JP2011140291A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle Download PDF

Info

Publication number
JP2011140291A
JP2011140291A JP2010003485A JP2010003485A JP2011140291A JP 2011140291 A JP2011140291 A JP 2011140291A JP 2010003485 A JP2010003485 A JP 2010003485A JP 2010003485 A JP2010003485 A JP 2010003485A JP 2011140291 A JP2011140291 A JP 2011140291A
Authority
JP
Japan
Prior art keywords
refrigerant
air
heating
heating mode
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010003485A
Other languages
Japanese (ja)
Inventor
Seiji Ito
誠司 伊藤
Hajime Ito
肇 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010003485A priority Critical patent/JP2011140291A/en
Priority to US12/930,540 priority patent/US20110167850A1/en
Priority to DE102011008217A priority patent/DE102011008217A1/en
Publication of JP2011140291A publication Critical patent/JP2011140291A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00914Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is a bypass of the condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers

Abstract

<P>PROBLEM TO BE SOLVED: To secure heating capacity even when outside air has an extremely low temperature, in an air conditioner for a vehicle performing heating by a heat pump cycle. <P>SOLUTION: This air conditioner includes a compressor 21, an outdoor heat exchanger 22 outside a cabin, and an evaporator 13 in an air conditioning casing to switch any one of a cooling mode, a first heating mode and a second heating mode of a coolant circuit by switching means 27, 29 and 31. The coolant circuit of the heat pump cycle making coolant radiate heat by the heat radiator 14 and making the coolant absorb heat by the outdoor heat exchanger 22 is constituted during the first heating mode. The coolant circuit of a hot gas cycle for making the coolant flowing out of the heat radiator 14 flow into the compressor 21 by making the coolant bypass the outdoor heat exchanger 22 and the evaporator 13 after making high temperature vapor phase coolant after discharged from the compressor 21 radiate heat by the heat radiator 14. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷凍サイクルを備える車両用空調装置に関するものである。   The present invention relates to a vehicle air conditioner including a refrigeration cycle.

従来、冷凍サイクルを備える車両用空調装置として、空調ケース内に配置された蒸発器および凝縮器と、車室外に配置された室外熱交換器とを備え、冷媒回路中に設けた切替弁によって、冷房モードの冷媒回路、暖房モードの冷媒回路、除湿モードの冷媒回路のいずれかに切り替え可能に構成されたものがある。この暖房モードは、ヒートポンプサイクルによる暖房である。(例えば、特許文献1参照)   Conventionally, as a vehicle air conditioner equipped with a refrigeration cycle, an evaporator and a condenser disposed in an air conditioning case, and an outdoor heat exchanger disposed outside the passenger compartment, by a switching valve provided in the refrigerant circuit, Some are configured to be switchable between a cooling mode refrigerant circuit, a heating mode refrigerant circuit, and a dehumidifying mode refrigerant circuit. This heating mode is heating by a heat pump cycle. (For example, see Patent Document 1)

特許第3331765号公報Japanese Patent No. 3331765

ところで、上述の構成のヒートポンプサイクルによる暖房モードでは、−30℃等の外気極低温時に暖房能力を確保できないという問題がある。   By the way, in the heating mode by the heat pump cycle of the above-mentioned structure, there exists a problem that heating capability cannot be ensured at the time of external air very low temperature, such as -30 degreeC.

この理由の一例を挙げると、外気温度が極低温では、室外熱交換器で着霜が生じやすく、室外熱交換器が着霜する毎に、運転モードを暖房モードから除霜モードに切り替える必要が生じ、連続して暖房運転できないからである。   As an example of this reason, when the outdoor temperature is extremely low, frost formation is likely to occur in the outdoor heat exchanger, and it is necessary to switch the operation mode from the heating mode to the defrosting mode every time the outdoor heat exchanger frosts. This is because the heating operation cannot be continuously performed.

本発明は上記点に鑑みて、外気極低温時における暖房能力の確保が可能な車両用空調装置を提供することを目的とする。   In view of the above points, an object of the present invention is to provide a vehicle air conditioner capable of ensuring a heating capability at a very low outside temperature.

上記目的を達成するため、請求項1に記載の発明では、冷房モードの冷媒回路、第1暖房モードの冷媒回路、第2暖房モードの冷媒回路のいずれか1つに切り替える冷媒回路の切替手段(27、29、31)とを備え、
第1暖房モードの冷媒回路は、圧縮機(21)吐出後の冷媒を放熱器(14)、暖房用減圧手段(23)、室外熱交換器(22)の順に流入させ、室外熱交換器(22)から流出の冷媒を蒸発器(13)を迂回させて圧縮機(21)の吸入側に導くことで、室外熱交換器(22)で吸熱させ、放熱器(14)で放熱させる冷媒回路を構成し、
第2暖房モードの冷媒回路は、圧縮機(21)吐出後の冷媒を放熱器(14)に流入させ、放熱器(14)から流出の冷媒を、室外熱交換器(22)と蒸発器(13)の両方を迂回させて、圧縮機(21)の吸入側に導くことで、放熱器(14)で放熱させる冷媒回路を構成し、
切替手段(27、29、31)は、第1暖房モードの暖房能力と相関関係のある物理量が暖房能力の低下側を示す値に達したときに、第1暖房モードから第2暖房モードへ冷媒回路を切り替えることを特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, the refrigerant circuit switching means for switching to any one of the cooling mode refrigerant circuit, the first heating mode refrigerant circuit, and the second heating mode refrigerant circuit ( 27, 29, 31),
The refrigerant circuit in the first heating mode causes the refrigerant discharged from the compressor (21) to flow in the order of the radiator (14), the decompression means for heating (23), and the outdoor heat exchanger (22) in this order, and the outdoor heat exchanger ( 22) The refrigerant circuit that flows out of the refrigerant (22) and bypasses the evaporator (13) and leads it to the suction side of the compressor (21) so that the heat is absorbed by the outdoor heat exchanger (22) and is radiated by the radiator (14). Configure
The refrigerant circuit in the second heating mode causes the refrigerant discharged from the compressor (21) to flow into the radiator (14), and flows the refrigerant out of the radiator (14) into the outdoor heat exchanger (22) and the evaporator ( 13) by detouring both of them and guiding them to the suction side of the compressor (21) to constitute a refrigerant circuit for radiating heat with the radiator (14)
The switching means (27, 29, 31) changes the refrigerant from the first heating mode to the second heating mode when the physical quantity correlated with the heating capacity in the first heating mode reaches a value indicating the decrease side of the heating capacity. It is characterized by switching circuits.

本発明では、ヒートポンプサイクルによる第1暖房モードでの暖房能力が低下する条件下では、放熱器に流入した高温気相冷媒(ホットガス)を熱源として送風空気を加熱する第2暖房モードに切り替えるようにしている。そして、この第2暖房モードでは、室外熱交換器に冷媒を流さず、室外熱交換器を吸熱器として作用させないので、室外熱交換器の除霜運転が不要である。よって、本発明によれば、外気極低温時に連続した暖房運転が可能となり、暖房能力の確保が可能となる。   In the present invention, under the condition that the heating capacity in the first heating mode by the heat pump cycle decreases, the second heating mode is switched to the second heating mode in which the blown air is heated using the high-temperature gas-phase refrigerant (hot gas) flowing into the radiator as a heat source. I have to. And in this 2nd heating mode, since a refrigerant | coolant is not poured through an outdoor heat exchanger and an outdoor heat exchanger is not made to act as a heat sink, the defrosting operation | movement of an outdoor heat exchanger is unnecessary. Therefore, according to the present invention, it is possible to perform a continuous heating operation when the outside air is at a very low temperature, and it is possible to ensure the heating capacity.

請求項2に記載の発明では、空調ケース(11)内のうち蒸発器(13)の空気流れ下流側に配置され、冷凍サイクルとは別の熱源によって送風空気を加熱する空気加熱手段(61)を備え、
放熱器(14)は、空調ケース(11)内のうち空気加熱手段(61)よりも空気流れ下流側に配置され、高圧側の高温冷媒と空気加熱手段(61)通過後の送風空気とを熱交換させて、冷媒を放熱させることを特徴としている。
In the invention according to claim 2, the air heating means (61) is arranged in the air conditioning case (11) on the downstream side of the air flow of the evaporator (13) and heats the blown air by a heat source different from the refrigeration cycle. With
The radiator (14) is disposed in the air conditioning case (11) on the downstream side of the air flow with respect to the air heating means (61), and the high-pressure side high-temperature refrigerant and the blown air after passing through the air heating means (61) It is characterized by heat exchange to dissipate the refrigerant.

ここで、圧縮機は、通常、冷凍サイクルの各機器の熱からの保護を目的として、圧縮機の吐出冷媒温度が所定温度未満となるように圧縮機の回転数を低く抑える機器保護制御がされる。   Here, for the purpose of protecting the compressor from the heat of each device of the refrigeration cycle, the compressor is normally controlled to protect the compressor at a low speed so that the discharge refrigerant temperature of the compressor is lower than a predetermined temperature. The

第1暖房モードでは、外気温度の低下に伴って、室外熱交換器での吸熱量を増大させるために減圧手段によって冷媒圧力を低下させるので、圧縮機の吸入圧力が低下し、圧縮比が増加するため、圧縮機の吐出冷媒温度は上昇する。このため、外気極低温時の第1暖房モードでは、圧縮機の吐出冷媒温度が所定温度を超えてしまうので、圧縮機の回転数を低く抑える機器保護制御が働き、その結果、暖房能力が実質的に低下してしまい、所望の暖房能力を確保できない。   In the first heating mode, as the outside air temperature decreases, the refrigerant pressure is reduced by the decompression means in order to increase the amount of heat absorbed by the outdoor heat exchanger, so the suction pressure of the compressor decreases and the compression ratio increases. Therefore, the discharge refrigerant temperature of the compressor rises. For this reason, in the 1st heating mode at the time of outside very low temperature, since the discharge refrigerant temperature of a compressor exceeds predetermined temperature, apparatus protection control which keeps the number of rotations of a compressor low works, and, as a result, heating capacity is substantial. Therefore, the desired heating capacity cannot be ensured.

これに対して、第2暖房モードでは、室外熱交換器で吸熱させないので、第1暖房モードよりも圧縮機の吸入圧力の低下を抑制でき、圧縮機の目標回転数が同じ場合の第1暖房モードよりも温度上昇を抑制できる。このため、第2暖房モードによれば、上述の機器保護制御による暖房能力の低下を回避できる。   In contrast, in the second heating mode, heat is not absorbed by the outdoor heat exchanger, so that a decrease in the suction pressure of the compressor can be suppressed more than in the first heating mode, and the first heating when the target rotation speed of the compressor is the same. Temperature rise can be suppressed more than in the mode. For this reason, according to the 2nd heating mode, the fall of the heating capability by the above-mentioned apparatus protection control can be avoided.

さらに、第2暖房モードでは、放熱器による放熱量は圧縮機の圧縮仕事量で決定される。そして、放熱器の入口側空気温度が上昇するほど、放熱器での冷媒と空気との温度差を確保しようとして、冷媒の高圧側圧力が上昇するので、圧縮機の仕事量が増大し、放熱器による放熱量が増大するように、ホットガスサイクルがバランスする(図9参照)。   Furthermore, in the second heating mode, the amount of heat released by the radiator is determined by the compression work of the compressor. And as the inlet side air temperature of the radiator rises, the pressure on the high pressure side of the refrigerant rises in an attempt to secure the temperature difference between the refrigerant and the air in the radiator. The hot gas cycle is balanced so that the amount of heat released by the vessel increases (see FIG. 9).

そこで、本発明では、運転モードが第2暖房モードの場合に、放熱器に、蒸発器通過直後の空気ではなく、空気加熱手段による加熱後の空気を流入させることで、放熱器での冷媒による放熱量を多くでき、第2暖房モードの暖房能力を向上させることができる。そして、本発明によれば、放熱器の入口側空気温度によっては、入口側空気温度が同じ第1暖房モードと比較して、高い暖房能力を得ることが可能となる(図10参照)。   Therefore, in the present invention, when the operation mode is the second heating mode, the air after heating by the air heating means is flown into the radiator instead of the air immediately after passing through the evaporator, so that the refrigerant in the radiator The amount of heat release can be increased, and the heating capacity of the second heating mode can be improved. And according to this invention, according to the inlet side air temperature of a heat radiator, compared with the 1st heating mode with the same inlet side air temperature, it becomes possible to obtain a high heating capability (refer FIG. 10).

ちなみに、本発明と異なり、空気加熱手段を放熱器の下流側に配置することもできるが、本発明によれば、上述の理由により、放熱器の空気流れ下流側に空気加熱手段が配置されている場合と比較して、放熱器の暖房能力を向上できる。   Incidentally, unlike the present invention, the air heating means can be arranged on the downstream side of the radiator, but according to the present invention, the air heating means is arranged on the downstream side of the air flow of the radiator for the reasons described above. Compared to the case, the heating capacity of the radiator can be improved.

ここで、請求項1、2に記載の発明に関し、第2暖房モードの冷媒回路としては、請求項3、4に記載の冷媒回路が採用可能である。   Here, regarding the invention according to claims 1 and 2, the refrigerant circuit according to claims 3 and 4 can be employed as the refrigerant circuit in the second heating mode.

請求項3に記載の冷媒回路は、圧縮機(21)吐出後の冷媒を放熱器(14)に流入させ、放熱器(14)から流出の冷媒を、減圧手段(23)によって減圧させた後に、圧縮機(21)の吸入側に導く冷媒回路である。   In the refrigerant circuit according to claim 3, after the refrigerant discharged from the compressor (21) flows into the radiator (14), the refrigerant flowing out of the radiator (14) is decompressed by the decompression means (23). This is a refrigerant circuit that leads to the suction side of the compressor (21).

一方、請求項4に記載の冷媒回路は、圧縮機(21)吐出後の冷媒を、減圧手段(71)によって減圧させた後に、放熱器(14)に流入させる冷媒回路である。これによると、以下の理由により、請求項3に記載の冷媒回路と比較して、暖房能力を向上させることができる。請求項4に記載の冷媒回路では、放熱器に流入する前の冷媒を減圧するので、請求項3に記載の冷媒回路のように、圧縮機吐出後の冷媒を減圧せずに放熱器に流入させる場合と比較して、放熱器に流入する冷媒の温度が下がる。このため、放熱器に流入する冷媒の温度を、圧縮機吐出後の冷媒を減圧せずに放熱器に流入させる場合と同程度にしようとすると、圧縮機の仕事量が増大することとなるからである。   On the other hand, the refrigerant circuit according to claim 4 is a refrigerant circuit which causes the refrigerant discharged from the compressor (21) to flow into the radiator (14) after being decompressed by the decompression means (71). According to this, compared with the refrigerant circuit of Claim 3, a heating capability can be improved for the following reasons. In the refrigerant circuit according to claim 4, since the refrigerant before flowing into the radiator is decompressed, the refrigerant after discharge from the compressor flows into the radiator without decompressing as in the refrigerant circuit according to claim 3. Compared with the case of making it, the temperature of the refrigerant | coolant which flows in into a heat radiator falls. For this reason, if it is going to make the temperature of the refrigerant | coolant which flows in into a radiator into the same level as the case where it flows in into a radiator without decompressing the refrigerant | coolant after discharge of a compressor, the work of a compressor will increase. It is.

また、第1暖房モードから第2暖房モードへの冷媒回路の切り替えについては、例えば、請求項5に記載の発明のように、外気温度(Tam)が所定温度(T1)よりも低い場合に第1暖房モードから第2暖房モードへ冷媒回路を切り替える構成が採用可能である。   In addition, the switching of the refrigerant circuit from the first heating mode to the second heating mode is performed when the outside air temperature (Tam) is lower than a predetermined temperature (T1) as in the invention described in claim 5, for example. A configuration in which the refrigerant circuit is switched from the first heating mode to the second heating mode can be employed.

他の例として、請求項6に記載の発明のように、第1暖房モード時の圧縮機吸入側の冷媒圧力が所定圧力よりも低い場合に、第1暖房モードから第2暖房モードへ冷媒回路を切り替える構成が採用可能である。   As another example, the refrigerant circuit from the first heating mode to the second heating mode when the refrigerant pressure on the compressor suction side in the first heating mode is lower than a predetermined pressure as in the invention described in claim 6. It is possible to adopt a configuration for switching between.

他の例として、請求項7に記載の発明のように、第1暖房モード時の圧縮機吐出側の冷媒温度が所定温度よりも高い場合に第1暖房モードから第2暖房モードへ冷媒回路を切り替える構成が採用可能である。   As another example, as in the invention described in claim 7, when the refrigerant temperature on the compressor discharge side in the first heating mode is higher than a predetermined temperature, the refrigerant circuit is switched from the first heating mode to the second heating mode. A configuration for switching can be employed.

また、請求項1に記載の放熱器としては、請求項8に記載の発明のように、液体を介して、高圧側の高温冷媒と蒸発器通過後の送風空気とを熱交換させる構成も採用可能である。すなわち、空調ケース(11)内のうち蒸発器(13)の空気流れ下流側に配置されるとともに、液体加熱手段(62)によって加熱された液体が内部を流れ、加熱された液体と蒸発器(13)通過後の送風空気とを熱交換させて、液体を放熱させる第1放熱器(61)と、高圧側の高温冷媒と液体とを熱交換させて、冷媒を放熱させる第2放熱器(81)とを有する構成が採用可能である。   Moreover, as a heat radiator of Claim 1, the structure which heat-exchanges the high temperature refrigerant | coolant of a high voltage | pressure side and the ventilation air after passing through an evaporator is also employ | adopted via the liquid like invention of Claim 8. Is possible. That is, it is arranged in the air conditioning case (11) on the downstream side of the air flow of the evaporator (13), and the liquid heated by the liquid heating means (62) flows through the inside, and the heated liquid and the evaporator ( 13) The first radiator (61) for exchanging heat with the blown air after passing to dissipate the liquid, and the second radiator (for dissipating the refrigerant by exchanging heat between the high-temperature refrigerant on the high-pressure side and the liquid) 81) can be employed.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

第1実施形態における車両用空調装置の冷房モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the air_conditioning | cooling mode of the vehicle air conditioner in 1st Embodiment. 第1実施形態における車両用空調装置の除湿暖房モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the dehumidification heating mode of the vehicle air conditioner in 1st Embodiment. 第1実施形態における車両用空調装置の第1暖房モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the 1st heating mode of the vehicle air conditioner in 1st Embodiment. 第1実施形態における車両用空調装置の第2暖房モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the 2nd heating mode of the vehicle air conditioner in 1st Embodiment. 第1実施形態における電気制御部のブロック図である。It is a block diagram of the electric control part in a 1st embodiment. 図5中の空調制御装置40が実行する空調制御のフローチャートである。It is a flowchart of the air-conditioning control which the air-conditioning control apparatus 40 in FIG. 5 performs. 第1実施形態の第2暖房モード時の冷媒変化を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant change at the time of the 2nd heating mode of 1st Embodiment. 第2実施形態における車両用空調装置の第2暖房モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the 2nd heating mode of the vehicle air conditioner in 2nd Embodiment. 第2実施形態の第2暖房モード時の冷媒変化を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant change at the time of the 2nd heating mode of 2nd Embodiment. (a)、(b)は、それぞれ、第2実施形態での放熱器14の入口空気温度に対する圧縮機動力、放熱器14の放熱量(暖房能力)の計算結果を示す図である。(A), (b) is a figure which shows the calculation result of the compressor motive power with respect to the inlet air temperature of the radiator 14 in 2nd Embodiment, and the emitted-heat amount (heating capability) of the radiator 14, respectively. 第3実施形態における車両用空調装置の第2暖房モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the 2nd heating mode of the vehicle air conditioner in 3rd Embodiment. 第3実施形態の第2暖房モード時の冷媒変化を示すモリエル線図である。It is a Mollier diagram which shows the refrigerant | coolant change at the time of the 2nd heating mode of 3rd Embodiment. 第4実施形態における車両用空調装置の第2暖房モード時の冷媒回路を示す全体構成図である。It is a whole block diagram which shows the refrigerant circuit at the time of the 2nd heating mode of the vehicle air conditioner in 4th Embodiment.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある
(第1実施形態)
本実施形態は、走行用電動モータから車両走行用の駆動力を得る電気自動車(EV)に搭載される車両用空調装置である。図1〜4に、この車両用空調装置の全体構成を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings for the sake of simplicity (first embodiment).
The present embodiment is an air conditioner for a vehicle that is mounted on an electric vehicle (EV) that obtains driving force for traveling from the electric motor for traveling. 1 to 4 show the overall configuration of this vehicle air conditioner.

図1〜4に示すように、本実施形態の車両用空調装置1は、室内空調ユニット10と冷凍サイクル20とを備えている。なお、図1〜4は、それぞれ、本実施形態の車両用空調装置1において、冷凍サイクル20の運転モードが冷房モード、除湿暖房モード、第1暖房モード、第2暖房モード時の冷媒流れを示している。   As shown in FIGS. 1 to 4, the vehicle air conditioner 1 of the present embodiment includes an indoor air conditioning unit 10 and a refrigeration cycle 20. 1 to 4 show the refrigerant flow when the operation mode of the refrigeration cycle 20 is the cooling mode, the dehumidifying heating mode, the first heating mode, and the second heating mode, respectively, in the vehicle air conditioner 1 of the present embodiment. ing.

室内空調ユニット10は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されて、その外殻を形成する空調ケース11内に送風機12、蒸発器13、放熱器14等を収容したものである。   The indoor air conditioning unit 10 is disposed inside the instrument panel (instrument panel) at the foremost part of the vehicle interior, and houses a blower 12, an evaporator 13, a radiator 14 and the like in an air conditioning case 11 forming an outer shell thereof. Is.

空調ケース11は、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂で成形されている。空調ケース11内の送風空気流れ最上流側には、空調ケース11内に内気(車室内空気)、外気(車室外空気)を導入させる内気導入口11a、外気導入口11bと、内気の風量と外気の風量との風量割合を変化させる内外気切替ドア15とが設けられている。内外気切替ドア15は、内外気切替ドア用の電動アクチュエータによって駆動する。   The air conditioning case 11 forms an air passage for blown air that is blown into the vehicle compartment, and has a certain degree of elasticity and is formed of a resin that is excellent in strength. On the most upstream side of the blast air flow in the air conditioning case 11, an inside air introduction port 11a and an outside air introduction port 11b for introducing inside air (vehicle compartment air) and outside air (vehicle compartment outside air) into the air conditioning case 11, and the air volume of the inside air There is provided an inside / outside air switching door 15 for changing the air volume ratio with the outside air volume. The inside / outside air switching door 15 is driven by an electric actuator for the inside / outside air switching door.

内外気切替ドア15の空気流れ下流側には、内気導入口11a、外気導入口11bを介して吸入した空気を車室内へ向けて送風する送風機(ブロワ)12が配置されている。この送風機12は、遠心多翼ファンを電動モータで駆動する電動送風機である。   On the downstream side of the air flow of the inside / outside air switching door 15, a blower 12 that blows air sucked through the inside air introduction port 11 a and the outside air introduction port 11 b toward the vehicle interior is arranged. The blower 12 is an electric blower that drives a centrifugal multiblade fan with an electric motor.

送風機12の空気流れ下流側には、蒸発器13が配置されている。蒸発器13は、その内部を流通する低圧側の低温冷媒と送風空気とを熱交換させることにより、送風空気を冷却する冷却用熱交換器である。   An evaporator 13 is disposed on the downstream side of the air flow of the blower 12. The evaporator 13 is a cooling heat exchanger that cools the blown air by exchanging heat between the low-pressure refrigerant on the low-pressure side that flows through the evaporator 13 and the blown air.

蒸発器13の空気流れ下流側には、蒸発器13通過後の空気を流す加熱用冷風通路16、加熱冷風バイパス通路17といった空気通路が仕切壁11cによって形成されている。さらに、それらの空気流れ下流側には、加熱用冷風通路16および加熱冷風バイパス通路17から流出した空気を混合させる混合空間18が形成されている。   On the downstream side of the air flow of the evaporator 13, an air passage such as a heating cold air passage 16 and a heating cold air bypass passage 17 through which air passes through the evaporator 13 is formed by a partition wall 11c. Further, on the downstream side of these air flows, a mixing space 18 is formed for mixing the air flowing out from the heating cold air passage 16 and the heating cold air bypass passage 17.

加熱用冷風通路16には、放熱器14が配置されている。この放熱器14は、高圧側の高温冷媒と蒸発器13通過後の空気とを熱交換させることにより、蒸発器13通過後の空気を加熱する加熱用熱交換器である。なお、この放熱器14は、後述の通り、冷媒を凝縮させる凝縮器として機能する。   A radiator 14 is disposed in the heating cool air passage 16. The radiator 14 is a heat exchanger for heating that heats the air that has passed through the evaporator 13 by exchanging heat between the high-temperature refrigerant on the high-pressure side and the air that has passed through the evaporator 13. The radiator 14 functions as a condenser that condenses the refrigerant, as will be described later.

一方、加熱冷風バイパス通路17は、蒸発器13通過後の空気を、放熱器14を通過させることなく、混合空間18に導くための空気通路である。したがって、混合空間18で混合された送風空気の温度は、加熱用冷風通路16を通過する空気および加熱冷風バイパス通路17を通過する空気の風量割合によって変化する。   On the other hand, the heating / cooling air bypass passage 17 is an air passage for guiding the air that has passed through the evaporator 13 to the mixing space 18 without passing through the radiator 14. Therefore, the temperature of the blown air mixed in the mixing space 18 varies depending on the air volume ratio of the air passing through the heating cool air passage 16 and the air passing through the heating cold air bypass passage 17.

そこで、本実施形態では、蒸発器13の空気流れ下流側であって、加熱用冷風通路16および加熱冷風バイパス通路17の入口側に、加熱用冷風通路16および加熱冷風バイパス通路17へ流入させる冷風の風量割合を連続的に変化させるエアミックスドア19を配置している。   Therefore, in the present embodiment, the cool air that flows into the heating cool air passage 16 and the heating cool air bypass passage 17 on the downstream side of the air flow of the evaporator 13 and on the inlet side of the heating cool air passage 16 and the heating cool air bypass passage 17. An air mix door 19 for continuously changing the air volume ratio is provided.

したがって、エアミックスドア19は、混合空間18内の空気温度(車室内へ送風される送風空気の温度)を調整する温度調整手段を構成する。エアミックスドア19は、エアミックスドア用の電動アクチュエータによって駆動する。   Therefore, the air mix door 19 constitutes a temperature adjusting means for adjusting the air temperature in the mixing space 18 (the temperature of the blown air blown into the vehicle interior). The air mix door 19 is driven by an electric actuator for the air mix door.

さらに、空調ケース11の送風空気流れ最下流部には、混合空間18から空調対象空間である車室内へ温度調整された送風空気を吹き出す吹出口(図示せず)が配置されている。この吹出口としては、具体的に、車室内の乗員の上半身に向けて空調風を吹き出すフェイス吹出口、乗員の足元に向けて空調風を吹き出すフット吹出口、および、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ吹出口が設けられている。   Furthermore, the blower outlet (not shown) which blows off the temperature-adjusted blast air from the mixing space 18 to the vehicle interior which is a space for air conditioning is arrange | positioned in the most downstream part of the blast air flow of the air-conditioning case 11. Specifically, the air outlet includes a face air outlet that blows air-conditioned air toward the upper body of the passenger in the passenger compartment, a foot air outlet that blows air-conditioned air toward the feet of the passenger, and an inner surface of the front window glass of the vehicle. A defroster outlet for blowing air conditioned air is provided.

また、フェイス吹出口、フット吹出口およびデフロスタ吹出口の空気流れ上流側には、それぞれ、フェイス吹出口の開口面積を調整するフェイスドア、フット吹出口の開口面積を調整するフットドア、デフロスタ吹出口の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。   In addition, on the air flow upstream side of the face outlet, the foot outlet and the defroster outlet, a face door for adjusting the opening area of the face outlet, a foot door for adjusting the opening area of the foot outlet, and a defroster outlet, respectively. A defroster door (both not shown) for adjusting the opening area is disposed.

これらのフェイスドア、フットドア、デフロスタドアは、吹出口モードを切り替える吹出口モードドアを構成するものであって、図示しないリンク機構を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。   These face doors, foot doors, and defroster doors constitute an outlet mode door for switching the outlet mode, and are linked to an electric actuator for driving the outlet mode door via a link mechanism (not shown). And rotated.

次に、本実施形態の冷凍サイクル20について説明する。   Next, the refrigeration cycle 20 of this embodiment will be described.

冷凍サイクル20は、上述の蒸発器13、放熱器14の他に、圧縮機21、室外熱交換器22、暖房用絞り23、冷房用絞り24、アキュムレータ25等によって構成されている。これらの各機器は、冷媒流路を形成する冷媒配管によって接続されている。この冷凍サイクル20では、冷媒として通常のフロン系冷媒を採用しており、高圧側の冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。さらに、この冷媒には圧縮機21を潤滑するための冷凍機油が混入されており、この冷凍機油は冷媒とともにサイクルを循環している。   The refrigeration cycle 20 includes a compressor 21, an outdoor heat exchanger 22, a heating throttle 23, a cooling throttle 24, an accumulator 25, and the like, in addition to the evaporator 13 and the radiator 14 described above. Each of these devices is connected by a refrigerant pipe that forms a refrigerant flow path. The refrigeration cycle 20 employs a normal chlorofluorocarbon refrigerant as the refrigerant, and constitutes a subcritical refrigeration cycle in which the refrigerant pressure on the high pressure side does not exceed the critical pressure of the refrigerant. Furthermore, this refrigerant is mixed with refrigerating machine oil for lubricating the compressor 21, and this refrigerating machine oil circulates in the cycle together with the refrigerant.

本実施形態では、具体的には、圧縮機21、放熱器14、暖房用絞り23、室外熱交換器22、冷房用絞り24、蒸発器13、アキュムレータ25、圧縮機21の順に直列に接続された冷媒回路が構成されている。   In this embodiment, specifically, the compressor 21, the radiator 14, the heating throttle 23, the outdoor heat exchanger 22, the cooling throttle 24, the evaporator 13, the accumulator 25, and the compressor 21 are connected in series in this order. The refrigerant circuit is configured.

圧縮機21は、エンジンルーム内に配置され、冷凍サイクル20において冷媒を吸入し、圧縮して吐出するものであり、図示しないが、吐出容量が固定された固定容量型圧縮機構を電動モータで駆動する電動圧縮機として構成されている。この電動モータの回転数が空調制御装置に制御されることによって圧縮機21の冷媒吐出能力が制御される。なお、固定容量型圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用できる。   The compressor 21 is arranged in the engine room, sucks refrigerant in the refrigeration cycle 20, compresses and discharges it, and drives a fixed capacity type compression mechanism with a fixed discharge capacity by an electric motor (not shown). It is configured as an electric compressor. The refrigerant discharge capacity of the compressor 21 is controlled by controlling the rotation speed of the electric motor by the air conditioning controller. As the fixed capacity compression mechanism, various compression mechanisms such as a scroll compression mechanism and a vane compression mechanism can be employed.

放熱器14は、圧縮機21から吐出された高圧側の高温冷媒と送風空気との熱交換によって、冷媒を放熱させて凝縮させる凝縮器である。   The radiator 14 is a condenser that radiates and condenses the refrigerant by heat exchange between the high-pressure side high-temperature refrigerant discharged from the compressor 21 and the blown air.

暖房用絞り23は、主に第1暖房モードおよび第2暖房モード時に、放熱器14から流出した冷媒を減圧膨張させる暖房用減圧手段である。暖房用絞り23としては、キャピラリチューブ、オリフィス等の固定絞りや、絞り通路面積が調整可能な可変絞り機構が採用可能である。   The heating throttle 23 is a heating decompression unit that decompresses and expands the refrigerant flowing out of the radiator 14 mainly in the first heating mode and the second heating mode. As the heating throttle 23, a fixed throttle such as a capillary tube or an orifice, or a variable throttle mechanism capable of adjusting the throttle passage area can be employed.

室外熱交換器22は、エンジンルーム内に配置されて、内部を流通する冷媒と室外送風ファン22aから送風された車室外空気(外気)とを熱交換させるものである。室外熱交換器22の冷媒出口側には、冷房用絞り24を介して、蒸発器13が接続されている。   The outdoor heat exchanger 22 is disposed in the engine room, and exchanges heat between the refrigerant circulating in the interior and the air outside the vehicle (outside air) blown from the outdoor blower fan 22a. The evaporator 13 is connected to the refrigerant outlet side of the outdoor heat exchanger 22 via a cooling throttle 24.

冷房用絞り24は、主に冷房モード時に、放熱器14から流出した冷媒を減圧膨張させる冷房用減圧手段である。冷房用絞り24としては、キャピラリチューブ、オリフィス等の固定絞りや、絞り通路面積が調整可能な可変絞りを採用できる。   The cooling throttle 24 is a cooling decompression unit that decompresses and expands the refrigerant flowing out of the radiator 14 mainly in the cooling mode. As the cooling throttle 24, a fixed throttle such as a capillary tube or an orifice, or a variable throttle capable of adjusting the throttle passage area can be adopted.

蒸発器13は、冷房用絞り24を通過した後の低圧側の低温冷媒と送風空気との熱交換によって、冷媒を吸熱させて蒸発させるものである。   The evaporator 13 absorbs and evaporates the refrigerant by heat exchange between the low-temperature side low-temperature refrigerant after passing through the cooling throttle 24 and the blown air.

アキュムレータ25は、その内部に流入した冷媒の気液を分離して、余剰冷媒を蓄える低圧側気液分離器である。アキュムレータ25の気相冷媒出口には、圧縮機21の冷媒吸入側が接続されている。   The accumulator 25 is a low-pressure side gas-liquid separator that separates the gas-liquid refrigerant flowing into the accumulator 25 and stores excess refrigerant. The refrigerant suction side of the compressor 21 is connected to the gas phase refrigerant outlet of the accumulator 25.

さらに、この冷媒回路には、放熱器14から流出の冷媒を、暖房用絞り23を迂回させて、室外熱交換器22に導く第1バイパス流路26と、第1バイパス流路26を開閉する開閉手段としての第1電磁弁27とが設けられている。   Further, the refrigerant circuit opens and closes the first bypass flow path 26 and the first bypass flow path 26 that guide the refrigerant flowing out of the radiator 14 to the outdoor heat exchanger 22 by bypassing the heating throttle 23. A first electromagnetic valve 27 as an opening / closing means is provided.

また、室外熱交換器22から流出の冷媒を、冷房用絞り24と蒸発器13の両方を迂回させて、アキュムレータ25に導く第2バイパス流路28と、この第2バイパス流路28を開閉する開閉手段としての電気式三方弁29とが設けられている。電気式三方弁29は、その冷媒入口側が室外熱交換器22に接続されており、一方の冷媒出口側が蒸発器13に向かう冷媒流路に接続され、他方の冷媒出口側が第2バイパス流路28に接続されており、この冷媒出口側の2つの冷媒流路を切り替える切替手段である。   In addition, the refrigerant flowing out of the outdoor heat exchanger 22 bypasses both the cooling throttle 24 and the evaporator 13 and leads to the accumulator 25, and the second bypass flow path 28 is opened and closed. An electric three-way valve 29 as an opening / closing means is provided. The electric three-way valve 29 has a refrigerant inlet side connected to the outdoor heat exchanger 22, one refrigerant outlet side is connected to a refrigerant flow path toward the evaporator 13, and the other refrigerant outlet side is a second bypass flow path 28. Is a switching means for switching between the two refrigerant flow paths on the refrigerant outlet side.

また、暖房用絞り23通過後の冷媒を、室外熱交換器22を迂回させて、第2バイパス流路28に導く第3バイパス流路30と、第3バイパス流路30を開閉する開閉手段としての第2電磁弁31とが設けられている。なお、第3バイパス流路30の下流側端部を第2バイパス流路28に接続しているが、第2バイパス流路28ではなく、蒸発器13とアキュムレータ25との間の冷媒流路に接続させても良い。   In addition, the refrigerant after passing through the heating throttle 23 bypasses the outdoor heat exchanger 22 and leads to the second bypass passage 28, and as opening / closing means for opening and closing the third bypass passage 30 The second electromagnetic valve 31 is provided. Although the downstream end of the third bypass flow path 30 is connected to the second bypass flow path 28, it is not the second bypass flow path 28 but the refrigerant flow path between the evaporator 13 and the accumulator 25. It may be connected.

このような構成の冷凍サイクル20は、第1電磁弁27、第2電磁弁31、電気式三方弁29によって、冷房モードの冷媒回路、除湿暖房モードの冷媒回路、第1暖房モードの冷媒回路、第2暖房モードの冷媒回路のいずれか1つに切り替え可能となっている。したがって、第1電磁弁27、第2電磁弁31、電気式三方弁29が冷媒回路の切替手段を構成している。   The refrigeration cycle 20 having such a configuration includes a first electromagnetic valve 27, a second electromagnetic valve 31, and an electric three-way valve 29, and a cooling mode refrigerant circuit, a dehumidifying heating mode refrigerant circuit, a first heating mode refrigerant circuit, Switching to any one of the refrigerant circuits in the second heating mode is possible. Accordingly, the first solenoid valve 27, the second solenoid valve 31, and the electric three-way valve 29 constitute a refrigerant circuit switching means.

図1に示す冷房モードでは、第1電磁弁27が開き、電気式三方弁29が第2バイパス流路28側を閉じて蒸発器13側を開くことで、圧縮機21吐出後の冷媒が、図中の矢印のように、放熱器14→第1電磁弁27→室外熱交換器22→電気式三方弁29→冷房用絞り24→蒸発器13→アキュムレータ25→圧縮機21の順に循環する冷媒回路が構成される。   In the cooling mode shown in FIG. 1, the first electromagnetic valve 27 is opened, and the electric three-way valve 29 closes the second bypass flow path 28 side and opens the evaporator 13 side. As indicated by the arrows in the figure, the refrigerant circulates in the order of the radiator 14 → the first electromagnetic valve 27 → the outdoor heat exchanger 22 → the electric three-way valve 29 → the cooling throttle 24 → the evaporator 13 → the accumulator 25 → the compressor 21. A circuit is constructed.

図2に示す除湿暖房モードでは、第1電磁弁27と第2電磁弁31の両方が閉じて、電気式三方弁29が第2バイパス流路28側を閉じて蒸発器13側を開くことで、図中の矢印のように、圧縮機21吐出後の冷媒が、放熱器14→暖房用絞り23→室外熱交換器22→電気式三方弁29→冷房用絞り24→蒸発器13→アキュムレータ25→圧縮機21の吸入側の順に循環する冷媒回路が構成される。   In the dehumidifying and heating mode shown in FIG. 2, both the first electromagnetic valve 27 and the second electromagnetic valve 31 are closed, and the electric three-way valve 29 closes the second bypass flow path 28 side and opens the evaporator 13 side. As shown by the arrows in the figure, the refrigerant discharged from the compressor 21 is the radiator 14 → the heating throttle 23 → the outdoor heat exchanger 22 → the electric three-way valve 29 → the cooling throttle 24 → the evaporator 13 → the accumulator 25. → A refrigerant circuit that circulates in order from the suction side of the compressor 21 is formed.

図3に示す第1暖房モードでは、第1電磁弁27と第2電磁弁31の両方が閉じて、電気式三方弁29が第2バイパス流路28側を開き蒸発器13側を閉じることで、図中の矢印のように、圧縮機21吐出後の冷媒が、放熱器14→暖房用絞り23→室外熱交換器22→電気式三方弁29→アキュムレータ25→圧縮機21の吸入側の順に循環する冷媒回路が構成される。   In the first heating mode shown in FIG. 3, both the first electromagnetic valve 27 and the second electromagnetic valve 31 are closed, and the electric three-way valve 29 opens the second bypass flow path 28 side and closes the evaporator 13 side. As indicated by the arrows in the figure, the refrigerant discharged from the compressor 21 flows in the order of the radiator 14 → the heating throttle 23 → the outdoor heat exchanger 22 → the electric three-way valve 29 → the accumulator 25 → the suction side of the compressor 21. A circulating refrigerant circuit is configured.

図4に示す第2暖房モードでは、第1電磁弁27が閉じて、第2電磁弁31が開くことで、図中の矢印のように、圧縮機21吐出後の冷媒が、放熱器14→暖房用絞り23→第2電磁弁31→アキュムレータ25→圧縮機21の吸入側の順に循環する冷媒回路が構成される。   In the second heating mode shown in FIG. 4, the first solenoid valve 27 is closed and the second solenoid valve 31 is opened, so that the refrigerant discharged from the compressor 21 is discharged from the radiator 14 → as indicated by the arrow in the figure. A refrigerant circuit that circulates in the order of the heating throttle 23 → the second electromagnetic valve 31 → the accumulator 25 → the suction side of the compressor 21 is configured.

次に、図5により、本実施形態の電気制御部について説明する。図5は、本実施形態の電気制御部のブロック図である。   Next, the electric control unit of this embodiment will be described with reference to FIG. FIG. 5 is a block diagram of the electric control unit of the present embodiment.

制御手段としての空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された機器の作動を制御する。出力側に接続された機器としては、送風機12、圧縮機21、室外送風ファン22a、電気式三方弁29、第1電磁弁27、第2電磁弁31、内外気切替ドア用電動アクチュエータ51、エアミックスドア用電動アクチュエータ52、吹出モードドア用電動アクチュエータ53等が挙げられる。   The air conditioning control device 40 as a control means is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on an air conditioning control program stored in the ROM. Controls the operation of equipment connected to the output side. The equipment connected to the output side includes the blower 12, the compressor 21, the outdoor blower fan 22a, the electric three-way valve 29, the first solenoid valve 27, the second solenoid valve 31, the inside / outside air switching door electric actuator 51, air Examples thereof include an electric actuator 52 for a mixed door and an electric actuator 53 for a blowing mode door.

また、空調制御装置40の入力側には、各センサ群からの検出信号が入力される。このセンサ群としては、車室内温度Trを検出する内気センサ41、外気温度Tamを検出する外気センサ42(外気温度検出手段)、車室内の日射量Tsを検出する日射センサ43、圧縮機21の吐出冷媒温度Tdを検出する吐出温度センサ44(吐出温度検出手段)、圧縮機21の吐出側冷媒圧力(高圧側冷媒圧力)Pdを検出する吐出圧力センサ45(吐出圧力検出手段)、蒸発器13から吹き出される空気温度である蒸発器吹出空気温度(蒸発器温度)TEを検出する蒸発器温度センサ46(蒸発器温度検出手段)、圧縮機21の吸入冷媒温度Tsを検出する吸入温度センサ47(吸入温度検出手段)、圧縮機21の吸入側冷媒圧力(低圧側冷媒圧力)Psを検出する吸入圧力センサ48(吸入圧力検出手段)、車室内の窓ガラス近傍の車室内空気の相対湿度を検出する湿度センサ、窓ガラス近傍の車室内空気の温度を検出する窓ガラス近傍温度センサ、および窓ガラス表面温度を検出する窓ガラス表面温度センサ等が挙げられる。   Further, detection signals from the respective sensor groups are input to the input side of the air conditioning control device 40. The sensor group includes an inside air sensor 41 that detects the vehicle interior temperature Tr, an outside air sensor 42 (outside air temperature detection means) that detects the outside air temperature Tam, a solar radiation sensor 43 that detects the amount of solar radiation Ts in the vehicle interior, and the compressor 21. A discharge temperature sensor 44 (discharge temperature detection means) for detecting the discharge refrigerant temperature Td, a discharge pressure sensor 45 (discharge pressure detection means) for detecting the discharge side refrigerant pressure (high pressure side refrigerant pressure) Pd of the compressor 21, and the evaporator 13 An evaporator temperature sensor 46 (evaporator temperature detecting means) for detecting an evaporator blown air temperature (evaporator temperature) TE, which is an air temperature blown from the air, and an intake temperature sensor 47 for detecting an intake refrigerant temperature Ts of the compressor 21. (Suction temperature detection means), a suction pressure sensor 48 (suction pressure detection means) for detecting the suction side refrigerant pressure (low pressure side refrigerant pressure) Ps of the compressor 21, and a window glass near the vehicle interior A humidity sensor for detecting the relative humidity of the room air, the window glass near the temperature sensor for detecting the temperature of the room air of the window glass near, and the window glass surface temperature sensor for detecting the window glass surface temperature and the like.

ちなみに、本実施形態では、図1〜4に示すように、吐出温度センサ44は、圧縮機21の冷媒流れ下流側かつ放熱器14の冷媒流れ上流側に配置され、吐出圧力センサ45は、放熱器14の下流側かつ第1バイパス流路26の上流側に配置され、吸入温度センサ47は、第2バイパス流路28のうち第3バイパス流路30との連結部よりも下流側に配置され、吸入圧力センサ48は、アキュムレータ25の下流側かつ圧縮機21の下流側に配置されている。   By the way, in this embodiment, as shown in FIGS. 1-4, the discharge temperature sensor 44 is arrange | positioned at the refrigerant | coolant flow downstream of the compressor 21, and the refrigerant | coolant flow upstream of the radiator 14, and the discharge pressure sensor 45 is heat dissipation. The suction temperature sensor 47 is disposed on the downstream side of the container 14 and on the upstream side of the first bypass flow path 26, and is disposed on the downstream side of the second bypass flow path 28 with respect to the connection portion with the third bypass flow path 30. The suction pressure sensor 48 is disposed downstream of the accumulator 25 and downstream of the compressor 21.

さらに、空調制御装置40の入力側には、車室内前部の計器盤付近に配置された操作パネル50に設けられた各種空調操作スイッチからの操作信号が入力される。各種空調操作スイッチとしては、車両用空調装置1の作動スイッチ、圧縮機21の作動・停止を選択する圧縮機の作動スイッチ、運転モードの切替スイッチ、吹出口モードの切替スイッチ、送風機12の風量設定スイッチ、車室内温度設定スイッチ、冷凍サイクルの省動力化を優先させる指令を出力するエコノミースイッチ等が挙げられる。   Furthermore, operation signals from various air conditioning operation switches provided on the operation panel 50 disposed near the instrument panel in the front of the vehicle interior are input to the input side of the air conditioning control device 40. As various air conditioning operation switches, the operation switch of the vehicle air conditioner 1, the operation switch of the compressor that selects the operation / stop of the compressor 21, the operation mode changeover switch, the air outlet mode changeover switch, the air volume setting of the blower 12 Examples include a switch, a vehicle interior temperature setting switch, and an economy switch that outputs a command giving priority to power saving of the refrigeration cycle.

次に、本実施形態の車両用空調装置1の作動を説明する。   Next, the operation of the vehicle air conditioner 1 of the present embodiment will be described.

空調制御装置40は、下記の通り、空調熱負荷に基づいて各種機器の制御目標値、例えば、送風機12の送風量、吸込口モード、吹出口モード、エアミックスドア19の開度、冷凍サイクル20の運転モード等を決定する。そして、その決定内容に応じた制御信号を各種機器に対して出力することで、各種機器が作動する。   As described below, the air conditioning control device 40 controls the control target values of various devices based on the air conditioning heat load, for example, the air flow rate of the blower 12, the suction port mode, the air outlet mode, the opening degree of the air mix door 19, and the refrigeration cycle 20. Determine the operation mode. And various apparatuses operate | move by outputting the control signal according to the determined content with respect to various apparatuses.

図6に、空調制御装置40が実行する空調制御のフローチャートを示す。以下では、主に運転モードの決定処理について説明する。   In FIG. 6, the flowchart of the air-conditioning control which the air-conditioning control apparatus 40 performs is shown. Hereinafter, the operation mode determination process will be mainly described.

ステップS1では空調制御に用いられる車両環境状態の信号、すなわち上述のセンサ群の検出信号や、操作パネル50の操作信号を読み込んでステップS2へ進む。   In step S1, a vehicle environmental condition signal used for air conditioning control, that is, a detection signal of the above-described sensor group and an operation signal of the operation panel 50 are read, and the process proceeds to step S2.

ステップS2では、圧縮機21が作動状態か否かを判定する。このとき、圧縮機21の作動スイッチによって、圧縮機21の停止が選択されている場合や、空調制御装置40が圧縮機21の停止制御をしている場合、NO判定して、ステップS1に戻る。一方、圧縮機21が作動状態であれば、YES判定して、ステップS3に進む。   In step S2, it is determined whether or not the compressor 21 is in an operating state. At this time, when the stop of the compressor 21 is selected by the operation switch of the compressor 21 or when the air-conditioning control device 40 controls the stop of the compressor 21, a NO determination is made and the process returns to step S1. . On the other hand, if the compressor 21 is in an operating state, a YES determination is made and the process proceeds to step S3.

ステップS3では、車室内吹出空気の目標吹出空気温度TAOを算出する。目標吹出空気温度TAOは、空調熱負荷、すなわち、車室内設定温度と、車室内温度等の車両環境条件とに基づいて算出され、具体的には、下記数式F1により算出される。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×Ts+C…(F1)
ここで、Tsetは車室内温度設定スイッチによって設定された車室内設定温度、Trは内気センサ41によって検出された車室内温度(内気温)、Tamは外気センサ42によって検出された外気温度、Tsは日射センサ43によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
In step S3, a target blown air temperature TAO of the vehicle compartment blown air is calculated. The target blown air temperature TAO is calculated based on the air-conditioning heat load, that is, the vehicle interior set temperature and the vehicle environmental conditions such as the vehicle interior temperature, and specifically, is calculated by the following formula F1.
TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × Ts + C (F1)
Here, Tset is the vehicle interior temperature set by the vehicle interior temperature setting switch, Tr is the vehicle interior temperature detected by the internal air sensor 41 (inside air temperature), Tam is the outside air temperature detected by the outside air sensor 42, and Ts is This is the amount of solar radiation detected by the solar radiation sensor 43. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.

続いて、ステップS4では、目標吹出空気温度TAO、内外気導入口11a、11bからの吸気温度、窓ガラス近傍の車室内空気の温度および相対湿度、窓ガラス表面温度等に基づいて、冷凍サイクル20の運転モードを冷房モード、除湿暖房モード、暖房モードのいずれか1つに決定する。   Subsequently, in step S4, the refrigeration cycle 20 is based on the target blown air temperature TAO, the intake air temperature from the inside / outside air introduction ports 11a, 11b, the temperature and relative humidity of the vehicle interior air near the window glass, the window glass surface temperature, and the like. Is determined as any one of the cooling mode, the dehumidifying heating mode, and the heating mode.

なお、運転モード以外にも、目標吹出空気温度TAO等に基づいて、圧縮機21の目標回転数、エアミックスドア19の開度、室外送風ファン22aの送風量等の各種機器の制御目標値を決定する。また、本実施形態では、圧縮機21の目標回転数を決定する際に、冷凍サイクル20を構成する各種機器の熱からの保護を目的として、圧縮機21の吐出温度が所定温度未満となるように、圧縮機21の目標回転数を低減補正する(圧縮機21のパワーセーブ制御)。   In addition to the operation mode, the control target values of various devices such as the target rotation speed of the compressor 21, the opening degree of the air mix door 19, and the air blowing amount of the outdoor blower fan 22a are set based on the target blown air temperature TAO. decide. Moreover, in this embodiment, when determining the target rotation speed of the compressor 21, the discharge temperature of the compressor 21 is set to be less than a predetermined temperature for the purpose of protecting the various devices constituting the refrigeration cycle 20 from heat. In addition, the target rotational speed of the compressor 21 is reduced and corrected (power save control of the compressor 21).

続いて、ステップS5で、ステップS4で決定した運転モードが暖房モードであるか否かを判定する。このとき、冷房モードもしくは除湿暖房モードであれば、NO判定して、ステップS6に進み、さらに、ステップS4で決定した運転モードが冷房モードか否かを判定する。このとき、決定した運転モードが除湿暖房モードであれば、ステップS7に進み、決定した運転モードが冷房モードであれば、ステップS8に進む。   Subsequently, in step S5, it is determined whether or not the operation mode determined in step S4 is the heating mode. At this time, if it is the cooling mode or the dehumidifying heating mode, a NO determination is made, the process proceeds to step S6, and it is further determined whether or not the operation mode determined in step S4 is the cooling mode. At this time, if the determined operation mode is the dehumidifying heating mode, the process proceeds to step S7, and if the determined operation mode is the cooling mode, the process proceeds to step S8.

ステップS7では、各アクチュエータに対して、運転モードを除湿暖房モードとするための制御信号を出力する。具体的には、第1電磁弁27と第2電磁弁31の両方に対して、閉じるように制御信号を出力する。また、電気式三方弁29に対して第2バイパス流路28側を閉じて蒸発器13側を開くように制御信号を出力する。また、エアミックスドア用電動アクチュエータ52に対して、加熱用冷風通路16を全開とするための制御信号を出力する。   In step S7, a control signal for setting the operation mode to the dehumidifying heating mode is output to each actuator. Specifically, a control signal is output so that both the first electromagnetic valve 27 and the second electromagnetic valve 31 are closed. In addition, a control signal is output to the electric three-way valve 29 so that the second bypass flow path 28 side is closed and the evaporator 13 side is opened. Further, a control signal for fully opening the heating cool air passage 16 is output to the electric actuator 52 for the air mix door.

これにより、エアミックスドア19は加熱用冷風通路16を全開とする位置となり、図2に示す暖房除湿モードが実行される。この暖房除湿モードでは、上述の通り、図中の矢印で示すように冷媒を循環させる冷媒回路が構成される。この冷媒回路では、放熱器14で高圧側の高温冷媒が放熱し、蒸発器13で低圧側の低温冷媒が吸熱するので、蒸発器13で送風機12からの送風空気が除湿され、除湿された後の送風空気が放熱器14で加熱され、加熱された送風空気が図示しない吹出口から車室内に吹き出される。   Thereby, the air mix door 19 will be in the position which makes the cold wind path 16 for heating fully open, and the heating dehumidification mode shown in FIG. 2 will be performed. In this heating dehumidification mode, as described above, a refrigerant circuit for circulating the refrigerant is configured as indicated by the arrows in the figure. In this refrigerant circuit, the high-pressure side high-temperature refrigerant dissipates heat in the radiator 14, and the low-pressure side low-temperature refrigerant absorbs heat in the evaporator 13, so that the blown air from the blower 12 is dehumidified and dehumidified in the evaporator 13. The blown air is heated by the radiator 14 and the heated blown air is blown out from a blower outlet (not shown).

ここで、暖房用絞り23、冷房用絞り24として可変絞りを用いた場合、空調制御装置40は、目標吹出空気温度TAOに応じて、暖房用絞り23、冷房用絞り24の開度を制御する。例えば、放熱器14通過後の空気温度を低くする場合、暖房用絞り23を全開とし、冷房用絞り24を全開ではなく所定の絞り開度とする。これにより、放熱器14と室外熱交換器22の両方で冷媒が放熱し、放熱器14単独で放熱する場合よりも、放熱器14での放熱量が低減するので、放熱器14通過後の空気温度を低くできる。   Here, when variable throttles are used as the heating throttle 23 and the cooling throttle 24, the air conditioning control device 40 controls the opening degrees of the heating throttle 23 and the cooling throttle 24 according to the target blown air temperature TAO. . For example, when the air temperature after passing through the radiator 14 is lowered, the heating throttle 23 is fully opened, and the cooling throttle 24 is not fully opened but a predetermined throttle opening. As a result, the refrigerant radiates heat in both the radiator 14 and the outdoor heat exchanger 22, and the amount of heat radiated in the radiator 14 is reduced as compared with the case where the radiator 14 radiates heat alone. The temperature can be lowered.

反対に、放熱器14通過後の空気温度を高くする場合、暖房用絞り23を全開ではなく所定の絞り開度とし、冷房用絞り24を全開とする。これにより、蒸発器12と室外熱交換器22の両方で冷媒が吸熱し、蒸発器12単独で吸熱する場合よりも吸熱量が増大するので、放熱器14での放熱量を増大でき、放熱器14通過後の空気温度を高くできる。   On the other hand, when the air temperature after passing through the radiator 14 is increased, the heating throttle 23 is set to a predetermined throttle opening, not fully opened, and the cooling throttle 24 is fully opened. As a result, the refrigerant absorbs heat in both the evaporator 12 and the outdoor heat exchanger 22, and the amount of heat absorption increases as compared with the case where the evaporator 12 absorbs heat alone, so that the heat dissipation amount in the radiator 14 can be increased. The air temperature after 14 passes can be made high.

なお、暖房用絞り23、冷房用絞り24として固定絞りを用いた場合では、外気温度によって、室外熱交換器22は放熱器、吸熱器もしくは単なる冷媒通路として作用する。   When a fixed throttle is used as the heating throttle 23 and the cooling throttle 24, the outdoor heat exchanger 22 acts as a radiator, a heat absorber, or a simple refrigerant passage depending on the outside air temperature.

また、ステップS8では、運転モードを冷房モードとするために、各アクチュエータに対して制御信号を出力する。具体的には、第1電磁弁27に対して、開くように制御信号を出力する。また、電気式三方弁29に対して第2バイパス流路28側を閉じて蒸発器13側を開くように制御信号を出力する。また、エアミックスドア用電動アクチュエータ52に対して、加熱用冷風通路16を全閉とするための制御信号を出力する。   In step S8, a control signal is output to each actuator in order to set the operation mode to the cooling mode. Specifically, a control signal is output to the first electromagnetic valve 27 so as to open. In addition, a control signal is output to the electric three-way valve 29 so that the second bypass flow path 28 side is closed and the evaporator 13 side is opened. Further, a control signal for fully closing the heating cold air passage 16 is output to the electric actuator 52 for the air mix door.

これにより、エアミックスドア19は加熱用冷風通路16を全閉とする位置となり、図1に示す冷房モードが実行される。この冷房モードでは、上述の通り、図中の矢印で示すように冷媒を循環させる冷媒回路が構成され、この冷媒回路では、室外熱交換器22で高圧側の高温冷媒が放熱し、蒸発器13で低圧側の低温冷媒が吸熱するので、蒸発器13で送風機12からの送風空気が冷却され、冷却された後の送風空気が図示しない吹出口から車室内に吹き出される。   As a result, the air mix door 19 is in a position where the cool air passage 16 for heating is fully closed, and the cooling mode shown in FIG. 1 is executed. In this cooling mode, as described above, a refrigerant circuit that circulates the refrigerant is configured as shown by the arrows in the figure. In this refrigerant circuit, the high-temperature refrigerant on the high-pressure side dissipates heat in the outdoor heat exchanger 22, and the evaporator 13 Since the low-temperature refrigerant on the low-pressure side absorbs heat, the blower air from the blower 12 is cooled by the evaporator 13, and the blown air after cooling is blown out from the blower outlet (not shown).

また、ステップS5において、ステップS4で決定した運転モードが暖房モードの場合、YES判定となり、ステップS9に進む。   In step S5, if the operation mode determined in step S4 is the heating mode, a YES determination is made, and the process proceeds to step S9.

ステップS9では、第1暖房モードと第2暖房モードを選択するための判定を行う。具体的には、外気温度Tamが所定温度T1よりも高いか否かを判定する。所定温度T1は、第1暖房モードを実行した場合に、暖房能力が十分に確保できないときの外気温度を基準に設定され、例えば−30℃に設定される。   In step S9, determination for selecting the first heating mode and the second heating mode is performed. Specifically, it is determined whether or not the outside air temperature Tam is higher than a predetermined temperature T1. The predetermined temperature T1 is set on the basis of the outside air temperature when the heating capacity cannot be sufficiently secured when the first heating mode is executed, and is set to −30 ° C., for example.

外気温度Tamが所定温度T1よりも高く、第1暖房モードによる暖房が可能である場合、ステップS10に進み、各アクチュエータに対して、第1暖房モードを実行するための制御信号を出力する。具体的には、第1電磁弁27と第2電磁弁31の両方に対して、閉じるように制御信号を出力する。また、電気式三方弁29に対して第2バイパス流路28側を開き、蒸発器13側を閉じるように制御信号を出力する。また、エアミックスドア用電動アクチュエータ52に対して、加熱用冷風通路16を全開とするための制御信号を出力する。   When the outside air temperature Tam is higher than the predetermined temperature T1 and heating in the first heating mode is possible, the process proceeds to step S10, and a control signal for executing the first heating mode is output to each actuator. Specifically, a control signal is output so that both the first electromagnetic valve 27 and the second electromagnetic valve 31 are closed. Further, a control signal is output so that the second bypass flow path 28 side is opened with respect to the electric three-way valve 29 and the evaporator 13 side is closed. Further, a control signal for fully opening the heating cool air passage 16 is output to the electric actuator 52 for the air mix door.

これにより、エアミックスドア19は加熱用空気通路16を全開とする位置となり、図3に示す第1暖房モードが実行される。この第1暖房モードでは、図中の矢印のように冷媒を循環させる冷媒回路が構成され、この冷媒回路では、放熱器14で高圧側の高温冷媒が放熱し、室外熱交換器22で低圧側の低温冷媒が吸熱するので、蒸発器13通過後の送風空気が放熱器14で加熱され、加熱された送風空気が図示しない吹出口から車室内に吹き出される。   As a result, the air mix door 19 is in a position where the heating air passage 16 is fully opened, and the first heating mode shown in FIG. 3 is executed. In the first heating mode, a refrigerant circuit that circulates the refrigerant is configured as indicated by the arrows in the figure. In this refrigerant circuit, the high-temperature refrigerant on the high-pressure side is radiated by the radiator 14, and the low-pressure side is discharged by the outdoor heat exchanger 22. Since the low-temperature refrigerant absorbs heat, the blown air after passing through the evaporator 13 is heated by the radiator 14, and the heated blown air is blown out from a blower outlet (not shown).

一方、ステップS9において、外気温度Tamが所定温度T1よりも低く、第1暖房モードでは十分な暖房能力が得られない場合、ステップS11に進む。   On the other hand, if the outside air temperature Tam is lower than the predetermined temperature T1 in step S9 and sufficient heating capacity cannot be obtained in the first heating mode, the process proceeds to step S11.

ステップS11では、各アクチュエータに対して、第2暖房モードを実行するための制御信号を出力する。具体的には、第1電磁弁27に対して閉じるように制御信号を出力し、第2電磁弁31に対して開くように制御信号を出力する。また、送風ファン22aに対して停止させるように制御信号を出力し、エアミックスドア用電動アクチュエータ52に対して、加熱用冷風通路16を全開とするための制御信号を出力する。   In step S11, a control signal for executing the second heating mode is output to each actuator. Specifically, a control signal is output so as to be closed with respect to the first electromagnetic valve 27, and a control signal is output so as to be opened with respect to the second electromagnetic valve 31. Further, a control signal is output so as to stop the blower fan 22a, and a control signal for fully opening the heating cool air passage 16 is output to the air mix door electric actuator 52.

これにより、エアミックスドア19は加熱用空気通路16を全開とする位置となり、送風ファン22aは停止して、図4に示す第2暖房モードが実行される。この第2暖房モードでは、図中の矢印のように冷媒を循環させる冷媒回路、すなわち、圧縮機21吐出後の冷媒を放熱器14に流入させ、放熱器14から流出の冷媒を、暖房用絞り23によって減圧させた後に、室外熱交換器22と蒸発器13の両方を迂回させて、圧縮機21の吸入側に導く冷媒回路が構成される。   Thereby, the air mix door 19 will be in the position which makes the heating air channel | path 16 fully open, the ventilation fan 22a will stop, and the 2nd heating mode shown in FIG. 4 will be performed. In this second heating mode, a refrigerant circuit that circulates the refrigerant as shown by the arrows in the drawing, that is, the refrigerant discharged from the compressor 21 flows into the radiator 14 and the refrigerant flowing out of the radiator 14 is used as the heating throttle. After the pressure is reduced by the refrigerant 23, a refrigerant circuit is configured that bypasses both the outdoor heat exchanger 22 and the evaporator 13 and leads to the suction side of the compressor 21.

したがって、第2暖房モードでは、圧縮機21吐出後の高圧側の高温冷媒が、放熱器14で蒸発器13通過後の送風空気と熱交換して放熱する。この放熱によって、放熱器14を通過する送風空気が加熱され、加熱された送風空気が図示しない吹出口から車室内に吹き出される。そして、放熱器14から流出した冷媒は、暖房用絞り23で減圧された後、第2電磁弁31、アキュムレータ25を経由して、圧縮機21に吸入される。   Accordingly, in the second heating mode, the high-pressure refrigerant on the high-pressure side after discharge from the compressor 21 exchanges heat with the blown air that has passed through the evaporator 13 and dissipates heat. By this heat radiation, the blown air passing through the radiator 14 is heated, and the heated blown air is blown out from the blower outlet (not shown) into the vehicle interior. Then, the refrigerant flowing out of the radiator 14 is decompressed by the heating throttle 23 and then sucked into the compressor 21 via the second electromagnetic valve 31 and the accumulator 25.

ここで、図7に第2暖房モード時の冷媒変化を示すモリエル線図を示す。第2暖房モード時では、図7に示すように、圧縮機21吐出後の高温気相冷媒(ホットガス)が、放熱器14で放熱することにより、一部凝縮して気液2相状態となり、気液2相状態の冷媒が、暖房用絞り23で減圧されて気相状態となるホットガスサイクルとなる。このホットガスサイクルでは、ヒートポンプサイクルの第1暖房モードとは異なり、室外熱交換器22での冷媒の吸熱が無いので、放熱器14の放熱量は、圧縮機21の圧縮仕事量で決定される。なお、本実施形態では、放熱器14で冷媒が気液2相状態となるが、用いる冷媒の物性によっては、気相状態のままとなる。   Here, the Mollier diagram which shows the refrigerant | coolant change at the time of 2nd heating mode in FIG. 7 is shown. In the second heating mode, as shown in FIG. 7, the high-temperature gas-phase refrigerant (hot gas) discharged from the compressor 21 dissipates heat in the radiator 14, thereby partially condensing into a gas-liquid two-phase state. The refrigerant in the gas-liquid two-phase state is decompressed by the heating throttle 23 to form a hot gas cycle in which the gas-phase state is obtained. In this hot gas cycle, unlike the first heating mode of the heat pump cycle, there is no heat absorption of the refrigerant in the outdoor heat exchanger 22, so the heat release amount of the radiator 14 is determined by the compression work amount of the compressor 21. . In the present embodiment, the refrigerant is in a gas-liquid two-phase state in the radiator 14, but remains in a gas phase state depending on the physical properties of the refrigerant used.

以上の説明の通り、本実施形態では、空調制御装置40によって、外気温度Tamが所定温度T1よりも高い場合に、ヒートポンプサイクルによる第1暖房モードを実行し、外気温度Tamが所定温度T1よりも低い外気極低温の場合に、放熱器14に流入した圧縮機吐出後のホットガスを熱源として送風空気を加熱する第2暖房モードに切り替えるようにしている。   As described above, in the present embodiment, when the outside air temperature Tam is higher than the predetermined temperature T1 by the air conditioning control device 40, the first heating mode by the heat pump cycle is executed, and the outside air temperature Tam is higher than the predetermined temperature T1. In the case of a low outside air temperature, the mode is switched to the second heating mode in which the blown air is heated using the hot gas discharged from the compressor flowing into the radiator 14 as a heat source.

そして、この第2暖房モードでは、室外熱交換器22に冷媒を流さず、室外熱交換器を吸熱器として作用させないので、室外熱交換器22は着霜せず、室外熱交換器22の除霜運転が不要となる。よって、本実施形態によれば、外気極低温時に連続した暖房運転が可能となり、暖房能力の確保が可能となる。   And in this 2nd heating mode, since a refrigerant | coolant is not flowed through the outdoor heat exchanger 22, and an outdoor heat exchanger is not made to act as a heat sink, the outdoor heat exchanger 22 does not form frost, and removal of the outdoor heat exchanger 22 is carried out. Frost operation becomes unnecessary. Therefore, according to the present embodiment, it is possible to perform a continuous heating operation when the outside air is extremely cold, and it is possible to ensure the heating capacity.

また、第1暖房モードでは、外気温度の低下に伴って、室外熱交換器22での吸熱のために暖房用絞り23によって冷媒圧力を低下させるので、その結果として、圧縮機21の吸入圧力が低下して、圧縮比が増加するため、圧縮機21の吐出冷媒温度は上昇する。このため、外気極低温時に第1暖房モードを実行すると、圧縮機21の吐出冷媒温度が所定温度を超えてしまうので、機器保護のために、圧縮機21の回転数を低く抑えるパワーセーブ制御が働き、その結果、暖房能力が実質的に低下してしまう。   In the first heating mode, the refrigerant pressure is reduced by the heating restrictor 23 due to the heat absorption in the outdoor heat exchanger 22 as the outside air temperature decreases, and as a result, the suction pressure of the compressor 21 is reduced. Since it decreases and the compression ratio increases, the discharge refrigerant temperature of the compressor 21 rises. For this reason, if the first heating mode is executed when the outside air is at a very low temperature, the discharge refrigerant temperature of the compressor 21 exceeds a predetermined temperature, so that power save control is performed to keep the rotation speed of the compressor 21 low for equipment protection. As a result, the heating capacity is substantially reduced.

これに対して、第2暖房モードでは、室外熱交換器22で冷媒を吸熱させないので、同じ外気温度下での第1暖房モード時と比較して、圧縮機21の吸入圧力の低下を抑制でき、圧縮機21の吐出冷媒温度の上昇を抑制できる。このため、外気極低温時に第2暖房モードを実行しても、上述の圧縮機21のパワーセーブ制御の働きを回避できる。   In contrast, in the second heating mode, since the refrigerant is not absorbed by the outdoor heat exchanger 22, it is possible to suppress a decrease in the suction pressure of the compressor 21 as compared with the first heating mode under the same outdoor temperature. The rise in the refrigerant temperature discharged from the compressor 21 can be suppressed. For this reason, even if the second heating mode is executed when the outside air is at a very low temperature, the power saving control function of the compressor 21 can be avoided.

ちなみに、圧縮機吐出後の高圧側の高温気相冷媒(ホットガス)を蒸発器に流入させることで、蒸発器で冷媒を放熱させて暖房(ホットガス暖房)を行う冷凍サイクルは、文献を挙げるまでもなく周知であるが、この周知の冷凍サイクルでは、蒸発器に圧縮機吐出後の高圧冷媒を流入させるため、蒸発器は高圧冷媒に耐え得る耐高圧構造が必要であった。これに対して、本実施形態では、蒸発器13に高圧冷媒を流入させないので、蒸発器13の耐高圧構造を不要にできる。なお、下記の各実施形態においても同様である。   Incidentally, a refrigeration cycle in which heating (hot gas heating) is performed by causing the evaporator to dissipate heat by flowing high-pressure high-temperature gas-phase refrigerant (hot gas) after discharge from the compressor into the evaporator. As is well known, in this known refrigeration cycle, since the high-pressure refrigerant discharged from the compressor flows into the evaporator, the evaporator needs to have a high-pressure resistant structure that can withstand the high-pressure refrigerant. On the other hand, in this embodiment, since the high pressure refrigerant is not allowed to flow into the evaporator 13, the high pressure resistant structure of the evaporator 13 can be eliminated. The same applies to the following embodiments.

(第2実施形態)
本実施形態は、内燃機関(エンジン)および走行用電動モータから車両走行用の駆動力を得る、いわゆるハイブリッド車(HV)に搭載される車両用空調装置であり、第1実施形態に対して、室内空調ユニット10に温水式のヒータコア61を追加したものである。
(Second Embodiment)
The present embodiment is a vehicle air conditioner mounted on a so-called hybrid vehicle (HV) that obtains driving force for vehicle travel from an internal combustion engine (engine) and a travel electric motor. A hot water heater core 61 is added to the indoor air conditioning unit 10.

図8に、本実施形態の車両用空調装置の全体構成を示す。具体的には、車両用空調装置1は、ヒータコア61とエンジン(EG)62との間をエンジン冷却水が循環する冷却水回路63を備えている。ヒータコア61は、エンジン冷却水を熱源として送風空気を加熱する空気加熱手段である。ヒータコア61は、空調ケース11内のうち蒸発器13よりも空気流れ下流側であって、放熱器14の空気流れ上流側に配置されている。   In FIG. 8, the whole structure of the vehicle air conditioner of this embodiment is shown. Specifically, the vehicle air conditioner 1 includes a cooling water circuit 63 in which engine cooling water circulates between a heater core 61 and an engine (EG) 62. The heater core 61 is an air heating unit that heats blown air using engine coolant as a heat source. The heater core 61 is disposed on the air flow downstream side of the evaporator 13 in the air conditioning case 11 and on the air flow upstream side of the radiator 14.

したがって、放熱器14は、空調ケース11内のうちヒータコア61よりも空気流れ下流側に配置されており、ヒータコア61通過後の送風空気が流入するようになっている。   Therefore, the radiator 14 is arranged in the air conditioning case 11 on the downstream side of the air flow from the heater core 61, and the blown air after passing through the heater core 61 flows in.

そして、本実施形態では、第1暖房モードが選択される条件下においては、ヒータコア61の冷却水温度が所定温度よりも低い場合に、第1暖房モードによる暖房を実施し、ヒータコア61の冷却水温度が所定温度よりも高い場合に、ヒータコア61による暖房を実施するようになっている。   In the present embodiment, under the condition that the first heating mode is selected, when the cooling water temperature of the heater core 61 is lower than the predetermined temperature, the heating in the first heating mode is performed, and the cooling water of the heater core 61 is When the temperature is higher than a predetermined temperature, heating by the heater core 61 is performed.

また、本実施形態では、第2暖房モード時にヒータコア61による送風空気の加熱を行うようになっている。具体的には、空調制御装置40は、冷凍サイクル20の運転モードとして第2暖房モードを実行する場合、エンジン62が停止状態であって、冷却水温度が所定温度よりも低ければ、エンジン作動の要求信号をエンジン制御装置に出力する。これにより、エンジン62を作動させて、冷却水温度を上昇させ、ヒータコア61によって送風空気を加熱する。したがって、第2暖房モード時の空調装置全体の暖房能力は、放熱器14の放熱量と、ヒータコア61の放熱量を合算したものとなる。   In the present embodiment, the blower air is heated by the heater core 61 in the second heating mode. Specifically, when the air conditioning control device 40 executes the second heating mode as the operation mode of the refrigeration cycle 20, if the engine 62 is stopped and the coolant temperature is lower than a predetermined temperature, A request signal is output to the engine control device. As a result, the engine 62 is operated to increase the coolant temperature, and the blower air is heated by the heater core 61. Therefore, the heating capacity of the entire air conditioner in the second heating mode is the sum of the heat dissipation amount of the radiator 14 and the heat dissipation amount of the heater core 61.

なお、本実施形態とは異なり、ヒータコア61を放熱器14の空気流れ下流側に配置することも可能である。しかし、本実施形態のように、ヒータコア61を放熱器14の空気流れ上流側に配置することで、ヒータコア61を放熱器14の空気流れ下流側に配置した場合と比較して、図9に示すように、放熱器14の放熱量を増大できる。   Note that, unlike the present embodiment, the heater core 61 can be arranged on the downstream side of the air flow of the radiator 14. However, as shown in FIG. 9, the heater core 61 is arranged on the upstream side of the air flow of the radiator 14 as compared with the case where the heater core 61 is arranged on the downstream side of the air flow of the radiator 14 as in this embodiment. As described above, the heat dissipation amount of the radiator 14 can be increased.

ここで、図9に、第2暖房モード時の冷媒変化を示すモリエル線図を示す。第2暖房モード時のホットガスサイクルでは、圧縮機21の仕事量と放熱器14の性能でサイクルバランスが決まる。このホットガスサイクルでは、放熱器14の入口空気温度がT01からT02に上昇すると(図示せず)、放熱量を確保するために、図9に示すように、高圧側の冷媒温度がT11からT12に上昇(高圧側の冷媒圧力がP1からP2に上昇)するので、その結果として、圧縮機21の圧縮仕事量が増加し、放熱器14の放熱量がQ1からQ2に増加するように、サイクルがバランスする。   Here, in FIG. 9, the Mollier diagram which shows the refrigerant | coolant change at the time of 2nd heating mode is shown. In the hot gas cycle in the second heating mode, the cycle balance is determined by the work of the compressor 21 and the performance of the radiator 14. In this hot gas cycle, when the inlet air temperature of the radiator 14 rises from T01 to T02 (not shown), as shown in FIG. 9, the refrigerant temperature on the high-pressure side is changed from T11 to T12 in order to secure the heat radiation amount. (The refrigerant pressure on the high pressure side increases from P1 to P2), and as a result, the compression work of the compressor 21 increases and the heat dissipation of the radiator 14 increases from Q1 to Q2. Balance.

したがって、ヒータコア61の放熱量が同じ場合、本実施形態のように、ヒータコア61を放熱器14の空気流れ上流側に配置することで、ヒータコア61を放熱器14の空気流れ下流側に配置した場合と比較して、放熱器14の暖房能力を向上できる。   Therefore, when the heat dissipation amount of the heater core 61 is the same, when the heater core 61 is arranged on the air flow upstream side of the radiator 14 by arranging the heater core 61 on the air flow upstream side of the radiator 14 as in the present embodiment. Compared with, the heating capacity of the radiator 14 can be improved.

また、本実施形態の第1暖房モードと第2暖房モードとを比較すると、図10(a)、(b)に示すように、第2暖房モードの方が、第1暖房モードよりも放熱器14の暖房能力が高くなる場合がある。なお、図10(a)、(b)は、それぞれ、放熱器14の入口空気温度に対する圧縮機動力、放熱器14の放熱量(暖房能力)の計算結果を示す図である。   Further, when comparing the first heating mode and the second heating mode of the present embodiment, as shown in FIGS. 10A and 10B, the second heating mode is more radiator than the first heating mode. The heating capacity of 14 may be high. 10A and 10B are diagrams showing calculation results of the compressor power and the heat radiation amount (heating capacity) of the radiator 14 with respect to the inlet air temperature of the radiator 14, respectively.

外気極低温時に第1暖房モードを実行すると、図10(a)に示すように、放熱器14の入口空気温度が上昇するにつれて、圧縮機動力が上昇するが、入口空気温度が所定温度Txよりも高温の場合、パワーセーブ制御により、圧縮機動力は所定動力値を超えず、所定動力値で一定の傾向となる。   When the first heating mode is executed at a very low outside air temperature, as shown in FIG. 10A, the compressor power increases as the inlet air temperature of the radiator 14 increases, but the inlet air temperature is higher than the predetermined temperature Tx. However, when the temperature is high, the power of the compressor does not exceed a predetermined power value by the power save control, and tends to be constant at the predetermined power value.

このため、第1暖房モード時では、図10(b)に示すように、放熱器14の放熱量、すなわち、放熱器14の暖房能力も、入口空気温度が所定温度Txよりも高温の領域では、所定暖房能力Qxで一定となり、所定暖房能力Qxよりも高い暖房能力を得ることができない。   Therefore, in the first heating mode, as shown in FIG. 10B, the heat dissipation amount of the radiator 14, that is, the heating capacity of the radiator 14, is also in the region where the inlet air temperature is higher than the predetermined temperature Tx. The predetermined heating capacity Qx is constant, and a heating capacity higher than the predetermined heating capacity Qx cannot be obtained.

これに対して、外気極低温時に第2暖房モードを実行すると、上述の通り、パワーセーブ制御を回避できるので、図10(a)に示すように、放熱器14の入口空気温度が上昇するにつれて、圧縮機動力は上昇し続ける傾向となる。このため、図10(b)に示すように、放熱器14の入口空気温度が所定温度Ta℃以上のときに、放熱器14の暖房能力が第1暖房モード時の暖房能力を超える結果となる。   On the other hand, when the second heating mode is executed when the outside air is at a very low temperature, as described above, the power saving control can be avoided, and as shown in FIG. 10A, as the inlet air temperature of the radiator 14 increases. The compressor power tends to continue to rise. For this reason, as shown in FIG.10 (b), when the inlet air temperature of the radiator 14 is more than predetermined temperature Ta degree C, the heating capability of the radiator 14 will result in exceeding the heating capability at the time of 1st heating mode. .

(第3実施形態)
図11に、本実施形態の車両用空調装置の全体構成を示す。本実施形態は、第1実施形態の車両用空調装置に対して、圧縮機吐出後の冷媒を減圧させる第2暖房用絞り71を追加したものである。なお、第2実施形態の車両用空調装置に対してこの第2暖房用絞り71を追加しても良い。
(Third embodiment)
In FIG. 11, the whole structure of the vehicle air conditioner of this embodiment is shown. In the present embodiment, a second heating throttle 71 for reducing the pressure of the refrigerant discharged from the compressor is added to the vehicle air conditioner of the first embodiment. In addition, you may add this 2nd aperture_diaphragm | restriction 71 with respect to the vehicle air conditioner of 2nd Embodiment.

具体的には、車両用空調装置1は、第1実施形態の構成に加えて、圧縮機21吐出後であって放熱器14流入前の冷媒を減圧させる第2暖房用絞り71と、第2暖房用絞り71を迂回して冷媒が流れる第4バイパス流路72と、第4バイパス流路72を開閉する開閉手段としての電磁弁73とを備えている。第2暖房用絞り71としては固定絞りもしくは可変絞りを採用できる。   Specifically, in addition to the configuration of the first embodiment, the vehicle air conditioner 1 includes a second heating throttle 71 that decompresses the refrigerant after discharging the compressor 21 and before flowing into the radiator 14, A fourth bypass passage 72 through which the refrigerant bypasses the heating restrictor 71 and an electromagnetic valve 73 as an opening / closing means for opening and closing the fourth bypass passage 72 are provided. A fixed throttle or a variable throttle can be adopted as the second heating throttle 71.

また、本実施形態の第3バイパス流路30は、第1実施形態と異なり、放熱器14通過後の冷媒を、暖房用絞り23と室外熱交換器22とを迂回させて、第2バイパス流路28に導くようになっている。なお、第1実施形態で説明した暖房用絞り23は、本実施形態では第1暖房用絞り23となる。   Further, unlike the first embodiment, the third bypass flow path 30 of the present embodiment bypasses the refrigerant after passing the radiator 14 between the heating throttle 23 and the outdoor heat exchanger 22, so that the second bypass flow It leads to the road 28. In addition, the heating throttle 23 described in the first embodiment is the first heating throttle 23 in the present embodiment.

空調制御装置40は、冷房モード、除湿暖房モードおよび第1暖房モード時に、電磁弁73を開くように制御信号を出力する。これにより、冷房モード、除湿暖房モードおよび第1暖房モード時の冷媒回路は、第1実施形態と同様の構成となる。   The air conditioning control device 40 outputs a control signal to open the electromagnetic valve 73 in the cooling mode, the dehumidifying heating mode, and the first heating mode. Thereby, the refrigerant circuit at the time of air_conditioning | cooling mode, dehumidification heating mode, and 1st heating mode becomes a structure similar to 1st Embodiment.

一方、空調制御装置40は、第2暖房モード時に電磁弁73を閉じるように制御信号を出力する。これにより、第2暖房モード時では、図11中の矢印のように、圧縮機21吐出後の冷媒を、第2暖房用絞り71によって減圧させた後に、放熱器14に流入させるとともに、放熱器14から流出の冷媒を、第1暖房用絞り23、室外熱交換器22および蒸発器13を迂回させて、圧縮機21の吸入側に導く冷媒回路が構成される。   On the other hand, the air-conditioning control device 40 outputs a control signal so as to close the electromagnetic valve 73 in the second heating mode. Thus, in the second heating mode, the refrigerant discharged from the compressor 21 is decompressed by the second heating throttle 71 and then flows into the radiator 14 as indicated by the arrows in FIG. A refrigerant circuit is configured in which the refrigerant flowing out of the refrigerant 14 bypasses the first heating throttle 23, the outdoor heat exchanger 22, and the evaporator 13 and is led to the suction side of the compressor 21.

図12は本実施形態の第2暖房モード時の冷媒変化を示すモリエル線図である。本実施形態では、圧縮機21吐出後の冷媒を、放熱器14に流入する前に、第2暖房用絞り71によって減圧させるので、放熱器14の入口冷媒温度T22は、圧縮機21吐出後の冷媒温度T21よりも低くなる。   FIG. 12 is a Mollier diagram showing refrigerant changes during the second heating mode of the present embodiment. In the present embodiment, since the refrigerant discharged from the compressor 21 is depressurized by the second heating throttle 71 before flowing into the radiator 14, the inlet refrigerant temperature T <b> 22 of the radiator 14 is changed after the compressor 21 is discharged. It becomes lower than the refrigerant temperature T21.

このため、図7に示す第1実施形態の第2暖房モード時と比較すると、圧縮機21吐出後の冷媒温度が同じ場合、放熱器14の入口冷媒温度が低く、放熱器14を通過する送風空気との温度差が小さくなるので、この温度差を大きくしようとして、図12に示すホットガスサイクルは、図7に示すホットガスサイクルよりも大きくバランスする。   For this reason, compared with the time of the 2nd heating mode of 1st Embodiment shown in FIG. 7, when the refrigerant | coolant temperature after discharge of the compressor 21 is the same, the inlet-side refrigerant | coolant temperature of the radiator 14 is low, and the ventilation which passes the radiator 14 is passed. Since the temperature difference with air is reduced, the hot gas cycle shown in FIG. 12 is more balanced than the hot gas cycle shown in FIG. 7 in an attempt to increase the temperature difference.

よって、本実施形態によれば、第1実施形態の第2暖房モード時よりも、圧縮機21の圧縮仕事量を増大させることができ、高い暖房能力が得られる。   Therefore, according to the present embodiment, the compression work of the compressor 21 can be increased and higher heating capacity can be obtained than in the second heating mode of the first embodiment.

ただし、本実施形態は、第2暖房用絞り71と、第4バイパス流路72と、電磁弁73とを備えており、第1実施形態よりも冷凍サイクル20の構成部品が多いため、冷凍サイクル20の構成簡素化の観点では、本実施形態よりも第1実施形態の方が好ましい。   However, the present embodiment includes the second heating throttle 71, the fourth bypass flow path 72, and the electromagnetic valve 73, and has more components of the refrigeration cycle 20 than the first embodiment. From the viewpoint of the simplification of the configuration 20, the first embodiment is preferable to the present embodiment.

(第4実施形態)
第1実施形態では、高温冷媒を放熱させる放熱器として、高温冷媒と送風空気とを、エンジン冷却水等の液体を介さずに、熱交換させる放熱器14を採用したが、本実施形態では、高温冷媒と送風空気とを、エンジン冷却水を介して、熱交換させる放熱器を採用している。
(Fourth embodiment)
In 1st Embodiment, although the heat radiator 14 which heat-exchanges a high temperature refrigerant | coolant and ventilation air as liquid radiator which radiates a high temperature refrigerant | coolant without passing liquids, such as an engine cooling water, was adopted in this embodiment, A radiator that exchanges heat between the high-temperature refrigerant and the blown air through the engine coolant is employed.

図13に、本実施形態の車両用空調装置の全体構成を示す。本実施形態は、第2実施形態で説明した図2に示す構成に対して、放熱器14を水冷媒熱交換器81に変更したものであり、その他の構成は第2実施形態と同様である。   In FIG. 13, the whole structure of the vehicle air conditioner of this embodiment is shown. In the present embodiment, the radiator 14 is changed to a water-refrigerant heat exchanger 81 with respect to the configuration shown in FIG. 2 described in the second embodiment, and other configurations are the same as those in the second embodiment. .

本実施形態のヒータコア61は、空調ケース11内のうち蒸発器13の空気流れ下流側に配置されており、エンジン冷却水と蒸発器13通過後の送風空気とを熱交換させて、エンジン冷却水を放熱させる第1放熱器である。   The heater core 61 of the present embodiment is disposed in the air conditioning case 11 on the downstream side of the air flow of the evaporator 13, and exchanges heat between the engine cooling water and the blown air that has passed through the evaporator 13, thereby cooling the engine cooling water. It is the 1st heat radiator which radiates heat.

水冷媒熱交換器81は、冷媒回路において圧縮機21の下流側、かつ、暖房用絞り23の上流側に接続されており、圧縮機21吐出後の高圧側の高温冷媒とエンジン冷却水とを熱交換させて、冷媒を放熱させる第2放熱器である。   The water-refrigerant heat exchanger 81 is connected to the downstream side of the compressor 21 and the upstream side of the heating throttle 23 in the refrigerant circuit, and the high-temperature refrigerant and engine coolant on the high-pressure side after the compressor 21 is discharged. It is the 2nd heat radiator which is made to heat-exchange and radiates a refrigerant | coolant.

このような構成の車両用空調装置は、第2実施形態に対して放熱器14を水冷媒熱交換器81に変更しただけなので、第2実施形態と同様に作動する。ちなみに、除湿暖房モード、第1暖房モード、第2暖房モード時では、水冷媒熱交換器81での冷媒の放熱によってエンジン冷却水を加熱し、ヒータコア61でのエンジン冷却水の放熱によって蒸発器13通過後の送風空気を加熱する。   The vehicle air conditioner having such a configuration operates in the same manner as the second embodiment because the radiator 14 is merely changed to the water-refrigerant heat exchanger 81 with respect to the second embodiment. Incidentally, in the dehumidifying heating mode, the first heating mode, and the second heating mode, the engine cooling water is heated by the heat radiation of the refrigerant in the water / refrigerant heat exchanger 81, and the evaporator 13 is discharged by the heat radiation of the engine cooling water in the heater core 61. The blown air after passing is heated.

したがって、水冷媒熱交換器81とヒータコア61の両方によって、高圧側の高温冷媒と蒸発器13通過後の送風空気とを、エンジン冷却水を介して熱交換させて、冷媒を放熱させる放熱器を構成していると言える。このように、高温冷媒を放熱させる放熱器としては、最終的に、高圧側の高温冷媒と蒸発器通過後の送風空気との間で熱交換させるものを採用できる。   Accordingly, a radiator that radiates the refrigerant by exchanging heat between the high-temperature refrigerant on the high-pressure side and the blown air after passing through the evaporator 13 through the engine cooling water by both the water-refrigerant heat exchanger 81 and the heater core 61. It can be said that it is composed. As described above, as a heat radiator that dissipates the high-temperature refrigerant, a heat exchanger that finally exchanges heat between the high-temperature side high-temperature refrigerant and the blown air after passing through the evaporator can be adopted.

本実施形態においても、第2暖房モード時では、第2実施形態の放熱器14と同様に、エンジン作動によってエンジン冷却水の温度が上昇するに連れて圧縮機動力が増大する傾向となるので、エンジン冷却水の温度によっては、第1暖房モード時と比較して、水冷媒熱交換器81の放熱量を多くできる。   Also in the present embodiment, during the second heating mode, the compressor power tends to increase as the temperature of the engine coolant rises due to the engine operation, similarly to the radiator 14 of the second embodiment. Depending on the temperature of the engine cooling water, the heat radiation amount of the water-refrigerant heat exchanger 81 can be increased as compared with the first heating mode.

また、本実施形態によると、第2実施形態と比較して、室内空調ユニット10に収容する熱交換器の数を3つから2つに低減できるので、室内空調ユニット10をコンパクトにできるという効果を奏する。   Moreover, according to this embodiment, compared with 2nd Embodiment, since the number of the heat exchangers accommodated in the indoor air conditioning unit 10 can be reduced from three to two, the effect that the indoor air conditioning unit 10 can be made compact. Play.

(他の実施形態)
(1)上述の各実施形態では、図6中のステップS9で、外気温度Tamに基づいて、第1暖房モードと第2暖房モードのどちらかを決定したが、外気温度Tam以外の他の物理量に基づいて、第1暖房モードと第2暖房モードのどちらかを決定しても良い。
(Other embodiments)
(1) In each of the above-described embodiments, either the first heating mode or the second heating mode is determined in step S9 in FIG. 6 based on the outside air temperature Tam, but other physical quantities other than the outside air temperature Tam. Based on the above, either the first heating mode or the second heating mode may be determined.

この物理量とは、第1暖房モード時の暖房能力と相関関係のある物理量であり、例えば、圧縮機21の吸入側冷媒圧力Ps、圧縮機21の吐出側冷媒温度Ts、冷媒流量等が挙げられる。第1暖房モード時の暖房能力が低下する外気極低温時では、外気温度が極低温時よりも高い場合と比較して、吸入側冷媒圧力Psは低く、冷媒流量が少なく、吐出側冷媒温度Tsが高くなる。   This physical quantity is a physical quantity having a correlation with the heating capacity in the first heating mode, and examples thereof include the suction side refrigerant pressure Ps of the compressor 21, the discharge side refrigerant temperature Ts of the compressor 21, and the refrigerant flow rate. . Compared to the case where the outside air temperature is higher than that at the extremely low temperature, the suction-side refrigerant pressure Ps is lower, the refrigerant flow rate is smaller, and the discharge-side refrigerant temperature Ts when the outside air temperature is low. Becomes higher.

物理量のしきい値を、第1暖房モード時の暖房能力が低下するときの物理量に基づいて設定する。そして、検出した物理量としきい値とを比較して、検出した物理量が第1暖房モード時の暖房能力の低下側を示す値に達したときに、第1暖房モード時の暖房能力が十分に得られないと判定して、第2暖房モードに決定する。   The threshold of the physical quantity is set based on the physical quantity when the heating capacity in the first heating mode is reduced. Then, the detected physical quantity is compared with a threshold value, and when the detected physical quantity reaches a value indicating a decrease in the heating capacity in the first heating mode, sufficient heating capacity in the first heating mode is obtained. It determines with it not being possible, and determines to 2nd heating mode.

例えば、吸入圧力センサ48で第1暖房モード時の吸入側冷媒圧力Psを検出する。なお、吸入温度センサ47で検出した吸入温度から冷媒圧力を推定しても良い。そして、検出した吸入側冷媒圧力Psが第1所定圧力P1よりも低い場合、第2暖房モードへ冷媒回路を切り替え、第2暖房モード時の吸入側冷媒圧力Psが第2所定圧力(P1+α)よりも高い場合に、第1暖房モードへ冷媒回路を切り替えても良い。第2所定圧力は、第1暖房モードから第2暖房モードへ冷媒回路を切り替えた後、第2暖房モードによって第1暖房モード時よりも低圧側冷媒圧力が上昇したときに、直ちに、第1暖房モードに切り替わらないように設定する。   For example, the suction pressure sensor 48 detects the suction side refrigerant pressure Ps in the first heating mode. Note that the refrigerant pressure may be estimated from the suction temperature detected by the suction temperature sensor 47. When the detected suction side refrigerant pressure Ps is lower than the first predetermined pressure P1, the refrigerant circuit is switched to the second heating mode, and the suction side refrigerant pressure Ps in the second heating mode is higher than the second predetermined pressure (P1 + α). May be higher, the refrigerant circuit may be switched to the first heating mode. The second predetermined pressure is generated immediately after the refrigerant circuit is switched from the first heating mode to the second heating mode, and when the low-pressure side refrigerant pressure is increased by the second heating mode than in the first heating mode. Set to not switch to mode.

ちなみに、第1暖房モード時の吸入側冷媒圧力Psに基づいて、第2暖房モードへの切り替えを決定する場合では、外気極低温時だけでなく、室外熱交換器22に着霜が生じることで、第1暖房モードの暖房能力が低下した場合においても、第2暖房モードへの切り替えが可能となる。   Incidentally, when switching to the second heating mode is determined based on the suction side refrigerant pressure Ps in the first heating mode, frost formation occurs in the outdoor heat exchanger 22 as well as at a very low outdoor temperature. Even when the heating capacity of the first heating mode is reduced, the switching to the second heating mode is possible.

また、例えば、吐出温度センサ44で第1暖房モード時の吐出側冷媒温度Tdを検出する。この検出した吐出側冷媒温度Tdが第1所定温度よりも高い場合、第2暖房モードへ冷媒回路を切り替え、第2暖房モード時の吐出側冷媒温度Tdが第2所定温度よりも低い場合に、第1暖房モードへ冷媒回路を切り替えても良い。第1所定温度は、パワーセーブ制御が働く温度域を考慮して設定され、例えば、150℃に設定される。   For example, the discharge temperature sensor 44 detects the discharge-side refrigerant temperature Td in the first heating mode. When the detected discharge-side refrigerant temperature Td is higher than the first predetermined temperature, the refrigerant circuit is switched to the second heating mode, and when the discharge-side refrigerant temperature Td in the second heating mode is lower than the second predetermined temperature, The refrigerant circuit may be switched to the first heating mode. The first predetermined temperature is set in consideration of the temperature range in which the power save control works, and is set to 150 ° C., for example.

また、圧縮機21に設けた流量センサから冷媒流量を検出し、検出した冷媒流量が所定流量よりも低い場合、第2暖房モードへ冷媒回路を切り替えるようにしても良い。   In addition, the refrigerant flow rate may be detected from a flow rate sensor provided in the compressor 21, and the refrigerant circuit may be switched to the second heating mode when the detected refrigerant flow rate is lower than a predetermined flow rate.

(2)上述の各実施形態では、図1の冷房モード時、図2の除湿暖房モード時に、圧縮機21吐出後の冷媒が、放熱器14、室外熱交換器22、蒸発器13の順に流れる冷媒回路が構成されており、すなわち、3つの熱交換器が冷媒流れに対して直列に配置された構成であったが、3つの熱交換器が冷媒流れに対して直列に配置された構成でなくても良い。   (2) In each of the above-described embodiments, the refrigerant discharged from the compressor 21 flows in the order of the radiator 14, the outdoor heat exchanger 22, and the evaporator 13 in the cooling mode of FIG. 1 and the dehumidifying heating mode of FIG. The refrigerant circuit is configured, that is, the three heat exchangers are arranged in series with respect to the refrigerant flow, but the three heat exchangers are arranged in series with respect to the refrigerant flow. It is not necessary.

例えば、図1に示す冷房モードにおいて、放熱器14を迂回して冷媒が流れるバイパス流路を設け、圧縮機21吐出後の冷媒を、放熱器14を迂回させて、室外熱交換器22に流入させる構成としても良い。   For example, in the cooling mode shown in FIG. 1, a bypass flow path is provided in which the refrigerant flows around the radiator 14, and the refrigerant discharged from the compressor 21 flows into the outdoor heat exchanger 22 around the radiator 14. It is good also as a structure made to do.

例えば、図2に示す除湿暖房モードに対して、室外熱交換器22を迂回して冷媒が流れるバイパス流路を設け、放熱器14流出後の冷媒を、室外熱交換器22を迂回させて、蒸発器13に流入させる構成としても良い。また、除湿暖房モード時に、放熱器14流出後の冷媒を、室外熱交換器22と蒸発器13とに対して、並列に流す構成としても良い。   For example, with respect to the dehumidifying and heating mode shown in FIG. It is good also as a structure made to flow in the evaporator 13. FIG. Moreover, it is good also as a structure which flows the refrigerant | coolant after the radiator 14 outflow in parallel with respect to the outdoor heat exchanger 22 and the evaporator 13 at the time of dehumidification heating mode.

(3)上述の各実施形態のうち、温水式のヒータコア61を用いる実施形態では、液体としてエンジン冷却水を用いたが、他の液体を用いても良い。例えば、エンジン以外の発熱体の冷却液を用いたり、発熱体の冷却を目的とせず、空気の加熱を目的として、電気ヒータ等の液体加熱手段によって加熱される液体を用いたりしても良い。   (3) Of the above-described embodiments, in the embodiment using the hot water heater core 61, the engine cooling water is used as the liquid, but other liquids may be used. For example, a coolant for a heating element other than the engine may be used, or a liquid heated by liquid heating means such as an electric heater may be used for the purpose of heating air without the purpose of cooling the heating element.

(4)第2実施形態では、放熱器14の入口空気温度を上昇させる手段として、温水式のヒータコア61を用いたが、冷凍サイクルとは別の熱源によって送風空気を加熱するものであれば、他の空気加熱手段を用いても良く、例えば、電気ヒータ等を用いても良い。   (4) In 2nd Embodiment, although the hot water type heater core 61 was used as a means to raise the inlet air temperature of the heat radiator 14, if the blowing air is heated by a heat source different from the refrigeration cycle, Other air heating means may be used, for example, an electric heater or the like may be used.

(5)なお、上述の各実施形態を実施可能な範囲で組み合わせても良い。   (5) In addition, you may combine each above-mentioned embodiment in the range which can be implemented.

1 車両用空調装置
10 室内空調ユニット
13 蒸発器
14 放熱器
20 冷凍サイクル
21 圧縮機
22 室外熱交換器
23 暖房用絞り、第1暖房用絞り(暖房用減圧手段、減圧手段)
24 冷房用絞り(冷房用減圧手段)
27 第1電磁弁(冷媒回路の切替手段)
29 電気式三方弁(冷媒回路の切替手段)
31 第2電磁弁(冷媒回路の切替手段)
61 温水式ヒータコア(空気加熱手段、第1放熱器)
62 エンジン(液体加熱手段)
71 第2暖房用絞り(減圧手段)
81 水冷媒熱交換器(放熱器、第2放熱器)
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 10 Indoor air conditioning unit 13 Evaporator 14 Radiator 20 Refrigeration cycle 21 Compressor 22 Outdoor heat exchanger 23 Heating throttle, 1st heating throttle (heating decompression means, decompression means)
24 Air conditioning throttle (cooling decompression means)
27 1st solenoid valve (refrigerant circuit switching means)
29 Electric 3-way valve (Refrigerant circuit switching means)
31 Second solenoid valve (refrigerant circuit switching means)
61 Hot water heater core (air heating means, first radiator)
62 Engine (liquid heating means)
71 Second heating restriction (pressure reduction means)
81 Water refrigerant heat exchanger (radiator, second radiator)

Claims (8)

吸入した冷媒を圧縮して吐出する圧縮機(21)と、
冷媒と室外空気とを熱交換させる室外熱交換器(22)と、
空調ケース(11)内に配置され、低圧側の低温冷媒と車室内へ送風される送風空気とを熱交換させて冷媒を蒸発させる蒸発器(13)と、
高圧側の高温冷媒と前記蒸発器(13)通過後の前記送風空気との間で熱交換させて、冷媒を放熱させる放熱器(14、61、81)と、
冷房モードの冷媒回路、第1暖房モードの冷媒回路、第2暖房モードの冷媒回路のいずれか1つに切り替える冷媒回路の切替手段(27、29、31)とを備え、
前記冷房モードの冷媒回路は、前記圧縮機(21)吐出後の冷媒を前記室外熱交換器(22)、冷房用減圧手段(24)、前記蒸発器(13)、前記圧縮機(21)の順に循環させることで、前記蒸発器(13)で吸熱させ、前記室外熱交換器(22)で放熱させる冷媒回路を構成し、
前記第1暖房モードの冷媒回路は、前記圧縮機(21)吐出後の冷媒を前記放熱器(14)、暖房用減圧手段(23)、前記室外熱交換器(22)の順に流入させ、前記室外熱交換器(22)から流出の冷媒を前記蒸発器(13)を迂回させて前記圧縮機(21)の吸入側に導くことで、前記室外熱交換器(22)で吸熱させ、前記放熱器(14)で放熱させる冷媒回路を構成し、
前記第2暖房モードの冷媒回路は、前記圧縮機(21)吐出後の冷媒を前記放熱器(14)に流入させ、前記放熱器(14)から流出の冷媒を、前記室外熱交換器(22)と前記蒸発器(13)の両方を迂回させて、前記圧縮機(21)の吸入側に導くことで、前記放熱器(14)で放熱させる冷媒回路を構成し、
前記切替手段(27、29、31)は、前記第1暖房モードの暖房能力と相関関係のある物理量が暖房能力の低下側を示す値に達したときに、前記第1暖房モードから前記第2暖房モードへ冷媒回路を切り替えることを特徴とする車両用空調装置。
A compressor (21) for compressing and discharging the sucked refrigerant;
An outdoor heat exchanger (22) for exchanging heat between the refrigerant and the outdoor air;
An evaporator (13) that is disposed in the air conditioning case (11) and causes the refrigerant to evaporate by exchanging heat between the low-temperature side low-temperature refrigerant and the blown air blown into the vehicle interior;
A heat radiator (14, 61, 81) for exchanging heat between the high-temperature refrigerant on the high-pressure side and the blown air after passing through the evaporator (13) to dissipate the refrigerant;
A refrigerant circuit switching means (27, 29, 31) for switching to any one of a cooling mode refrigerant circuit, a first heating mode refrigerant circuit, and a second heating mode refrigerant circuit,
In the cooling mode refrigerant circuit, the refrigerant discharged from the compressor (21) is supplied to the outdoor heat exchanger (22), the cooling decompression means (24), the evaporator (13), and the compressor (21). By circulating in order, it constitutes a refrigerant circuit that absorbs heat in the evaporator (13) and dissipates heat in the outdoor heat exchanger (22),
The refrigerant circuit in the first heating mode allows the refrigerant discharged from the compressor (21) to flow into the radiator (14), the heating decompression means (23), and the outdoor heat exchanger (22) in this order, The refrigerant flowing out of the outdoor heat exchanger (22) bypasses the evaporator (13) and is guided to the suction side of the compressor (21), so that the heat is absorbed by the outdoor heat exchanger (22), and the heat dissipation. A refrigerant circuit for radiating heat in the vessel (14),
The refrigerant circuit in the second heating mode causes the refrigerant discharged from the compressor (21) to flow into the radiator (14), and the refrigerant flowing out of the radiator (14) to flow into the outdoor heat exchanger (22). ) And the evaporator (13) are bypassed and guided to the suction side of the compressor (21), thereby constituting a refrigerant circuit for radiating heat by the radiator (14),
The switching means (27, 29, 31) is configured to switch from the first heating mode to the second heating mode when a physical quantity correlated with the heating capacity of the first heating mode reaches a value indicating a decrease side of the heating capacity. A vehicle air conditioner characterized by switching the refrigerant circuit to a heating mode.
前記空調ケース(11)内のうち前記蒸発器(13)の空気流れ下流側に配置され、冷凍サイクルとは別の熱源によって前記送風空気を加熱する空気加熱手段(61)を備え、
前記放熱器(14)は、前記空調ケース(11)内のうち前記空気加熱手段(61)よりも空気流れ下流側に配置され、高圧側の高温冷媒と前記空気加熱手段(61)通過後の前記送風空気とを熱交換させて、冷媒を放熱させることを特徴とする請求項1に記載の車両用空調装置。
An air heating means (61) that is disposed on the air flow downstream side of the evaporator (13) in the air conditioning case (11) and heats the blown air by a heat source different from the refrigeration cycle,
The radiator (14) is arranged in the air conditioning case (11) on the downstream side of the air flow with respect to the air heating means (61), and after passing through the high-temperature side high-temperature refrigerant and the air heating means (61). The vehicle air conditioner according to claim 1, wherein heat is exchanged with the blown air to dissipate the refrigerant.
前記第2暖房モードの冷媒回路は、前記圧縮機(21)吐出後の冷媒を前記放熱器(14)に流入させ、前記放熱器(14)から流出の冷媒を、減圧手段(23)によって減圧させた後に、前記圧縮機(21)の吸入側に導く冷媒回路であることを特徴とする請求項1または2に記載の車両用空調装置。   The refrigerant circuit in the second heating mode causes the refrigerant discharged from the compressor (21) to flow into the radiator (14), and the refrigerant discharged from the radiator (14) is decompressed by the decompression means (23). The vehicle air conditioner according to claim 1 or 2, wherein the vehicle air conditioner is a refrigerant circuit that is led to the suction side of the compressor (21) after being operated. 前記第2暖房モードの冷媒回路は、前記圧縮機(21)吐出後の冷媒を、減圧手段(71)によって減圧させた後に、前記放熱器(14)に流入させる冷媒回路であることを特徴とする請求項1または2に記載の車両用空調装置。   The refrigerant circuit in the second heating mode is a refrigerant circuit that causes the refrigerant discharged from the compressor (21) to be decompressed by the decompression means (71) and then flow into the radiator (14). The vehicle air conditioner according to claim 1 or 2. 前記物理量としての外気温度(Tam)を検出する外気温度検出手段(42)を備え、
前記切替手段(27、29、31)は、前記外気温度(Tam)が所定温度(T1)よりも低い場合に前記第1暖房モードから前記第2暖房モードへ冷媒回路を切り替えることを特徴とする請求項1ないし4のいずれか1つに記載の車両用空調装置。
An outside air temperature detecting means (42) for detecting the outside air temperature (Tam) as the physical quantity,
The switching means (27, 29, 31) switches the refrigerant circuit from the first heating mode to the second heating mode when the outside air temperature (Tam) is lower than a predetermined temperature (T1). The vehicle air conditioner according to any one of claims 1 to 4.
前記物理量としての前記圧縮機(21)の吸入側の冷媒圧力を検出する吸入圧力検出手段(48)を備え、
前記切替手段は、前記第1暖房モードにおける前記冷媒圧力が所定圧力よりも低い場合に前記第1暖房モードから前記第2暖房モードへ冷媒回路を切り替えることを特徴とする請求項1ないし4のいずれか1つに記載の車両用空調装置。
A suction pressure detecting means (48) for detecting a refrigerant pressure on the suction side of the compressor (21) as the physical quantity;
5. The switch according to claim 1, wherein the switching unit switches the refrigerant circuit from the first heating mode to the second heating mode when the refrigerant pressure in the first heating mode is lower than a predetermined pressure. The vehicle air conditioner according to claim 1.
前記物理量としての前記圧縮機(21)の吐出側の冷媒温度を検出する吐出温度検出手段(44)を備え、
前記切替手段は、前記第1暖房モードにおける前記冷媒温度が所定温度よりも高い場合に前記第1暖房モードから前記第2暖房モードへ冷媒回路を切り替えることを特徴とする請求項1ないし4のいずれか1つに記載の車両用空調装置。
A discharge temperature detecting means (44) for detecting a refrigerant temperature on the discharge side of the compressor (21) as the physical quantity;
5. The switch according to claim 1, wherein the switching unit switches the refrigerant circuit from the first heating mode to the second heating mode when the refrigerant temperature in the first heating mode is higher than a predetermined temperature. The vehicle air conditioner according to claim 1.
前記放熱器は、
前記空調ケース(11)内のうち前記蒸発器(13)の空気流れ下流側に配置されるとともに、液体加熱手段(62)によって加熱された前記液体が内部を流れ、加熱された前記液体と前記蒸発器(13)通過後の前記送風空気とを熱交換させて、前記液体を放熱させる第1放熱器(61)と、
高圧側の高温冷媒と前記液体とを熱交換させて、冷媒を放熱させる第2放熱器(81)とを有する構成であることを特徴とする請求項1に記載の車両用空調装置。
The radiator is
In the air conditioning case (11), the liquid heated by the liquid heating means (62) flows inside the evaporator (13) downstream of the air flow, and the heated liquid and the liquid A first radiator (61) for exchanging heat with the blown air after passing through the evaporator (13) to dissipate the liquid;
2. The vehicle air conditioner according to claim 1, wherein the vehicle air conditioner includes a second radiator (81) that causes heat exchange between the high-pressure refrigerant on the high-pressure side and the liquid to dissipate the refrigerant.
JP2010003485A 2010-01-11 2010-01-11 Air conditioner for vehicle Pending JP2011140291A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010003485A JP2011140291A (en) 2010-01-11 2010-01-11 Air conditioner for vehicle
US12/930,540 US20110167850A1 (en) 2010-01-11 2011-01-10 Air conditioner for vehicle
DE102011008217A DE102011008217A1 (en) 2010-01-11 2011-01-10 Air conditioning for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010003485A JP2011140291A (en) 2010-01-11 2010-01-11 Air conditioner for vehicle

Publications (1)

Publication Number Publication Date
JP2011140291A true JP2011140291A (en) 2011-07-21

Family

ID=44257440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010003485A Pending JP2011140291A (en) 2010-01-11 2010-01-11 Air conditioner for vehicle

Country Status (3)

Country Link
US (1) US20110167850A1 (en)
JP (1) JP2011140291A (en)
DE (1) DE102011008217A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140024810A (en) * 2012-08-20 2014-03-03 한라비스테온공조 주식회사 Heat pump system for vehicle
WO2014076934A1 (en) * 2012-11-16 2014-05-22 株式会社デンソー Refrigeration cycle device
WO2014080594A1 (en) * 2012-11-20 2014-05-30 パナソニック株式会社 Vehicular heat pump apparatus, and vehicular air conditioning apparatus
KR101418854B1 (en) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 Heat pump system for vehicle
KR101418856B1 (en) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 Heat pump system for vehicle
KR101418855B1 (en) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 Heat pump system for vehicle
WO2014155981A1 (en) * 2013-03-29 2014-10-02 株式会社日本クライメイトシステムズ Vehicle air conditioner
WO2014188984A1 (en) * 2013-05-20 2014-11-27 サンデン株式会社 Vehicle air conditioner
WO2015198564A1 (en) 2014-06-25 2015-12-30 Denso Corporation Heat pump cycle device
WO2016080343A1 (en) * 2014-11-21 2016-05-26 三菱重工オートモーティブサーマルシステムズ株式会社 Heat-pump-type vehicle air-conditioning system
WO2016203903A1 (en) * 2015-06-16 2016-12-22 株式会社デンソー Air conditioner for vehicle
JP2017189997A (en) * 2016-04-11 2017-10-19 株式会社デンソー Air conditioning device
JP2019031148A (en) * 2017-08-07 2019-02-28 本田技研工業株式会社 Vehicle air conditioner
WO2020045261A1 (en) * 2018-08-30 2020-03-05 サンデンホールディングス株式会社 Heat pump system for vehicle air conditioning devices
WO2023090083A1 (en) * 2021-11-19 2023-05-25 サンデン株式会社 Vehicle air-conditioning device
WO2023199912A1 (en) * 2022-04-15 2023-10-19 株式会社デンソー Heat pump cycle device

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241222B1 (en) * 2011-07-21 2013-03-13 기아자동차주식회사 Heat pump system control method for vehicle
JP5821756B2 (en) * 2011-04-21 2015-11-24 株式会社デンソー Refrigeration cycle equipment
WO2013035130A1 (en) * 2011-09-06 2013-03-14 株式会社ヴァレオジャパン Vehicle air-conditioning apparatus
US10184688B2 (en) 2011-12-28 2019-01-22 Desert Aire Corp. Air conditioning apparatus for efficient supply air temperature control
KR101443645B1 (en) * 2012-02-07 2014-09-23 엘지전자 주식회사 Air conditoner for electric vehicle
CN102582393A (en) * 2012-03-07 2012-07-18 浙江吉利汽车研究院有限公司 Temperature control system of electric automobile drive motor
JP5875918B2 (en) * 2012-03-27 2016-03-02 サンデンホールディングス株式会社 Car interior heat exchanger and inter-header connection member of car interior heat exchanger
US20130264325A1 (en) * 2012-04-04 2013-10-10 GM Global Technology Operations LLC Remote high voltage switch for controlling a high voltage heater located inside a vehicle cabin
JP2014009869A (en) * 2012-06-28 2014-01-20 Denso Corp Heat pump cycle
KR101551213B1 (en) * 2012-08-10 2015-09-08 엘지전자 주식회사 Air conditioner for electronic vehicles
DE102012108886B4 (en) 2012-09-20 2019-02-14 Hanon Systems Heat exchanger arrangement and air conditioning system of a motor vehicle
US9796246B2 (en) * 2012-12-06 2017-10-24 Panasonic Intellectual Property Management Co., Ltd. Vehicle heat pump device, and vehicle air-conditioning device
JP5840309B2 (en) * 2013-01-17 2016-01-06 三菱電機株式会社 Air conditioning control device for vehicles
JP6026956B2 (en) * 2013-05-24 2016-11-16 サンデンホールディングス株式会社 Indoor heat exchanger
DE102013106831A1 (en) * 2013-06-28 2014-12-31 Valeo Klimasysteme Gmbh Vehicle air conditioning system of a hybrid or electric vehicle
US9950591B2 (en) * 2013-07-26 2018-04-24 Panasonic Intellectual Property Management Co., Ltd. Vehicle air conditioner
CN103625242B (en) * 2013-11-18 2015-12-09 华南理工大学 A kind of thermal management system of electric automobile
CA2879702C (en) 2014-01-22 2016-11-08 Jeremy Hogan Heat pump temperature control
JP6418779B2 (en) * 2014-05-08 2018-11-07 サンデンホールディングス株式会社 Air conditioner for vehicles
EP2942256A1 (en) * 2014-05-08 2015-11-11 Vossloh Kiepe Ges.m.b.H. Device for heating the seating compartment and/or operatorýs platform of railway vehicles
EP2942257A1 (en) * 2014-05-08 2015-11-11 Vossloh Kiepe Ges.m.b.H. Device for heating the seating compartment and/or operatorýs platform of railway vehicles
JP6496958B2 (en) * 2014-09-19 2019-04-10 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6353328B2 (en) * 2014-09-24 2018-07-04 サンデンホールディングス株式会社 Air conditioner for vehicles
DE102014221930B4 (en) * 2014-10-28 2023-10-19 Bayerische Motoren Werke Aktiengesellschaft Method for controlling and/or regulating a heating/air conditioning system in a motor vehicle
US9764620B2 (en) 2014-11-03 2017-09-19 Ford Global Technologies, Llc System and method for operating a heat pump
JP6738157B2 (en) * 2016-02-26 2020-08-12 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
FR3057211B1 (en) * 2016-10-12 2020-09-04 Valeo Systemes Thermiques PROCESS FOR REGULATING A HEATING, VENTILATION AND / OR AIR CONDITIONING LOOP
CN111380256A (en) * 2018-12-28 2020-07-07 三花控股集团有限公司 Heat pump system
KR20210059276A (en) * 2019-11-15 2021-05-25 현대자동차주식회사 Heat pump system for vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193972A (en) * 1992-12-22 1994-07-15 Nippondenso Co Ltd Air conditioner
JPH11235919A (en) * 1998-02-20 1999-08-31 Calsonic Corp Air conditioner for heat pump type automobile
JP2000343934A (en) * 1999-06-08 2000-12-12 Mitsubishi Heavy Ind Ltd Heat pump type vehicle air conditioner
JP2001050572A (en) * 1999-08-06 2001-02-23 Calsonic Kansei Corp Air conditioner for automobile
JP2003080931A (en) * 2001-09-17 2003-03-19 Keihin Corp Heat pump, and control method thereof
JP2005061364A (en) * 2003-08-19 2005-03-10 Calsonic Kansei Corp Engine cooling system
JP2006232145A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Air-conditioner for vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1543666A (en) * 1966-10-26 1900-01-01 Method for temperature regulation of refrigerating or similar apparatus
US5473906A (en) * 1993-01-29 1995-12-12 Nissan Motor Co., Ltd. Air conditioner for vehicle
US5526650A (en) 1993-09-21 1996-06-18 Nippondenso Co., Ltd. Air-conditioning apparatus
JP3246250B2 (en) * 1995-02-16 2002-01-15 松下電器産業株式会社 Heat pump air conditioner dehumidifier for electric vehicles
JP2001012830A (en) * 1999-06-29 2001-01-19 Denso Corp Refrigeration cycle device
JP3985394B2 (en) * 1999-07-30 2007-10-03 株式会社デンソー Refrigeration cycle equipment
NO320664B1 (en) * 2001-12-19 2006-01-16 Sinvent As System for heating and cooling vehicles
US6834511B2 (en) * 2002-03-15 2004-12-28 Calsonic Kansei Corporation Vehicle air conditioning apparatus
JP4232463B2 (en) * 2003-01-09 2009-03-04 株式会社デンソー Air conditioner
JP5042058B2 (en) * 2008-02-07 2012-10-03 三菱電機株式会社 Heat pump type hot water supply outdoor unit and heat pump type hot water supply device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193972A (en) * 1992-12-22 1994-07-15 Nippondenso Co Ltd Air conditioner
JPH11235919A (en) * 1998-02-20 1999-08-31 Calsonic Corp Air conditioner for heat pump type automobile
JP2000343934A (en) * 1999-06-08 2000-12-12 Mitsubishi Heavy Ind Ltd Heat pump type vehicle air conditioner
JP2001050572A (en) * 1999-08-06 2001-02-23 Calsonic Kansei Corp Air conditioner for automobile
JP2003080931A (en) * 2001-09-17 2003-03-19 Keihin Corp Heat pump, and control method thereof
JP2005061364A (en) * 2003-08-19 2005-03-10 Calsonic Kansei Corp Engine cooling system
JP2006232145A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Air-conditioner for vehicle

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101418854B1 (en) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 Heat pump system for vehicle
KR101418856B1 (en) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 Heat pump system for vehicle
KR101418855B1 (en) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 Heat pump system for vehicle
KR20140024810A (en) * 2012-08-20 2014-03-03 한라비스테온공조 주식회사 Heat pump system for vehicle
KR101637968B1 (en) 2012-08-20 2016-07-21 한온시스템 주식회사 Heat pump system for vehicle
JP2015077816A (en) * 2012-11-16 2015-04-23 株式会社デンソー Refrigeration cycle device
WO2014076934A1 (en) * 2012-11-16 2014-05-22 株式会社デンソー Refrigeration cycle device
DE112013005482B4 (en) 2012-11-16 2022-03-17 DENSO Air Systems Corporation refrigeration cycle device
US9523518B2 (en) 2012-11-16 2016-12-20 Denso Corporation Refrigeration cycle device
WO2014080594A1 (en) * 2012-11-20 2014-05-30 パナソニック株式会社 Vehicular heat pump apparatus, and vehicular air conditioning apparatus
JP2014101019A (en) * 2012-11-20 2014-06-05 Panasonic Corp Vehicle heat pump device and vehicle air conditioner
US10052939B2 (en) 2013-03-29 2018-08-21 Japan Climate Systems Corporation Vehicle air conditioner
JP2014196017A (en) * 2013-03-29 2014-10-16 株式会社日本クライメイトシステムズ Vehicle air conditioner
WO2014155981A1 (en) * 2013-03-29 2014-10-02 株式会社日本クライメイトシステムズ Vehicle air conditioner
US9944151B2 (en) 2013-05-20 2018-04-17 Sanden Holdings Corporation Vehicle air conditioner
WO2014188984A1 (en) * 2013-05-20 2014-11-27 サンデン株式会社 Vehicle air conditioner
JP2014226979A (en) * 2013-05-20 2014-12-08 サンデン株式会社 Vehicle air conditioner
WO2015198564A1 (en) 2014-06-25 2015-12-30 Denso Corporation Heat pump cycle device
WO2016080343A1 (en) * 2014-11-21 2016-05-26 三菱重工オートモーティブサーマルシステムズ株式会社 Heat-pump-type vehicle air-conditioning system
JP2016097817A (en) * 2014-11-21 2016-05-30 三菱重工オートモーティブサーマルシステムズ株式会社 Heat pump type vehicle air conditioning system
US10137763B2 (en) 2014-11-21 2018-11-27 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat-pump-type vehicle air-conditioning system
WO2016203903A1 (en) * 2015-06-16 2016-12-22 株式会社デンソー Air conditioner for vehicle
JPWO2016203903A1 (en) * 2015-06-16 2017-10-05 株式会社デンソー Air conditioner for vehicles
JP2017189997A (en) * 2016-04-11 2017-10-19 株式会社デンソー Air conditioning device
JP2019031148A (en) * 2017-08-07 2019-02-28 本田技研工業株式会社 Vehicle air conditioner
JP2020034228A (en) * 2018-08-30 2020-03-05 サンデンホールディングス株式会社 Heat pump system for vehicle air-conditioner
WO2020045261A1 (en) * 2018-08-30 2020-03-05 サンデンホールディングス株式会社 Heat pump system for vehicle air conditioning devices
JP7117945B2 (en) 2018-08-30 2022-08-15 サンデン株式会社 Heat pump system for vehicle air conditioner
US11794555B2 (en) 2018-08-30 2023-10-24 Sanden Corporation Heat pump system for vehicle air conditioning devices
WO2023090083A1 (en) * 2021-11-19 2023-05-25 サンデン株式会社 Vehicle air-conditioning device
WO2023199912A1 (en) * 2022-04-15 2023-10-19 株式会社デンソー Heat pump cycle device

Also Published As

Publication number Publication date
US20110167850A1 (en) 2011-07-14
DE102011008217A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP2011140291A (en) Air conditioner for vehicle
JP6794964B2 (en) Refrigeration cycle equipment
JP6015636B2 (en) Heat pump system
JP5949648B2 (en) Refrigeration cycle equipment
JP6332560B2 (en) Air conditioner for vehicles
JP6332193B2 (en) Air conditioner for vehicles
JP5445569B2 (en) Air conditioner for vehicles
JP5935625B2 (en) Refrigeration cycle controller
WO2013118456A1 (en) Vehicle air conditioning device
JP2018091536A (en) Refrigeration cycle device
WO2014002441A1 (en) Heat pump cycle
JP2018036031A (en) Refrigeration cycle device
JP2019006330A (en) Air conditioner
JP2018075922A (en) Vehicular air conditioner
JP6447232B2 (en) Refrigeration cycle equipment
JP2013203221A (en) Air conditioner for vehicle
JP5510374B2 (en) Heat exchange system
JP5817660B2 (en) Refrigeration cycle equipment
JP5935714B2 (en) Refrigeration cycle equipment
JP6375796B2 (en) Refrigeration cycle equipment
JP6167891B2 (en) Heat pump cycle device.
JP6544287B2 (en) Air conditioner
JP6369237B2 (en) Air conditioner
JP2016008792A (en) Heat pump cycle device
JP5888126B2 (en) Air conditioner for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128