JP2019031148A - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
JP2019031148A
JP2019031148A JP2017152344A JP2017152344A JP2019031148A JP 2019031148 A JP2019031148 A JP 2019031148A JP 2017152344 A JP2017152344 A JP 2017152344A JP 2017152344 A JP2017152344 A JP 2017152344A JP 2019031148 A JP2019031148 A JP 2019031148A
Authority
JP
Japan
Prior art keywords
refrigerant
cooling
heating
heat exchanger
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017152344A
Other languages
Japanese (ja)
Other versions
JP6853138B2 (en
Inventor
角田 功
Isao Tsunoda
功 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2017152344A priority Critical patent/JP6853138B2/en
Publication of JP2019031148A publication Critical patent/JP2019031148A/en
Application granted granted Critical
Publication of JP6853138B2 publication Critical patent/JP6853138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a vehicle air conditioner which can improve operation efficiency in a heating mode.SOLUTION: A vehicle air conditioner 11 is a heat pump type vehicle air conditioner which includes a cooling refrigerant circuit and a heating refrigerant circuit, and the cooling refrigerant circuit and the heating refrigerant circuit share a compressor 41 and an outdoor heat exchanger 47. A cooling refrigerant pipe 37 connected to the compressor 41 through a cooling pressure reducing valve 53 and an evaporator 25, and a heating refrigerant pipe 39 connected to the compressor 41 by bypassing the cooling pressure reducing valve 53 and the evaporator 25 are connected to a refrigerant outlet of the outdoor heat exchanger 47 so as to be switched selectively. An inner diameter of the heating refrigerant pipe 39 connected to the refrigerant outlet 48b of the outdoor heat exchanger 47 is set to have a dimension larger than an inner diameter of the cooling refrigerant pipe 37 connected to the refrigerant outlet 48a.SELECTED DRAWING: Figure 1

Description

本発明は、ヒートポンプサイクルを用いて車室内の冷房及び暖房を行う車両用空調装置に関する。   The present invention relates to a vehicle air conditioner that cools and heats a passenger compartment using a heat pump cycle.

従来、ヒートポンプサイクルを用いて車室内の冷房及び暖房を行う車両用空調装置が知られている(例えば特許文献1参照)。
特許文献1に係る車両用空調装置は、暖房用冷媒回路及び冷房用冷媒回路を有し、両冷媒回路間でコンプレッサ、室外熱交換器等を共用している。
特許文献1に係る車両用空調装置では、冷房モード運転時に、コンプレッサから吐出された高温高圧の冷媒が室外熱交換器で放熱され、その後、冷房用減圧弁で減圧・膨張された低温低圧の冷媒が冷房用室内熱交換器で空調空気と熱交換される。このとき空調空気は、冷房用室内熱交換器を通過することで冷却され、冷房として車室内に供給される。
一方、暖房モード運転時に、コンプレッサから吐出された高温高圧の冷媒が暖房用室内熱交換器で熱交換され、その後、暖房用減圧弁で減圧・膨張された低温低圧の冷媒が室外熱交換器で大気の熱を吸熱する。このとき空調空気は、暖房用室内熱交換器を通過することで昇温され、暖房として車室内に供給される。
2. Description of the Related Art Conventionally, a vehicle air conditioner that performs cooling and heating in a vehicle interior using a heat pump cycle is known (see, for example, Patent Document 1).
The vehicle air conditioner according to Patent Document 1 includes a heating refrigerant circuit and a cooling refrigerant circuit, and a compressor, an outdoor heat exchanger, and the like are shared between both refrigerant circuits.
In the vehicle air conditioner according to Patent Document 1, the high-temperature and high-pressure refrigerant discharged from the compressor is radiated by the outdoor heat exchanger during the cooling mode operation, and then the low-temperature and low-pressure refrigerant is decompressed and expanded by the cooling pressure reducing valve. Is exchanged with the conditioned air by an indoor heat exchanger for cooling. At this time, the conditioned air is cooled by passing through the cooling indoor heat exchanger, and is supplied to the passenger compartment as cooling.
On the other hand, during the heating mode operation, the high-temperature and high-pressure refrigerant discharged from the compressor exchanges heat with the heating indoor heat exchanger, and then the low-temperature and low-pressure refrigerant decompressed and expanded by the heating pressure reducing valve becomes the outdoor heat exchanger. Absorbs atmospheric heat. At this time, the conditioned air is heated by passing through the indoor heat exchanger for heating, and is supplied to the vehicle interior as heating.

特開2016−49915号公報JP 2016-49915 A

しかしながら、特許文献1に係る車両用空調装置では、冷房モード運転時及び暖房モード運転時において室外熱交換器の下流側に設けた冷媒配管を共用しているため、暖房モード運転時において前記冷媒配管での圧力損失が大きく、運転効率を損なうという課題があった。これは、前記冷媒配管には、冷房モード運転時に高圧の冷媒が流通する一方、暖房モード運転時に低圧の冷媒が流通するところ、冷房モード運転時における高圧の冷媒を前記冷媒配管に漏れなく確実に流通させることを優先的に考慮して、当該冷媒配管の内径を含む仕様が設定されていることに基づく。   However, since the vehicle air conditioner according to Patent Document 1 shares the refrigerant pipe provided on the downstream side of the outdoor heat exchanger during the cooling mode operation and the heating mode operation, the refrigerant pipe is used during the heating mode operation. There was a problem that the pressure loss was large and the operation efficiency was impaired. This is because high-pressure refrigerant flows through the refrigerant pipe during the cooling mode operation, while low-pressure refrigerant flows through the heating mode operation, so that the high-pressure refrigerant during the cooling mode operation does not leak into the refrigerant pipe without fail. This is based on the fact that the specifications including the inner diameter of the refrigerant pipe are set in consideration of distribution.

本発明は、前記課題を解決するためになされたものであり、暖房モードでの運転効率を向上可能な車両用空調装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a vehicle air conditioner that can improve the operation efficiency in the heating mode.

本発明は、コンプレッサによって圧縮した冷媒を室外熱交換器で外気と熱交換し、当該熱交換後の冷媒を冷房用減圧弁で減圧し、当該減圧後の冷媒を冷房用室内熱交換器で空調空気と熱交換し、当該熱交換後の冷媒を前記コンプレッサに戻す冷房用冷媒回路と、前記コンプレッサによって圧縮した冷媒を暖房用室内熱交換器で空調空気と熱交換し、当該熱交換後の冷媒を暖房用減圧弁で減圧し、当該減圧後の冷媒を前記室外熱交換器で外気と熱交換し、当該熱交換後の冷媒を前記コンプレッサに戻す暖房用冷媒回路と、を備え、前記冷房用冷媒回路及び前記暖房用冷媒回路が前記コンプレッサ及び前記室外熱交換器を共用するヒートポンプ式の車両用空調装置である。
前記室外熱交換器の冷媒出口には、前記冷房用減圧弁及び前記冷房用室内熱交換器を経由して前記コンプレッサに接続される冷房用冷媒配管と、前記冷房用減圧弁及び前記冷房用室内熱交換器を迂回して前記コンプレッサに接続される暖房用冷媒配管と、が選択的に切り換え可能に接続されている。前記冷媒出口に連なる前記暖房用冷媒配管の内径は、前記冷媒出口に連なる前記冷房用冷媒配管の内径と比べて大きい寸法に設定されていることを最も主要な特徴とする。
The present invention exchanges heat between the refrigerant compressed by the compressor and the outside air using an outdoor heat exchanger, decompresses the refrigerant after the heat exchange using a cooling pressure reducing valve, and air-conditions the refrigerant after the decompression using a cooling indoor heat exchanger. A refrigerant circuit for cooling that exchanges heat with air and returns the refrigerant after the heat exchange to the compressor, and a refrigerant that is compressed by the compressor exchanges heat with conditioned air in an indoor heat exchanger for heating, and the refrigerant after the heat exchange And a heating refrigerant circuit for exchanging heat with the outside air in the outdoor heat exchanger and returning the refrigerant after the heat exchange to the compressor. The refrigerant circuit and the heating refrigerant circuit are heat pump type vehicle air conditioners that share the compressor and the outdoor heat exchanger.
At the refrigerant outlet of the outdoor heat exchanger, a cooling refrigerant pipe connected to the compressor via the cooling pressure reducing valve and the cooling indoor heat exchanger, the cooling pressure reducing valve and the cooling room A heating refrigerant pipe that bypasses the heat exchanger and is connected to the compressor is selectively connected. The most important feature is that an inner diameter of the heating refrigerant pipe connected to the refrigerant outlet is set to be larger than an inner diameter of the cooling refrigerant pipe connected to the refrigerant outlet.

本発明によれば、暖房モードでの運転効率を向上可能な車両用空調装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vehicle air conditioner which can improve the driving | operation efficiency in heating mode can be provided.

本発明の実施形態に係る車両用空調装置の全体構成図である。1 is an overall configuration diagram of a vehicle air conditioner according to an embodiment of the present invention. 本発明の実施形態に係る車両用空調装置を冷房モードで運転した際の冷媒の流れを表す説明図である。It is explanatory drawing showing the flow of the refrigerant | coolant at the time of driving the vehicle air conditioner which concerns on embodiment of this invention in air_conditioning | cooling mode. 本発明の実施形態に係る車両用空調装置を暖房モードで運転した際の冷媒の流れを表す説明図である。It is explanatory drawing showing the flow of the refrigerant | coolant at the time of driving the vehicle air conditioner which concerns on embodiment of this invention in heating mode. 本発明の実施形態に係る車両用空調装置を冷房モードで運転した際の室外熱交換器での冷媒の流れを表す説明図である。It is explanatory drawing showing the flow of the refrigerant | coolant in the outdoor heat exchanger at the time of driving the vehicle air conditioner which concerns on embodiment of this invention in air_conditioning | cooling mode. 本発明の実施形態に係る車両用空調装置を暖房モードで運転した際の室外熱交換器での冷媒の流れを表す説明図である。It is explanatory drawing showing the flow of the refrigerant | coolant in the outdoor heat exchanger at the time of driving the vehicle air conditioner which concerns on embodiment of this invention in heating mode.

以下、本発明の実施形態に係る車両用空調装置について、適宜図面を参照しながら説明する。
[本発明の実施形態に係る車両用空調装置11の全体構成]
まず、本発明の実施形態に係る車両用空調装置11の全体構成について、図1を参照して説明する。図1は、本発明の実施形態に係る車両用空調装置11の全体構成図である。
本発明の実施形態に係る車両用空調装置11は、図1に示すように、空調ユニット13と、冷媒が循環可能なヒートポンプサイクル15と、冷媒を用いた空調制御を行う制御装置17と、を備えて構成されている。車両用空調装置11は、特に限定されないが、例えば、駆動源として内燃機関を備えていない電気自動車等の電動車両に搭載される。
Hereinafter, a vehicle air conditioner according to an embodiment of the present invention will be described with reference to the drawings as appropriate.
[Whole structure of vehicle air conditioner 11 according to an embodiment of the present invention]
First, the whole structure of the vehicle air conditioner 11 which concerns on embodiment of this invention is demonstrated with reference to FIG. FIG. 1 is an overall configuration diagram of a vehicle air conditioner 11 according to an embodiment of the present invention.
As shown in FIG. 1, the vehicle air conditioner 11 according to the embodiment of the present invention includes an air conditioning unit 13, a heat pump cycle 15 capable of circulating a refrigerant, and a control device 17 that performs air conditioning control using the refrigerant. It is prepared for. Although the vehicle air conditioner 11 is not specifically limited, For example, it is mounted in electric vehicles, such as an electric vehicle which is not provided with the internal combustion engine as a drive source.

空調ユニット13は、図1に示すように、空調空気が筒状の内部空間に流通するダクト21と、エアインテークドア22と、ダクト21の上流側に設けられるブロア23と、エバポレータ25と、エアミックスドア27と、コンデンサ29と、を備えて構成されている。
ダクト21は、図1に示すように、空気取込口31、及び空気吹出口33を有する。前記したエアインテークドア22、ブロア23、エバポレータ25、エアミックスドア27、及びコンデンサ29は、ダクト21における空調空気の流通方向のうち上流側(空気取込口31側)から下流側(空気吹出口33側)に向けてこの順で配設されている。
As shown in FIG. 1, the air conditioning unit 13 includes a duct 21 in which conditioned air circulates in a cylindrical internal space, an air intake door 22, a blower 23 provided on the upstream side of the duct 21, an evaporator 25, an air A mix door 27 and a capacitor 29 are provided.
As shown in FIG. 1, the duct 21 has an air intake 31 and an air outlet 33. The air intake door 22, the blower 23, the evaporator 25, the air mix door 27, and the condenser 29 described above are arranged in the flow direction of the conditioned air in the duct 21 from the upstream side (air intake port 31 side) to the downstream side (air outlet port). 33 side) in this order.

ブロア23は、制御装置17の制御指令に基づく駆動電圧に応じて駆動される。ブロア23は、空気取込口31からダクト21内に取り込まれた空調空気を、下流側のエバポレータ25及びコンデンサ29に向けて送出する。   The blower 23 is driven according to the drive voltage based on the control command of the control device 17. The blower 23 sends the conditioned air taken into the duct 21 from the air intake 31 toward the evaporator 25 and the condenser 29 on the downstream side.

エバポレータ25は、その内部を流れる低温低圧の冷媒とダクト21内の空調空気との間で熱交換を行なう。これにより、冷媒が蒸発する際の吸熱によってエバポレータ25を通過する空調空気を冷却する。エバポレータ25は、本発明の「冷房用室内熱交換器」に相当する。   The evaporator 25 performs heat exchange between the low-temperature and low-pressure refrigerant flowing through the evaporator 25 and the conditioned air in the duct 21. Thereby, the conditioned air passing through the evaporator 25 is cooled by heat absorption when the refrigerant evaporates. The evaporator 25 corresponds to the “cooling indoor heat exchanger” of the present invention.

コンデンサ29は、その内部を流れる高温高圧の冷媒とダクト21内の空調空気との間で熱交換を行なう。これにより、冷媒の放熱によってコンデンサ29を通過する空調空気を昇温する。コンデンサ29は、本発明の「暖房用室内熱交換器」に相当する。   The condenser 29 exchanges heat between the high-temperature and high-pressure refrigerant flowing through the condenser 29 and the conditioned air in the duct 21. Thereby, the temperature of the conditioned air passing through the condenser 29 is increased by the heat radiation of the refrigerant. The condenser 29 corresponds to the “heating indoor heat exchanger” of the present invention.

エアミックスドア27は、制御装置17の制御指令に基づき回動調整される。エアミックスドア27は、ダクト21内におけるエバポレータ25の下流からコンデンサ29を迂回する通風経路を開放する冷房位置(図2参照)と、コンデンサ29に向かう通風経路を開放する暖房位置(図3参照)と、の間で回動する。この回動調整により、エバポレータ25を通過した空調空気のうち、コンデンサ29に導入される風量と、コンデンサ29を迂回して車室内へ排出される風量と、の割合が調整される。   The air mix door 27 is rotated and adjusted based on a control command from the control device 17. The air mix door 27 has a cooling position (see FIG. 2) that opens a ventilation path that bypasses the condenser 29 from the downstream of the evaporator 25 in the duct 21 and a heating position that opens a ventilation path toward the condenser 29 (see FIG. 3). And rotate between. By this rotation adjustment, the ratio between the air volume introduced into the condenser 29 and the air volume bypassing the condenser 29 and discharged into the vehicle interior of the conditioned air that has passed through the evaporator 25 is adjusted.

ヒートポンプサイクル15は、前記したエバポレータ25及びコンデンサ29の他に、コンプレッサ41と、冷房用第1電磁弁43と、暖房用減圧弁45と、室外熱交換器47と、冷房用第2電磁弁49と、暖房用電磁弁51と、冷房用減圧弁53と、気液分離器55とを、冷媒流通路35を介して接続して構成されている。   In addition to the evaporator 25 and the condenser 29, the heat pump cycle 15 includes a compressor 41, a cooling first electromagnetic valve 43, a heating pressure reducing valve 45, an outdoor heat exchanger 47, and a cooling second electromagnetic valve 49. And a heating electromagnetic valve 51, a cooling pressure reducing valve 53, and a gas-liquid separator 55 are connected via a refrigerant flow passage 35.

コンプレッサ41は、冷媒流通路35のうち気液分離器55とコンデンサ29との間に接続されている。コンプレッサ41は、制御装置17の制御指令に基づき駆動される。コンプレッサ41は、例えば暖房モード運転時において、気液分離器55から気相の冷媒(冷媒ガス)を吸入すると共に圧縮し、圧縮後の高温高圧の冷媒をコンデンサ29に吐出する。   The compressor 41 is connected between the gas-liquid separator 55 and the condenser 29 in the refrigerant flow passage 35. The compressor 41 is driven based on a control command from the control device 17. For example, during the heating mode operation, the compressor 41 sucks and compresses the gas-phase refrigerant (refrigerant gas) from the gas-liquid separator 55 and discharges the compressed high-temperature and high-pressure refrigerant to the condenser 29.

冷媒流通路35のうちコンプレッサ41の下流側には、冷房用第1電磁弁43と、コンデンサ29及び暖房用減圧弁45の直列回路と、が並設されている。   A first electromagnetic valve 43 for cooling and a series circuit of a condenser 29 and a pressure reducing valve 45 for heating are arranged in parallel on the downstream side of the compressor 41 in the refrigerant flow passage 35.

冷房用第1電磁弁43は、冷房モード運転時において、コンプレッサ41で圧縮後の高温高圧の冷媒を、コンデンサ29及び暖房用減圧弁45の直列回路をバイパスして室外熱交換器47に送出する機能を有する。冷房用第1電磁弁43は、制御装置17の制御指令に基づき開閉駆動される。冷房用第1電磁弁43は、冷房モード運転時には開状態とされる一方、暖房モード運転時には閉状態とされる。   The first electromagnetic valve for cooling 43 sends the high-temperature and high-pressure refrigerant compressed by the compressor 41 to the outdoor heat exchanger 47 by bypassing the series circuit of the condenser 29 and the heating pressure reducing valve 45 during the cooling mode operation. It has a function. The cooling first electromagnetic valve 43 is driven to open and close based on a control command from the control device 17. The cooling first electromagnetic valve 43 is opened during the cooling mode operation, and is closed during the heating mode operation.

これにより、例えば、冷房モード運転時には、コンプレッサ41で圧縮後の高温高圧の冷媒は、冷房用第1電磁弁43を介して、高温高圧の状態で室外熱交換器47に流入する。
一方、暖房モード運転時には、コンプレッサ41で圧縮後の高温高圧の冷媒はコンデンサ29に流入する。次いで、コンデンサ29から排出された冷媒は暖房用減圧弁45で減圧される。減圧後の低温低圧の冷媒は、室外熱交換器47に流入する。
Thereby, for example, during the cooling mode operation, the high-temperature and high-pressure refrigerant compressed by the compressor 41 flows into the outdoor heat exchanger 47 through the first cooling solenoid valve 43 in a high-temperature and high-pressure state.
On the other hand, during the heating mode operation, the high-temperature and high-pressure refrigerant compressed by the compressor 41 flows into the condenser 29. Next, the refrigerant discharged from the condenser 29 is depressurized by the heating pressure reducing valve 45. The low-temperature and low-pressure refrigerant after decompression flows into the outdoor heat exchanger 47.

暖房用減圧弁45は、いわゆる絞り弁である。暖房用減圧弁45は、コンデンサ29から排出された冷媒を減圧して膨張させた後、低温低圧の気液2相(液相リッチ)の霧状の冷媒として室外熱交換器47に吐出する。   The heating pressure reducing valve 45 is a so-called throttle valve. The heating pressure reducing valve 45 decompresses and expands the refrigerant discharged from the condenser 29, and then discharges it to the outdoor heat exchanger 47 as a low-temperature low-pressure gas-liquid two-phase (liquid phase rich) mist refrigerant.

室外熱交換器47は、車室外の車両前部等に設けられ、その内部に流入した冷媒と車室外雰囲気との間で熱交換を行なう。室外熱交換器47としては、主たる冷媒の流通方向が水平方向である横型熱交換器、又は、主たる冷媒の流通方向が鉛直方向である縦型熱交換器、を好適に用いることができる。なお、本実施形態では、室外熱交換器47として横型熱交換器を採用した例をあげて説明する。   The outdoor heat exchanger 47 is provided in the front part of the vehicle outside the passenger compartment and performs heat exchange between the refrigerant flowing into the interior of the outdoor heat exchanger 47 and the atmosphere outside the passenger compartment. As the outdoor heat exchanger 47, a horizontal heat exchanger in which the flow direction of the main refrigerant is a horizontal direction or a vertical heat exchanger in which the flow direction of the main refrigerant is a vertical direction can be suitably used. In the present embodiment, an example in which a horizontal heat exchanger is adopted as the outdoor heat exchanger 47 will be described.

室外熱交換器47は、冷房モード運転時には、その内部に流入する高温の冷媒を冷ますように車室外雰囲気へと放熱する。室外熱交換器47は、車室外雰囲気への放熱及びファン(不図示)の送風によって高温の冷媒を冷却する。
一方、室外熱交換器47は、暖房モード運転時には、その内部に流入する低温の冷媒を温めるように車室外雰囲気から吸熱する。室外熱交換器47は、車室外雰囲気からの吸熱によって低温の冷媒を昇温する。
In the cooling mode operation, the outdoor heat exchanger 47 radiates heat to the outdoor atmosphere so as to cool the high-temperature refrigerant flowing into the outdoor heat exchanger 47. The outdoor heat exchanger 47 cools the high-temperature refrigerant by radiating heat to the vehicle exterior atmosphere and blowing air from a fan (not shown).
On the other hand, during the heating mode operation, the outdoor heat exchanger 47 absorbs heat from the outdoor atmosphere so as to warm the low-temperature refrigerant flowing into the interior. The outdoor heat exchanger 47 raises the temperature of the low-temperature refrigerant by absorbing heat from the atmosphere outside the passenger compartment.

冷房用第2電磁弁49は、冷房モード運転時において、室外熱交換器47から排出された高圧の冷媒を、冷房用減圧弁53に送出する機能を有する。冷房用第2電磁弁49は、室外熱交換器47の冷媒出口48aに設けられている。冷房用第2電磁弁49は、制御装置17の制御指令に基づき開閉駆動される。冷房用第2電磁弁49は、冷房モード運転時には開状態とされる一方、暖房モード運転時には閉状態とされる。   The cooling second electromagnetic valve 49 has a function of sending the high-pressure refrigerant discharged from the outdoor heat exchanger 47 to the cooling pressure reducing valve 53 during the cooling mode operation. The cooling second electromagnetic valve 49 is provided at the refrigerant outlet 48 a of the outdoor heat exchanger 47. The second electromagnetic valve 49 for cooling is driven to open and close based on a control command from the control device 17. The second electromagnetic valve 49 for cooling is opened during the cooling mode operation, and is closed during the heating mode operation.

冷房用第2電磁弁49と冷房用減圧弁53との間を接続する冷房用冷媒配管37には、冷房モード運転時において、室外熱交換器47から排出された高圧の冷媒が流通する。そこで、高圧の冷媒を漏れなく確実に流通させるために、冷房用冷媒配管37の内径は、その内部を流通する冷媒の圧力・熱に耐え得ること、及び圧力損失を抑制することを考慮した適宜の寸法に設定されている。冷房用冷媒配管37としては、例えば、適宜の耐圧・耐熱特性を有する高圧ホースを好適に採用することができる。   During the cooling mode operation, the high-pressure refrigerant discharged from the outdoor heat exchanger 47 flows through the cooling refrigerant pipe 37 connecting the second cooling electromagnetic valve 49 and the cooling pressure reducing valve 53. Therefore, in order to ensure that the high-pressure refrigerant flows without leakage, the inner diameter of the cooling refrigerant pipe 37 is appropriately determined in consideration of being able to withstand the pressure and heat of the refrigerant flowing through the inside and suppressing the pressure loss. The dimensions are set. As the cooling refrigerant pipe 37, for example, a high-pressure hose having appropriate pressure resistance and heat resistance can be suitably employed.

暖房用電磁弁51は、暖房モード運転時において、室外熱交換器47から排出された低圧の冷媒を、気液分離器55に送出する機能を有する。暖房用電磁弁51は、冷房用第2電磁弁49と同様に、室外熱交換器47の冷媒出口48bに設けられている。暖房用電磁弁51は、制御装置17の制御指令に基づき開閉駆動される。暖房用電磁弁51は、暖房モード運転時には開状態とされる一方、冷房モード運転時には閉状態とされる。   The heating solenoid valve 51 has a function of sending the low-pressure refrigerant discharged from the outdoor heat exchanger 47 to the gas-liquid separator 55 during the heating mode operation. The heating solenoid valve 51 is provided at the refrigerant outlet 48 b of the outdoor heat exchanger 47, similarly to the cooling second solenoid valve 49. The heating solenoid valve 51 is driven to open and close based on a control command from the control device 17. The heating solenoid valve 51 is opened during the heating mode operation, and is closed during the cooling mode operation.

暖房用電磁弁51と気液分離器55との間を接続する暖房用冷媒配管39には、暖房モード運転時において、室外熱交換器47から排出された低圧の冷媒が流通する。そこで、低圧の冷媒を漏れなく確実に流通させるために、暖房用冷媒配管39の内径は、その内部を流通する冷媒の圧力・熱に耐え得ること、及び圧力損失を抑制することを考慮した適宜の寸法に設定されている。暖房用冷媒配管39としては、例えば、適宜の耐圧・耐熱特性を有する低圧損低圧ホースを好適に採用することができる。   The low-pressure refrigerant discharged from the outdoor heat exchanger 47 circulates through the heating refrigerant pipe 39 that connects between the heating electromagnetic valve 51 and the gas-liquid separator 55 during the heating mode operation. Therefore, in order to ensure that the low-pressure refrigerant flows without leakage, the inside diameter of the heating refrigerant pipe 39 is appropriately determined in consideration of being able to withstand the pressure and heat of the refrigerant flowing through the inside and suppressing pressure loss. The dimensions are set. As the refrigerant pipe 39 for heating, for example, a low-pressure loss low-pressure hose having appropriate pressure resistance / heat resistance characteristics can be suitably employed.

ここで、暖房用冷媒配管39の内側壁に作用する(低圧の)冷媒の圧力は、冷房用冷媒配管37の内側壁に作用する(高圧の)冷媒の圧力と比べて低い。
そこで、本発明の実施形態に係る車両用空調装置11では、室外熱交換器47の冷媒出口48bに連なる暖房用冷媒配管39の内径は、冷媒出口48aに連なる冷房用冷媒配管37の内径と比べて大きい寸法に設定されている。
これにより、暖房モード運転時における暖房用冷媒配管39での圧力損失を抑制して、暖房モードでの運転効率の向上を図っている。
Here, the pressure of the (low pressure) refrigerant acting on the inner wall of the heating refrigerant pipe 39 is lower than the pressure of the (high pressure) refrigerant acting on the inner wall of the cooling refrigerant pipe 37.
Therefore, in the vehicle air conditioner 11 according to the embodiment of the present invention, the inner diameter of the heating refrigerant pipe 39 connected to the refrigerant outlet 48b of the outdoor heat exchanger 47 is compared with the inner diameter of the cooling refrigerant pipe 37 connected to the refrigerant outlet 48a. Are set to large dimensions.
Thereby, the pressure loss in the heating refrigerant pipe 39 during the heating mode operation is suppressed, and the operation efficiency in the heating mode is improved.

冷房用減圧弁53は、暖房用減圧弁45と同様の絞り弁である。冷房用減圧弁53は、室外熱交換器47から排出された冷媒を減圧して膨張させた後、低温低圧の気液2相(気相リッチ)の霧状の冷媒としてエバポレータ25に吐出する。   The cooling pressure reducing valve 53 is a throttle valve similar to the heating pressure reducing valve 45. The cooling pressure reducing valve 53 decompresses the refrigerant discharged from the outdoor heat exchanger 47 and expands it, and then discharges it to the evaporator 25 as a low-temperature and low-pressure gas-liquid two-phase (vapor phase rich) mist refrigerant.

気液分離器55は、室外熱交換器47又はエバポレータ25から排出された冷媒の気液を分離し、気相の冷媒(冷媒ガス)をコンプレッサ41に吸入させる。   The gas-liquid separator 55 separates the gas-liquid refrigerant discharged from the outdoor heat exchanger 47 or the evaporator 25 and causes the compressor 41 to suck in the gas-phase refrigerant (refrigerant gas).

制御装置17は、車室内のダッシュパネル等に配設されたエアコンスイッチ(不図示)を介して操作者により設定された空調要求に基づいて車両用空調装置11の制御を行う。制御装置17は、車両用空調装置11の運転モードを、暖房モード、冷房モード、除霜モード等に切り換え制御可能に構成されている。制御装置17は、各種の演算処理を実行可能なマイクロコンピュータを含んで構成される。   The control device 17 controls the vehicle air conditioner 11 based on an air conditioning request set by an operator via an air conditioner switch (not shown) disposed on a dash panel or the like in the vehicle interior. The control device 17 is configured to be able to switch and control the operation mode of the vehicle air conditioner 11 to a heating mode, a cooling mode, a defrosting mode, and the like. The control device 17 includes a microcomputer capable of executing various arithmetic processes.

次に、上述した車両用空調装置11の各運転モード毎の動作について説明する。ただし、除霜モードについては本発明と直接関係しないため、その説明を省略する。
[車両用空調装置11の冷房モード運転時の動作]
図2は、本発明の実施形態に係る車両用空調装置11を冷房モードで運転した際の冷媒の流れを表す説明図である。
車両用空調装置11を冷房モードで運転する場合には、制御装置17は、エバポレータ25を通過した空調空気がコンデンサ29を迂回する(流通させない)ように、エアミックスドア27を図2に示す冷房位置に位置決めする。また、制御装置17は、図2に示すように、冷房用第1電磁弁43を開状態とし、冷房用第2電磁弁49を開状態とし、暖房用電磁弁51を閉状態とする制御を行う。
Next, the operation | movement for each operation mode of the vehicle air conditioner 11 mentioned above is demonstrated. However, since the defrosting mode is not directly related to the present invention, the description thereof is omitted.
[Operation of the vehicle air conditioner 11 during cooling mode operation]
FIG. 2 is an explanatory diagram showing the flow of the refrigerant when the vehicle air conditioner 11 according to the embodiment of the present invention is operated in the cooling mode.
When the vehicle air conditioner 11 is operated in the cooling mode, the control device 17 cools the air mix door 27 shown in FIG. 2 so that the conditioned air that has passed through the evaporator 25 bypasses (does not circulate) the condenser 29. Position to position. Further, as shown in FIG. 2, the control device 17 performs control to open the cooling first electromagnetic valve 43, open the cooling second electromagnetic valve 49, and close the heating electromagnetic valve 51. Do.

ヒートポンプサイクル15において、コンプレッサ41から吐出された高温高圧の冷媒が、冷房用第1電磁弁43を介して室外熱交換器47に流入する。室外熱交換器47は、その内部に流入した高温の冷媒を冷ますように車室外雰囲気へと放熱する。これにより、高温の冷媒を冷却する。   In the heat pump cycle 15, the high-temperature and high-pressure refrigerant discharged from the compressor 41 flows into the outdoor heat exchanger 47 through the cooling first electromagnetic valve 43. The outdoor heat exchanger 47 dissipates heat to the outside atmosphere so as to cool the high-temperature refrigerant that has flowed into the outdoor heat exchanger 47. This cools the high-temperature refrigerant.

室外熱交換器47で冷却された冷媒が、開状態の冷房用第2電磁弁49、及び冷房用冷媒配管37を介して冷房用減圧弁53に流入する。冷房用減圧弁53は、流入した冷媒を減圧して膨張させた後、低温低圧の気液2相(気相リッチ)の霧状の冷媒としてエバポレータ25に吐出する。   The refrigerant cooled by the outdoor heat exchanger 47 flows into the cooling pressure reducing valve 53 through the opened second cooling electromagnetic valve 49 and the cooling refrigerant pipe 37. The cooling pressure reducing valve 53 decompresses the expanded refrigerant and expands it, and then discharges it to the evaporator 25 as a low-temperature and low-pressure gas-liquid two-phase (gas phase rich) mist refrigerant.

エバポレータ25は、その内部を流れる低温低圧の冷媒とダクト21内の空調空気との間で熱交換を行なう。これにより、冷媒が蒸発する際の吸熱によってエバポレータ25を通過する空調空気を冷却する。   The evaporator 25 performs heat exchange between the low-temperature and low-pressure refrigerant flowing through the evaporator 25 and the conditioned air in the duct 21. Thereby, the conditioned air passing through the evaporator 25 is cooled by heat absorption when the refrigerant evaporates.

エバポレータ25を通過した気相リッチの冷媒が、気液分離器55に流入する。気液分離器55は、エバポレータ25から排出された冷媒の気液を分離し、気相の冷媒(冷媒ガス)をコンプレッサ41に吸入させる。   The gas-phase rich refrigerant that has passed through the evaporator 25 flows into the gas-liquid separator 55. The gas / liquid separator 55 separates the gas / liquid of the refrigerant discharged from the evaporator 25 and causes the compressor 41 to suck the gas-phase refrigerant (refrigerant gas).

前記したように、冷媒が気液の状態を変化させながら冷媒流通路35を流通する状況で、空調ユニット13のブロア23が駆動されると、空調ユニット13のダクト21内を空調空気が流れ、その空調空気がエバポレータ25を通過する際にエバポレータ25との間で熱交換がなされる。この熱交換により冷却された空調空気は、エアミックスドア27の働きによりコンデンサ29を迂回した後、車室内に冷房として供給される。   As described above, when the blower 23 of the air conditioning unit 13 is driven in a situation where the refrigerant flows through the refrigerant flow passage 35 while changing the gas-liquid state, the conditioned air flows in the duct 21 of the air conditioning unit 13, When the conditioned air passes through the evaporator 25, heat exchange is performed with the evaporator 25. The conditioned air cooled by this heat exchange bypasses the condenser 29 by the action of the air mix door 27 and is then supplied as cooling to the vehicle interior.

[車両用空調装置11の暖房モード運転時の動作]
図3は、本発明の実施形態に係る車両用空調装置11を暖房モードで運転した際の冷媒の流れを表す説明図である。
車両用空調装置11を暖房モードで運転する場合には、制御装置17は、エバポレータ25を通過した空調空気がコンデンサ29を通過する(迂回させない)ように、エアミックスドア27を図3に示す暖房位置に位置決めする。また、制御装置17は、図3に示すように、冷房用第1電磁弁43を閉状態とし、冷房用第2電磁弁49を閉状態とし、暖房用電磁弁51を開状態とする制御を行う。
[Operation of vehicle air conditioner 11 during heating mode operation]
FIG. 3 is an explanatory diagram showing the flow of the refrigerant when the vehicle air conditioner 11 according to the embodiment of the present invention is operated in the heating mode.
When the vehicle air conditioner 11 is operated in the heating mode, the controller 17 heats the air mix door 27 shown in FIG. 3 so that the conditioned air that has passed through the evaporator 25 passes through the condenser 29 (does not bypass). Position to position. Further, as shown in FIG. 3, the control device 17 controls the first electromagnetic valve 43 for cooling to be closed, the second electromagnetic valve 49 for cooling to be closed, and the electromagnetic valve 51 for heating to be opened. Do.

ヒートポンプサイクル15において、コンプレッサ41から吐出された高温高圧の冷媒がコンデンサ29に流入する。コンデンサ29は、その内部を流れる高温高圧の冷媒とダクト21内の空調空気との間で熱交換を行なう。これにより、コンデンサ29を通過する空調空気を昇温する。   In the heat pump cycle 15, the high-temperature and high-pressure refrigerant discharged from the compressor 41 flows into the condenser 29. The condenser 29 exchanges heat between the high-temperature and high-pressure refrigerant flowing through the condenser 29 and the conditioned air in the duct 21. Thereby, the temperature of the conditioned air passing through the condenser 29 is increased.

コンデンサ29で熱交換された冷媒が暖房用減圧弁45に流入する。暖房用減圧弁45は、コンデンサ29から排出された冷媒を減圧して膨張させた後、低温低圧の気液2相(液相リッチ)の霧状の冷媒として室外熱交換器47に吐出する。室外熱交換器47は、その内部に流入する低温の冷媒を温めるように車室外雰囲気から吸熱する。これにより、低温の冷媒を昇温する。   The refrigerant heat-exchanged by the condenser 29 flows into the heating pressure reducing valve 45. The heating pressure reducing valve 45 decompresses and expands the refrigerant discharged from the condenser 29, and then discharges it to the outdoor heat exchanger 47 as a low-temperature low-pressure gas-liquid two-phase (liquid phase rich) mist refrigerant. The outdoor heat exchanger 47 absorbs heat from the outside atmosphere so as to warm the low-temperature refrigerant flowing into the outdoor heat exchanger 47. Thereby, the temperature of the low-temperature refrigerant is increased.

室外熱交換器47で昇温された冷媒が、開状態の暖房用電磁弁51、及び暖房用冷媒配管39を介して気液分離器55に流入する。気液分離器55は、室外熱交換器47から排出された冷媒の気液を分離し、気相の冷媒(冷媒ガス)をコンプレッサ41に吸入させる。   The refrigerant whose temperature has been raised by the outdoor heat exchanger 47 flows into the gas-liquid separator 55 through the heating solenoid valve 51 and the heating refrigerant pipe 39 in the open state. The gas-liquid separator 55 separates the gas-liquid refrigerant discharged from the outdoor heat exchanger 47 and causes the compressor 41 to suck the gas-phase refrigerant (refrigerant gas).

前記したように、冷媒が気液の状態を変化させながら冷媒流通路35を流通する状況で、空調ユニット13のブロア23が駆動されると、空調ユニット13のダクト21内を空調空気が流れ、その空調空気がコンデンサ29を通過する際にコンデンサ29との間で熱交換がなされる。この熱交換により昇温された空調空気は、車室内に暖房として供給される。   As described above, when the blower 23 of the air conditioning unit 13 is driven in a situation where the refrigerant flows through the refrigerant flow passage 35 while changing the gas-liquid state, the conditioned air flows in the duct 21 of the air conditioning unit 13, When the conditioned air passes through the condenser 29, heat exchange is performed with the condenser 29. The conditioned air heated by this heat exchange is supplied to the passenger compartment as heating.

〔本発明の実施形態に係る車両用空調装置11の作用効果〕
次に、本発明の実施形態に係る車両用空調装置11の作用効果について説明する。
第1の観点に基づく車両用空調装置11は、コンプレッサ41によって圧縮した冷媒を室外熱交換器47で外気と熱交換し、当該熱交換後の冷媒を冷房用減圧弁53で減圧し、当該減圧後の冷媒をエバポレータ(冷房用室内熱交換器)25で空調空気と熱交換し、当該熱交換後の冷媒をコンプレッサ41に戻す冷房用冷媒回路と、コンプレッサ41によって圧縮した冷媒をコンデンサ(暖房用室内熱交換器)29で空調空気と熱交換し、当該熱交換後の冷媒を暖房用減圧弁45で減圧し、当該減圧後の冷媒を室外熱交換器47で外気と熱交換し、当該熱交換後の冷媒をコンプレッサ41に戻す暖房用冷媒回路と、を備え、冷房用冷媒回路及び暖房用冷媒回路がコンプレッサ41及び室外熱交換器47を共用するヒートポンプ式の車両用空調装置が前提となる。
室外熱交換器47の冷媒出口48には、冷房用減圧弁53及びエバポレータ25を経由してコンプレッサ41に接続される冷房用冷媒配管37と、冷房用減圧弁53及びエバポレータ25を迂回してコンプレッサ41に接続される暖房用冷媒配管39と、が選択的に切り換え可能に接続されている。
[Effects of the vehicle air conditioner 11 according to the embodiment of the present invention]
Next, the effect of the vehicle air conditioner 11 which concerns on embodiment of this invention is demonstrated.
The vehicle air conditioner 11 according to the first aspect exchanges heat between the refrigerant compressed by the compressor 41 and the outside air using the outdoor heat exchanger 47, and decompresses the refrigerant after the heat exchange using the cooling pressure reducing valve 53. The subsequent refrigerant exchanges heat with the conditioned air by an evaporator (cooling indoor heat exchanger) 25, and returns the refrigerant after the heat exchange to the compressor 41. The refrigerant compressed by the compressor 41 is a condenser (for heating). The indoor heat exchanger) 29 exchanges heat with the conditioned air, the refrigerant after the heat exchange is decompressed by the heating pressure reducing valve 45, the refrigerant after the decompression is heat-exchanged with the outside air by the outdoor heat exchanger 47, and the heat A heating refrigerant circuit for returning the refrigerant after replacement to the compressor 41, and a heat pump vehicle air conditioner in which the cooling refrigerant circuit and the heating refrigerant circuit share the compressor 41 and the outdoor heat exchanger 47 There is a premise.
The refrigerant outlet 48 of the outdoor heat exchanger 47 bypasses the cooling refrigerant pipe 37 connected to the compressor 41 via the cooling pressure reducing valve 53 and the evaporator 25, and bypasses the cooling pressure reducing valve 53 and the evaporator 25. A heating refrigerant pipe 39 connected to 41 is connected to be selectively switchable.

ヒートポンプ式の車両用空調装置11では、暖房用冷媒配管39の内側壁に作用する冷媒の圧力は、冷房用冷媒配管37の内側壁に作用する冷媒の圧力と比べて低い。
そこで、本発明の実施形態に係る車両用空調装置11では、室外熱交換器47の冷媒出口48bに連なる暖房用冷媒配管39の内径は、冷媒出口48aに連なる冷房用冷媒配管37の内径と比べて大きい寸法に設定されている。
これにより、暖房モード運転時における暖房用冷媒配管39での圧力損失を抑制して、暖房モードでの運転効率の向上を図っている。
In the heat pump vehicle air conditioner 11, the pressure of the refrigerant acting on the inner wall of the heating refrigerant pipe 39 is lower than the pressure of the refrigerant acting on the inner wall of the cooling refrigerant pipe 37.
Therefore, in the vehicle air conditioner 11 according to the embodiment of the present invention, the inner diameter of the heating refrigerant pipe 39 connected to the refrigerant outlet 48b of the outdoor heat exchanger 47 is compared with the inner diameter of the cooling refrigerant pipe 37 connected to the refrigerant outlet 48a. Are set to large dimensions.
Thereby, the pressure loss in the heating refrigerant pipe 39 during the heating mode operation is suppressed, and the operation efficiency in the heating mode is improved.

第1の観点に基づく車両用空調装置11によれば、暖房モードでの運転効率を向上することができる。   According to the vehicle air conditioner 11 based on a 1st viewpoint, the driving | operation efficiency in heating mode can be improved.

また、第2の観点に基づく車両用空調装置11は、第1の観点に基づく車両用空調装置11であって、室外熱交換器47の冷媒出口48は、図4、図5に示すように、室外熱交換器47の冷媒入口46と比べて鉛直方向上方側に位置している。冷媒出口48は、図4、図5に示すように、冷房用冷媒配管37が連なる冷房用冷媒出口48aと、暖房用冷媒配管39が連なる暖房用冷媒出口48bと、からなる。暖房用冷媒出口48bは、冷房用冷媒出口48aと比べて鉛直方向上方側に位置している。   Moreover, the vehicle air conditioner 11 based on a 2nd viewpoint is the vehicle air conditioner 11 based on a 1st viewpoint, Comprising: The refrigerant | coolant exit 48 of the outdoor heat exchanger 47 is as shown in FIG. 4, FIG. It is located on the upper side in the vertical direction as compared with the refrigerant inlet 46 of the outdoor heat exchanger 47. As shown in FIGS. 4 and 5, the refrigerant outlet 48 includes a cooling refrigerant outlet 48 a connected to the cooling refrigerant pipe 37 and a heating refrigerant outlet 48 b connected to the heating refrigerant pipe 39. The heating refrigerant outlet 48b is located on the upper side in the vertical direction as compared with the cooling refrigerant outlet 48a.

ヒートポンプ式の車両用空調装置11では、冷房モード運転時において、室外熱交換器47には、コンプレッサ41から吐出された高温高圧の(液相リッチ)冷媒が冷媒入口46を介して流入する。
このとき、仮に、図4に示す暖房用冷媒出口48bの位置(冷媒入口46から離隔した鉛直方向上方側に位置)に、冷房用冷媒出口48aを設けたとする(比較例1)。この比較例1では、図4に示す網掛け領域付近に液冷媒が溜まり、冷媒の円滑な流通を妨げるという問題があった。これは、冷媒入口46及び冷房用冷媒出口48aの間隔が離れていることが主たる要因であると考えられた。
そこで、第2の観点に基づく車両用空調装置11では、図4に示すように、冷媒入口46に近接した鉛直方向上方側の位置に、冷房用冷媒出口48aを設けることとした。
In the heat pump vehicle air conditioner 11, the high-temperature and high-pressure (liquid phase rich) refrigerant discharged from the compressor 41 flows into the outdoor heat exchanger 47 through the refrigerant inlet 46 during the cooling mode operation.
At this time, it is assumed that the cooling refrigerant outlet 48a is provided at the position of the heating refrigerant outlet 48b shown in FIG. 4 (position on the upper side in the vertical direction apart from the refrigerant inlet 46) (Comparative Example 1). In Comparative Example 1, there is a problem that liquid refrigerant accumulates in the vicinity of the shaded area shown in FIG. 4 and hinders smooth circulation of the refrigerant. It was considered that this was mainly due to the separation between the refrigerant inlet 46 and the cooling refrigerant outlet 48a.
Therefore, in the vehicle air conditioner 11 based on the second aspect, as shown in FIG. 4, a cooling refrigerant outlet 48 a is provided at a position on the upper side in the vertical direction close to the refrigerant inlet 46.

一方、ヒートポンプ式の車両用空調装置11では、暖房モード運転時において、室外熱交換器47には、暖房用減圧弁45から吐出された低温低圧の気液2相(液相リッチ)の霧状の冷媒が冷媒入口46を介して流入する。
このとき、仮に、図5に示す冷房用冷媒出口48aの位置(冷媒入口46に近接した鉛直方向上方側の位置)に、暖房用冷媒出口48bを設けたとする(比較例2)。この比較例2では、図5に示す網掛け領域付近にガス冷媒が流れづらい部位が生じ、冷媒の円滑な流通を妨げるという問題があった。これは、冷媒入口46及び暖房用冷媒出口48bの間隔が近接していることが主たる要因であると考えられた。
そこで、第2の観点に基づく車両用空調装置11では、図5に示すように、冷媒入口46から離隔した鉛直方向上方側に位置に、暖房用冷媒出口48bを設けることとした。
On the other hand, in the heat pump type vehicle air conditioner 11, during the heating mode operation, the outdoor heat exchanger 47 has a low-temperature low-pressure gas-liquid two-phase (liquid-rich) mist discharged from the heating pressure reducing valve 45. Of the refrigerant flows through the refrigerant inlet 46.
At this time, it is assumed that the heating refrigerant outlet 48b is provided at the position of the cooling refrigerant outlet 48a shown in FIG. 5 (the position on the upper side in the vertical direction adjacent to the refrigerant inlet 46) (Comparative Example 2). In Comparative Example 2, there is a problem in that a portion in which the gas refrigerant does not flow easily is generated in the vicinity of the shaded area shown in FIG. 5 and the smooth circulation of the refrigerant is hindered. It was considered that this was mainly due to the close distance between the refrigerant inlet 46 and the heating refrigerant outlet 48b.
Therefore, in the vehicle air conditioner 11 based on the second aspect, as shown in FIG. 5, the heating refrigerant outlet 48 b is provided at a position on the upper side in the vertical direction separated from the refrigerant inlet 46.

要するに、第2の観点に基づく車両用空調装置11では、室外熱交換器47の冷媒出口48を、室外熱交換器47の冷媒入口46と比べて鉛直方向上方側に位置させると共に、暖房用冷媒出口48bを、冷房用冷媒出口48aと比べて鉛直方向上方側に位置させる構成を採用することとした。   In short, in the vehicle air conditioner 11 based on the second aspect, the refrigerant outlet 48 of the outdoor heat exchanger 47 is positioned above the refrigerant inlet 46 of the outdoor heat exchanger 47 in the vertical direction, and the heating refrigerant A configuration is adopted in which the outlet 48b is positioned on the upper side in the vertical direction compared to the cooling refrigerant outlet 48a.

第2の観点に基づく車両用空調装置11によれば、冷房モード運転時、及び暖房モード運転時において、室外熱交換器47における冷媒の流通を円滑に行わせる結果として、冷房モード及び暖房モードでの運転効率を向上させることができる。   According to the vehicle air conditioner 11 based on the second aspect, as a result of smooth circulation of the refrigerant in the outdoor heat exchanger 47 during the cooling mode operation and the heating mode operation, in the cooling mode and the heating mode. The driving efficiency can be improved.

また、第3の観点に基づく車両用空調装置11は、第1又は第2の観点に基づく車両用空調装置11であって、室外熱交換器47の冷媒出口48には、冷房用冷媒配管37及び暖房用冷媒配管39のうちいずれか一方の冷媒配管を開放するように選択的に切り換える冷房用第2電磁弁49、暖房用電磁弁(切換弁)51が設けられている。
冷房モードでは冷房用冷媒配管37を開放するように冷房用第2電磁弁(切換弁)49が選択的に切り換えられる一方、暖房モードでは暖房用冷媒配管39を開放するように暖房用電磁弁(切換弁)51が選択的に切り換えられる。
The vehicle air conditioner 11 based on the third aspect is the vehicle air conditioner 11 based on the first or second aspect, and is provided with a cooling refrigerant pipe 37 at the refrigerant outlet 48 of the outdoor heat exchanger 47. And a cooling second electromagnetic valve 49 and a heating electromagnetic valve (switching valve) 51 are provided for selectively switching one of the refrigerant pipes 39 for heating and the refrigerant pipe 39 for heating.
In the cooling mode, the second cooling solenoid valve (switching valve) 49 is selectively switched to open the cooling refrigerant pipe 37, while in the heating mode, the heating electromagnetic valve (switching valve) 49 is opened to open the heating refrigerant pipe 39. The switching valve) 51 is selectively switched.

第3の観点に基づく車両用空調装置11によれば、室外熱交換器47の冷媒出口48に対し、冷房用第2電磁弁49、暖房用電磁弁(切換弁)51を設ける際の具体的な構成を規定したため、本発明を好適に実施する際の障壁を下げることができる。   According to the vehicle air conditioner 11 based on the third aspect, a specific operation when the second cooling solenoid valve 49 and the heating solenoid valve (switching valve) 51 are provided to the refrigerant outlet 48 of the outdoor heat exchanger 47. Therefore, it is possible to lower the barrier when the present invention is suitably implemented.

〔その他の実施形態〕
以上説明した複数の実施形態は、本発明の具現化の例を示したものである。したがって、これらによって本発明の技術的範囲が限定的に解釈されることがあってはならない。本発明はその要旨またはその主要な特徴から逸脱することなく、様々な形態で実施することができるからである。
[Other Embodiments]
The plurality of embodiments described above show examples of realization of the present invention. Therefore, the technical scope of the present invention should not be limitedly interpreted by these. This is because the present invention can be implemented in various forms without departing from the gist or main features thereof.

例えば、本発明に係る実施形態の説明において、コンプレッサ41の下流側に冷房用第1電磁弁43を設け、冷房モード運転時において、コンプレッサ41で圧縮後の高温高圧の冷媒を、コンデンサ29及び暖房用減圧弁45の直列回路をバイパスして室外熱交換器47に送出する構成を例示して説明したが、本発明はこの例に限定されない。
冷房用第1電磁弁43は、これを省略することができる。この場合、冷媒の流れは、コンプレッサ41→コンデンサ29→暖房用減圧弁45→室外熱交換器47(以下省略)となる。この場合において、暖房用減圧弁45の弁開度を、暖房モード運転時の弁開度と比べて大きく設定することで、暖房用減圧弁45の上流側及び下流側間の圧力差が実質的に生じないように構成すればよい。
For example, in the description of the embodiment according to the present invention, the first electromagnetic valve 43 for cooling is provided on the downstream side of the compressor 41, and the high-temperature and high-pressure refrigerant compressed by the compressor 41 is replaced with the condenser 29 and the heating during the cooling mode operation. The configuration in which the series circuit of the pressure reducing valve 45 is bypassed and sent to the outdoor heat exchanger 47 is described as an example, but the present invention is not limited to this example.
The first electromagnetic valve 43 for cooling can be omitted. In this case, the flow of the refrigerant is as follows: compressor 41 → condenser 29 → heating pressure reducing valve 45 → outdoor heat exchanger 47 (hereinafter omitted). In this case, the pressure difference between the upstream side and the downstream side of the heating pressure reducing valve 45 is substantially set by setting the valve opening degree of the heating pressure reducing valve 45 to be larger than the valve opening degree during the heating mode operation. What is necessary is just to comprise so that it may not arise.

11 車両用空調装置
25 エバポレータ(冷房用室内熱交換器)
29 コンデンサ(暖房用室内熱交換器)
37 冷房用冷媒配管
39 暖房用冷媒配管
41 コンプレッサ
45 暖房用減圧弁
47 室外熱交換器
53 冷房用減圧弁
11 Vehicle air conditioner 25 Evaporator (Indoor heat exchanger for cooling)
29 Condenser (Indoor heat exchanger for heating)
37 Refrigerant piping for cooling 39 Refrigerant piping for heating 41 Compressor 45 Pressure reducing valve for heating 47 Outdoor heat exchanger 53 Pressure reducing valve for cooling

Claims (3)

コンプレッサによって圧縮した冷媒を室外熱交換器で外気と熱交換し、当該熱交換後の冷媒を冷房用減圧弁で減圧し、当該減圧後の冷媒を冷房用室内熱交換器で空調空気と熱交換し、当該熱交換後の冷媒を前記コンプレッサに戻す冷房用冷媒回路と、
前記コンプレッサによって圧縮した冷媒を暖房用室内熱交換器で空調空気と熱交換し、当該熱交換後の冷媒を暖房用減圧弁で減圧し、当該減圧後の冷媒を前記室外熱交換器で外気と熱交換し、当該熱交換後の冷媒を前記コンプレッサに戻す暖房用冷媒回路と、を備え、
前記冷房用冷媒回路及び前記暖房用冷媒回路が前記コンプレッサ及び前記室外熱交換器を共用するヒートポンプ式の車両用空調装置であって、
前記室外熱交換器の冷媒出口には、前記冷房用減圧弁及び前記冷房用室内熱交換器を経由して前記コンプレッサに接続される冷房用冷媒配管と、前記冷房用減圧弁及び前記冷房用室内熱交換器を迂回して前記コンプレッサに接続される暖房用冷媒配管と、が選択的に切り換え可能に接続され、
前記冷媒出口に連なる前記暖房用冷媒配管の内径は、前記冷媒出口に連なる前記冷房用冷媒配管の内径と比べて大きい寸法に設定されている
ことを特徴とする車両用空調装置。
The refrigerant compressed by the compressor exchanges heat with the outside air in the outdoor heat exchanger, the refrigerant after the heat exchange is decompressed by the cooling pressure reducing valve, and the refrigerant after the decompression is heat exchanged with the conditioned air by the cooling indoor heat exchanger. A cooling refrigerant circuit for returning the refrigerant after the heat exchange to the compressor,
The refrigerant compressed by the compressor exchanges heat with the conditioned air in the heating indoor heat exchanger, the refrigerant after the heat exchange is depressurized by the heating pressure reducing valve, and the refrigerant after the depressurization is exchanged with the outside air by the outdoor heat exchanger. A heating refrigerant circuit for exchanging heat and returning the refrigerant after the heat exchange to the compressor,
The cooling refrigerant circuit and the heating refrigerant circuit are heat pump type vehicle air conditioners that share the compressor and the outdoor heat exchanger,
At the refrigerant outlet of the outdoor heat exchanger, a cooling refrigerant pipe connected to the compressor via the cooling pressure reducing valve and the cooling indoor heat exchanger, the cooling pressure reducing valve and the cooling room A refrigerant pipe for heating that bypasses the heat exchanger and is connected to the compressor is connected to be selectively switchable,
The vehicle air conditioner characterized in that an inner diameter of the heating refrigerant pipe connected to the refrigerant outlet is set larger than an inner diameter of the cooling refrigerant pipe connected to the refrigerant outlet.
請求項1に記載の車両用空調装置であって、
前記室外熱交換器の冷媒出口は、当該室外熱交換器の冷媒入口と比べて鉛直方向上方側に位置しており、
当該冷媒出口は、前記冷房用冷媒配管が連なる冷房用冷媒出口と、前記暖房用冷媒配管が連なる暖房用冷媒出口と、からなり、
前記暖房用冷媒出口は、前記冷房用冷媒出口と比べて鉛直方向上方側に位置している
ことを特徴とする車両用空調装置。
The vehicle air conditioner according to claim 1,
The refrigerant outlet of the outdoor heat exchanger is located vertically above the refrigerant inlet of the outdoor heat exchanger,
The refrigerant outlet includes a cooling refrigerant outlet in which the cooling refrigerant pipe is continuous, and a heating refrigerant outlet in which the heating refrigerant pipe is continuous,
The heating refrigerant outlet is positioned on the upper side in the vertical direction as compared with the cooling refrigerant outlet.
請求項1又は2に記載の車両用空調装置であって、
前記室外熱交換器の冷媒出口には、前記冷房用冷媒配管及び前記暖房用冷媒配管のうちいずれか一方の冷媒配管を開放するように選択的に切り換える切換弁が設けられ、
前記冷房モードでは前記冷房用冷媒配管を開放するように前記切換弁が選択的に切り換えられる一方、暖房モードでは前記暖房用冷媒配管を開放するように前記切換弁が選択的に切り換えられる
ことを特徴とする車両用空調装置。
The vehicle air conditioner according to claim 1 or 2,
At the refrigerant outlet of the outdoor heat exchanger, a switching valve that selectively switches to open one of the cooling refrigerant pipe and the heating refrigerant pipe is provided,
In the cooling mode, the switching valve is selectively switched to open the cooling refrigerant pipe, while in the heating mode, the switching valve is selectively switched to open the heating refrigerant pipe. A vehicle air conditioner.
JP2017152344A 2017-08-07 2017-08-07 Vehicle air conditioner Active JP6853138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017152344A JP6853138B2 (en) 2017-08-07 2017-08-07 Vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017152344A JP6853138B2 (en) 2017-08-07 2017-08-07 Vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2019031148A true JP2019031148A (en) 2019-02-28
JP6853138B2 JP6853138B2 (en) 2021-03-31

Family

ID=65522865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017152344A Active JP6853138B2 (en) 2017-08-07 2017-08-07 Vehicle air conditioner

Country Status (1)

Country Link
JP (1) JP6853138B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347111A (en) * 1993-06-04 1994-12-20 Zexel Corp Cooling and heating cycle of air conditioner for vehicle
JP2011140291A (en) * 2010-01-11 2011-07-21 Denso Corp Air conditioner for vehicle
JP2013121763A (en) * 2011-12-09 2013-06-20 Sanden Corp Air conditioning device for vehicle
JP2013180743A (en) * 2012-03-05 2013-09-12 Honda Motor Co Ltd Vehicular air conditioner
JP2014009868A (en) * 2012-06-28 2014-01-20 Denso Corp Heat pump cycle
JP2014101019A (en) * 2012-11-20 2014-06-05 Panasonic Corp Vehicle heat pump device and vehicle air conditioner
US20150089967A1 (en) * 2013-09-27 2015-04-02 Hyundai Motor Company Heat pump system for vehicle
JP2017030724A (en) * 2015-08-04 2017-02-09 株式会社デンソー Heat pump system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347111A (en) * 1993-06-04 1994-12-20 Zexel Corp Cooling and heating cycle of air conditioner for vehicle
JP2011140291A (en) * 2010-01-11 2011-07-21 Denso Corp Air conditioner for vehicle
JP2013121763A (en) * 2011-12-09 2013-06-20 Sanden Corp Air conditioning device for vehicle
JP2013180743A (en) * 2012-03-05 2013-09-12 Honda Motor Co Ltd Vehicular air conditioner
JP2014009868A (en) * 2012-06-28 2014-01-20 Denso Corp Heat pump cycle
JP2014101019A (en) * 2012-11-20 2014-06-05 Panasonic Corp Vehicle heat pump device and vehicle air conditioner
US20150089967A1 (en) * 2013-09-27 2015-04-02 Hyundai Motor Company Heat pump system for vehicle
JP2017030724A (en) * 2015-08-04 2017-02-09 株式会社デンソー Heat pump system

Also Published As

Publication number Publication date
JP6853138B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP4505510B2 (en) Vehicle air conditioning system
US10457115B2 (en) Air conditioning system for vehicle
JP6218953B2 (en) Heat pump system for vehicles
US10479161B2 (en) Vehicle air-conditioning system
CN107848372B (en) Air conditioning system for vehicle
EP3623185B1 (en) Heat pump system for vehicle
KR20160087001A (en) Heat pump system for vehicle
JP2016011760A (en) Refrigeration cycle device
JP2016049915A (en) Vehicle air conditioner
CN108602414B (en) Air conditioning system for vehicle and control method thereof
JP2012096634A (en) Vehicle air conditioner with heat pump
KR20180076397A (en) Automotive air conditioning system
KR102456818B1 (en) Air conditioning system for vehicle
KR102401265B1 (en) Heat pump system for vehicle
JP5817660B2 (en) Refrigeration cycle equipment
KR102250000B1 (en) Heat pump system for vehicle
KR20170086726A (en) Air conditining system for vehicle
JP2012201215A (en) Heat exchange system
JP2014069639A (en) Refrigeration cycle device
KR101622631B1 (en) Heat pump system for vehicle and its control method
KR20160027527A (en) Heat pump system for vehicle
JP2019031148A (en) Vehicle air conditioner
KR20180011904A (en) Air conditioning system for vehicle
KR102456822B1 (en) Air conditioning system for vehicle
KR101578101B1 (en) Heat pump system for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210311

R150 Certificate of patent or registration of utility model

Ref document number: 6853138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150