静電潜像現像用有機感光体。
(4)
前記反応生成物が、前記表面処理された金属酸化物微粒子間の反応による生成物であることを特徴とする(1)〜(3)のいずれか1項に記載の静電潜像現像用有機感光体。
(5)
前記反応生成物が、前記表面処理された金属酸化物微粒子と、前記反応性有機基と反応可能な反応性基を有する硬化性化合物との反応による生成物であることを特徴とする(1)〜(3)のいずれか1項に記載の静電潜像現像用有機感光体。
(6)
(1)〜(5)のいずれか1項記載の静電潜像現像用有機感光体を用い、該感光体を一様帯電後、像露光工程、トナー現像工程を経て形成されたトナー画像を、画像支持体へ転写後、加熱定着することを特徴とする画像形成方法。
本発明により、高画質を得る為に無機微粒子を極めて均一に分散させた保護層を有し、画像ボケを起こさず、保護層の傷、削れ等がなく、極めて耐久性の高い静電潜像現像用有機感光体と画像形成方法を提供することができる。
本発明の画像形成方法の機能が組み込まれた画像形成装置の断面構成図。 本発明の一実施の形態を示すカラー画像形成装置の断面構成図。 本発明の有機感光体を用いたカラー画像形成装置の構成図。
本発明は、反応性表面処理剤及びシリコーンオイル処理剤の両方で処理を施した金属酸化物微粒子を、均一分散した塗工液を塗布、硬化し保護層を形成するものである。
反応性有機基を有する表面処理剤の処理とシリコーンオイル処理を金属酸化物微粒子に施すことで分散性はもとより強度も向上し、耐磨耗性、耐傷性共に大きく改善する。さらに、強度、分散性を満足しつつ、高温高湿環境下でも放電分解生成物による画像流れも大きく改善された。
これは、従来技術では金属酸化物微粒子の表面に反応性有機基を有する表面処理剤、シリコーンオイル処理のいずれか一方の表面処理を施し、分散性あるいは膜強度といった特性を持たせることにしていた。しかし、シリコーンオイル処理だけでは、多くの場合は共存させる樹脂バインダとフィラーとの結合力がなく、金属酸化物微粒子の脱落や減耗が大きく、十分な耐久性を得るという目的を達成できない。
一方で反応性有機基を有する表面処理剤による処理だけでは、金属酸化物微粒子の分散性向上効果と、帯電極で発生する放電分解生成物の感光体表面付着に起因した画像ボケの防止効果という点で満足できない。
しかし、その双方を行うことは、いずれも金属酸化物微粒子表面の特性を改善するための措置であり、該粒子表面又はそのごく近傍に作用してその特性を変えるものであるから、競合関係にあり双方の改善効果を半々に発現するか、双方が互いに他を阻害し、望ましい結果は得られないと考えられる。
しかしながら、発明者の行った検討によれば、シリコーンオイルと反応性有機基を有する表面処理剤の両方を処理してみると、予想に反して金属酸化物微粒子の分散性を満足しつつ膜強度が高く、そのほかの特性も併用しない有機感光体より改善された。これは反応性官能基やフィラー表面のOH基に吸着しやすい放電生成物をシリコーンオイルの撥水性により付着させ難くすることにより、画像ボケを大きく改善することが可能となった。また反応性有機基を有する表面処理剤による処理に加えて、シリコーンオイル処理を施すことでさらに膜強度が向上したが、分散性の向上による膜の均一化による効果と推測できる。
更により望ましい実施態様は、反応性有機基がアクリロイル又はメタクリロイル基であり、金属酸化物微粒子がアルミナ、酸化錫、チタニアであることも判明した。一方、シリコーンオイルは例示化合物の中でも水素置換のシリコーンが好ましいが、その理由としては、シリコーンオイル分子内のSi原子と金属酸化物微粒子表面のOH基とが結合を形成するためより強固なSi−O結合を形成できるためであろう。
以下、本発明に用いることができる化合物や画像形成方法等につきさらに説明する。
〔本発明に用いられる金属酸化物微粒子〕
本発明の金属酸化物微粒子は遷移金属も含めた金属酸化物粒子であればよく、例えば、シリカ(酸化ケイ素)、酸化マグネシウム、酸化亜鉛、酸化鉛、アルミナ(酸化アルミニウム)、酸化タンタル、酸化インジウム、酸化ビスマス、酸化イットリウム、酸化コバルト、酸化銅、酸化マンガン、酸化セレン、酸化鉄、酸化ジルコニウム、酸化ゲルマニウム、酸化錫、チタニア(酸化チタン)、酸化ニオブ、酸化モリブデン、酸化バナジウム等の金属酸化物粒子が例示されるが、中でも、酸化チタン、アルミナ、酸化錫の粒子が好ましい。
本発明の金属酸化物微粒子の製造方法は、特に限定はないが、例えば、JIS K1410に記載された間接法(フランス法)、直接法(アメリカ法)又はプラズマ法などが挙げられる。
本発明で用いられる金属酸化物微粒子は、プラズマ法により生成された金属酸化物微粒子が、平均粒径が他の製法と比較して小さく且つ、粒形が比較的揃った晶癖の微粒子であり好ましい。
プラズマ法により金属酸化物微粒子を生成する方法としては、直流プラズマアーク法、高周波プラズマ法、プラズマジェット法などの方法が挙げられる。
直流プラズマアーク法では、金属原料を消費アノード電極とする。そして、カソード電極からプラズマフレームを発生させる。そして、アノード側の金属原料を加熱、蒸発させ、金属原料の蒸気を酸化、冷却することにより、金属酸化物微粒子を用いるのが望ましい。
高周波プラズマ法では、大気圧力のもとでガスを高周波誘導放電によって加熱したときに発生する熱プラズマを利用する。このうちプラズマ蒸発法では、不活性ガスプラズマ中心に固体粒子を注入し、プラズマ中を通過する間に蒸発させ、この高温蒸気を急冷凝縮することにより超微粒子を生成することができる。
プラズマ法は、不活性ガスのアルゴン、および2原子分子ガスである水素や窒素、酸素雰囲気中でアーク放電すると、アルゴンプラズマ、水素プラズマなどが得られるが、とくに2原子分子ガスが熱解離して生じた水素(窒素、酸素)プラズマは分子状ガスに比べてきわめて反応性に富んでいるので、不活性ガスのプラズマと区別して反応性アークプラズマとも呼ばれている。このうち酸素プラズマ法は金属酸化物微粒子を生成する方法として効果的である。
本発明の金属酸化物微粒子の数平均一次粒径は1〜300nmの範囲が好ましい。特に好ましくは3〜100nmである。
上記金属酸化物微粒子の数平均一次粒径は、走査型電子顕微鏡(日本電子製)により10000倍の拡大写真を撮影し、ランダムに300個の粒子をスキャナーにより取り込んだ写真画像(凝集粒子は除いた)を自動画像処理解析装置LUZEX AP((株)ニレコ)ソフトウエアバージョン Ver.1.32を使用して数平均一次粒径を算出した。
(反応性有機基を有する表面処理剤)
本発明の金属酸化物微粒子は、反応性有機基を有する表面処理剤により表面処理することにより、表面処理済み粒子間または硬化性化合物との結合が強固になる。
次に金属酸化物微粒子の表面処理に用いる表面処理剤について、記載する。
上記金属酸化物微粒子の表面処理に用いる表面処理剤としては、金属酸化物微粒子の表面に存在する水酸基等と反応性を有する表面処理剤であればよい。このような、反応性を有する表面処理剤としては、下記に記すような化合物が例示される。
S−1 CH=CHSi(CH)(OCH
S−2 CH=CHSi(OCH
S−3 CH=CHSiCl
S−4 CH=CHCOO(CHSi(CH)(OCH
S−5 CH=CHCOO(CHSi(OCH
S−6 CH=CHCOO(CHSi(CH)(OCH
S−7 CH=CHCOO(CHSi(OCH
S−8 CH=CHCOO(CHSi(CH)Cl
S−9 CH=CHCOO(CHSiCl
S−10 CH=CHCOO(CHSi(CH)Cl
S−11 CH=CHCOO(CHSiCl
S−12 CH=C(CH)COO(CHSi(CH)(OCH
S−13 CH=C(CH)COO(CHSi(OCH
S−14 CH=C(CH)COO(CHSi(CH)(OCH
S−15 CH=C(CH)COO(CHSi(OCH
S−16 CH=C(CH)COO(CHSi(CH)Cl
S−17 CH=C(CH)COO(CHSiCl
S−18 CH=C(CH)COO(CHSi(CH)Cl
S−19 CH=C(CH)COO(CHSiCl
S−20 CH=CHSi(C)(OCH
S−21 CH=C(CH)Si(OCH
S−22 CH=C(CH)Si(OC
S−23 CH=CHSi(OCH
S−24 CH=C(CH)Si(CH)(OCH
S−25 CH=CHSi(CH)Cl
S−26 CH=CHCOOSi(OCH
S−27 CH=CHCOOSi(OC
S−28 CH=C(CH)COOSi(OCH
S−29 CH=C(CH)COOSi(OC
S−30 CH=C(CH)COO(CHSi(OC
Figure 2011154067
Figure 2011154067
本発明の反応性有機基は、少なくとも1つがラジカル重合性基であることが好ましく、ラジカル重合性基が炭素−炭素二重結合を有する基であると更に好ましい。また、ラジカル重合性基がアクリロイル基又はメタクリロイル基であると、保護層の耐摩耗性を、高温高湿下等で発生しやすい画像流れや画像ボケを改善の効果が高く特に好ましい。
〔シリコーンオイル〕
本発明に用いられるシリコーンオイルとは、主骨格にシロキサン結合(∋Si−O−)構造を有したオイル状の人工高分子化合物の総称である。それ以上の構造上の限定は特にないが、シロキサン結合の数は通常2000以下のものが好ましい。
例えば下記の如き化学構造のものがある。
Figure 2011154067
Figure 2011154067
Figure 2011154067
金属酸化物微粒子への処理量は、処理前の金属酸化物微粒子100質量部に対して0.1〜200質量部が好ましく、添加混合方法としては反応性有機基を有する表面処理剤と同様である。該表面処理剤との金属酸化物微粒子への添加順序も特に限定はなく、全く同時でも逐次行う方法でもよい。
〔反応性有機基を有する表面処理剤とシリコーンオイルにより表面処理された金属酸化物微粒子の製法〕
以下、反応性有機基を有する表面処理剤とシリコーンオイルにより表面処理された金属酸化物微粒子の製造方法を、酸化チタン粒子を例にして説明する。
本発明に係わる表面処理済み酸化チタン粒子は、酸化チタン粒子を、反応性有機基を有するシラン化合物等とシリコーンオイルとを用いて表面処理することにより、得ることが出来る。該表面被覆処理するに際、処理前の酸化チタン粒子100質量部に対し、シラン化合物を表面処理剤として0.1〜200質量部、シリコーンオイルを表面処理剤として0.1〜200質量部、溶媒50〜5000質量部を用いて湿式メディア分散型装置を使用して処理することが好ましい。
以下に、均一で、しかもより微細にシラン化合物とシリコーンオイルとで表面被覆処理された酸化チタン粒子を製造する表面処理方法を述べる。
即ち、酸化チタン粒子とシラン化合物とシリコーンオイルの表面処理剤とを含むスラリー(固体粒子の懸濁液)を湿式粉砕することにより、酸化チタン粒子を微細化すると同時に酸化チタン粒子の表面処理が進行する。その後、溶媒を除去して粉体化するので、均一で、しかもより微細なシラン化合物とシリコーンオイルにより表面処理された酸化チタン粒子を得ることができる。
本発明において用いられる表面処理装置である湿式メディア分散型装置とは、容器内にメディアとしてビーズを充填し、さらに回転軸と垂直に取り付けられた撹拌ディスクを高速回転させることにより、金属酸化物粒子の凝集粒子を砕いて粉砕・分散する工程を有する装置であり、その構成としては、金属酸化物粒子に表面処理を行う際に金属酸化物粒子を十分に分散させ、かつ表面処理できる形式であれば問題なく、たとえば、縦型・横型、連続式・回分式など、種々の様式が採用できる。具体的にはサンドミル、ウルトラビスコミル、パールミル、グレンミル、ダイノミル、アジテータミル、ダイナミックミル等が使用できる。これらの分散型装置は、ボール、ビーズ等の粉砕媒体(メディア)を使用して衝撃圧壊、摩擦、専断、ズリ応力等により微粉砕、分散が行われる。
上記サンドグラインダーミルで用いるビーズとしては、ガラス、アルミナ、ジルコン、ジルコニア、スチール、フリント石などを原材料としたボールが使用可能であるが、特にジルコニア製やジルコン製のものが好ましい。また、ビーズの大きさとしては、通常、直径1〜2mm程度のものを使用するが、本発明では0.1〜1.0mm程度のものを用いるのが好ましい。
湿式メディア分散型装置に使用するディスクや容器内壁には、ステンレス製、ナイロン製、セラミック製など種々の素材のものが使用できるが、本発明では特にジルコニアまたはシリコンカーバイドといったセラミック製のディスクや容器内壁が好ましい。
以上のような湿式処理により、表面処理剤で表面処理された酸化チタン粒子を得ることができる。
以上、酸化チタン粒子で説明したが、アルミナ、酸化亜鉛、酸化錫、シリカ等の金属酸化物粒子も、酸化チタンと同様に表面に水酸基を有しているので、酸化チタンと同様に表面処理剤で表面処理された金属酸化物微粒子を得ることができる。
〔硬化性化合物〕
次に、本発明で用いてもよい硬化性化合物について、記載する。
上記硬化性化合物は、紫外線や電子線等の活性線照射により重合(硬化)して、ポリスチレン、ポリアクリレート等、一般に感光体のバインダー樹脂として用いられる樹脂となるモノマーが好適である。特には、スチレン系モノマー、アクリル系モノマー、メタアクリル系モノマー、ビニルトルエン系モノマー、酢酸ビニル系モノマー、N−ビニルピロリドン系モノマーが好ましい。
中でも、少ない光量あるいは短い時間での硬化が可能であることからアクリロイル基(CH=CHCO−)またはメタクリロイル基(CH=CCHCO−)を有する硬化性化合物が特に好ましい。
本発明においては、これら硬化性化合物は単独で用いても、混合して用いてもよい。
以下に硬化性化合物の例を示す。以下にいうAc基数(アクリロイル基数)又はMc基数(メタクリロイル基数)とは、アクリロイル基またはメタクリロイル基の数を表す。
Figure 2011154067
Figure 2011154067
Figure 2011154067
Figure 2011154067
Figure 2011154067
Figure 2011154067
Figure 2011154067
但し、上記においてRは下記で示される。
Figure 2011154067
Figure 2011154067
Figure 2011154067
Figure 2011154067
Figure 2011154067
Figure 2011154067
Figure 2011154067
Figure 2011154067
但し、上記においてR′は下記で示される。
Figure 2011154067
Figure 2011154067
また、オキセタン化合物の具体例を以下に示すが、本発明はこれらに限定されない。
Figure 2011154067
Figure 2011154067
エポキシ化合物としては、芳香族エポキシド、脂環式エポキシド及び脂肪族エポキシドを挙げることができる。
本発明においては、硬化性化合物は官能基(反応性基のこと)が3以上の化合物を用いることが好ましい。又、硬化性化合物は、2種以上の化合物を併用してもよいが、この場合でも、硬化性化合物は官能基が3以上の化合物を50質量%以上用いることが好ましい。
本発明に用いられる硬化性化合物を反応させる際には、電子線開裂で反応する方法、ラジカル重合開始剤あるいはカチオン重合性開始剤を添加して、光、熱で反応する方法などが用いられる。重合開始剤は光重合開始剤、熱重合開始剤のいずれも使用することができる。また、光、熱の両方の開始剤を併用することもできる。
これら光硬化性化合物のラジカル重合開始剤としては、光重合開始剤が好ましく、中でも、アルキルフェノン系化合物、或いはフォスフィンオキサイド系化合物が好ましい。特に、α−ヒドロキシアセトフェノン構造、或いはアシルフォスフィンオキサイド構造を有する化合物が好ましい。また、カチオン重合を開始させる化合物としては、例えば、ジアゾニウム、アンモニウム、ヨードニウム、スルホニウム、ホスホニウムなどの芳香族オニウム化合物のB(C 、PF 、AsF 、SbF 、CFSO 塩などのイオン系重合開始剤やスルホン酸を発生するスルホン化物、ハロゲン化水素を発生するハロゲン化物或いは、鉄アレン錯体等の非イオン系重合開始剤を挙げることができる。特に、非イオン系重合開始剤であるスルホン酸を発生するスルホン化物、ハロゲン化水素を発生するハロゲン化物が好ましい。
下記に好ましく用いられる光重合開始剤を例示する。
α−アミノアセトフェノン系の例
Figure 2011154067
α−ヒドロキシアセトフェノン系化合物の例
Figure 2011154067
アシルフォスフィンオキサイド系化合物の例
Figure 2011154067
その他のラジカル重合開始剤の例
Figure 2011154067
非イオン系重合開始剤
Figure 2011154067
イオン系重合開始剤
Figure 2011154067
一方、熱重合開始剤としては、ケトンパーオキサイド系化合物、パーオキシケタール系化合物、ハイドロパーオキサイド系化合物、ジアルキルパオキサイド系化合物、ジアシルパーオキサイド系化合物、パーオキシジカーボネート系化合物、パーオキシエステル系化合物等が用いられ、これらの熱重合開始剤は企業の製品カタログ等で公開されている。
本発明には、これらの熱重合開始剤を、前記の光重合開始剤と同様に、処理済みの金属酸化物微粒子と必要に応じて硬化性化合物とを含有する組成物と混合して、保護層の塗布液を作製し、該塗布液を感光層の上に塗布後、加熱乾燥して、本発明に係わる保護層を形成する。熱重合開始剤としては、前記その他のラジカル重合開始剤等を用いることができる。
これらの重合開始剤は1種または2種以上を混合して用いてもよい。重合開始剤の含有量は、アクリル系化合物の100質量部に対し0.1〜20質量部、好ましくは0.5〜10質量部である。
又、本発明の保護層には、さらに各種の電荷輸送物質や酸化防止剤を含有させることも出来るし、各種の滑剤粒子を加えることができる。例えば、フッ素原子含有樹脂粒子を加えることができる。フッ素原子含有樹脂粒子としては、四フッ化エチレン樹脂、三フッ化塩化エチレン樹脂、六フッ化塩化エチレンプロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、二フッ化二塩化エチレン樹脂、及びこれらの共重合体の中から1種あるいは2種以上を適宜選択するのが好ましいが、特に四フッ化エチレン樹脂及びフッ化ビニリデン樹脂が好ましい。保護層中の滑剤粒子の割合は、アクリル系樹脂100質量部に対して、好ましくは5〜70質量部、より好ましくは10〜60質量%である。滑剤粒子の粒径は、平均一次粒径が0.01μm〜1μmのものが好ましい。特に好ましくは、0.05μm〜0.5μmのものである。樹脂の分子量は適宜選択することができ、特に制限されるものではない。
保護層を形成するための溶媒としては、メタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、t−ブタノール、sec−ブタノール、ベンジルアルコール、トルエン、キシレン、メチレンクロライド、メチルエチルケトン、シクロヘキサン、酢酸エチル、酢酸ブチル、メチルセロソルブ、エチルセロソルブ、テトラヒドロフラン、1−ジオキサン、1,3−ジオキソラン、ピリジン及びジエチルアミン等を挙げられるが、これらに限定されるものではない。
本発明の保護層は、塗布後、自然乾燥または熱乾燥を行った後、活性線を照射して反応させることが好ましい。
塗布方法は、感光層と同様の、浸漬コーティング法、スプレーコーティング法、スピンナーコーティング法、ビードコーティング法、ブレードコーティング法、ビームコーティング法、スライドホッパー法などの公知の方法を用いることができる。
本発明の感光体は、塗膜に活性線を照射してラジカルを発生して重合し、かつ分子間及び分子内で架橋反応による架橋結合を形成して硬化し、硬化樹脂を生成することが好ましい。活性線としては紫外線や電子線が特に好ましい。
紫外線光源としては、紫外線を発生する光源であれば制限なく使用できる。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、フラッシュ(パルス)キセノン等を用いることができる。照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5〜500mJ/cm、好ましくは5〜100mJ/cmである。ランプの電力は、好ましくは0.1kW〜5kWであり、特に好ましくは、0.5kW〜3kWである。
電子線源としては、電子線照射装置に格別の制限はなく、一般にはこのような電子線照射用の電子線加速機として、比較的安価で大出力が得られるカーテンビーム方式のものが有効に用いられる。電子線照射の際の加速電圧は、100〜300kVであることが好ましい。吸収線量としては、0.5〜10Mradであることが好ましい。
必要な活性線の照射量を得るための照射時間としては、0.1秒〜10分が好ましく、作業効率の観点から0.1秒〜5分がより好ましい。
活性線としては、紫外線が使用しやすく特に好ましい。
本発明の感光体は、活性線を照射する前後、及び活性線を照射中に乾燥を行うことができ、乾燥を行うタイミングはこれらを組み合わせて適宜選択できる。
乾燥の条件は、溶媒の種類、膜厚などのよって適宜選択できる。乾燥温度は、好ましくは室温〜180℃であり、特に好ましくは80℃〜140℃である。乾燥時間は、好ましくは1分〜200分であり、特に好ましくは5分〜100分である。
保護層の膜厚は好ましくは0.2〜10μmであり、より好ましくは0.5〜6μmである。
〔有機感光体の構成〕
以下に、前記保護層以外の有機感光体の構成を記載する。
本発明において、有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機感光体を全て含有する。
本発明の有機感光体は、導電性支持体上に、少なくとも感光層と前記したような保護層を順次積層したものであるが、具体的には、以下に示すような層構成を例示することができる。
1)導電性支持体上に、中間層、感光層として電荷発生層と電荷輸送層、及び保護層を順次積層した層構成、
2)導電性支持体上に、中間層、感光層として電荷輸送材料と電荷発生材料とを含む単層、及び保護層を順次積層した層構成。
上記1)を中心に、本発明の有機感光体の層構成を記載する。
(導電性支持体)
本発明で用いる支持体は導電性を有するものであればいずれのものでもよく、例えば、アルミニウム、銅、クロム、ニッケル、亜鉛及びステンレスなどの金属をドラムまたはシート状に成形したもの、アルミニウムや銅などの金属箔をプラスチックフィルムにラミネートしたもの、アルミニウム、酸化インジウム及び酸化スズなどをプラスチックフィルムに蒸着したもの、導電性物質を単独またはバインダー樹脂と共に塗布して導電層を設けた金属、プラスチックフィルム及び紙などが挙げられる。
(中間層)
本発明においては、導電層と感光層の中間にバリアー機能と接着機能をもつ中間層を設けることもできる。種々の故障防止等を考慮すると、中間層を設けるのが好ましい態様といえる。
中間層はカゼイン、ポリビニルアルコール、ニトロセルロース、エチレン−アクリル酸コポリマー、ポリアミド、ポリウレタン及びゼラチンなどのバインダー樹脂を公知の溶媒に溶解し、浸漬塗布などによって形成できる。中でもアルコール可溶性のポリアミド樹脂が好ましい。
また、中間層の抵抗調整の目的で各種の導電性微粒子や金属酸化物を含有させることができる。例えば、アルミナ、酸化亜鉛、酸化チタン、酸化スズ、酸化アンチモン、酸化インジウム、酸化ビスマス等の各種金属酸化物。スズをドープした酸化インジウム、アンチモンをドープした酸化スズ及び酸化ジルコニウムなどの超微粒子を用いることができる。
これら金属酸化物を1種類もしくは2種類以上混合して用いてもよい。2種類以上混合した場合には、固溶体または融着の形をとってもよい。このような金属酸化物の平均粒径は好ましくは0.3μm以下、より好ましくは0.1μm以下である。
中間層に使用する溶媒としては、無機粒子を良好に分散し、ポリアミド樹脂を溶解するものが好ましい。具体的には、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、t−ブタノール、sec−ブタノール等の炭素数2〜4のアルコール類が、ポリアミド樹脂の溶解性と塗布性能に優れ好ましい。また、保存性、粒子の分散性を向上するために、前記溶媒と併用し、好ましい効果を得られる助溶媒としては、メタノール、ベンジルアルコール、トルエン、メチレンクロライド、シクロヘキサノン、テトラヒドロフラン等が挙げられる。
バインダー樹脂の濃度は、中間層の膜厚や生産速度に合わせて適宜選択される。
無機粒子などを分散したと時のバインダー樹脂に対する無機粒子の混合割合は、バインダー樹脂100質量部に対して無機粒子20〜400質量部が好ましく、さらに好ましくは50〜200部である。
無機粒子の分散手段としては、超音波分散機、ボールミル、サンドグラインダー及びホモミキサー等が使用できるが、これらに限定されるものではない。
中間層の乾燥方法は、溶媒の種類、膜厚に応じて適宜選択することができるが、熱乾燥が好ましい。
中間層の膜厚は、0.1〜15μmが好ましく、0.3〜10μmがより好ましい。
(電荷発生層)
本発明に用いられる電荷発生層は、電荷発生物質とバインダー樹脂を含有し、電荷発生物質をバインダー樹脂溶液中に分散、塗布して形成したものが好ましい。
電荷発生物質は、スーダンレッド及びダイアンブルーなどのアゾ原料、ピレンキノン及びアントアントロンなどのキノン顔料、キノシアニン顔料、ペリレン顔料、インジゴ及びチオインジゴなどのインジゴ顔料、フタロシアニン顔料などが挙げられるが、これらに限定されるものではない。これらの電荷発生物質は単独、もしくは公知の樹脂中に分散する形態で使用することができる。
電荷発生層のバインダー樹脂としては、公知の樹脂を用いることができ、例えば、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂、並びにこれらの樹脂の内2つ以上を含む共重合体樹脂(例えば、塩化ビニル−酢酸ビニル共重合体樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体樹脂)及びポリ−ビニルカルバゾール樹脂等が挙げられるが、これらに限定されるものではない。
電荷発生層の形成は、バインダー樹脂を溶剤で溶解した溶液中に分散機を用いて電荷発生物質を分散して塗布液を調製し、塗布液を塗布機で一定の膜厚に塗布し、塗布膜を乾燥して作製することが好ましい。
電荷発生層に使用するバインダー樹脂を溶解し塗布するための溶媒としては、例えば、トルエン、キシレン、メチレンクロライド、1,2−ジクロロエタン、メチルエチルケトン、シクロヘキサン、酢酸エチル、酢酸ブチル、メタノール、エタノール、プロパノール、ブタノール、メチルセロソルブ、エチルセロソルブ、テトラヒドロフラン、1−ジオキサン、1,3−ジオキソラン、ピリジン及びジエチルアミン等を挙げられるが、これらに限定されるものではない。
電荷発生物質の分散手段としては、超音波分散機、ボールミル、サンドグラインダー及びホモミキサー等が使用できるが、これらに限定されるものではない。
バインダー樹脂に対する電荷発生物質の混合割合は、バインダー樹脂100質量部に対して電荷発生物質1〜600質量部が好ましく、さらに好ましくは50〜500部である。電荷発生層の膜厚は、電荷発生物質の特性、バインダー樹脂の特性及び混合割合等により異なるが好ましくは0.01〜5μm、より好ましくは0.05〜3μmである。なお、電荷発生層用の塗布液は塗布前に異物や凝集物を濾過することで画像欠陥の発生を防ぐことができる。前記顔料を真空蒸着することによって形成すこともできる。
(電荷輸送層)
本発明の感光体に用いられる電荷輸送層は、電荷輸送物質(CTM)とバインダー樹脂を含有し、電荷輸送物質をバインダー樹脂溶液中に溶解、塗布して形成される。
電荷輸送物質は、例えば、カルバゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、イミダゾロン誘導体、イミダゾリジン誘導体、ビスイミダゾリジン誘導体、スチリル化合物、ヒドラゾン化合物、ピラゾリン化合物、オキサゾロン誘導体、ベンズイミダゾール誘導体、キナゾリン誘導体、ベンゾフラン誘導体、アクリジン誘導体、フェナジン誘導体、アミノスチルベン誘導体、トリアリールアミン誘導体、フェニレンジアミン誘導体、スチルベン誘導体、ベンジジン誘導体、ポリ−N−ビニルカルバゾール、ポリ−1−ビニルピレン及びポリ−9−ビニルアントラセン、トリフェニルアミン誘導体等を2種以上混合して使用してもよい。
電荷輸送層用のバインダー樹脂は、公知の樹脂を用いることができ、ポリカーボネート樹脂、ポリアクリレート樹脂、ポリエステル樹脂、ポリスチレン樹脂、スチレン−アクリルニトリル共重合体樹脂、ポリメタクリル酸エステル樹脂及びスチレン−メタクリル酸エステル共重合体樹脂等が挙げられるが、ポリカーボネートが好ましい。更にはBPA、BPZ、ジメチルBPA、BPA−ジメチルBPA共重合体等が耐クラック、耐磨耗性、帯電特性の点で好ましい。
電荷輸送層の形成は、バインダー樹脂と電荷輸送物質を溶解して塗布液を調製し、塗布液を塗布機で一定の膜厚に塗布し、塗布膜を乾燥して作製することが好ましい。
上記バインダー樹脂と電荷輸送物質を溶解するための溶媒としては、例えば、トルエン、キシレン、メチレンクロライド、1,2−ジクロロエタン、メチルエチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン、ピリジン及びジエチルアミン等が挙げられるが、これらに限定されるものではない。
バインダー樹脂に対する電荷輸送物質の混合割合は、バインダー樹脂100質量部に対して電荷輸送物質10〜500質量部が好ましく、さらに好ましくは20〜100質量部である。
電荷輸送層の膜厚は、電荷輸送物質の特性、バインダー樹脂の特性及び混合割合等により異なるが好ましくは5〜40μmで、さらに好ましくは10〜30μmである。
電荷輸送層中には酸化防止剤、電子導電剤、安定剤等を添加してもよい。酸化防止剤については特願平11−200135号、電子導電剤は特開昭50−137543号、同58−76483号等に記載のものがよい。
〔トナー及び現像剤〕
本発明の有機感光体上に形成された静電潜像は現像によりトナー像として顕像化される。現像に用いられるトナーは、粉砕トナーでも、重合トナーでもよいが、本発明に係わるトナーとしては、安定した粒度分布を得られる観点から、重合法で作製できる重合トナーが好ましい。
重合トナーとはトナー用バインダーの樹脂の生成とトナー形状がバインダー樹脂の原料モノマーの重合と、必要によりその後の化学的処理により形成されるトナーを意味する。
より具体的には懸濁重合、乳化重合等の重合反応と、必要によりその後に行われる粒子同士の融着工程を経て形成されるトナーを意味する。
なお、トナーの体積平均粒径、即ち、上記50%体積粒径(Dv50)は2〜9μm、より好ましくは3〜7μmであることが望ましい。この範囲とすることにより、解像度を高くすることができる。さらに上記の範囲と組み合わせることにより、小粒径トナーでありながら、微細な粒径のトナーの存在量を少なくすることができ、長期に亘ってドット画像の再現性が改善され、鮮鋭性の良好な、安定した画像を形成することができる。
本発明に係わるトナーは、一成分現像剤でも二成分現像剤として用いてもよい。
一成分現像剤として用いる場合は、非磁性一成分現像剤、あるいはトナー中に0.1〜0.5μm程度の磁性粒子を含有させ磁性一成分現像剤としたものがあげられ、いずれも使用することができる。
又、キャリアと混合して二成分現像剤として用いることができる。この場合は、キャリアの磁性粒子として、鉄、フェライト、マグネタイト等の金属、それらの金属とアルミニウム、鉛等の金属との合金等の従来から公知の材料を用いることが出来る。特にフェライト粒子が好ましい。上記磁性粒子は、その体積平均粒径としては15〜100μm、より好ましくは25〜80μmのものがよい。
キャリアの体積平均粒径の測定は、代表的には湿式分散機を備えたレーザー回折式粒度分布測定装置「ヘロス(HELOS)」(シンパティック(SYMPATEC)社製)により測定することができる。
キャリアは、磁性粒子が更に樹脂により被覆されているもの、あるいは樹脂中に磁性粒子を分散させたいわゆる樹脂分散型キャリアが好ましい。コーティング用の樹脂組成としては、特に限定は無いが、例えば、オレフィン系樹脂、スチレン系樹脂、スチレン−アクリル系樹脂、シリコーン系樹脂、エステル系樹脂或いはフッ素含有重合体系樹脂等が用いられる。また、樹脂分散型キャリアを構成するための樹脂としては、特に限定されず公知のものを使用することができ、例えば、スチレン−アクリル系樹脂、ポリエステル樹脂、フッ素系樹脂、フェノール樹脂等を使用することができる。
〔画像形成方法〕
次に、本発明の有機感光体を用いた画像形成方法に用いられる画像形成装置について説明する。
図1に示す画像形成装置1は、デジタル方式による画像形成装置であって、画像読取り部A、画像処理部B、画像形成部C、転写紙搬送手段としての転写紙搬送部Dから構成されている。
画像読取り部Aの上部には原稿を自動搬送する自動原稿送り手段が設けられていて、原稿載置台11上に載置された原稿は原稿搬送ローラ12によって1枚宛分離搬送され読み取り位置13aにて画像の読み取りが行われる。原稿読み取りが終了した原稿は原稿搬送ローラ12によって原稿排紙皿14上に排出される。
一方、プラテンガラス13上に置かれた場合の原稿の画像は走査光学系を構成する照明ランプ及び第1ミラーから成る第1ミラーユニット15の速度vによる読み取り動作と、V字状に位置した第2ミラー及び第3ミラーから成る第2ミラーユニット16の同方向への速度v/2による移動によって読み取られる。
読み取られた画像は、投影レンズ17を通してラインセンサである撮像素子CCDの受光面に結像される。撮像素子CCD上に結像されたライン状の光学像は順次電気信号(輝度信号)に光電変換されたのちA/D変換を行い、画像処理部Bにおいて濃度変換、フィルタ処理などの処理が施された後、画像データは一旦メモリに記憶される。
画像形成部Cでは、画像形成ユニットとして、像担持体であるドラム状の感光体21と、その外周に、該感光体21を帯電させる帯電手段(帯電工程)22、帯電した感光体の表面電位を検出する電位検出手段220、現像手段(現像工程)23、転写手段(転写工程)である転写搬送ベルト装置45、前記感光体21のクリーニング装置(クリーニング工程)26及び光除電手段(光除電工程)としてのPCL(プレチャージランプ)27が各々動作順に配置されている。また、現像手段23の下流側には感光体21上に現像されたパッチ像の反射濃度を測定する反射濃度検出手段222が設けられている。感光体21には、本発明に係わる有機感光体を使用し、図示の時計方向に駆動回転される。
回転する感光体21へは帯電手段22による一様帯電がなされた後、像露光手段(像露光工程)30としての露光光学系により画像処理部Bのメモリから呼び出された画像信号に基づいた像露光が行われる。書き込み手段である像露光手段30としての露光光学系は図示しないレーザダイオードを発光光源とし、回転するポリゴンミラー31、fθレンズ34、シリンドリカルレンズ35を経て反射ミラー32により光路が曲げられ主走査がなされるもので、感光体21に対してAoの位置において像露光が行われ、感光体21の回転(副走査)によって静電潜像が形成される。本実施の形態の一例では文字部に対して露光を行い静電潜像を形成する。
本発明の画像形成装置においては、感光体上に静電潜像を形成するに際し、発振波長が350〜500nmの半導体レーザー又は発光ダイオードを像露光光源として用いる。これらの像露光光源を用いて、書込みの主査方向の露光ドット径を10〜50μmに絞り込み、有機感光体上にデジタル露光を行うことにより、600dpi(dpi:2.54cm当たりのドット数)以上から2500dpiの高解像度の電子写真画像をうることができる。
前記露光ドット径とは該露光ビームの強度がピーク強度の1/e以上の領域の主走査方向にそった露光ビームの長さ(Ld:長さが最大位置で測定する)を云う。
用いられる光ビームとしては半導体レーザーを用いた走査光学系及びLEDの固体スキャナー等があり、光強度分布についてもガウス分布及びローレンツ分布等があるがそれぞれのピーク強度の1/e以上の領域を本発明に係わる露光ドット径とする。
感光体21上の静電潜像は現像手段23によって反転現像が行われ、感光体21の表面に可視像のトナー像が形成される。本発明の画像形成方法では、該現像手段に用いられる現像剤には重合トナーを用いることが好ましい。形状や粒度分布が均一な重合トナーを本発明に係わる有機感光体と併用することにより、より鮮鋭性が良好な電子写真画像を得ることができる。
転写紙搬送部Dでは、画像形成ユニットの下方に異なるサイズの転写紙Pが収納された転写紙収納手段としての給紙ユニット41(A)、41(B)、41(C)が設けられ、また側方には手差し給紙を行う手差し給紙ユニット42が設けられていて、それらの何れかから選択された転写紙Pは案内ローラ43によって搬送路40に沿って給紙され、給紙される転写紙Pの傾きと偏りの修正を行う対の給紙レジストローラ44によって転写紙Pは一時停止を行ったのち再給紙が行われ、搬送路40、転写前ローラ43a、給紙経路46及び進入ガイド板47に案内され、感光体21上のトナー画像が転写位置Boにおいて転写極24及び分離極25、爪分離手段250等によって、転写紙P上に転写され、該転写紙Pも感光体から分離され、その後、転写紙Pは転写搬送ベルト装置45の転写搬送ベルト454に載置搬送され、転写搬送ベルト装置45により定着手段50に搬送される。
定着手段50は定着ローラ51と加圧ローラ52とを有しており、転写紙Pを定着ローラ51と加圧ローラ52との間を通過させることにより、加熱、加圧によってトナーを定着させる。トナー画像の定着を終えた転写紙Pは排紙トレイ64上に排出される。
以上は転写紙の片側への画像形成を行う状態を説明したものであるが、両面複写の場合は排紙切換部材170が切り替わり、転写紙案内部177が開放され、転写紙Pは破線矢印の方向に搬送される。
更に、搬送機構178により転写紙Pは下方に搬送され、転写紙反転部179によりスイッチバックさせられ、転写紙Pの後端部は先端部となって両面複写用給紙ユニット130内に搬送される。
転写紙Pは両面複写用給紙ユニット130に設けられた搬送ガイド131を給紙方向に移動し、給紙ローラ132で転写紙Pを再給紙し、転写紙Pを搬送路40に案内する。
再び、上述したように感光体21方向に転写紙Pを搬送し、転写紙Pの裏面にトナー画像を転写し、定着手段50で定着した後、排紙トレイ64に排紙する。
本発明の画像形成装置としては、上述の感光体と、現像器、クリーニング器等の構成要素をプロセスカートリッジとして一体に結合して構成し、このユニットを装置本体に対して着脱自在に構成しても良い。又、帯電器、像露光器、現像器、転写又は分離器、及びクリーニング器の少なくとも1つを感光体とともに一体に支持してプロセスカートリッジを形成し、装置本体に着脱自在の単一ユニットとし、装置本体のレールなどの案内手段を用いて着脱自在の構成としても良い。
図2は、本発明の一実施の形態を示すカラー画像形成装置の断面構成図である。
このカラー画像形成装置は、タンデム型カラー画像形成装置と称せられるもので、4組の画像形成部(画像形成ユニット)10Y、10M、10C、10Bkと、無端ベルト状中間転写体ユニット7と、給紙搬送手段21及び定着手段24とから成る。画像形成装置の本体Aの上部には、原稿画像読み取り装置SCが配置されている。
イエロー色の画像を形成する画像形成部10Yは、第1の像担持体としてのドラム状の感光体1Yの周囲に配置された帯電手段(帯電工程)2Y、露光手段(露光工程)3Y、現像手段(現像工程)4Y、一次転写手段(一次転写工程)としての一次転写ローラ5Y、クリーニング手段6Yを有する。マゼンタ色の画像を形成する画像形成部10Mは、第1の像担持体としてのドラム状の感光体1M、帯電手段2M、露光手段3M、現像手段4M、一次転写手段としての一次転写ローラ5M、クリーニング手段6Mを有する。シアン色の画像を形成する画像形成部10Cは、第1の像担持体としてのドラム状の感光体1C、帯電手段2C、露光手段3C、現像手段4C、一次転写手段としての一次転写ローラ5C、クリーニング手段6Cを有する。黒色画像を形成する画像形成部10Bkは、第1の像担持体としてのドラム状の感光体1Bk、帯電手段2Bk、露光手段3Bk、現像手段4Bk、一次転写手段としての一次転写ローラ5Bk、クリーニング手段6Bkを有する。
前記4組の画像形成ユニット10Y、10M、10C、10Bkは、感光体ドラム1Y、1M、1C、1Bkを中心に、回転する帯電手段2Y、2M、2C、2Bkと、像露光手段3Y、3M、3C、3Bkと、回転する現像手段4Y、4M、4C、4Bk、及び、感光体ドラム1Y、1M、1C、1Bkをクリーニングするクリーニング手段5Y、5M、5C、5Bkより構成されている。
前記画像形成ユニット10Y、10M、10C、10Bkは、感光体1Y、1M、1C、1Bkにそれぞれ形成するトナー画像の色が異なるだけで、同じ構成であり、画像形成ユニット10Yを例にして詳細に説明する。
画像形成ユニット10Yは、像形成体である感光体ドラム1Yの周囲に、帯電手段2Y(以下、単に帯電手段2Y、あるいは、帯電器2Yという)、露光手段3Y、現像手段4Y、クリーニング手段5Y(以下、単にクリーニング手段5Y、あるいは、クリーニングブレード5Yという)を配置し、感光体ドラム1Y上にイエロー(Y)のトナー画像を形成するものである。また、本実施の形態においては、この画像形成ユニット10Yのうち、少なくとも感光体ドラム1Y、帯電手段2Y、現像手段4Y、クリーニング手段5Yを一体化するように設けている。
帯電手段2Yは、感光体ドラム1Yに対して一様な電位を与える手段であって、本実施の形態においては、感光体ドラム1Yにコロナ放電型の帯電器2Yが用いられている。
像露光手段3Yは、帯電器2Yによって一様な電位を与えられた感光体ドラム1Y上に、画像信号(イエロー)に基づいて露光を行い、イエローの画像に対応する静電潜像を形成する手段であって、この露光手段3Yとしては、感光体ドラム1Yの軸方向にアレイ状に発光素子を配列したLEDと結像素子とから構成されるもの、あるいは、レーザー光学系などが用いられる。
本発明の画像形成装置としては、上述の感光体と、現像器、クリーニング器等の構成要素をプロセスカートリッジ(画像形成ユニット)として一体に結合して構成し、この画像形成ユニットを装置本体に対して着脱自在に構成しても良い。又、帯電器、像露光器、現像器、転写又は分離器、及びクリーニング器の少なくとも1つを感光体とともに一体に支持してプロセスカートリッジ(画像形成ユニット)を形成し、装置本体に着脱自在の単一画像形成ユニットとし、装置本体のレールなどの案内手段を用いて着脱自在の構成としても良い。
無端ベルト状中間転写体ユニット7は、複数のローラにより巻回され、回動可能に支持された半導電性エンドレスベルト状の第2の像担持体としての無端ベルト状中間転写体70を有する。
画像形成ユニット10Y、10M、10C、10Bkより形成された各色の画像は、一次転写手段としての一次転写ローラ5Y、5M、5C、5Bkにより、回動する無端ベルト状中間転写体70上に逐次転写されて、合成されたカラー画像が形成される。給紙カセット20内に収容された転写材(定着された最終画像を担持する支持体:例えば普通紙、透明シート等)としての転写材Pは、給紙手段21により給紙され、複数の中間ローラ22A、22B、22C、22D、レジストローラ23を経て、二次転写手段としての二次転写ローラ5bに搬送され、転写材P上に二次転写してカラー画像が一括転写される。カラー画像が転写された転写材Pは、定着手段24により定着処理され、排紙ローラ25に挟持されて機外の排紙トレイ26上に載置される。ここで、中間転写体や転写材等の感光体上に形成されたトナー画像の転写支持体を総称して転写媒体と云う。
一方、二次転写手段としての二次転写ローラ5bにより転写材Pにカラー画像を転写した後、転写材Pを曲率分離した無端ベルト状中間転写体70は、クリーニング手段6bにより残留トナーが除去される。
画像形成処理中、一次転写ローラ5Bkは常時、感光体1Bkに当接している。他の一次転写ローラ5Y、5M、5Cはカラー画像形成時にのみ、それぞれ対応する感光体1Y、1M、1Cに当接する。
二次転写ローラ5bは、ここを転写材Pが通過して二次転写が行われる時にのみ、無端ベルト状中間転写体70に当接する。
また、装置本体Aから筐体8を支持レール82L、82Rを介して引き出し可能にしてある。
筐体8は、画像形成部10Y、10M、10C、10Bkと、無端ベルト状中間転写体ユニット7とから成る。
画像形成部10Y、10M、10C、10Bkは、垂直方向に縦列配置されている。感光体1Y、1M、1C、1Bkの図示左側方には無端ベルト状中間転写体ユニット7が配置されている。無端ベルト状中間転写体ユニット7は、ローラ71、72、73、74を巻回して回動可能な無端ベルト状中間転写体70、一次転写ローラ5Y、5M、5C、5Bk、及びクリーニング手段6bとから成る。
次に図3は本発明の有機感光体を用いたカラー画像形成装置(少なくとも有機感光体の周辺に帯電手段、露光手段、複数の現像手段、転写手段、クリーニング手段及び中間転写体を有する複写機あるいはレーザビームプリンタ)の構成断面図である。ベルト状の中間転写体70は中程度の抵抗の弾性体を使用している。
1は像形成体として繰り返し使用される回転ドラム型の感光体であり、矢示の反時計方向に所定の周速度をもって回転駆動される。
感光体1は回転過程で、帯電手段(帯電工程)2により所定の極性・電位に一様に帯電処理され、次いで不図示の像露光手段(像露光工程)3により画像情報の時系列電気デジタル画素信号に対応して変調されたレーザビームによる走査露光光等による画像露光を受けることにより目的のカラー画像のイエロー(Y)の色成分像(色情報)に対応した静電潜像が形成される。
次いで、その静電潜像がイエロー(Y)の現像手段:現像工程(イエロー色現像器)4Yにより第1色であるイエロートナーにより現像される。この時第2〜第4の現像手段(マゼンタ色現像器、シアン色現像器、ブラック色現像器)4M、4C、4Bkの各現像器は作動オフになっていて感光体1には作用せず、上記第1色目のイエロートナー画像は上記第2〜第4の現像器により影響を受けない。
中間転写体70はローラ79a、79b、79c、79d、79eで張架されて時計方向に感光体1と同じ周速度をもって回転駆動されている。
感光体1上に形成担持された上記第1色目のイエロートナー画像が、感光体1と中間転写体70とのニップ部を通過する過程で、1次転写ローラ5aから中間転写体70に印加される1次転写バイアスにより形成される電界により、中間転写体70の外周面に順次中間転写(1次転写)されていく。
中間転写体70に対応する第1色のイエロートナー画像の転写を終えた感光体1の表面は、クリーニング装置6aにより清掃される。
以下、同様に第2色のマゼンタトナー画像、第3色のシアントナー画像、第4色のクロ(ブラック)トナー画像が順次中間転写体70上に重ね合わせて転写され、目的のカラー画像に対応した重ね合わせカラートナー画像が形成される。
2次転写ローラ5bで、2次転写対向ローラ79bに対応し平行に軸受させて中間転写体70の下面部に離間可能な状態に配設してある。
感光体1から中間転写体70への第1〜第4色のトナー画像の順次重畳転写のための1次転写バイアスはトナーとは逆極性で、バイアス電源から印加される。その印加電圧は、例えば+100V〜+2kVの範囲である。
感光体1から中間転写体70への第1〜第3色のトナー画像の1次転写工程において、2次転写ローラ5b及び中間転写体クリーニング手段6bは中間転写体70から離間することも可能である。
ベルト状の中間転写体70上に転写された重ね合わせカラートナー画像の第2の画像担持体である転写材Pへの転写は、2次転写ローラ5bが中間転写体70のベルトに当接されると共に、対の給紙レジストローラ23から転写紙ガイドを通って、中間転写体70のベルトに2次転写ローラ5bとの当接ニップに所定のタイミングで転写材Pが給送される。2次転写バイアスがバイアス電源から2次転写ローラ5bに印加される。この2次転写バイアスにより中間転写体70から第2の画像担持体である転写材Pへ重ね合わせカラートナー画像が転写(2次転写)される。トナー画像の転写を受けた転写材Pは定着手段24へ導入され加熱定着される。
本発明の画像形成装置は電子写真複写機、レーザプリンター、LEDプリンター及び液晶シャッター式プリンター等の電子写真装置一般に適応するが、更に、電子写真技術を応用したディスプレー、記録、軽印刷、製版及びファクシミリ等の装置にも幅広く適用することができる。
以下、実施例をあげて本発明を詳細に説明するが、本発明の様態はこれに限定されない。尚、下記文中「部」とは「質量部」を表す。
〔感光体の作製〕
(感光体1の作製)
下記の様に感光体1を作製した。
円筒形アルミニウム支持体の表面を切削加工し、十点平均表面粗さRzJIS=1.5(μm)の導電性支持体を用意した。
〈中間層〉
下記組成の中間層塗布液を作製した。
ポリアミド樹脂X1010(ダイセルデグサ株式会社製) 1部
酸化チタンSMT500SAS(テイカ社製) 1.1部
エタノール 20部
分散機としてサンドミルを用いて、バッチ式で10時間の分散を行った。
上記塗布液を用いて前記支持体上に、110℃で20分乾燥後の膜厚2μmとなるよう浸漬塗布法で塗布した。
〈電荷発生層〉
電荷発生物質:チタニルフタロシアニン顔料(Cu−Kα特性X線回折スペクトル測定で少なくとも27.3°の位置に最大回折ピークを有するチタニルフタロシアニン顔料) 20部
ポリビニルブチラール樹脂(#6000−C:電気化学工業社製) 10部
酢酸t−ブチル 700部
4−メトキシ−4−メチル−2−ペンタノン 300部
を混合し、サンドミルを用いて10時間分散し、電荷発生層塗布液を調製した。この塗布液を前記中間層の上に浸漬塗布法で塗布し、乾燥膜厚0.3μmの電荷発生層を形成した。
〈電荷輸送層〉
電荷輸送物質:CTM(下記化合物A) 150部
バインダー樹脂:ポリカーボネート(Z300:三菱ガス化学社製) 300部
酸化防止剤(Irganox1010:日本チバガイギー社製) 6部
トルエン/テトラヒドロフラン=1/9体積% 2000部
シリコンオイル(KF−54:信越化学社製) 1部
を混合し、溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法を用いて、110℃で60分乾燥後膜厚20μmの電荷輸送層を形成した。
Figure 2011154067
〈保護層〉
処理前の金属酸化物微粒子として数平均一次粒子径が30nmのアルミナを用い、反応性有機基を有する表面処理剤として例示化合物(S−15)を、また、シリコーンオイルとして例示化合物(SO−2)を用い、以下に示すように、金属酸化物微粒子の表面処理の調製を行った。
まず、数平均一次粒子径が30nmのアルミナ粒子100部、上記反応性有機基を有する表面処理剤(例示化合物:S−15)5部、シリコーンオイル(例示化合物:SO−2)5部、トルエン/イソプロピルアルコール=1/1(質量比)の混合溶媒400部の混合液を、ジルコニアビーズとともにサンドミルに入れ約40℃で、回転速度1500rpmで撹拌し、アルミナ粒子の表面処理を行った。さらに、上記処理混合物を取り出し、ヘンシェルミキサーに投入して回転速度1500rpmで15分間撹拌した後、120℃で3時間乾燥することによって、アルミナ粒子の表面処理を終了し、表面処理済みアルミナ粒子を得た。上記の表面処理により、アルミナ粒子の表面は反応性有機基を有する表面処理剤とシリコーンオイルにより被覆されていた。
続いて下記のような方法で表面層を形成した。
表面処理済みアルミナ粒子 100部
2−ブチルアルコール 500部
上記成分をサンドミルを用いて10時間分散した後、
重合開始剤(1−6) 30部
を加え、遮光下で混合撹拌して溶解し保護層塗布液を作製した(保存中は遮光)。
該塗布液を先に電荷輸送層まで作製した有機感光体上に円形スライドホッパー塗布機を用いて、保護層を塗布した。塗布後、室温で20分乾燥後(溶媒乾燥工程)、メタルハライドランプ(500W)を用いて100mmの位置で感光体を回転させながら1分間照射して(紫外線硬化工程)、膜厚3μmの保護層を得た。
(感光体2〜12の作製)
下記表1に記載した変更以外は、感光体1同様に作製し、感光体2〜12を作製した。
Figure 2011154067
〔感光体の評価〕
(表面傷)
作製した各感光体を下記のように評価した。
感光体をコニカミノルタビジネステクノロジーズ社製bizhub PRO C6500(レーザー露光・反転現像・中間転写体のタンデムカラー複合機)を評価が行えるように改造し、露光量を適正化した評価機に搭載し、(20℃、50%RH)でY、M、C、Bk各色印字率2.5%のA4画像を中性紙に100万枚印刷出力前後に感光体の表面状態を観察し傷の状態を評価した。評価感光体はシアン位置に設置したもので評価した。
◎:100万枚印字後に表面傷なし(良好)
○:100万枚印字後に表面傷1〜10箇所発生(実用上問題なし)
×:100万枚印字後に表面傷11箇所以上発生(実用上問題有り)。
(感光体の減耗量)
上記評価で100万枚の画出しを行い、初期膜厚と100万枚後の膜厚差で評価した。感光層の膜厚は均一膜厚部分(感光体の両端は膜厚が不均一になりやすいので、少なくとの両端3cmは除く)をランダムに10ヶ所測定し、その平均値を感光層の膜厚とする。
膜厚測定器は渦電流方式の膜厚測定器EDDY560C(HELMUT FISCHER GMBTE CO社製)を用いて行い、実写試験前後の感光層膜厚の差を膜厚減耗量とする。
◎:減耗量が 1μm以下(良好)
○:減耗量が 1μm〜3μm(実用上問題なし)
×:減耗量が 3μmより大きい(実用上問題有り)。
(画像ボケ)
環境条件を30℃、80%RHに変更した以外は、表面傷の評価条件を用いた。A4画像を中性紙に2.5万枚の印刷を行い、印刷終了後60秒で実機の主電源を停止した。停止12時間後に電源を入れ印字可能状態になった後直ちにA3中性紙全面にハーフトーン画像(マクベス濃度計で相対反射濃度0.4)とA3全面の6dot格子画像を印字した。印字画像の状態を観察し以下の評価を行った。
◎:ハーフトーン、格子画像とも画像ボケ発生なし(良好)
○:ハーフトーン画像のみに感光体長軸方向の薄い帯状濃度低下が認められる(実用上問題なし)
×:画像ボケによる格子画像の欠損もしくは線幅の細りが発生(実用上問題有り)
評価結果を下記表2に示す。
(分散性)
金属酸化物微粒子の分散性の評価基準は、分散後一日静置させ、その沈降度合として下記の基準で行った。
◎:金属酸化物微粒子の沈降なし
○:沈降した金属酸化物微粒子が多少認められる
△:沈降した金属酸化物微粒子が認められ、液の上澄み部分が透明
×:金属酸化物微粒子のほとんどが沈降し、液全体が透明
評価結果は、下記表2に示す。
Figure 2011154067
本発明の実施例1〜8についてはいずれの特性も良好であるが、本発明外の比較例1〜4は、少なくともいずれかの特性に問題があることがわかる。
1Y、1M、1C、1Bk 感光体
2Y、2M、2C、2Bk 帯電手段
3Y、3M、3C、3Bk 露光手段
4Y、4M、4C、4Bk 現像手段
10Y、10M、10C、10Bk 画像形成ユニット

Claims (6)

  1. 導電性支持体上に感光層、その上に保護層を有する静電潜像現像用有機感光体において、該保護層が、少なくとも反応性有機基を有する表面処理剤とシリコーンオイルにより表面処理された金属酸化物微粒子の反応生成物を含有することを特徴とする静電潜像現像用有機感光体。
  2. 前記反応性有機基がアクリロイル基又はメタクリロイル基であることを特徴とする請求項1に記載の静電潜像現像用有機感光体。
  3. 前記金属酸化物微粒子がアルミナ、酸化錫、チタニアのいずれかの微粒子であることを特徴とする請求項1又は2に記載の静電潜像現像用有機感光体。
  4. 前記反応生成物が、前記表面処理された金属酸化物微粒子間の反応による生成物であることを特徴とする請求項1〜3のいずれか1項に記載の静電潜像現像用有機感光体。
  5. 前記反応生成物が、前記表面処理された金属酸化物微粒子と、前記反応性有機基と反応可能な反応性基を有する硬化性化合物との反応による生成物であることを特徴とする請求項1〜3のいずれか1項に記載の静電潜像現像用有機感光体。
  6. 請求項1〜5のいずれか1項記載の静電潜像現像用有機感光体を用い、該感光体を一様帯電後、像露光工程、トナー現像工程を経て形成されたトナー画像を、画像支持体へ転写後、加熱定着することを特徴とする画像形成方法。
JP2010013910A 2010-01-26 2010-01-26 静電潜像現像用有機感光体と画像形成方法 Pending JP2011154067A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013910A JP2011154067A (ja) 2010-01-26 2010-01-26 静電潜像現像用有機感光体と画像形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013910A JP2011154067A (ja) 2010-01-26 2010-01-26 静電潜像現像用有機感光体と画像形成方法

Publications (1)

Publication Number Publication Date
JP2011154067A true JP2011154067A (ja) 2011-08-11

Family

ID=44540115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013910A Pending JP2011154067A (ja) 2010-01-26 2010-01-26 静電潜像現像用有機感光体と画像形成方法

Country Status (1)

Country Link
JP (1) JP2011154067A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525478A (ja) * 2011-08-12 2014-09-29 ワッカー ケミー アクチエンゲゼルシャフト ポリ(ヒドロキシメチル)−官能性シロキサン及びシリカゲルの製造方法
US9651878B2 (en) 2014-12-26 2017-05-16 Samsung Electronics Co., Ltd. Organic photoconductor and electrophotographic apparatus and process cartridge including the organic photo conductor
JP2017107004A (ja) * 2015-12-08 2017-06-15 サムスン エレクトロニクス カンパニー リミテッド 電子写真感光体及び電子写真装置
US10585365B2 (en) 2018-02-08 2020-03-10 Konica Minolta, Inc. Image bearing member for electrophotography
JP2020071423A (ja) * 2018-11-01 2020-05-07 コニカミノルタ株式会社 電子写真画像形成装置および電子写真画像形成方法
US10663875B2 (en) 2018-09-07 2020-05-26 Konica Minolta, Inc. Electrophotographic photoreceptor, and electrophotographic image forming method and electrophotographic image forming apparatus using the same
JP2020140166A (ja) * 2019-03-01 2020-09-03 コニカミノルタ株式会社 画像形成装置
JP2020170082A (ja) * 2019-04-03 2020-10-15 コニカミノルタ株式会社 電子写真画像形成方法及び電子写真画像形成システム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014525478A (ja) * 2011-08-12 2014-09-29 ワッカー ケミー アクチエンゲゼルシャフト ポリ(ヒドロキシメチル)−官能性シロキサン及びシリカゲルの製造方法
US9096621B2 (en) 2011-08-12 2015-08-04 Wacker Chemie Ag Method for preparing poly(hydroxymethyl)-functional siloxanes and silica gels
US9651878B2 (en) 2014-12-26 2017-05-16 Samsung Electronics Co., Ltd. Organic photoconductor and electrophotographic apparatus and process cartridge including the organic photo conductor
JP2017107004A (ja) * 2015-12-08 2017-06-15 サムスン エレクトロニクス カンパニー リミテッド 電子写真感光体及び電子写真装置
US10585365B2 (en) 2018-02-08 2020-03-10 Konica Minolta, Inc. Image bearing member for electrophotography
US10663875B2 (en) 2018-09-07 2020-05-26 Konica Minolta, Inc. Electrophotographic photoreceptor, and electrophotographic image forming method and electrophotographic image forming apparatus using the same
JP2020071423A (ja) * 2018-11-01 2020-05-07 コニカミノルタ株式会社 電子写真画像形成装置および電子写真画像形成方法
JP7263738B2 (ja) 2018-11-01 2023-04-25 コニカミノルタ株式会社 電子写真画像形成装置および電子写真画像形成方法
JP2020140166A (ja) * 2019-03-01 2020-09-03 コニカミノルタ株式会社 画像形成装置
JP7283131B2 (ja) 2019-03-01 2023-05-30 コニカミノルタ株式会社 画像形成装置
JP2020170082A (ja) * 2019-04-03 2020-10-15 コニカミノルタ株式会社 電子写真画像形成方法及び電子写真画像形成システム
JP7272067B2 (ja) 2019-04-03 2023-05-12 コニカミノルタ株式会社 電子写真画像形成方法及び電子写真画像形成システム

Similar Documents

Publication Publication Date Title
JP5482123B2 (ja) 電子写真感光体、電子写真感光体の製造方法及び画像形成装置
JP2010107962A (ja) 有機感光体、有機感光体の製造方法、画像形成装置及びプロセスカートリッジ
JP2011154067A (ja) 静電潜像現像用有機感光体と画像形成方法
JP5195914B2 (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP2011242574A (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP5545071B2 (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP5625590B2 (ja) 有機感光体、有機感光体の製造方法及び画像形成装置
JP5464025B2 (ja) 有機感光体及び画像形成装置
JP5391672B2 (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP5584974B2 (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP5499563B2 (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP2010169725A (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP5509906B2 (ja) 電子写真感光体と画像形成装置及びプロセスカートリッジ
JP2010139618A (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP5369823B2 (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP5644051B2 (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP2011107363A (ja) 有機感光体、画像形成方法、画像形成装置及びプロセスカートリッジ
JP2011186120A (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP2010122339A (ja) 電子写真感光体と画像形成装置
JP2010164952A (ja) 電子写真感光体と画像形成装置
JP5532801B2 (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP5369761B2 (ja) 有機感光体及び画像形成装置
JP2010128057A (ja) 電子写真感光体、画像形成方法および画像形成装置
JP2010139709A (ja) 有機感光体、画像形成装置及びプロセスカートリッジ
JP2010078640A (ja) 有機感光体、画像形成装置及びプロセスカートリッジ