WO2023090083A1 - Vehicle air-conditioning device - Google Patents

Vehicle air-conditioning device Download PDF

Info

Publication number
WO2023090083A1
WO2023090083A1 PCT/JP2022/039797 JP2022039797W WO2023090083A1 WO 2023090083 A1 WO2023090083 A1 WO 2023090083A1 JP 2022039797 W JP2022039797 W JP 2022039797W WO 2023090083 A1 WO2023090083 A1 WO 2023090083A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
amount
refrigerant
compressor
air
Prior art date
Application number
PCT/JP2022/039797
Other languages
French (fr)
Japanese (ja)
Inventor
雲生 黄
佳之 岡本
めぐみ 重田
耕平 山下
貴司 戸山
竜 宮腰
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2023090083A1 publication Critical patent/WO2023090083A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a vehicle air conditioner.
  • Air conditioners that use a heat pump as a heat source are known as air conditioners for electric vehicles (EVs) that do not have a combustion heat source such as an engine or for vehicles that have a small amount of heat from the combustion heat source.
  • EVs electric vehicles
  • An air conditioner that uses a heat pump uses an external heat exchanger to function as a heat absorber during heating operation, and obtains the heating heat source from the outside air. Therefore, when the outside air temperature becomes extremely low, it becomes difficult to absorb heat from the outside air, resulting in a large decrease in the heating capacity.
  • an electric heater such as a PTC heater is used to secure the heat source, the consumption of the battery increases, and in the case of an electric vehicle, there is concern that it will adversely affect the travelable distance. The manufacturing cost of the device will increase.
  • Hot gas heating using a heat pump compressor is a heating method that does not absorb heat from outside air.
  • the high-temperature refrigerant discharged from the compressor is sent to the radiator, which is the heat exchanger inside the passenger compartment, and the refrigerant discharged from the radiator is depressurized without going through an external heat exchanger and returned to the compressor. (See Patent Document 1 below).
  • the present invention aims to continuously use hot gas heating. That is, in a vehicle air conditioner using a heat pump, by continuing hot gas heating, heating can be continued for a predetermined time in an extremely low temperature environment without using auxiliary heating such as a PTC heater. This is the subject of the present invention.
  • a refrigerant circuit that includes at least a compressor and circulates a high-temperature refrigerant discharged from the compressor, an air heating device that heats air in a vehicle compartment by heat radiation of the refrigerant, and a control device that controls the amount of heat released by the refrigerant.
  • the control device has a hot gas heating continuation mode in which the amount of heat released by the refrigerant is equal to or less than the amount of heat input from the compressor.
  • the present invention having such features, it is possible to continue hot gas heating in an extremely low temperature environment for a predetermined period of time, improving the practicality of a vehicle air conditioner using a heat pump. Moreover, since heating can be performed in a cryogenic environment without using auxiliary heating such as a PTC heater, the manufacturing cost of the air conditioner can be suppressed.
  • FIG. 1 is an explanatory diagram showing the configuration of a vehicle air conditioner and the flow of refrigerant according to an embodiment of the present invention
  • BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing the configuration of a vehicle air conditioner and the flow of refrigerant according to an embodiment of the present invention
  • 1 is a block diagram of a control device in a vehicle air conditioner according to an embodiment of the present invention
  • FIG. Explanatory drawing which showed the basic control flow of hot gas heating continuation mode.
  • FIG. 4 is an example of controlling the blower output voltage according to the heat radiation amount of the heat radiating part of the indoor air conditioning unit
  • (b) is the heat radiation amount of the refrigerant-heat medium heat exchanger.
  • FIG. 6 is a timing chart diagram of an example of control ((a) is control based on time-series changes in the heat radiation amount Q icnd of the heat radiating unit, and (b) is control based on time-series changes in the compressor discharge pressure P ci ).
  • FIG. 2 is a flowchart showing a specific control example of the vehicle air conditioner according to the embodiment of the present invention
  • 1 is an explanatory diagram showing a configuration example of a control device in an electric vehicle (EV) equipped with a vehicle air conditioner;
  • FIG. 1 shows a configuration example of a vehicle air conditioner according to an embodiment of the present invention.
  • the vehicle air conditioner 1 includes an indoor air conditioning unit 10 that functions as an air heating device that heats the air in the vehicle interior, and a refrigerant circuit 20 .
  • the indoor air conditioning unit 10 of the vehicle air conditioner 1 shown in FIG. 1 includes indoor heat exchangers 11 and 12 .
  • the indoor air conditioning unit 10 is provided with a blower 13 for blowing the air in the vehicle interior to the indoor heat exchangers 11 and 12 in the air blowing layer 10A on the upstream side of the indoor heat exchanger 11.
  • the wind receiving layer 10B on the side is provided with an air flow path (not shown) leading to the vehicle interior.
  • the indoor air conditioning unit 10 is provided with an air damper 14 that is driven to open and close by an air damper driving section 14A.
  • the blowing amount of the air passing through the indoor heat exchangers 11 and 12 can be adjusted by adjusting the blowing amount of the air blower 13 and the opening/closing of the air damper 14 .
  • the refrigerant circuit 20 of the vehicle air conditioner 1 shown in FIG. 1 constitutes a heat pump and can perform a heating operation or a cooling operation, and includes refrigerant flow switching means capable of switching to the heat pump cycle. ing. Hot gas heating can be performed by selecting the refrigerant flow path indicated by the thick line in the drawing.
  • the refrigerant circuit 20 includes a compressor 2 that compresses and discharges vaporized refrigerant, a pressure reducing valve 22 (22A, 22B, 22C, 22D) that reduces the pressure of the refrigerant compressed by the compressor 2 to a predetermined pressure, and a refrigerant.
  • the compressor 2 includes a channel switching valve 23 (23A, 23B, 23C, 23D) for switching channels, and an accumulator 21 provided upstream of the compressor 2.
  • the refrigerant flow path of the refrigerant circuit 20 is connected to the indoor heat exchangers 11 and 12 described above, an external heat exchanger 24 for the refrigerant to exchange heat with the outside air, and the refrigerant flows through the heat medium circuit 30. It is connected to a refrigerant-heat medium heat exchanger 25 or the like for exchanging heat with a heat medium. Further, the refrigerant circuit 20 is provided with a check valve 26 and the like as necessary.
  • hot gas heating can be performed by the refrigerant flow path indicated by the thick line.
  • the high-temperature refrigerant discharged from the compressor 2 flows through the indoor heat exchanger 12 functioning as a heat radiating section, and the refrigerant discharged from the indoor heat exchanger 12 flows through the flow switching valve 23A and the pressure reducing valve 22A.
  • the refrigerant-heat medium heat exchanger 25 and the accumulator 21 to the compressor 2 .
  • the refrigerant that has exited the compressor 2 passes through the bypass flow path 3 bypassing the indoor heat exchanger 12 and the like, and returns to the compressor 2 via the accumulator 21 .
  • both the indoor heat exchangers 11 and 12 of the indoor air conditioning unit 10 are used as heat dissipation units, and the refrigerant flow path that bypasses the refrigerant-heat medium heat exchanger 25 It is also possible to carry out hot gas heating.
  • the refrigerant circuit 20 adjusts the throttle amount of the pressure reducing valve 22A and the pressure reducing valve 22B so that the ratio of the flow rate of the bypass flow path 3 and the flow rate of the other flow paths (flow rate ratio) is It is adjustable.
  • the above-described flow ratio can be adjusted by adjusting the throttling amounts of the pressure reducing valves 22C and 22B.
  • the flow rate ratio so that the flow rate of the bypass flow path 3 increases, the flow rate of the refrigerant returning to the compressor 2 with less heat dissipation increases, and the heat dissipation amount of the refrigerant can be reduced.
  • the vehicle air conditioner 1 also includes a control device 4 as shown in FIG.
  • the control device 4 is an air conditioning ECU (Electronic Control Unit) for executing various control modes of the vehicle air conditioner 1, and when executing hot gas heating, controls the amount of heat released by the refrigerant to perform hot gas heating. It has a hot gas heating continuation mode that continues the hot gas heating.
  • ECU Electronic Control Unit
  • the control device 4 acquires detection information from various sensors in order to grasp the operation status of the vehicle air conditioner 1 .
  • the control device 4 controls the flow path switching valve driving units S1 to S4 to open and close the flow path switching valves 23 (23A to 23D) to select the refrigerant flow path, while the compressor 2,
  • the air blower 13, the air damper driver 14A, the heat medium circulation pump 31, and the pressure reducing valve drivers E1 to E4 are controlled to control the heat release amount of the refrigerant.
  • FIG. 4 shows a basic control flow of the controller 4 in the hot gas heating continuation mode.
  • the amount of heat input (Q comp ) from the compressor 2 is grasped (step S1)
  • the heat radiation amount (Q out ) of the refrigerant in the refrigerant circuit 20 is grasped (step S2)
  • the amount of heat input (Q comp ) and the amount of heat radiation (Q out ) are compared (step S3), and if Q comp ⁇ Q out is established (step S3: YES), the hot gas heating can be continued, responding to the heating request (Step S4), the control cycle ends.
  • step S3 when Q comp ⁇ Q out does not hold (step S3: NO), it is determined that the hot gas heating cannot be continued, and a process (step S5) is performed to reduce the amount of heat released by the refrigerant (Q out ). After that, the control cycle ends.
  • step S5 In the hot gas heating continuation mode, by repeating the control cycle of this basic control flow, when Q comp ⁇ Q out does not hold, processing is performed to reduce the heat release amount (Q out ) of the refrigerant, and Q comp ⁇ Q Hot gas heating can be continued by returning to a state in which out is established.
  • the amount of heat input (Q comp ) from the compressor 2 can be grasped by monitoring the power consumption of the compressor 2 .
  • the heat input (Q comp ) can be obtained by, for example, multiplying the power consumption of the compressor 2 by a predetermined coefficient.
  • the heat release amount (Q out ) of the refrigerant in the refrigerant circuit 20 can be grasped, for example, by grasping the following (1) to (3) individually or collectively.
  • the most important heat release amount when continuing hot gas heating is the heat release amount of the heat radiating section in the indoor air conditioning unit 10 in (1) above.
  • grasping the heat dissipation amount (Q out ) of the refrigerant described above first grasp the heat dissipation amount of the above (1), and then add the influence of the heat dissipation amount of the above (2) as a disturbance as necessary. Furthermore, it is preferable to consider the amount of heat release in (3) above when the heat medium circuit 30 is in operation.
  • the heat release amount (Q out ) of the refrigerant corresponds to the heat release amount (Q icnd ) of the heat release portion (the indoor heat exchanger 12 in FIG. 1) of the indoor air conditioning unit 10 .
  • the heat radiation amount (Q icnd ) of the heat radiation portion in the indoor air conditioning unit 10 is obtained by the following formula.
  • Q icnd (Thp ⁇ Te) ⁇ Ga ⁇ K
  • Thp blown air temperature
  • Te intake air temperature
  • Ga amount of air blown through the radiator
  • K calculation constant.
  • the blown air temperature (Thp) here is a value detected by the above-mentioned blast temperature sensor Ta2, and the intake air temperature (Te) is a value detected by the above-mentioned blast temperature sensor Ta1.
  • the amount of air blown through the heat radiating portion Ga is a calculated value obtained from the output of the blower 13 and the opening degree of the air damper 14 .
  • the calculation constant (K) is a set value preset in the system.
  • step S4 it is determined whether Q comp ⁇ Q icnd holds, and when Q comp ⁇ Q icnd does not hold, the process (step S4) of reducing the heat release amount (Q out ) of the refrigerant is as follows: It is executed by the following (a) to (c).
  • the above (a) can be performed by appropriately combining the output reduction of the blower 13 and the opening degree increase of the air damper 14, or by controlling one of them.
  • the heat radiating amount of the heat radiating section in the indoor air conditioning unit 10 is reduced, and the heat radiating amount (Q out ) of the refrigerant can be reduced.
  • the above (b) can be performed by adjusting the throttle amounts of the pressure reducing valves 22A and 22B in the flow path state of FIG. 1 (throttle amount adjustment of the pressure reducing valves 22C and 22B in the flow path state of FIG. 2).
  • the throttle amounts of the pressure reducing valves 22A and 22B in the flow path state of FIG. 1 throttle amount adjustment of the pressure reducing valves 22C and 22B in the flow path state of FIG. 2.
  • the above (c) can be performed by reducing the rotational speed of the heat medium circulation pump 31 when the heat medium circuit 30 is in operation.
  • the heat release amount of the refrigerant-heat medium heat exchanger 25 in the heat medium circuit 30 is reduced, and the heat release amount of the refrigerant is reduced. (Q out ) can be reduced.
  • FIG. 5 shows an example of control.
  • the amount of heat dissipation (Q out ) of the refrigerant is grasped by the amount of heat dissipation (Q icnd ) of the heat radiating section in the indoor air conditioning unit 10, Q comp and Q icnd are compared, and Q comp ⁇ Control is performed to reduce the output voltage of the blower 13 when Q icnd is no longer established.
  • Q comp ⁇ Q icnd the output voltage of the blower 13 is lowered from V1 to V2 (V1>V2), thereby reducing the amount of heat dissipation (Q icnd ).
  • Q comp ⁇ Q icnd the amount of heat dissipation of the refrigerant is grasped by the amount of heat dissipation (Q icnd ) of the heat radiating section in the indoor air conditioning unit 10.
  • Q comp and Q icnd are compared, and Q comp ⁇ Control is performed to reduce the output voltage of the blower 13 when Q icnd is
  • the output voltage of the blower 13 is increased from V2 to V3 (V2 ⁇ V3) at a predetermined timing T2 so as to meet the desired heating request.
  • V2 ⁇ V3 V2 ⁇ V3
  • the heat release amount (Q out ) of the refrigerant is grasped by the heat release amount (Q chil ) in the heat medium circuit 30, Q comp is compared with Q chil , and Q comp ⁇ Q chil is satisfied. Control is performed to decrease the heat medium flow rate by decreasing the rotation speed of the heat medium circulation pump 31 when this does not hold true.
  • the heat medium flow rate is lowered from L1 to L2 (L1>L2), thereby reducing the amount of heat release (Q chil ) and increasing Q It holds comp ⁇ Q chil .
  • the heat medium flow rate is increased from L2 to L3 (L2 ⁇ L3) at a predetermined timing T2 so as to meet the temperature control request of the heat medium circuit 30. I have to.
  • FIG. 6 shows another control flow example for executing the hot gas heating continuation mode.
  • the rotation speed of the compressor 2 is constant (upper limit)
  • the time series change of the heat radiation amount (Q icnd ) of the heat radiating unit or the discharge pressure (P ci ) of the compressor 2 estimate the relationship between heat input (Q comp ) and heat release (Q out ).
  • the current value of the heat radiation amount (Q icnd ) of the heat radiating unit or the discharge pressure (P ci ) of the compressor 2 is acquired from the start of control (step S01) and stored in the memory (step S02). . Then, the previous value Q icndz (or P ciz ) stored in the memory in the previous control cycle and the current value Q icnd (or P ci ) are compared (step S03), and Q icnd ⁇ Q icndz (or P ci ⁇ P ciz ) is established (step S03: YES), it is determined that the hot gas heating can be continued, and the current control cycle is terminated in response to the heating request (step S04).
  • Step S03 the previous value Q icndz (or P ciz ) and the current value Q icnd (or P ci ) are compared (step S03), and if Q icnd ⁇ Q icndz (or P ci ⁇ P ciz ) does not hold ( Step S03: NO), the heat dissipation amount (Q out ) of the refrigerant described above is reduced (step S05), processing is performed to return to a state in which hot gas heating can be continued, and the current control cycle ends.
  • FIG. 7(a) shows the time-series change in the amount of heat radiation Q icnd of the heat radiating section. , lowers Q icnd .
  • the absolute value of Q icnd is reduced, but the time-series change is suppressed and Q icnd becomes stable.
  • step S05 By performing the process of step S05, the time-series change in the amount of heat radiation Q icnd is stabilized, and when the conditions for continuing hot gas heating are maintained, the output voltage of the blower 13 is changed from V02 to V03 at a predetermined timing T02. It is controlled so that the amount of heat release Q icnd corresponding to the heating request is appropriately obtained.
  • FIG. 7(b) shows the time-series change of the discharge pressure P ci of the compressor 2.
  • the output voltage of the blower 13 is lowered from V11 to V12. to reduce Q icnd (heat release Q out ).
  • the discharge pressure P ci of the compressor 2 returns to a predetermined pressure by reducing the heat release amount Q out and becomes a stable time series change state.
  • the discharge pressure Pci of the compressor 2 here is detected by the refrigerant pressure sensor Pr2 in the refrigerant circuit 20 shown in FIG.
  • control is performed to bring the blown air temperature (Thp) close to the target heating temperature (TCO).
  • the target heating temperature (TCO) and the blow If the difference from the air temperature (Thp) is greater than the set value ⁇ 1 (that is, (TCO ⁇ 1)>Tph, ⁇ 1>0), the output voltage of the blower 13 is lowered to lower the heat release amount Q out (O icnd ). control to increase the continuity of hot gas heating. Then, on the same premise, when the blown air temperature (Tph) exceeds the target heating temperature (TCO) by the set value ⁇ (that is, TOC ⁇ Thp- ⁇ , ⁇ > 0), the surplus capacity in that case is used. Then, the output voltage of the blower 13 is increased to increase the heat radiation amount Q out (O icnd ), thereby increasing the heat utilization efficiency during hot gas heating.
  • the control example shown in FIG. 8 combines the above-described control of the output voltage of the blower 13 (control of the heat radiating portion passage air blow amount Ga) and the above-described control for adjusting the flow rate ratio of the bypass flow path 3, and the hot gas heating continuation mode This is an example of executing
  • step S10 the amount of heat input Q comp from the compressor 2 and the amount of heat radiation Q icnd from the heat radiating unit are grasped from the start of control (step S10), and it is determined whether or not Q comp ⁇ Q icnd , which is the continuation condition for hot gas heating, holds. (step S11). If Q comp ⁇ Q icnd does not hold (step S11: NO), the output voltage of the blower 13 is lowered to continue the hot gas heating (step S16), thereby lowering the heat radiation amount Q out .
  • step S11 YES
  • step S12 the output voltage of the blower 13 is maintained (step S12), and according to the heating request , it is determined whether or not the blown air temperature (Thp) has reached the target heating temperature (TCO) (step S13).
  • the blown-out air temperature (Thp) has not reached the target heating temperature (TCO) (step 13: NO)
  • step S17 the flow rate ratio of the refrigerant flowing through the bypass flow path 3 is increased to decrease the heat radiation amount Qout . This increases the continuity of hot gas heating.
  • step S13 if the blown-out air temperature (Thp) has reached the target heating temperature (TCO) (step S17: YES), it is determined whether or not there is excess capacity (step S14), and there is no excess capacity. (step S14: NO), the state is maintained, and if there is a surplus capacity (step S14: YES), the flow rate ratio of the refrigerant flowing through the bypass flow path 3 is lowered (step S15), and the heat release amount Increase Q out .
  • TCO target heating temperature
  • control device 4 provided in the vehicle air conditioner 1 is, as shown in FIG. configured as
  • the control device 4 includes a CPU (Central Processing Unit) 41, a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, an input/output I/F (Interface) 44, an in-vehicle communication I/F (Interface) 45, and the like.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • I/F input/output
  • I/F In-vehicle communication I/F
  • the CPU 41 controls the control device 4 by executing various programs stored in the ROM 42 .
  • the ROM 42 is nonvolatile memory.
  • the ROM 42 stores programs executed by the CPU 41, data necessary for the CPU 41 to execute the programs, and the like.
  • the RAM 43 is a main storage device such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory).
  • the RAM 43 functions as a work area used when the CPU 41 executes programs.
  • the input/output I/F 44 is connected to various sensors and monitors installed in the EV, inputs data to the CPU 41 , and outputs data processed by the CPU 41 .
  • the in-vehicle communication I/F 45 is connected to the in-vehicle network L to control data transmission/reception with other ECUs set in the EV.
  • the control device 4 receives data about the surrounding environmental information or data about the driving situation of the EV via the input/output I/F 44 and the in-vehicle communication I/F 45, and controls the above-described vehicle by the program executed by the CPU 41.
  • the control of the air conditioner 1 is executed.
  • the embodiment of the present invention it is possible to continue hot gas heating in the refrigerant circuit 20 including the compressor 2 of the heat pump. A sufficient amount of heating can be maintained with low power consumption without using an electric heater such as a heater. As a result, the practicability of the vehicle air conditioner using the heat pump can be improved.

Abstract

[Problem] To enable heating in a cryogenic environment to continue for a predetermined period of time without the use of supplemental heating by, e.g., a PTC heater, by continuing hot gas heating in a vehicle air-conditioning device using a heat pump. [Solution] This vehicle air-conditioning device comprises: a refrigerant circuit that is equipped with at least a compressor and circulates hot refrigerant from the compressor; an air heater that heats the air in the passenger compartment by releasing heat from the refrigerant; and a controller that controls the amount of heat released from the refrigerant. The controller has a hot gas heating continuation mode in which the amount of heat released from the refrigerant is equal to or less than the amount of heat input from the compressor.

Description

車両用空調装置vehicle air conditioner
 本発明は、車両用空調装置に関するものである。 The present invention relates to a vehicle air conditioner.
 エンジン等の燃焼系の熱源を持たない電動車両(EV:Electric Vehicle)や燃焼系の熱源の熱量が少ない車両用の空調装置として、ヒートポンプを熱源とする空調装置が知られている。 Air conditioners that use a heat pump as a heat source are known as air conditioners for electric vehicles (EVs) that do not have a combustion heat source such as an engine or for vehicles that have a small amount of heat from the combustion heat source.
 ヒートポンプを利用した空調装置は、暖房運転時には、外部熱交換器を吸熱器として機能させ、外気から暖房熱源を得ている。このため、外気温が極低温になると、外気からの吸熱が難しくなり、暖房能力が大きく低下することになる。これに対して、例えばPTCヒータ等の電気式加熱器を用いて熱源を確保すると、バッテリの消費量が大きくなって、電動車両の場合には走行可能距離への悪影響が懸念されると共に、空調装置の製造コストが嵩むことになる。 An air conditioner that uses a heat pump uses an external heat exchanger to function as a heat absorber during heating operation, and obtains the heating heat source from the outside air. Therefore, when the outside air temperature becomes extremely low, it becomes difficult to absorb heat from the outside air, resulting in a large decrease in the heating capacity. On the other hand, if an electric heater such as a PTC heater is used to secure the heat source, the consumption of the battery increases, and in the case of an electric vehicle, there is concern that it will adversely affect the travelable distance. The manufacturing cost of the device will increase.
 ヒートポンプの圧縮機を活用したホットガス暖房は、外気吸熱を行わない暖房方式である。このホットガス暖房は、圧縮機から出た高温冷媒が車室内熱交換器である放熱部に送られ、放熱部から出た冷媒は外部熱交換器を介することなく減圧して圧縮機に戻される(下記特許文献1参照)。  Hot gas heating using a heat pump compressor is a heating method that does not absorb heat from outside air. In this hot gas heating system, the high-temperature refrigerant discharged from the compressor is sent to the radiator, which is the heat exchanger inside the passenger compartment, and the refrigerant discharged from the radiator is depressurized without going through an external heat exchanger and returned to the compressor. (See Patent Document 1 below).
特開2014-196017号公報JP 2014-196017 A
 ヒートポンプを利用した車両用空調装置において、前述したホットガス暖房を採用して、極低温環境下での暖房運転を行う場合、通常、圧縮機は能力限界に近い設定回転数で運転されることになる。この際、暖房要求に応じて車室内熱交換器での放熱量が大きくなり、圧縮機の消費エネルギー(入熱量)に対して放熱量が大きくなると、上限の回転数で圧縮機を運転し続けたとしても、ホットガス暖房を継続することができなくなる。 In vehicle air conditioning systems that use heat pumps, when the aforementioned hot gas heating is used to perform heating operation in extremely low temperature environments, the compressor is normally operated at a set rotation speed close to its capacity limit. Become. At this time, the amount of heat released by the heat exchanger in the passenger compartment increases according to the heating demand, and when the amount of heat released increases relative to the energy consumption (heat input) of the compressor, the compressor continues to operate at the upper limit rotation speed. Hot gas heating cannot be continued even if the
 本発明は、このような問題に着目して、ホットガス暖房を継続的に利用することを課題としている。即ち、ヒートポンプを利用した車両用空調装置において、ホットガス暖房を継続させることで、PTCヒータ等の補助加熱を用いなくても、極低温環境下で暖房を所定時間継続できるようにすること、が本発明の課題である。 Focusing on such problems, the present invention aims to continuously use hot gas heating. That is, in a vehicle air conditioner using a heat pump, by continuing hot gas heating, heating can be continued for a predetermined time in an extremely low temperature environment without using auxiliary heating such as a PTC heater. This is the subject of the present invention.
 このような課題を解決するために、本発明は、以下の構成を具備するものである。
 少なくとも圧縮機を備え前記圧縮機から出た高温冷媒を循環させる冷媒回路と、前記冷媒の放熱で車室内の空気を加熱する空気加熱装置と、前記冷媒の放熱量を制御する制御装置とを備えた車両用空調装置であって、前記制御装置は、前記冷媒の放熱量を前記圧縮機からの入熱量以下とするホットガス暖房継続モードを有することを特徴とする車両用空調装置。
In order to solve such problems, the present invention has the following configurations.
A refrigerant circuit that includes at least a compressor and circulates a high-temperature refrigerant discharged from the compressor, an air heating device that heats air in a vehicle compartment by heat radiation of the refrigerant, and a control device that controls the amount of heat released by the refrigerant. wherein the control device has a hot gas heating continuation mode in which the amount of heat released by the refrigerant is equal to or less than the amount of heat input from the compressor.
 このような特徴を有する本発明によると、極低温環境下でのホットガス暖房を所定時間継続させることが可能になり、ヒートポンプを利用した車両用空調装置の実用性を向上させることができる。また、極低温環境下での暖房をPTCヒータ等の補助加熱を用いること無く行うことができるので、空調装置の製造コストを抑えることができる。 According to the present invention having such features, it is possible to continue hot gas heating in an extremely low temperature environment for a predetermined period of time, improving the practicality of a vehicle air conditioner using a heat pump. Moreover, since heating can be performed in a cryogenic environment without using auxiliary heating such as a PTC heater, the manufacturing cost of the air conditioner can be suppressed.
本発明の実施形態に係る車両用空調装置の構成及び冷媒の流れを示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing the configuration of a vehicle air conditioner and the flow of refrigerant according to an embodiment of the present invention; 本発明の実施形態に係る車両用空調装置の構成及び冷媒の流れを示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing the configuration of a vehicle air conditioner and the flow of refrigerant according to an embodiment of the present invention; 本発明の実施形態に係る車両用空調装置における制御装置のブロック図。1 is a block diagram of a control device in a vehicle air conditioner according to an embodiment of the present invention; FIG. ホットガス暖房継続モードの基本制御フローを示した説明図。Explanatory drawing which showed the basic control flow of hot gas heating continuation mode. ホットガス暖房継続モードの制御例を示したタイミングチャート図((a)は室内空調ユニットの放熱部放熱量によって送風機出力電圧を制御する例、(b)は冷媒-熱媒体熱交換器の放熱量によって熱媒体流量を制御する例)。Timing chart showing an example of control in the hot gas heating continuation mode ((a) is an example of controlling the blower output voltage according to the heat radiation amount of the heat radiating part of the indoor air conditioning unit, (b) is the heat radiation amount of the refrigerant-heat medium heat exchanger. (Example of controlling the heat medium flow rate by ホットガス暖房継続モードを実行するための他の制御フロー例を示した説明図。FIG. 4 is an explanatory diagram showing another control flow example for executing the hot gas heating continuation mode; 図6の制御例のタイミングチャート図((a)は放熱部の放熱量Qicndの時系列変化による制御、(b)は圧縮機吐出圧Pciの時系列変化による制御)。FIG. 6 is a timing chart diagram of an example of control ((a) is control based on time-series changes in the heat radiation amount Q icnd of the heat radiating unit, and (b) is control based on time-series changes in the compressor discharge pressure P ci ). 本発明の実施形態に係る車両用空調装置の具体的な制御例を示したフロー図。FIG. 2 is a flowchart showing a specific control example of the vehicle air conditioner according to the embodiment of the present invention; 車両用空調装置を備える電動車両(EV)における制御装置の構成例を示した説明図。1 is an explanatory diagram showing a configuration example of a control device in an electric vehicle (EV) equipped with a vehicle air conditioner; FIG.
 以下、図面を参照して本発明の実施形態を説明する。以下の説明で、異なる図における同一符号は同一機能の部位を示しており、各図における重複説明は適宜省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals in different figures denote portions having the same function, and duplication of description in each figure will be omitted as appropriate.
 図1は、本発明の実施形態に係る車両用空調装置の構成例を示している。車両用空調装置1は、車室内の空気を加熱する空気加熱装置として機能する室内空調ユニット10と、冷媒回路20を備えている。 FIG. 1 shows a configuration example of a vehicle air conditioner according to an embodiment of the present invention. The vehicle air conditioner 1 includes an indoor air conditioning unit 10 that functions as an air heating device that heats the air in the vehicle interior, and a refrigerant circuit 20 .
 図1に示した車両用空調装置1の室内空調ユニット10は、室内熱交換器11,12を備えている。また、室内空調ユニット10は、室内熱交換器11の上流側の送風層10Aに、室内熱交換器11,12に車室内の空気を送風する送風機13が設けられ、室内熱交換器12の下流側の受風層10Bに、図示省略した車室内への送風流路が設けられている。また、室内空調ユニット10には、エアダンパ駆動部14Aによって開閉駆動されるエアダンパ14が設けられている。前述した送風機13の送風量とエアダンパ14の開閉により、室内熱交換器11,12を通過する空気の送風量が調整できるようになっている。 The indoor air conditioning unit 10 of the vehicle air conditioner 1 shown in FIG. 1 includes indoor heat exchangers 11 and 12 . In addition, the indoor air conditioning unit 10 is provided with a blower 13 for blowing the air in the vehicle interior to the indoor heat exchangers 11 and 12 in the air blowing layer 10A on the upstream side of the indoor heat exchanger 11. The wind receiving layer 10B on the side is provided with an air flow path (not shown) leading to the vehicle interior. Further, the indoor air conditioning unit 10 is provided with an air damper 14 that is driven to open and close by an air damper driving section 14A. The blowing amount of the air passing through the indoor heat exchangers 11 and 12 can be adjusted by adjusting the blowing amount of the air blower 13 and the opening/closing of the air damper 14 .
 図1に示した車両用空調装置1の冷媒回路20は、ヒートポンプを構成して暖房運転又は冷房運転を行うことができるものであり、ヒートポンプサイクルへの切り替えが可能な冷媒流路切替手段を備えている。そして、図示の太線で示す冷媒流路の選択によって、ホットガス暖房を実行することができるものである。 The refrigerant circuit 20 of the vehicle air conditioner 1 shown in FIG. 1 constitutes a heat pump and can perform a heating operation or a cooling operation, and includes refrigerant flow switching means capable of switching to the heat pump cycle. ing. Hot gas heating can be performed by selecting the refrigerant flow path indicated by the thick line in the drawing.
 冷媒回路20は、気化した冷媒を圧縮して吐出する圧縮機2と、圧縮機2によって圧縮された冷媒を所定の圧力に減圧する減圧弁22(22A,22B,22C,22D)と、冷媒の流路を切り替える流路切替弁23(23A,23B,23C,23D)、圧縮機2の上流側に設けられるアキュムレータ21を備えている。 The refrigerant circuit 20 includes a compressor 2 that compresses and discharges vaporized refrigerant, a pressure reducing valve 22 (22A, 22B, 22C, 22D) that reduces the pressure of the refrigerant compressed by the compressor 2 to a predetermined pressure, and a refrigerant. The compressor 2 includes a channel switching valve 23 (23A, 23B, 23C, 23D) for switching channels, and an accumulator 21 provided upstream of the compressor 2.
 また、冷媒回路20の冷媒流路は、前述した室内熱交換器11,12に接続されると共に、冷媒が外気と熱交換するための外部熱交換器24や、冷媒が熱媒体回路30を流れる熱媒体と熱交換するための冷媒-熱媒体熱交換器25などに接続されている。更に冷媒回路20は、必要に応じて、逆止弁26などが設けられている。 In addition, the refrigerant flow path of the refrigerant circuit 20 is connected to the indoor heat exchangers 11 and 12 described above, an external heat exchanger 24 for the refrigerant to exchange heat with the outside air, and the refrigerant flows through the heat medium circuit 30. It is connected to a refrigerant-heat medium heat exchanger 25 or the like for exchanging heat with a heat medium. Further, the refrigerant circuit 20 is provided with a check valve 26 and the like as necessary.
 そして、図示の例では、流路切替弁23C,23Dを閉止することで、図示太線で示した冷媒流路によるホットガス暖房を実行することができる。ホットガス暖房の実行時には、圧縮機2から出た高温冷媒は、放熱部として機能する室内熱交換器12を流れ、室内熱交換器12を出た冷媒は、流路切替弁23A、減圧弁22A、冷媒-熱媒体熱交換器25、アキュムレータ21を経由して圧縮機2に戻る。また、圧縮機2を出た冷媒は、室内熱交換器12などを迂回するバイパス流路3を通り、アキュムレータ21を経由して圧縮機2に戻る。 In the illustrated example, by closing the flow path switching valves 23C and 23D, hot gas heating can be performed by the refrigerant flow path indicated by the thick line. During execution of hot gas heating, the high-temperature refrigerant discharged from the compressor 2 flows through the indoor heat exchanger 12 functioning as a heat radiating section, and the refrigerant discharged from the indoor heat exchanger 12 flows through the flow switching valve 23A and the pressure reducing valve 22A. , the refrigerant-heat medium heat exchanger 25 and the accumulator 21 to the compressor 2 . Also, the refrigerant that has exited the compressor 2 passes through the bypass flow path 3 bypassing the indoor heat exchanger 12 and the like, and returns to the compressor 2 via the accumulator 21 .
 なお、図1に示した例では、室内空調ユニット10において室内熱交換器12のみを放熱部として利用し、冷媒-熱媒体熱交換器25を経由する冷媒流路にしているが、図2に示すように、減圧弁22Aを全閉にすることで、室内空調ユニット10の室内熱交換器11,12の両方を放熱部として利用し、冷媒-熱媒体熱交換器25を迂回する冷媒流路で、ホットガス暖房を実行することもできる。 In the example shown in FIG. 1, only the indoor heat exchanger 12 is used as the heat radiation part in the indoor air conditioning unit 10, and the refrigerant flow path is through the refrigerant-heat medium heat exchanger 25. However, in FIG. As shown, by fully closing the pressure reducing valve 22A, both the indoor heat exchangers 11 and 12 of the indoor air conditioning unit 10 are used as heat dissipation units, and the refrigerant flow path that bypasses the refrigerant-heat medium heat exchanger 25 It is also possible to carry out hot gas heating.
 冷媒回路20は、図1に示した例では、減圧弁22Aと減圧弁22Bの絞り量を調整することで、バイパス流路3の流量とそれ以外の流路の流量の比(流量比)が調整できるようになっている。同様に、図2に示した例では、減圧弁22Cと減圧弁22Bの絞り量を調整することで、前述した流量比を調整することができる。ここで、バイパス流路3の流量が大きくなるように流量比を調整することで、少ない放熱で圧縮機2に戻る冷媒の流量が大きくなり、冷媒の放熱量を小さくすることができる。 In the example shown in FIG. 1, the refrigerant circuit 20 adjusts the throttle amount of the pressure reducing valve 22A and the pressure reducing valve 22B so that the ratio of the flow rate of the bypass flow path 3 and the flow rate of the other flow paths (flow rate ratio) is It is adjustable. Similarly, in the example shown in FIG. 2, the above-described flow ratio can be adjusted by adjusting the throttling amounts of the pressure reducing valves 22C and 22B. Here, by adjusting the flow rate ratio so that the flow rate of the bypass flow path 3 increases, the flow rate of the refrigerant returning to the compressor 2 with less heat dissipation increases, and the heat dissipation amount of the refrigerant can be reduced.
 また、車両用空調装置1は、図3に示すように、制御装置4を備える。制御装置4は、車両用空調装置1の各種制御モードを実行するための空調用ECU(Electronic Control Unit)であり、ホットガス暖房の実行に際しては、冷媒の放熱量を制御して、ホットガス暖房を継続させるホットガス暖房継続モードを有している。 The vehicle air conditioner 1 also includes a control device 4 as shown in FIG. The control device 4 is an air conditioning ECU (Electronic Control Unit) for executing various control modes of the vehicle air conditioner 1, and when executing hot gas heating, controls the amount of heat released by the refrigerant to perform hot gas heating. It has a hot gas heating continuation mode that continues the hot gas heating.
 制御装置4は、車両用空調装置1の動作状況を把握するために、各種センサからの検出情報を取得する。前述したホットガス暖房継続モードでは、制御装置4には、図3に示すように、送風温度センサTa1,Ta2、外気温度センサTa3、冷媒温度センサTr1,Tr2、冷媒圧力センサPr1,Pr2の検出情報が入力され、制御装置4は、流路切替弁駆動部S1~S4を制御して流路切替弁23(23A~23D)を開閉することで冷媒流路の選択を行いながら、圧縮機2、送風機13、エアダンパ駆動部14A、熱媒体循環ポンプ31、減圧弁駆動部E1~E4を制御して、冷媒の放熱量を制御する。 The control device 4 acquires detection information from various sensors in order to grasp the operation status of the vehicle air conditioner 1 . In the hot gas heating continuation mode described above, as shown in FIG. is input, the control device 4 controls the flow path switching valve driving units S1 to S4 to open and close the flow path switching valves 23 (23A to 23D) to select the refrigerant flow path, while the compressor 2, The air blower 13, the air damper driver 14A, the heat medium circulation pump 31, and the pressure reducing valve drivers E1 to E4 are controlled to control the heat release amount of the refrigerant.
 ホットガス暖房継続モードにおける制御装置4の基本制御フローを、図4に示す。制御開始から、圧縮機2からの入熱量(Qcomp)を把握すると共に(ステップS1)、冷媒回路20における冷媒の放熱量(Qout)を把握し(ステップS2)、入熱量(Qcomp)と放熱量(Qout)を比較して(ステップS3)、Qcomp≧Qoutが成立する場合(ステップS3:YES)には、ホットガス暖房が継続可能であるとして、暖房要求に対応して(ステップS4)、当該制御サイクルを終了する。 FIG. 4 shows a basic control flow of the controller 4 in the hot gas heating continuation mode. From the start of control, the amount of heat input (Q comp ) from the compressor 2 is grasped (step S1), the heat radiation amount (Q out ) of the refrigerant in the refrigerant circuit 20 is grasped (step S2), and the amount of heat input (Q comp ) and the amount of heat radiation (Q out ) are compared (step S3), and if Q comp ≧Q out is established (step S3: YES), the hot gas heating can be continued, responding to the heating request (Step S4), the control cycle ends.
 また、Qcomp≧Qoutが成立しない場合(ステップS3:NO)には、ホットガス暖房の継続が不可能であるとして、冷媒の放熱量(Qout)を低減する処理(ステップS5)を行った後、当該制御サイクルを終了する。ホットガス暖房継続モードでは、この基本制御フローの制御サイクルを繰り返すことで、Qcomp≧Qoutが成立しない場合に、冷媒の放熱量(Qout)を低減する処理を行って、Qcomp≧Qoutが成立する状態に戻すことで、ホットガス暖房の継続を可能にしている。 Further, when Q comp ≧Q out does not hold (step S3: NO), it is determined that the hot gas heating cannot be continued, and a process (step S5) is performed to reduce the amount of heat released by the refrigerant (Q out ). After that, the control cycle ends. In the hot gas heating continuation mode, by repeating the control cycle of this basic control flow, when Q comp ≧Q out does not hold, processing is performed to reduce the heat release amount (Q out ) of the refrigerant, and Q comp ≧ Q Hot gas heating can be continued by returning to a state in which out is established.
 ここで、圧縮機2からの入熱量(Qcomp)の把握は、圧縮機2の消費電力をモニタリングすることで把握することができる。入熱量(Qcomp)は、圧縮機2の消費電力に所定の係数を乗じること等で求めることができる。 Here, the amount of heat input (Q comp ) from the compressor 2 can be grasped by monitoring the power consumption of the compressor 2 . The heat input (Q comp ) can be obtained by, for example, multiplying the power consumption of the compressor 2 by a predetermined coefficient.
 冷媒回路20における冷媒の放熱量(Qout)の把握は、例えば、次の(1)~(3)を個別に又は総合して把握することができる。 The heat release amount (Q out ) of the refrigerant in the refrigerant circuit 20 can be grasped, for example, by grasping the following (1) to (3) individually or collectively.
 (1)室内空調ユニット10における放熱部(室内熱交換器11,12)の放熱量、(2)冷媒回路20の環境放熱量、(3)冷媒-熱媒体熱交換器25における熱媒体回路30への放熱量。 (1) Amount of heat radiation from the heat radiating sections (indoor heat exchangers 11 and 12) in the indoor air conditioning unit 10, (2) Amount of heat radiation from the refrigerant circuit 20 to the environment, (3) Heat medium circuit 30 in the refrigerant-heat medium heat exchanger 25 Amount of heat dissipated to
 上記(1)~(3)において、ホットガス暖房を継続する際に最も主要な放熱量は、上記(1)の室内空調ユニット10における放熱部の放熱量である。前述した冷媒の放熱量(Qout)を把握する際には、先ず上記(1)の放熱量を把握した上で、必要に応じて、外乱として上記(2)の放熱量の影響を加味し、更に熱媒体回路30の動作時に上記(3)の放熱量を加味することが好ましい。 In (1) to (3) above, the most important heat release amount when continuing hot gas heating is the heat release amount of the heat radiating section in the indoor air conditioning unit 10 in (1) above. When grasping the heat dissipation amount (Q out ) of the refrigerant described above, first grasp the heat dissipation amount of the above (1), and then add the influence of the heat dissipation amount of the above (2) as a disturbance as necessary. Furthermore, it is preferable to consider the amount of heat release in (3) above when the heat medium circuit 30 is in operation.
 先ずは、冷媒の放熱量(Qout)が、概ね室内空調ユニット10における放熱部(図1においては、室内熱交換器12)の放熱量(Qicnd)に当たる場合を説明する。 First, a case will be described in which the heat release amount (Q out ) of the refrigerant corresponds to the heat release amount (Q icnd ) of the heat release portion (the indoor heat exchanger 12 in FIG. 1) of the indoor air conditioning unit 10 .
 室内空調ユニット10における放熱部の放熱量(Qicnd)は、下記式で求められる。
 Qicnd=(Thp-Te)×Ga×K
 ここで、Thp:吹き出し空気温度、Te:吸い込み空気温度、Ga:放熱部通過送風量、K:演算定数。
The heat radiation amount (Q icnd ) of the heat radiation portion in the indoor air conditioning unit 10 is obtained by the following formula.
Q icnd = (Thp−Te)×Ga×K
Here, Thp: blown air temperature, Te: intake air temperature, Ga: amount of air blown through the radiator, K: calculation constant.
 ここでの吹き出し空気温度(Thp)は、上記の送風温度センサTa2による検出値であり、吸い込み空気温度(Te)は、上記の送風温度センサTa1による検出値である。また、放熱部通過送風量Gaは、送風機13の出力とエアダンパ14の開度によって求められる算出値である。演算定数(K)は、システムにおいて予め設定された設定値である。 The blown air temperature (Thp) here is a value detected by the above-mentioned blast temperature sensor Ta2, and the intake air temperature (Te) is a value detected by the above-mentioned blast temperature sensor Ta1. Also, the amount of air blown through the heat radiating portion Ga is a calculated value obtained from the output of the blower 13 and the opening degree of the air damper 14 . The calculation constant (K) is a set value preset in the system.
 そして、上記のステップS3では、Qcomp≧Qicndの成立を判断し、Qcomp≧Qicndが成立しない場合に行われる、冷媒の放熱量(Qout)を低減する処理(ステップS4)は、下記の(a)~(c)によって実行される。 Then, in the above step S3, it is determined whether Q comp ≧Q icnd holds, and when Q comp ≧Q icnd does not hold, the process (step S4) of reducing the heat release amount (Q out ) of the refrigerant is as follows: It is executed by the following (a) to (c).
 (a)放熱部通過送風量Gaの低減、(b)バイパス流路3を流れる冷媒の流量比の増大、(c)冷媒-熱媒体熱交換器25を流れる熱媒体流量の低減。 (a) reduction in the amount of air blown through the heat radiating section Ga, (b) increase in the flow rate ratio of the refrigerant flowing through the bypass passage 3, and (c) reduction in the flow rate of the heat medium flowing through the refrigerant-heat medium heat exchanger 25.
 ここで、上記(a)は、送風機13の出力低下とエアダンパ14の開度上昇を適宜組み合わせるか、或いはその一方の制御で行うことができる。放熱部通過送風量Gaを低減させることで、室内空調ユニット10における放熱部の放熱量が減り、冷媒の放熱量(Qout)を低減させることができる。 Here, the above (a) can be performed by appropriately combining the output reduction of the blower 13 and the opening degree increase of the air damper 14, or by controlling one of them. By reducing the amount Ga of air blown through the heat radiating section, the heat radiating amount of the heat radiating section in the indoor air conditioning unit 10 is reduced, and the heat radiating amount (Q out ) of the refrigerant can be reduced.
 上記(b)は、図1の流路状態では減圧弁22Aと減圧弁22Bの絞り量調整(図2の流路状態では減圧弁22Cと減圧弁22Bの絞り量調整)によって行うことができる。バイパス流路3を流れる冷媒の流量比を増大させることで、室内空調ユニット10における放熱部を流れる冷媒量が減り、冷媒の放熱量(Qout)を低減させることができる。 The above (b) can be performed by adjusting the throttle amounts of the pressure reducing valves 22A and 22B in the flow path state of FIG. 1 (throttle amount adjustment of the pressure reducing valves 22C and 22B in the flow path state of FIG. 2). By increasing the flow rate ratio of the refrigerant flowing through the bypass flow path 3, the amount of refrigerant flowing through the heat radiating portion in the indoor air conditioning unit 10 is reduced, and the heat radiation amount (Q out ) of the refrigerant can be reduced.
 上記(c)は、熱媒体回路30が動作中の場合で、熱媒体循環ポンプ31の回転数を低減することによって行うことができる。熱媒体回路30の動作中に冷媒-熱媒体熱交換器25を流れる熱媒体流量を低減させることで、熱媒体回路30における冷媒-熱媒体熱交換器25の放熱量が減り、冷媒の放熱量(Qout)を低減させることができる。 The above (c) can be performed by reducing the rotational speed of the heat medium circulation pump 31 when the heat medium circuit 30 is in operation. By reducing the flow rate of the heat medium flowing through the refrigerant-heat medium heat exchanger 25 during operation of the heat medium circuit 30, the heat release amount of the refrigerant-heat medium heat exchanger 25 in the heat medium circuit 30 is reduced, and the heat release amount of the refrigerant is reduced. (Q out ) can be reduced.
 図5は、制御の一例を示している。図5(a)に示す例は、冷媒の放熱量(Qout)を室内空調ユニット10における放熱部の放熱量(Qicnd)で把握し、QcompとQicndの比較を行い、Qcomp≧Qicndが成立しなくなったときに、送風機13の出力電圧を低減させる制御を行っている。図示の例では、Qicnd-Qcomp≧αとなるタイミングT1にて、送風13の出力電圧をV1からV2(V1>V2)に下げており、それによって放熱量(Qicnd)を低下させて、Qcomp≧Qicndを成立させている。 FIG. 5 shows an example of control. In the example shown in FIG. 5(a), the amount of heat dissipation (Q out ) of the refrigerant is grasped by the amount of heat dissipation (Q icnd ) of the heat radiating section in the indoor air conditioning unit 10, Q comp and Q icnd are compared, and Q comp ≧ Control is performed to reduce the output voltage of the blower 13 when Q icnd is no longer established. In the illustrated example, at timing T1 when Q icnd −Q comp ≧α, the output voltage of the blower 13 is lowered from V1 to V2 (V1>V2), thereby reducing the amount of heat dissipation (Q icnd ). , Q comp ≧Q icnd .
 また、図示の例では、Qcomp≧Qicndが成立した後に、所定のタイミングT2で送風機13の出力電圧をV2からV3(V2<V3)に上げて、所望の暖房要求に対応するようにしている。なお、ここでは送風機13の出力電圧を制御することで、放熱部通過送風量Gaを制御しているが、これに替えて又はこれに加えて、エアダンパ14の開度制御を行うことで、放熱部通過送風量Gaを制御するようにしてもよい。 In the illustrated example, after Q comp ≧Q icnd is established, the output voltage of the blower 13 is increased from V2 to V3 (V2<V3) at a predetermined timing T2 so as to meet the desired heating request. there is Here, by controlling the output voltage of the blower 13, the amount of air blown through the heat radiating section Ga is controlled. It is also possible to control the part-passing air flow rate Ga.
 図5(b)に示す例は、冷媒の放熱量(Qout)を熱媒体回路30における放熱量(Qchil)で把握し、QcompとQchilの比較を行い、Qcomp≧Qchilが成立しなくなったときに、熱媒体循環ポンプ31の回転数を低下させて熱媒体流量を低減させる制御を行っている。図示の例では、Qchil-Qcomp≧αとなるタイミングT1にて、熱媒体流量をL1からL2(L1>L2)に下げており、それによって放熱量(Qchil)を低下させて、Qcomp≧Qchilを成立させている。また、図示の例では、Qcomp≧Qchilが成立した後に、所定のタイミングT2で熱媒体流量をL2からL3(L2<L3)に上げて、熱媒体回路30の温調要求に対応するようにしている。 In the example shown in FIG. 5B, the heat release amount (Q out ) of the refrigerant is grasped by the heat release amount (Q chil ) in the heat medium circuit 30, Q comp is compared with Q chil , and Q comp ≧Q chil is satisfied. Control is performed to decrease the heat medium flow rate by decreasing the rotation speed of the heat medium circulation pump 31 when this does not hold true. In the illustrated example, at timing T1 when Q chil −Q comp ≧α, the heat medium flow rate is lowered from L1 to L2 (L1>L2), thereby reducing the amount of heat release (Q chil ) and increasing Q It holds comp ≧Q chil . In the illustrated example, after Q comp ≧Q chil is established, the heat medium flow rate is increased from L2 to L3 (L2<L3) at a predetermined timing T2 so as to meet the temperature control request of the heat medium circuit 30. I have to.
 図6は、ホットガス暖房継続モードを実行するための他の制御フロー例を示している。ここでは、圧縮機2の回転数が一定(上限値)であることを前提にして、放熱部の放熱量(Qicnd)又は圧縮機2の吐出圧力(Pci)の時系列変化に基づいて、入熱量(Qcomp)と放熱量(Qout)の関係を推定する。 FIG. 6 shows another control flow example for executing the hot gas heating continuation mode. Here, on the premise that the rotation speed of the compressor 2 is constant (upper limit), based on the time series change of the heat radiation amount (Q icnd ) of the heat radiating unit or the discharge pressure (P ci ) of the compressor 2 , estimate the relationship between heat input (Q comp ) and heat release (Q out ).
 図6の例では、制御開始から放熱部の放熱量(Qicnd)又は圧縮機2の吐出圧力(Pci)の今回値を取得し(ステップS01)、これをメモリに保存する(ステップS02)。そして、制御サイクルにおける前回サイクルでメモリに保存した前回値Qicndz(又はPciz)と今回値Qicnd(又はPci)を比較し(ステップS03)、Qicnd≧Qicndz(又はPci≧Pciz)が成立する場合には(ステップS03:YES)、ホットガス暖房の継続が可能であるとして、暖房要求に対応して(ステップS04)、今回制御サイクルを終了する。 In the example of FIG. 6, the current value of the heat radiation amount (Q icnd ) of the heat radiating unit or the discharge pressure (P ci ) of the compressor 2 is acquired from the start of control (step S01) and stored in the memory (step S02). . Then, the previous value Q icndz (or P ciz ) stored in the memory in the previous control cycle and the current value Q icnd (or P ci ) are compared (step S03), and Q icnd ≧Q icndz (or P ci ≧P ciz ) is established (step S03: YES), it is determined that the hot gas heating can be continued, and the current control cycle is terminated in response to the heating request (step S04).
 また、前回値Qicndz(又はPciz)と今回値Qicnd(又はPci)を比較して(ステップS03)、Qicnd≧Qicndz(又はPci≧Pciz)が成立しない場合には(ステップS03:NO)、前述した冷媒の放熱量(Qout)の低減処理を行って(ステップS05)、ホットガス暖房の継続が可能な状態に戻す処理を行い、今回制御サイクルを終了する。 Also, the previous value Q icndz (or P ciz ) and the current value Q icnd (or P ci ) are compared (step S03), and if Q icnd ≧Q icndz (or P ci ≧P ciz ) does not hold ( Step S03: NO), the heat dissipation amount (Q out ) of the refrigerant described above is reduced (step S05), processing is performed to return to a state in which hot gas heating can be continued, and the current control cycle ends.
 図6に示す制御を行うことで、図7に示すようなタイムチャートが得られる。図7(a)は、放熱部の放熱量Qicndの時系列変化によるものであり、Qicndの今回値が前回値より下がったタイミングT01で、送風機13の出力電圧をV01からV02に下げて、Qicndを低下させる。この際、送風13の出力電圧を下げて放熱部通過送風量Gaを下げることで、Qicndの絶対値は低下するが、時系列変化は抑えられて安定したQicndの状態になる。 By performing the control shown in FIG. 6, a time chart as shown in FIG. 7 is obtained. FIG . 7(a) shows the time-series change in the amount of heat radiation Q icnd of the heat radiating section. , lowers Q icnd . At this time, by lowering the output voltage of the air blower 13 and lowering the amount of air blown through the heat radiating section Ga, the absolute value of Q icnd is reduced, but the time-series change is suppressed and Q icnd becomes stable.
 ここでのQicndの今回値が前回値より下がった状態は、まさに入熱量(Qcomp)に対して放熱量(Qout)が上回ってしまい、ホットガス暖房の継続条件が崩れた状態になっている。ここでは、この状態を検出して、放熱量(Qout)を低減させる処理を行うことで、ホットガス暖房の継続を確保している。 When the current value of Q icnd is lower than the previous value, the amount of heat radiation (Q out ) exceeds the amount of heat input (Q comp ), and the conditions for continuing hot gas heating are broken. ing. Here, the continuation of hot gas heating is ensured by detecting this state and performing processing to reduce the amount of heat radiation (Q out ).
 ステップS05の処理を行うことで、放熱量Qicndの時系列変化が安定し、ホットガス暖房の継続条件が保たれた場合には、所定のタイミングT02で送風機13の出力電圧をV02からV03に上げて、適宜暖房要求に対応する放熱量Qicndが得られるように制御する。 By performing the process of step S05, the time-series change in the amount of heat radiation Q icnd is stabilized, and when the conditions for continuing hot gas heating are maintained, the output voltage of the blower 13 is changed from V02 to V03 at a predetermined timing T02. It is controlled so that the amount of heat release Q icnd corresponding to the heating request is appropriately obtained.
 図7(b)は、圧縮機2の吐出圧Pciの時系列変化によるものであり、Pciの今回値が前回値より下がったタイミングT10で、送風機13の出力電圧をV11からV12に下げて、Qicnd(放熱量Qout)を低下させる。この際、放熱量Qoutを低下させることで、圧縮機2の吐出圧Pciは所定圧に戻って安定した時系列変化状態になる。なお、ここでの圧縮機2の吐出圧Pciは、図1に示した冷媒回路20における冷媒圧力センサPr2によって検出される。 FIG. 7(b) shows the time-series change of the discharge pressure P ci of the compressor 2. At the timing T10 when the current value of P ci is lower than the previous value, the output voltage of the blower 13 is lowered from V11 to V12. to reduce Q icnd (heat release Q out ). At this time, the discharge pressure P ci of the compressor 2 returns to a predetermined pressure by reducing the heat release amount Q out and becomes a stable time series change state. The discharge pressure Pci of the compressor 2 here is detected by the refrigerant pressure sensor Pr2 in the refrigerant circuit 20 shown in FIG.
 そして、図3の制御フローにおけるステップS4或いは図7の制御フローにおけるステップS04の暖房要求に対応するには、目標暖房温度(TCO)に吹き出し空気温度(Thp)を近づける制御が行われる。 Then, in order to meet the heating request in step S4 in the control flow of FIG. 3 or step S04 in the control flow of FIG. 7, control is performed to bring the blown air temperature (Thp) close to the target heating temperature (TCO).
 このような暖房要求に対して、ホットガス暖房の継続性を考慮する場合には、圧縮機2の回転数を上限値付近に設定していることを前提として、目標暖房温度(TCO)と吹き出し空気温度(Thp)との差が設定値α1より大きい場合(即ち、(TCO-α1)>Tph、α1>0)、放熱量Qout(Oicnd)を下げるために送風機13の出力電圧を下げて、ホットガス暖房の継続性を高める制御を行う。そして、同じ前提で、吹き出し空気温度(Tph)が目標暖房温度(TCO)を設定値βだけ上回っている場合(即ち、TOC≦Thp-β、β>0)、その場合の能力余剰を利用して、送風機13の出力電圧を上げて放熱量Qout(Oicnd)を高めることで、ホットガス暖房時の熱利用効率を上昇させる。 When considering the continuity of hot gas heating for such a heating request, on the premise that the rotation speed of the compressor 2 is set near the upper limit, the target heating temperature (TCO) and the blow If the difference from the air temperature (Thp) is greater than the set value α1 (that is, (TCO−α1)>Tph, α1>0), the output voltage of the blower 13 is lowered to lower the heat release amount Q out (O icnd ). control to increase the continuity of hot gas heating. Then, on the same premise, when the blown air temperature (Tph) exceeds the target heating temperature (TCO) by the set value β (that is, TOC ≤ Thp-β, β > 0), the surplus capacity in that case is used. Then, the output voltage of the blower 13 is increased to increase the heat radiation amount Q out (O icnd ), thereby increasing the heat utilization efficiency during hot gas heating.
 図8に示す制御例は、前述した送風機13の出力電圧の制御(放熱部通過送風量Gaの制御)と前述したバイパス流路3の流量比を調整する制御を組み合わせて、ホットガス暖房継続モードを実行する例である。 The control example shown in FIG. 8 combines the above-described control of the output voltage of the blower 13 (control of the heat radiating portion passage air blow amount Ga) and the above-described control for adjusting the flow rate ratio of the bypass flow path 3, and the hot gas heating continuation mode This is an example of executing
 この例では、制御開始から圧縮機2からの入熱量Qcompと放熱部の放熱量Qicndを把握し(ステップS10)、ホットガス暖房の継続条件であるQcomp≧Qicndの成立有無を判断する(ステップS11)。そして、Qcomp≧Qicndが成立しない場合(ステップS11:NO)には、ホットガス暖房の継続を目指して送風機13の出力電圧を下げて(ステップS16)、放熱量Qoutを低下させる。 In this example, the amount of heat input Q comp from the compressor 2 and the amount of heat radiation Q icnd from the heat radiating unit are grasped from the start of control (step S10), and it is determined whether or not Q comp ≧Q icnd , which is the continuation condition for hot gas heating, holds. (step S11). If Q comp ≧Q icnd does not hold (step S11: NO), the output voltage of the blower 13 is lowered to continue the hot gas heating (step S16), thereby lowering the heat radiation amount Q out .
 また、ステップS11にてホットガス暖房の継続条件であるQcomp≧Qicndが成立している場合(ステップS11:YES)には、送風機13の出力電圧を維持し(ステップS12)、暖房要求に従って、目標暖房温度(TCO)に吹き出し空気温度(Thp)が到達したかの判断を行う(ステップS13)。ここで、目標暖房温度(TCO)に吹き出し空気温度(Thp)が到達していない場合(ステップ13:NO)には、バイパス流路3を流れる冷媒の流量比を上げて放熱量Qoutを低下させる(ステップS17)。これにより、ホットガス暖房の継続性が高められる。 Further, when Q comp ≧Q icnd , which is the continuation condition for hot gas heating in step S11, is satisfied (step S11: YES), the output voltage of the blower 13 is maintained (step S12), and according to the heating request , it is determined whether or not the blown air temperature (Thp) has reached the target heating temperature (TCO) (step S13). Here, if the blown-out air temperature (Thp) has not reached the target heating temperature (TCO) (step 13: NO), the flow rate ratio of the refrigerant flowing through the bypass flow path 3 is increased to decrease the heat radiation amount Qout . (step S17). This increases the continuity of hot gas heating.
 そして、ステップS13で、目標暖房温度(TCO)に吹き出し空気温度(Thp)が到達している場合(ステップS17:YES)には、能力余剰の有無を判断し(ステップS14)、能力余剰が無い場合(ステップS14:NO)には、その状態を持続し、能力余剰がある場合(ステップS14:YES)には、バイパス流路3を流れる冷媒の流量比を下げて(ステップS15)、放熱量Qoutを上昇させる。 Then, in step S13, if the blown-out air temperature (Thp) has reached the target heating temperature (TCO) (step S17: YES), it is determined whether or not there is excess capacity (step S14), and there is no excess capacity. (step S14: NO), the state is maintained, and if there is a surplus capacity (step S14: YES), the flow rate ratio of the refrigerant flowing through the bypass flow path 3 is lowered (step S15), and the heat release amount Increase Q out .
 なお、車両用空調装置1が備える制御装置4は、図9に示すように、電動車両(EV)の制御を行う各種ECU(Electronic Control Unit)に車載ネットワークLを介して接続された一つのECUとして構成される。制御装置4は、CPU(Central Processing Unit)41、ROM(Read Only Memory)42、RAM(Random Access Memory)43、入出力I/F(Interface)44、車内通信I/F(Interface)45などを備え、各ハードウェアは、バス46を介して相互に接続されている。 Note that the control device 4 provided in the vehicle air conditioner 1 is, as shown in FIG. configured as The control device 4 includes a CPU (Central Processing Unit) 41, a ROM (Read Only Memory) 42, a RAM (Random Access Memory) 43, an input/output I/F (Interface) 44, an in-vehicle communication I/F (Interface) 45, and the like. Each piece of hardware is interconnected via a bus 46 .
 CPU41は、ROM42に記憶されている各種プログラムを実行することにより、制御装置4の制御を実行する。ROM42は、不揮発性メモリである。例えば、ROM42は、CPU41により実行されるプログラム、CPU41がプログラムを実行するために必要なデータ等を記憶する。RAM43は、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)等の主記憶装置である。例えば、RAM43は、CPU41がプログラムを実行する際に利用する作業領域として機能する。入出力I/F44は、EVに設置される各種センサやモニタに接続され、CPU41にデータを入力すると共に、CPU41が演算処理したデータを出力する。車内通信I/F45は、車載ネットワークLに接続されることで、EVに設定された他のECUとのデータ送受信を制御する。 The CPU 41 controls the control device 4 by executing various programs stored in the ROM 42 . The ROM 42 is nonvolatile memory. For example, the ROM 42 stores programs executed by the CPU 41, data necessary for the CPU 41 to execute the programs, and the like. The RAM 43 is a main storage device such as DRAM (Dynamic Random Access Memory) or SRAM (Static Random Access Memory). For example, the RAM 43 functions as a work area used when the CPU 41 executes programs. The input/output I/F 44 is connected to various sensors and monitors installed in the EV, inputs data to the CPU 41 , and outputs data processed by the CPU 41 . The in-vehicle communication I/F 45 is connected to the in-vehicle network L to control data transmission/reception with other ECUs set in the EV.
 制御装置4は、入出力I/F44や車内通信I/F45を介して、周辺の環境情報関するデータ或いはEVの運転状況に関するデータが入力されることで、CPU41が実行するプログラムによって、前述した車両用空調装置1の制御を実行する。 The control device 4 receives data about the surrounding environmental information or data about the driving situation of the EV via the input/output I/F 44 and the in-vehicle communication I/F 45, and controls the above-described vehicle by the program executed by the CPU 41. The control of the air conditioner 1 is executed.
 以上説明したように、本発明の実施形態によると、ヒートポンプの圧縮機2を含む冷媒回路20において、ホットガス暖房を継続させることが可能になるので、極低温環境下であっても、PCTヒータ等の電気式加熱器を用いることなく、低い消費電力で十分な暖房量を維持することができる。これにより、ヒートポンプを利用した車両用空調装置の実用性を向上させることができる。 As described above, according to the embodiment of the present invention, it is possible to continue hot gas heating in the refrigerant circuit 20 including the compressor 2 of the heat pump. A sufficient amount of heating can be maintained with low power consumption without using an electric heater such as a heater. As a result, the practicability of the vehicle air conditioner using the heat pump can be improved.
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 Although the embodiments of the present invention have been described in detail above with reference to the drawings, the specific configuration is not limited to these embodiments, and design modifications and the like are made within the scope of the present invention. is included in the present invention. In addition, each of the above-described embodiments can be combined by diverting each other's techniques unless there is a particular contradiction or problem in the purpose, configuration, or the like.
1:車両用空調装置,2:圧縮機,3:バイパス流路,4:制御装置,
10:室内空調ユニット(空気加熱装置),10A:送風層,10B:受風層,
11,12:室内熱交換器(放熱部),13:送風機,
14:エアダンパ,14A:エアダンパ駆動部,
20:冷媒回路,21:アキュムレータ,22(22A~22D):減圧弁,
23(23A~23D):流路切替弁,24:外部熱交換器,
25:冷媒-熱媒体熱交換器,26:逆止弁,
30:熱媒体回路,31:熱媒体循環ポンプ,
41:CPU,42:ROM,43:RAM,
44:入出力I/F,45:車内通信I/F,46:バス,
L:車載ネットワーク
1: vehicle air conditioner, 2: compressor, 3: bypass flow path, 4: control device,
10: indoor air conditioning unit (air heating device), 10A: blowing layer, 10B: receiving layer,
11, 12: indoor heat exchanger (radiator), 13: blower,
14: air damper, 14A: air damper drive unit,
20: refrigerant circuit, 21: accumulator, 22 (22A to 22D): pressure reducing valve,
23 (23A to 23D): flow path switching valve, 24: external heat exchanger,
25: refrigerant-heat medium heat exchanger, 26: check valve,
30: heat medium circuit, 31: heat medium circulation pump,
41: CPU, 42: ROM, 43: RAM,
44: input/output I/F, 45: in-vehicle communication I/F, 46: bus,
L: In-vehicle network

Claims (10)

  1.  少なくとも圧縮機を備え前記圧縮機から出た高温冷媒を循環させる冷媒回路と、前記冷媒の放熱で車室内の空気を加熱する空気加熱装置と、前記冷媒の放熱量を制御する制御装置とを備えた車両用空調装置であって、
     前記制御装置は、前記冷媒の放熱量を前記圧縮機からの入熱量以下とするホットガス暖房継続モードを有することを特徴とする車両用空調装置。
    A refrigerant circuit that includes at least a compressor and circulates a high-temperature refrigerant discharged from the compressor, an air heating device that heats air in a vehicle compartment by heat radiation of the refrigerant, and a control device that controls the amount of heat released by the refrigerant. A vehicle air conditioner comprising:
    The vehicle air conditioner, wherein the control device has a hot gas heating continuation mode in which the amount of heat released by the refrigerant is equal to or less than the amount of heat input from the compressor.
  2.  前記圧縮機からの入熱量は、前記圧縮機の消費電力によって求められることを特徴とする請求項1記載の車両用空調装置。 The vehicle air conditioner according to claim 1, wherein the amount of heat input from the compressor is obtained from the power consumption of the compressor.
  3.  前記空気加熱装置は、当該空気加熱装置に設けた前記冷媒回路の放熱部に車室内へ供給する空気を送風し、
     前記制御装置は、前記放熱部の通過送風量を制御することを特徴とする請求項1又は2記載の車両用空調装置。
    The air heating device blows air supplied into the vehicle interior to a heat radiating portion of the refrigerant circuit provided in the air heating device,
    3. The vehicle air conditioner according to claim 1, wherein the control device controls the amount of air blown through the heat radiating section.
  4.  前記制御装置は、前記放熱部の放熱量が前記圧縮機からの入熱量より高い場合に、前記通過送風量を低下させることを特徴とする請求項3記載の車両用空調装置。 4. The vehicle air conditioner according to claim 3, wherein the control device reduces the amount of passing air when the amount of heat radiated from the heat radiating section is higher than the amount of heat input from the compressor.
  5.  前記制御装置は、各制御サイクルで前記放熱部の放熱量(Qicnd)を求め、前回求めた前記放熱量(Qicndz)に対して今回求めた前記放熱量(Qicnd)が低い場合に、前記通過送風量を低下させることを特徴とする請求項4記載の車両用空調装置。 The control device obtains the heat radiation amount (Q icnd ) of the heat radiating unit in each control cycle, and when the heat radiation amount (Q icnd ) obtained this time is lower than the heat radiation amount (Q icndz ) obtained last time, 5. The vehicle air conditioner according to claim 4, wherein the amount of passing air is reduced.
  6.  前記制御装置は、各制御サイクルで前記圧縮機の吐出圧力(Pci)を取得し、前回取得した前記圧縮機の吐出圧力(Pciz)に対して今回取得した前記圧縮機の吐出圧力(Pci)が低い場合に、前記通過送風量を低下させることを特徴とする請求項4記載の車両用空調装置。 The control device acquires the discharge pressure (P ci ) of the compressor in each control cycle, and the discharge pressure (P 5. The vehicle air conditioner according to claim 4, wherein the amount of passing air is reduced when ci ) is low.
  7.  前記通過送風量の制御は、前記空気加熱装置における送風機の出力又はエアダンパの開度によってなされることを特徴とする請求項3~6のいずれか1項記載の車両用空調装置。 The vehicle air conditioner according to any one of claims 3 to 6, characterized in that the amount of passing air is controlled by the output of a blower in the air heating device or the opening of an air damper.
  8.  前記冷媒回路は、前記空気加熱装置への前記冷媒の循環を迂回するバイパス流路を備え、
     前記制御装置は、前記バイパス流路を流れる冷媒流量と前記空気加熱装置を通過する冷媒流量の流量比を制御することで、前記冷媒の放熱量を制御することを特徴とする請求項1~7のいずれか1項記載の車両用空調装置。
    The refrigerant circuit includes a bypass flow path that bypasses circulation of the refrigerant to the air heating device,
    The control device controls the amount of heat released by the refrigerant by controlling the flow rate ratio of the refrigerant flowing through the bypass channel and the refrigerant flowing through the air heating device. The vehicle air conditioner according to any one of the above.
  9.  前記冷媒回路は、冷媒-熱媒体熱交換器を備え、
     前記制御装置は、熱媒体流量を制御することで、前記冷媒の放熱量を制御することを特徴とする請求項記1~8のいずれか1項記載の車両用空調装置。
    The refrigerant circuit comprises a refrigerant-heat medium heat exchanger,
    The vehicle air conditioner according to any one of claims 1 to 8, wherein the control device controls the heat release amount of the refrigerant by controlling the flow rate of the heat medium.
  10.  前記冷媒回路は、ヒートポンプサイクルへの切り替えが可能な冷媒流路切替手段を備えることを特徴とする請求項1~9のいずれか1項記載の車両用空調装置。 The vehicle air conditioner according to any one of claims 1 to 9, wherein the refrigerant circuit includes a refrigerant channel switching means capable of switching to a heat pump cycle.
PCT/JP2022/039797 2021-11-19 2022-10-25 Vehicle air-conditioning device WO2023090083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-189005 2021-11-19
JP2021189005A JP2023075844A (en) 2021-11-19 2021-11-19 vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2023090083A1 true WO2023090083A1 (en) 2023-05-25

Family

ID=86396623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039797 WO2023090083A1 (en) 2021-11-19 2022-10-25 Vehicle air-conditioning device

Country Status (2)

Country Link
JP (1) JP2023075844A (en)
WO (1) WO2023090083A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283606A (en) * 1998-05-08 2000-10-13 Denso Corp Refrigeration cycled apparatus
JP2001012830A (en) * 1999-06-29 2001-01-19 Denso Corp Refrigeration cycle device
JP2011140291A (en) * 2010-01-11 2011-07-21 Denso Corp Air conditioner for vehicle
WO2016113899A1 (en) * 2015-01-16 2016-07-21 三菱電機株式会社 Refrigeration cycle device
JP2021156567A (en) * 2019-11-22 2021-10-07 株式会社デンソー Refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283606A (en) * 1998-05-08 2000-10-13 Denso Corp Refrigeration cycled apparatus
JP2001012830A (en) * 1999-06-29 2001-01-19 Denso Corp Refrigeration cycle device
JP2011140291A (en) * 2010-01-11 2011-07-21 Denso Corp Air conditioner for vehicle
WO2016113899A1 (en) * 2015-01-16 2016-07-21 三菱電機株式会社 Refrigeration cycle device
JP2021156567A (en) * 2019-11-22 2021-10-07 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP2023075844A (en) 2023-05-31

Similar Documents

Publication Publication Date Title
JP5860360B2 (en) Thermal management system for electric vehicles
EP1533154B1 (en) Air-conditioning apparatus
JP5860361B2 (en) Thermal management system for electric vehicles
US11458812B2 (en) Heat pump system for vehicle
JP3659213B2 (en) Vehicle cooling system
WO2019039153A1 (en) Vehicle air-conditioning device
JP5073389B2 (en) Air conditioning control device for vehicles
JP2008308080A (en) Heat absorption and radiation system for automobile, and control method thereof
KR20170108447A (en) Betterly cooling system for vehicle
KR102474341B1 (en) Heat pump system for a vehicle
US20180297445A1 (en) Vehicle heat management device
CN111559220B (en) Thermal management method, device and system of fuel cell
JP2008185021A (en) Cooling system for vehicle
WO2020184146A1 (en) Vehicle air conditioner
WO2023090083A1 (en) Vehicle air-conditioning device
US11904656B2 (en) Heat pump system control method for vehicle
US11333086B1 (en) System for variably controlling engine-on line in consideration of cooling after FATC engine is turned on
JP7233953B2 (en) Vehicle air conditioner
JP7221650B2 (en) Vehicle air conditioner
CN112297759A (en) Heat pump system control method for vehicle
CN112060980A (en) Cooling module assembly and cooling system of fuel cell vehicle
US11845359B2 (en) Battery cooling system control method for vehicle
JP4078896B2 (en) Control device for motor fan for vehicle
JP7387520B2 (en) Vehicle air conditioner
WO2022137925A1 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895367

Country of ref document: EP

Kind code of ref document: A1