JP2011132599A - 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法 - Google Patents

高圧縮強度ラインパイプ用溶接鋼管及びその製造方法 Download PDF

Info

Publication number
JP2011132599A
JP2011132599A JP2010261869A JP2010261869A JP2011132599A JP 2011132599 A JP2011132599 A JP 2011132599A JP 2010261869 A JP2010261869 A JP 2010261869A JP 2010261869 A JP2010261869 A JP 2010261869A JP 2011132599 A JP2011132599 A JP 2011132599A
Authority
JP
Japan
Prior art keywords
less
steel pipe
pipe
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010261869A
Other languages
English (en)
Other versions
JP5857400B2 (ja
Inventor
Kimihiro Nishimura
公宏 西村
Nobuyuki Ishikawa
信行 石川
Akihiko Tanizawa
彰彦 谷澤
Hitoshi Sueyoshi
仁 末吉
Masayuki Horie
正之 堀江
Yasumitsu Kiyoto
泰光 清都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010261869A priority Critical patent/JP5857400B2/ja
Publication of JP2011132599A publication Critical patent/JP2011132599A/ja
Application granted granted Critical
Publication of JP5857400B2 publication Critical patent/JP5857400B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0282Seam welding; Backing means; Inserts for curved planar seams for welding tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Abstract

【課題】鋼管成形での特殊な成形条件や、造管後の熱処理を必要とせず、鋼板の金属組織を最適化することで、バウシンガー効果による降伏応力低下を抑制し、圧縮強度の高い厚肉のラインパイプ用溶接鋼管を提供する。
【解決手段】質量%で、C:0.03〜0.10%、Si:0.30%以下、Mn:1.00〜2.00%、P:0.015%以下、S:0.003%以下、Al:0.080%以下、Nb:0.005〜0.035%、Ti:0.005〜0.020%を含有し、C(%)−0.065Nb(%)が0.025以上であり、Ceq値が0.3以上であり、残部がFe及び不可避的不純物からなる鋼管であり、金属組織がベイナイト分率:60%以上、加工フェライト分率:5%以下、島状マルテンサイト(MA)の分率:3%以下、MAの平均粒径:2μm以下、さらに、MAのアスペクト比:5以下であることを特徴とする、高圧縮強度ラインパイプ用溶接鋼管およびその製造方法。
【選択図】なし

Description

本発明は、石油や天然ガス輸送用のラインパイプに関するものであり、特に、高い耐コラプス性能が要求される厚肉の深海用ラインパイプへの使用に適した、高圧縮強度ラインパイプ用溶接鋼管およびその製造方法に関する。なお、本発明の圧縮強度は、特に断らない限り、圧縮降伏強度あるいは、0.5%圧縮耐力のことを言う。また、引張降伏強度は、特に断らない限り、引張降伏強度あるいは、0.5%引張耐力のことを言い、引張強度は、通常の定義通り引張試験時の最大応力のことを言う。
近年のエネルギー需要の増大に伴って、石油や天然ガスパイプラインの開発が盛んになっており、ガス田や油田の遠隔地化や輸送ルートの多様化のため、海洋を渡るパイプラインも数多く開発されている。海底パイプラインに使用されるラインパイプには水圧によるコラプス(圧潰)を防止するため、陸上パイプラインよりも管厚が厚いものが用いられ、また高い真円度が要求されるが、ラインパイプの材質としては外圧によって管周方向に生じる圧縮応力に対抗するため高い圧縮強度が必要となる。
海底パイプラインの設計にはDNV規格(OS F−101)が適用される場合が多いが、本規格では外圧によるコラプス圧力を決定する因子として、パイプの管径D、管厚t、真円度fおよび材料の引張降伏強度fyを用いてコラプス圧力が求められる。しかし、パイプのサイズと引張強度が同じであっても、パイプの製造方法によって圧縮強度が変化することから、引張降伏強度には製造方法によって異なる係数(αfab)が掛けられることになる。このDNV規格係数はシームレスパイプの場合は1.0すなわち引張降伏強度がそのまま適用できるが、UOEプロセスで製造されたパイプの場合は係数として0.85が与えられている。これは、パイプの圧縮強度が引張降伏強度よりも低下するためであるが、UOE鋼管は造管の最終工程で拡管プロセスがあり管周方向に引張変形が与えられた後に、使用環境においては圧縮を受けることになるため、バウシンガー効果によって圧縮強度が低下することがその要因となっている。よって、耐コラプス性能を高めるためには、パイプの圧縮強度を高めることが必要であるが、冷間成形で拡管プロセスを経て製造される鋼管の場合は、バウシンガー効果による圧縮降伏強度低下が問題となっていた。
UOE鋼管の耐コラプス性向上に関しては多くの検討がなされており、特許文献1には通電加熱で鋼管を加熱し拡管を行った後に一定時間以上温度を保持する方法が開示されている。この方法によれば、拡管によって導入された転位が除去分散されるために降伏強度が上昇するが、拡管後に5分以上通電加熱を続ける必要があり、生産性が劣る。また、同様に拡管後に加熱を行いバウシンガー効果による圧縮降伏強度の低下を回復させる方法として、特許文献2では鋼管外表面を内表面より高い温度に加熱することで、加工硬化により上昇した内面側の圧縮降伏強度を維持し、バウシンガー効果により低下した外表面側の圧縮降伏強度を上昇させる方法が、また、特許文献3にはNb、Tiを添加した鋼の鋼板製造工程で熱間圧延後の加速冷却をAr温度以上から300℃以下まで行い、UOEプロセスで鋼管とした後に80〜550℃に加熱を行う方法が提案されている。しかしながら、特許文献2の方法では鋼管の外表面と内表面の加熱温度と加熱時間を別々に管理することは実製造上、特に大量生産において品質を管理することは極めて困難であり、また、特許文献3の方法は鋼板製造における加速冷却停止温度を300℃以下の低い温度にする必要があるため、鋼板の歪が大きくなりUOEプロセスで鋼管とした場合の真円度が低下し、さらにはAr温度以上から加速冷却を行うために比較的高い温度で圧延を行う必要があり靱性が劣化するという問題があった。
一方、拡管後に加熱を行わずに鋼管の成形方法によって圧縮強度を高める方法としては、特許文献4にOプレス成型時の圧縮率をその後の拡管率よりも大きくする方法が開示されている。この方法によれば実質的に管周方向の引張予歪が無いためバウシンガー効果が発現されず高い圧縮強度が得られる。しかしながら、拡管率が低いと鋼管の真円度を維持することが困難となり鋼管の耐コラプス性能を劣化させることになりかねない。また、特許文献5には、圧縮強度の低いシーム溶接部近傍と溶接部から180°の位置の直径が鋼管の最大径となるようにすることで耐コラプス性能を高める方法が開示されている。しかし、実際のパイプラインの敷設時においてコラプスが問題になるのは海底に到達したパイプが曲げ変形を受ける部分(サグベンド部)であり、鋼管のシーム溶接部の位置とは無関係に円周溶接され海底に敷設されるため、シーム溶接部が長径になるようにしても実際上は何ら効果を発揮しない。
さらに、特許文献6には加速冷却後に再加熱を行い鋼板表層部の硬質第2相の分率を低減し、さらに、表層部と板厚中心部の硬度差を小さくし、板厚方向に均一な強度分布とすることによりバウシンガー効果による降伏応力低下が小さい鋼板が提案されている。
また、特許文献7には加速冷却後の再加熱処理において鋼板中心部の温度上昇を抑制しつつ鋼板表層部を加熱する、板厚が30mm以上の高強度耐サワーラインパイプ用鋼板の製造方法が提案されている。これによれば、DWTT性能の低下を抑制しつつ鋼板表層部の硬質第2相分率が低減されるため、鋼板表層部の硬度が低減し材質バラツキの小さな鋼板が得られるだけでなく、硬質第2相の低減によるバウシンガー効果の低下も期待される。
特開平9−49025号公報 特開2003−342639号公報 特開2004−35925号公報 特開2002−102931号公報 特開2003−340519号公報 特開2008−56962号公報 特開2009−52137号公報
しかし、特許文献6では加熱時に鋼板の中心部まで加熱を行う必要があり、DWTT性能の低下を招くため深海用の厚肉のラインパイプへの適用は困難であった。また、バウシンガー効果は結晶粒径や固溶炭素量等、様々な組織因子の影響を受けるため、特許文献7に記載の技術のように、単に硬質第2相の低減のみでは圧縮強度の高い鋼管は得られず、さらに開示されている再加熱条件では、セメンタイトの凝集粗大化やNbやCなどの炭化物形成元素の析出およびそれらに伴う固溶Cの低下により、優れた引張強度、圧縮強度およびDWTT性能のバランスを得ることが困難であった。また、高い圧縮強度と耐サワー性能との両立も困難であった。
本発明は上記事情に鑑みなされたもので、厚肉の海底パイプラインへ適用するために必要な高強度と優れた靱性を有するラインパイプであり、鋼管成形での特殊な成形条件や、造管後の熱処理を必要とせず、鋼板の金属組織を最適化することで、バウシンガー効果による圧縮強度の低下を抑制し、圧縮強度の高い厚肉のラインパイプ用鋼管を提供することを目的とする。また、さらに耐サワー性能にも優れた、圧縮強度の高い厚肉のラインパイプ用鋼板を提供することをもう一つの目的とする。
本発明者らは、バウシンガー効果抑制による圧縮強度向上と、強度・靱性を両立させるために種々の実験を試みた結果、以下の知見を得るに至った。
(1)バウシンガー効果による引張および圧縮強度低下は異相界面や硬質第2相での転位集積による逆応力(背応力とも言う)の発生が原因であり、その防止には、第一に転位の集積場所となる島状マルテンサイト(以下「MA」と称する場合もある)等の硬質第2相を低減することが効果的であり、硬質なMAの分率を一定量以下に低減する事で、バウシンガー効果による強度低下を抑制できる。
(2)加速冷却によって製造される高強度鋼、特に海底パイプラインに使われるような厚肉の鋼板は、必要な強度を得るために合金元素を多く含有するために焼入れ性が高く、MAの生成を完全に抑制することは困難である。しかし、ベイナイト組織を微細化し生成するMAを微細に分散させる事で第2相によるバウシンガー効果を抑制できる。さらに、粗大で伸長したMAは変形時の歪集中を生じやすいため、MAの最大径とアスペクト比を一定値以下にすることで、バウシンガー効果はさらに抑制される。
(3)MAの形状は鋼板製造時の熱間圧延及び加速冷却条件によって制御でき、未再結晶域で一定量以上の圧延により組織を微細化することで、第2相として生成するMAを微細に分散することができ、さらに、加速冷却停止温度を一定温度以上に制御することで伸長したMAの生成が抑制可能である。また、加速冷却停止温度が低下してMAが生成する場合は、その後の再加熱によってMAをセメンタイトに分解することができ、第2相によるバウシンガー効果を低減できる。
(4)金属組織に軟質なフェライト相が含まれる場合、ベイナイト相との界面での転位集積による逆応力を発生しバウシンガー効果による圧縮強度の低下を招くが、フェライトの分率を一定値以下とし、より悪影響のあるMAの分率を低減し、その形状を適切に制御することで、フェライトによる圧縮応力低下の影響を軽減できる。しかし、フェライト相が圧延によって加工を受けた加工フェライトになると、可動転位が増加し、フェライト/ベイナイト界面での転位集積も多くなるため、逆応力による圧縮強度の低下を促進する。
(5)鋼材のC量とNb等の炭化物形成元素の添加量を適正化し、固溶Cを十分に確保することで、転位と固溶Cの相互作用が生じ、荷重反転時の転位の移動を阻害し逆応力による強度低下が抑制される。
(6)鋼中にCuおよびCaを適正量含有させることにより、耐サワー性能を付与することができる。Cuは硫化水素を含む溶液中では、表面に皮膜を形成して、水素の侵入を抑制する。また、CaはSと介在物を形成し、水素誘起割れの起点となりやすいMnSの生成が抑制される。
本発明は、上記の知見に基づきなされたもので、
第一の発明は、質量%で、C:0.03〜0.10%、Si:0.30%以下、Mn:1.00〜2.00%、P:0.015%以下、S:0.003%以下、Al:0.080%以下、Nb:0.005〜0.035%、Ti:0.005〜0.020%を含有し、C(%)−0.065Nb(%)が0.025以上であり、下式で表されるCeq値が0.3以上であり、残部がFe及び不可避的不純物からなる鋼管であり、金属組織がベイナイト面積分率:60%以上、加工フェライト面積分率:5%以下、島状マルテンサイト(MA)の面積分率:3%以下、MAの平均粒径:2μm以下、さらに、MAのアスペクト比:5以下であることを特徴とする、高圧縮強度ラインパイプ用溶接鋼管。
Ceq=C(%)+Mn(%)/6+{Cr(%)+Mo(%)+V(%)}/5+{Cu(%)+Ni(%)}/15。なお、本式中、M(%)は元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。
第二の発明は、さらに質量%で、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下の中から選ばれる1種以上を含有し、C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%)が0.025以上であることを特徴とする第一の発明に記載の高圧縮強度ラインパイプ用溶接鋼管。なお、本式中、M(%)は元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。
第三の発明はさらに、質量%で、Cu:0.20〜0.40%、Ni:0.05〜1.00%、Ca:0.0005〜0.0035%、およびCr:0.50%以下、Mo:0.50%以下、V:0.10%以下の中から選ばれる1種以上を含有し、C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%)が0.025以上であることを特徴とする、耐サワー性能を有する、第一の発明に記載の高圧縮強度ラインパイプ用溶接鋼管。なお、本式中、M(%)は元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。
第四の発明は、第一の発明〜第三の発明のいずれか一つの発明に記載の成分を有する鋼を、1000〜1200℃に加熱し、未再結晶温度域の圧下率が60%以上、圧延終了温度がAr以上の熱間圧延を行い、引き続き、(Ar−30℃)以上の温度から10℃/秒以上の冷却速度で、鋼板表面温度が350〜550℃まで加速冷却を行うことにより製造した鋼板を用いて、冷間成形により鋼管形状とし、突き合せ部を溶接し、次いで拡管率が0.4%〜1.2%の拡管を施すことを特徴とする、高圧縮強度ラインパイプ用溶接鋼管の製造方法。
第五の発明は、第一の発明〜第三の発明のいずれか一つの発明に記載の成分を有する鋼を、1000〜1200℃に加熱し、未再結晶温度域の圧下率が60%以上、圧延終了温度がAr以上の熱間圧延を行い、引き続き、(Ar−30℃)以上の温度から10℃/秒以上の冷却速度で、鋼板表面温度が250〜550℃まで加速冷却を行い、引き続いて鋼板表面温度が550〜720℃で、かつ、鋼板中心温度が550℃未満となる再加熱を行うことにより製造した鋼板を用いて、冷間成形により鋼管形状とし、突き合せ部を溶接し、次いで拡管率が0.4%〜1.2%の拡管を施すことを特徴とする、高圧縮強度ラインパイプ用溶接鋼管の製造方法。
本発明によれば、海底パイプラインへ適用するために必要な高強度と優れた靱性を有し、さらに高圧縮強度を有するラインパイプ用溶接鋼管が得られる。
表1〜3のNo.8(鋼種F)において、拡管率を変化させた場合の、圧縮強度を示した図である。 表1〜3のNo.8(鋼種F)と同等の鋼板から切り出した丸棒引張試験片に繰返し載荷を加えることで求めた、拡管率相当の反転前予ひずみと背応力の関係を示した図である。
以下に本発明を実施するための形態について説明する。まず、本発明の構成要件の限定理由について説明する。なお、本発明では、以下に規定された各化学成分等の数値範囲の表記で、0が末尾となっていない数値で表記されている場合には、その次の桁の数値は、0が記載されているものとみなす。例えば、C:0.02〜0.06%は、C:0.020〜0.060%、Si:0.01〜0.5%は、Si:0.010〜0.50%と記載されていることを意味する。また、粒径サイズも5μm以下は、5.0μm以下であることを意味する。また、MA等の分率2%以下は、2.0%以下であることを意味する。
1.化学成分について
はじめに本発明の高強度高靱性鋼管が含有する化学成分の限定理由を説明する。なお、成分%は全て質量%を意味する。
C:0.03〜0.10%
Cは、加速冷却によって製造される鋼板の強度を高めるために最も有効な元素である。しかし、0.03%未満では十分な強度を確保できず、0.10%を超えると靭性を劣化させるだけでなく、MAの生成が促進されるため、圧縮強度の低下も招く。従って、C量を0.03〜0.10%の範囲内とする。より高い靱性と圧縮強度を得るためには、好ましくは、0.03〜0.080%の範囲内とする。
Si:0.30%以下
Siは脱酸のために添加する。この効果は0.01%以上で発揮されるが、0.30%を超えると母材靭性や溶接性を劣化させ、また母材のMAの生成も促進される。従ってSi量は0.30%以下の範囲とする。また、SiはCGHAZ(Coarse grain heat affected zone)やICCGHAZ(Inter−Critical CGHAZ)などのHAZ(Heat Affected Zone;溶接熱影響部)組織中のMA生成を顕著に促進する元素であるため、HAZ靱性確保のためには、より低い方が好ましい。HAZ組織のMAはSiの他に様々な焼入れ性元素の影響を受け、一般に母材でより高い強度を確保しようとするほど、焼入れ性元素の添加量が多くなり、MAが増大する。そのため、HAZ靱性確保の観点からは、母材の強度が高いほど添加するSi量は少ない方がよく、X65(API 5L X65、引張降伏強度450MPa相当)程度の母材強度の場合は、0.15%以下、X70(API 5L X70、引張降伏強度480MPa相当)程度の母材強度の場合は0.09%以下にすることが望ましい。そこで、好ましくは、0.15%以下とする。さらに好ましくは、0.01〜0.09%である。
Mn:1.00〜2.00%
Mnは鋼の強度および靭性の向上のため添加するが1.00%未満ではその効果が十分ではなく、2.00%を超えると溶接部の靭性と耐HIC性能が劣化する。従って、Mn量は1.00〜2.00%の範囲とする。好ましくは、1.30〜2.00%である。一方で、Mnは、HAZ組織中の粒界フェライトの生成を抑制することで靱性を改善する効果があるため、HAZ靱性確保のためには1.50%を超えて添加していることが望ましい。そのため、さらに好ましくは1.50%超2.00%以下である。
P:0.015%以下
Pは不可避的不純物元素であり、鋼材の靱性を劣化する。特に、溶接熱影響部の硬さを上昇させるため、溶接熱影響部の靱性を顕著に劣化させる。従って、P量を0.015%以下とする。好ましくは、0.008%以下とする。
S:0.003%以下
Sは、鋼中においてはMnS系の介在物となり、衝撃破壊時のボイド発生起点として作用するため、シャルピー衝撃試験での吸収エネルギー低下の原因となる。従って、S量を0.003%以下とする。より高い吸収エネルギーが要求される場合は、S量をさらに低下することが有効であり、好ましくは0.0015%以下とする。
Al:0.080%以下
Alは脱酸剤として添加される。この効果は0.01%以上で発揮されるが、0.080%を超えると清浄度の低下により延性を劣化させる。従って、Al量は0.080%以下とする。好ましくは、0.010〜0.040%である。
Nb:0.005〜0.035%
Nbは、圧延時の粒成長を抑制し、微細粒化により靭性を向上させる。しかし、Nb量が0.005%未満ではその効果がなく、0.035%を超えると炭化物として析出し固溶C量を低下させ、バウシンガー効果が促進されるため高い圧縮強度が得られず、さらに、溶接熱影響部の靱性低下を招く。従って、Nb量は0.005〜0.035%の範囲とする。また、Nbはスラブ再加熱時に一度固溶することにより、その能力を発揮するが、Nb添加量が大きくなるほど、固溶させるのに必要なスラブ加熱温度が高くなる。一方で、DWTT性能を確保するためには、スラブ加熱温度は低い方がよいため、DWTT性能を確保できるスラブ加熱温度の範囲では、Nbを0.030%を超えて添加しても、その効果を十分に発揮できない。よって、好ましくは、0.005〜0.030%である。
Ti:0.005〜0.020%
Tiは、TiNを形成してスラブ加熱時の粒成長を抑制するだけでなく、溶接熱影響部の粒成長を抑制し、母材及び溶接熱影響部の微細粒化により靭性を向上させる。しかし、Ti量が0.005%未満ではその効果がなく、0.020%を超えると靭性を劣化させる。従って、Ti量は0.005〜0.020%の範囲とする。
C(%)−0.065Nb(%):0.025以上
本発明は固溶Cと転位との相互作用により逆応力発生を抑制することでバウシンガー効果を低減し、鋼管の圧縮強度を高めるものであり、有効な固溶Cを確保することが重要となる。一般に、鋼中のCはセメンタイトやMAとして析出するほか、Nb等の炭化物形成元素と結合し炭化物として析出し、固溶C量が減少する。このとき、C含有量に対してNb含有量が多すぎるとNb炭化物の析出量が多く十分な固溶Cが得られない。
しかし、C(%)−0.065Nb(%)が0.025以上であれば十分な固溶Cが得られるため、C含有量とNb含有量の関係式である、C(%)−0.065Nb(%)を0.025以上に規定する。好ましくは、0.028以上である。
C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%):0.025以上
本発明の選択元素であるMo及びVはNbと同様に炭化物を形成する元素であり、これらの元素も添加する場合には十分な固溶Cが得られる範囲で添加する必要がある。しかし、C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%)で表される関係式の値が0.025未満では固溶Cが不足するため、C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%)を0.025以上に規定する。さらに好ましくは、0.028以上である。なお、本式中、M(%)は元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。ここで、無添加の場合とは、元素の含有量が不可避不純物レベルの場合を含むものとする。
本発明では上記の化学成分の他に、さらに以下の元素を選択元素として任意に添加することができる。
Cu:0.50%以下
Cuは、靭性の改善と強度の上昇に有効な元素である。この効果は0.10%以上の添加で発揮されるが、0.50%を超えて添加すると溶接部の靭性が劣化する。従って、Cuを添加する場合は0.50%以下とする。
また、鋼が硫化水素を含む溶液にさらされると、表面から水素原子が侵入して内部で水素ガスとなってその内圧で水素誘起割れが発生する。鋼にCuを含有させると、硫化水素を含む溶液中では表面にCu皮膜を形成して、水素侵入量が少なくなり、その結果として、耐サワー性能が向上する。その効果は、Cuの含有量が0.20%以上の場合に発揮されるが、0.40%を超えて含有しても効果が飽和するので、より耐サワー性能の効果が必要な場合はCuの含有量は0.20〜0.40%に規定する。
Ni:1.00%以下
Niは、靭性の改善と強度の上昇に有効な元素である。この効果は0.10%以上の添加で発揮されるが、1.00%を超えて添加すると溶接部の靭性が劣化する。従って、Niを添加する場合は1.00%以下とする。
また、Cuが添加されている場合には、加熱割れを防ぐためにNiを同時に含有させることが有効である。この割れ抑制のためには少なくとも0.05%の含有が必要である。したがって、加熱割れを特に防止する場合には、Ni:0.05〜1.00%が好ましい。さらに好ましくは、0.80%以下である。
Cr:0.50%以下
Crは、焼き入れ性を高めることで強度の上昇に有効な元素である。この効果は0.10%以上の添加で発揮されるが、0.50%を超えて添加すると溶接部の靭性を劣化させる。従って、Crを添加する場合は0.50%以下とする。さらに好ましくは、0.30%以下である。
Mo:0.50%以下
Moは、靭性の改善と強度の上昇に有効な元素である。この効果は0.05%以上の添加で発揮されるが、0.50%を超えて添加すると溶接部の靭性が劣化する。従って、Moを添加する場合は0.50%以下とする。さらに好ましくは、0.30%以下である。
V:0.10%以下
Vは靭性を劣化させずに強度を上昇させる元素である。この効果は0.010%以上の添加で発揮されるが、0.10%を超えて添加するとNbと同様に炭化物として析出し固溶Cを減少させるため、Vを添加する場合は、0.10%以下とする。さらに好ましくは、0.060%以下である。
Ca:0.0005〜0.0035%
Caは硫化物系介在物の形態を制御し、延性を改善するために、また、耐サワー性能を向上させる上で、有効な元素であるが、0.0005%未満ではその効果がなく、0.0035%を超えて添加しても効果が飽和し、むしろ清浄度の低下により靱性を劣化させる。従って、Caを添加する場合は0.0005〜0.0035%の範囲とする。さらに好ましくは、0.0015〜0.0035%である。
Ceq値:0.3以上
Ceq=C(%)+Mn(%)/6+{Cr(%)+Mo(%)+V(%)}/5+{Cu(%)+Ni(%)}/15
Ceqは鋼の焼き入れ性指数であり、Ceq値が高いほど鋼材の引張強度および圧縮強度が高くなる。Ceq値が0.3未満では20mmを超える厚肉の鋼管において十分な強度が確保出来ないため、Ceq値は0.3以上とする。また、30mmを超える肉厚の鋼管において十分に強度を確保するためには、0.36以上にすることが望ましい。なお、Ceqが高いほど低温割れ感受性が増加し、溶接割れを助長するので、敷設船上などの過酷な環境でも予熱なしで溶接するために、上限を0.42とする。なお、本式中、M(%)は元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。ここで、無添加の場合とは、元素の含有量が不可避不純物レベルの場合を含むものとする。
なお、本発明の鋼の残部は実質的にFeであり、上記以外の元素及び不可避的不純物については、本発明の効果を損なわない限り含有することができる。なお、不可避的不純物として含有されるNは、Tiと結合しTiNとして鋼中に析出するが、ピンニング効果によりスラブ加熱時や溶接熱影響部の組織の粗大化防止に寄与するため、溶接熱影響部の高い靭性を特に要求される場合には、その含有量は0.0020〜0.0060%の範囲とすることが好ましい。
2.金属組織について
本発明における金属組織の限定理由を以下に説明する。以下金属組織およびMAの分率はすべて面積分率を意味する。また、金属組織は鋼管の内面側の板厚1/4の位置からサンプルを採取し、研磨後ナイタールによるエッチングを行い光学顕微鏡で観察により各金属組織の特定を行うことができる。そして、200倍で撮影した写真3〜5枚を用いて画像解析によりベイナイト、フェライト、加工フェライト等のそれぞれの金属組織の面積分率を求めることができる。
ベイナイト面積分率:60%以上
バウシンガー効果を抑制し高い圧縮強度をえるためには軟質なフェライト相や硬質な第2相の少ない均一な組織とし、変形時の組織内部で生じる局所的な転位の集積を抑制することが必要である。そのため、ベイナイト主体の組織とする。その効果を得るためにはベイナイトの分率が60%以上必要である。さらに、高い圧縮強度が必要な場合はベイナイト分率を80%以上とすることが望ましい。
加工フェライト面積分率:5%以下
フェライト相が圧延によって加工を受けた加工フェライトになると、可動転位が増殖しフェライト/ベイナイト界面での転位集積も多くなるため、逆応力による圧縮強度の低下を促進する。しかし、加工フェライト分率が5%以下であればその影響が小さく圧縮強度の低下も生じないため、加工フェライト分率を5%以下に規定する。フェライト相と加工フェライトとは組織観察で判別ができる。例えば、後述するようにフェライト粒の内部に変形帯が見られる粒を加工フェライトとしてその面積分率を求めることができる。
島状マルテンサイト(MA)の面積分率:3%以下
島状マルテンサイト(MA)は非常に硬質な相であり、変形時に局所的な転位の集積を促進し、バウシンガー効果により圧縮強度の低下を招くため、その分率を厳しく制限する必要がある。しかし、MAの分率が3%以下ではその影響が小さく圧縮強度の低下も生じないため、島状マルテンサイト(MA)の分率を3%以下に規定する。MAの分率は、ナイタールエッチング後に電解エッチング(2段エッチング)を行い、その後走査型電子顕微鏡(SEM)による観察を行い面積分率を求めることができる。
MAの平均粒径:2μm以下
上述のように、MAが変形時の局所的な転位集積を促進するが、MAのサイズが大きいほど局所的な歪集中が促進され大きな逆応力を発生し、圧縮強度の低下を招く。しかし、MAの平均粒径が2μm以下であれば局所的な歪み集中が分散されるため、歪み集中量も少なくなりバウシンガー効果の発生がさらに抑制される。よって、MAの平均粒子径を2μm以下に規定する。好ましくは、1μm以下とする。ここで、平均粒子径とは画像解析により得られる円相当径とする。
MAのアスペクト比:5以下
MAがアスペクト比の大きな伸長した形状を有している場合、その先端部での局所的な歪み集中を招き、圧縮強度が低下する。しかし、MAのアスペクト比が5以下であればその影響が小さいため、MAのアスペクト比を5以下に規定する。ここで、1000倍で撮影した写真から画像解析によってMAの面積分率とともに平均粒径及びアスペクト比を求めた。なお、アスペクト比は、個々のMAの長辺(あるいは、最大長さ部)をそれに90度交差する方向の最大辺(あるいは、最大長さ部)で割った値の平均値である。MAのアスペクト比を5以下とするには、前述した化学成分と後述する製造条件を限定することが必要である。特に、化学成分では、MAの生成を促進する作用があるCおよびSiの含有量を限定すること、製造条件では未再結晶域での圧下による組織微細化や加速冷却停止温度の下限温度を管理することが必要である。
本発明の鋼管は、金属組織として上記の特徴を有することで高い圧縮強度が得られるが、上記以外の、セメンタイト、パーライト、マルテンサイト等の組織は、それらの分率の合計が5%以下であれば何ら悪影響を及ぼさないため、含有することができる。
一般に加速冷却を適用して製造された鋼板の金属組織は、鋼板の板厚方向で異なる場合がある。外圧を受ける鋼管のコラプスは周長の小さな鋼管内面側の塑性変形が先に生じることで起こるため、圧縮強度としては鋼管の内面側の特性が重要となり、一般に圧縮試験片は鋼管の内面側より採取する。
3.製造条件について
本発明の第4発明は、上述した化学成分を含有する鋼スラブを、加熱し熱間圧延を行った後、加速冷却を行う製造方法である。以下に、鋼板の製造条件の限定理由について説明する。なお、以下の温度は特に記載しない限り鋼板の表面温度を表す。
スラブ加熱温度:1000〜1200℃
スラブ加熱温度は、1000℃未満では十分な引張強度および圧縮強度が得られず、1200℃を超えると、靱性やDWTT特性が劣化する。従って、スラブ加熱温度1000〜1200℃の範囲とする。さらに優れたDWTT性能が要求される場合は、スラブ加熱温度の上限を1100℃にすることが望ましい。
未再結晶域の圧下率:60%以上
バウシンガー効果を低減するための微細なベイナイト組織と高い母材靱性を得るためには、熱間圧延工程において未再結晶温度域で十分な圧下を行う必要がある。さらに、圧延によって組織を微細化することで、第2相として生成するMAを微細に分散させることが可能である。しかし、圧下率が60%未満では効果が不十分であるため、未再結晶域で圧下率を60%以上とする。なお、圧下率は複数の圧延パスで圧延を行う場合はその累積の圧下率とする。また、未再結晶温度域はNb、Ti等の合金元素によって変化するが、本発明のNb及びTi添加量では950℃以下とすればよい。
圧延終了温度:Ar 以上
バウシンガー効果による強度低下を抑制するためには、金属組織をベイナイト分率が60%の組織としフェライト相の過度な生成を抑制する必要がある。さらに、フェライト相が圧延されて加工フェライトとなると、可動転位が増加することで転位集積による逆応力発生を促進し、圧縮強度の低下を招く。そのため、熱間圧延は、フェライト生成温度であるAr温度以上とする。なお、圧延終了温度の上限はとくに規定しないが、DWTT性能などの低温靱性を確保するためには、低い方が望ましい。したがって、より好ましくは、Ar以上820℃以下とする。さらに好ましくは、Ar以上800℃以下である。
なお、Ar温度は鋼の合金成分によって変化するため、それぞれの鋼で実験によって変態温度を測定して求めてもよいが、成分から下式(1)で求めることもできる。
Ar(℃)=910−310C(%)−80Mn(%)−20Cu(%)−15Cr(%)−55Ni(%)−80Mo(%)・・・・・(1)
なお、本式中、M(%)は元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。ここで、無添加の場合とは、元素の含有量が不可避不純物レベルの場合を含むものとする。
熱間圧延に引き続いて加速冷却を行う。加速冷却の条件は以下の通りである。
冷却開始温度:(Ar −30℃)以上
熱間圧延後の加速冷却によって金属組織をベイナイト主体の組織とするが、冷却開始温度がフェライト生成温度であるAr温度を下回ると、フェライトとベイナイトの混合組織となり、バウシンガー効果による強度低下が大きく圧縮強度が低下する。しかし、加速冷却開始温度が(Ar−30℃)以上であれば、フェライト分率が低くバウシンガー効果による強度低下も小さい。よって、冷却開始温度を(Ar−30℃)以上とする。
冷却速度:10℃/秒以上
加速冷却は高強度で高靱性の鋼板を得るために重要なプロセスであり、高い冷却速度で冷却することで変態強化による強度上昇効果が得られる。しかし、冷却速度が10℃/秒未満では十分な引張強度および圧縮強度が得られないだけでなく、Cの拡散が生じるため未変態オーステナイトへCの濃化が起こり、MAの生成量が多くなる。前述のようにMA等の硬質第2相によってバウシンガー効果が促進されるため、圧縮強度の低下を招く。しかし、冷却速度が10℃/秒以上であれば冷却中のCの拡散が少なく、MAの生成も抑制される。よって加速冷却時の冷却速度の下限を10℃/秒とする。
冷却停止温度:350〜550℃
加速冷却によってベイナイト変態が進行し必要な引張強度および圧縮強度が得られるが、冷却停止時の温度が550℃を超えると、ベイナイト変態が不十分であり、十分な引張強度および圧縮強度が得られない。また、ベイナイト変態が完了しないため、冷却停止後の空冷中に未変態オーステナイトへのCの濃縮が起こりMAの生成が促進される。一方、冷却停止時の鋼板平均温度が350℃未満では、ベイナイト変態だけでなく、マルテンサイト変態を生じ伸長したMAが生成され好ましくない。よって、冷却停止時の温度は350〜550℃の範囲とする。
本発明の第5発明は、加速冷却後の鋼板に再加熱処理を施すものであるが、以下に第4発明と異なる条件である再加熱条件の限定理由を主に説明する。
鋼板表面温度:550〜720℃
厚鋼板の加速冷却では鋼板表層部の冷却速度が速くまた鋼板内部に比べ表層部が低い温度まで冷却される。そのため、鋼板表層部にはMAが生成されやすい。このような硬質相はバウシンガー効果を促進するため、加速冷却後に鋼板の表層部を加熱しMAを分解することでバウシンガー効果による圧縮強度の低下を抑制することが可能となる。しかし、表面温度が550℃未満ではMAの分解が十分でなく、また720℃を超えると、鋼板中央部の加熱温度も上昇するため大きな強度低下をまねく。よって、加速冷却後にMAの分解を目的に再加熱を行う場合は、再加熱時の鋼板表面温度を550〜720℃の範囲とする。
鋼板表面温度の測定は、公知の温度計を常法に従い用いることができる。
鋼板中心温度:550℃未満
加速冷却後の再加熱によって、表層部のMAが分解され高い圧縮強度が得られるが、鋼板中央部の加熱温度が550℃以上になると、セメンタイトの凝集粗大化がおこりDWTT性能が劣化する。よって、加速冷却後の再加熱での鋼板中心温度は550℃未満とする。
ここで、再加熱時の鋼板中心温度は表面温度から熱伝導解析により求めることができる。また、加熱中は鋼板内部より鋼板表面の温度が高くなるが、加熱終了後すぐに表層部と中心部の温度差が小さくなるため、そのときの表面温度を鋼板中心温度として処理することができる。
加速冷却後の再加熱する手段としては、MAが多く存在する表層部のみを効率的に加熱出来る誘導加熱を用いることが望ましいが、これに限られることはなく熱処理炉を用いることもできる。また、再加熱による効果を得るには冷却停止時の温度よりも高い温度に加熱するのが有効であるため、再加熱時の鋼板中心温度は冷却停止時の温度よりも50℃以上高い温度とすることが好ましい。
冷却停止温度:250〜550℃
加速冷却後に再加熱が施される場合は、加速冷却によってMAが生成してもそれが無害化されるため、加速冷却停止温度は鋼板表面温度が250〜550℃とすることができる。ここで、加速冷却停止温度の下限を250℃としたのは、加速冷却停止温度が250℃を下回るとMAの生成量が多くなりすぎ、その後に再加熱を施してもMAの分率を3%以下とすることが困難になるためである。
本発明の第5発明によれば鋼板表面温度が550〜720℃でかつ、鋼板中心温度が550℃未満となる再加熱を行うことにより製造した鋼板を用いて鋼管を製造するので、第4発明と比べ高い圧縮強度が得られる。
本発明は上述の方法によって製造された鋼板を用いて鋼管となすが、鋼管の成形方法は、UOEプロセスやプレスベンド等の冷間成形によって鋼管形状に成形する。その後、シーム溶接するが、このときの溶接方法は十分な継手強度及び継手靱性が得られる方法ならいずれの溶接方法でもよいが、優れた溶接品質と製造能率の点からサブマージアーク溶接を用いることが好ましい。突き合せ部の溶接を行った後に、溶接残留応力の除去と鋼管真円度の向上のため、拡管を行う。このときの拡管率は、所定の鋼管真円度が得られ、残留応力が除去される条件として0.4%以上が必要である。また、拡管率が高すぎるとバウシンガー効果による圧縮強度の低下が大きくなるため、その上限を1.2%とする。また、通常の溶接鋼管の製造においては、真円度を確保することに力点をおいて拡管率を0.90〜1.20%の間に制御することが一般的であるが、圧縮強度を確保する上では、拡管率が低い方が望ましい。図1は、表1〜3のNo.8(鋼種F)において、拡管率を変化させた場合の、圧縮強度を示した図である。図1に示すように、拡管率を0.9%以下にすることで、顕著な圧縮強度の改善効果が見られるため、より好ましくは、0.4〜0.9%とする。さらに好ましくは、0.5〜0.8%である。なお、拡管率を0.9%以下にすることで、顕著な圧縮強度の改善効果がみられる理由は、図2に示すように、鋼材の背応力の発生挙動が低ひずみ域で顕著に増加し、その後1%程度から増加度が小さくなり、2.5%以上では飽和することに起因している。なお、図2は、表1〜3のNo.8(鋼種F)と同様の鋼板から切り出した丸棒引張試験片に繰返し載荷を加えることで求めた、拡管率相当の反転前予ひずみと背応力の関係を示した図である。
表1に示す化学成分の鋼(鋼種A〜N)を連続鋳造法によりスラブとし、これを用いて板厚22mm〜34mmの厚鋼板(No.1〜24)を製造した。鋼板製造条件を表2に示す。鋼板製造時の再加熱処理は、加速冷却設備と同一ライン上に設置した誘導加熱炉を用いて再加熱を行った。再加熱時の表層温度は誘導加熱炉出口での鋼板の表面温度であり、中心温度は加熱後の表層温度と中心温度がほぼ等しくなった時点での鋼板温度とした。これらの鋼板を用いて、UOEプロセスにより種々の外径の鋼管を製造した。鋼管製造時の拡管率も表2に示す。
Figure 2011132599
Figure 2011132599
以上のようにして製造した鋼管の引張特性は、管周方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。圧縮試験は鋼管の鋼管内面側の位置より管周方向に直径20mm、長さ60mmの試験片を採取し、圧縮試験を行い圧縮の降伏強度(あるいは0.5%耐力)を測定した。また、鋼管の管周方向より採取したDWTT試験片により延性破面率が85%となる温度を85%SATTとして求めた。DWTT試験は、管厚が30mm以上の場合は厚さ19mmの減厚試験片により試験を行った。溶接部靱性は、シーム溶接部の外面熱影響部よりシャルピー衝撃試験片を採取し、−30℃で3本のシャルピー試験を実施した時の平均の吸収エネルギーとした。金属組織は鋼管の内面側の板厚1/4の位置からサンプルを採取し、研磨後ナイタールによるエッチングを行い光学顕微鏡で観察を行った。そして、200倍で撮影した写真5枚を用いて画像解析によりベイナイト分率を求めた。フェライト相がある場合は、フェライト粒の内部に変形帯が見られる粒を加工フェライトとしてその面積分率を求めた。MAの観察は、ナイタールエッチング後に電解エッチング(2段エッチング)を行い、その後走査型電子顕微鏡(SEM)による観察を行った。そして、1000倍で撮影した写真から画像解析によってMAの面積分率、平均粒径及びアスペクト比を求めた。
No.20、21、22については、HIC試験(水素誘起割れ試験)を実施した。硫化水素を飽和させたpHが約5の人工海水の中に試験片を96時間浸漬した後、超音波探傷により試験片全面の割れの有無を調査し、割れ面積率(CAR)でその性能を評価した。各鋼管から3個の試験片を採取してHIC試験に供し、個々の試験片の割れ面積率の中で最大値をその鋼管を代表する割れ面積率とした。
鋼管の機械的特性を表3に示す。本発明例であるNo.1〜8、20〜24はいずれも、化学成分および製造方法及びミクロ組織が本発明の範囲内であり、圧縮強度が430MPa以上の高圧縮強度であり、DWTT特性及び溶接部靱性も良好であった。また、No.20、21、22は、さらに、HIC試験において割れ面積率が1%以下と優れた耐サワー性能を有している。
Figure 2011132599
一方、No.9〜14は、化学成分が本発明の範囲内であるが、製造方法が本発明の範囲外であるため、圧縮強度、DWTT特性または溶接部靱性のいずれかが劣っている。No.15〜19は化学成分が本発明外であるため強度、溶接部靱性が劣っているか、または圧縮強度が不足している。
本発明によれば、高い圧縮強度を有し、さらに優れたDWTT特性と溶接部靱性を有する厚肉の鋼管が得られるので、高い耐コラプス性能が要求される深海用ラインパイプへ適用することができる。さらに、耐サワー性能をも有する鋼管も製造することができる。

Claims (5)

  1. 質量%で、C:0.03〜0.10%、Si:0.30%以下、Mn:1.00〜2.00%、P:0.015%以下、S:0.003%以下、Al:0.080%以下、Nb:0.005〜0.035%、Ti:0.005〜0.020%を含有し、C(%)−0.065Nb(%)が0.025以上であり、下式で表されるCeq値が0.3以上であり、残部がFe及び不可避的不純物からなる鋼管であり、金属組織がベイナイト面積分率:60%以上、加工フェライト面積分率:5%以下、島状マルテンサイト(MA)の面積分率:3%以下、MAの平均粒径:2μm以下、さらに、MAのアスペクト比:5以下であることを特徴とする、高圧縮強度ラインパイプ用溶接鋼管。
    Ceq=C(%)+Mn(%)/6+{Cr(%)+Mo(%)+V(%)}/5+{Cu(%)+Ni(%)}/15。なお、上記式中、M(%)は元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。
  2. さらに質量%で、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下の中から選ばれる1種以上を含有し、C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%)が0.025以上であることを特徴とする請求項1に記載の高圧縮強度ラインパイプ用溶接鋼管。なお、本式中、M(%)は元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。
  3. さらに、質量%で、Cu:0.20〜0.40%、Ni:0.05〜1.00%、Ca:0.0005〜0.0035%、およびCr:0.50%以下、Mo:0.50%以下、V:0.10%以下の中から選ばれる1種以上を含有し、C(%)−0.065Nb(%)−0.025Mo(%)−0.057V(%)が0.025以上であることを特徴とする、耐サワー性能を有する、請求項1に記載の高圧縮強度ラインパイプ用溶接鋼管。なお、本式中、M(%)は元素Mの含有量(質量%)を示し、元素Mが無添加の場合は、0%として計算する。
  4. 請求項1〜3のいずれかの項に記載の成分を有する鋼を、1000〜1200℃に加熱し、未再結晶温度域の圧下率が60%以上、圧延終了温度がAr以上の熱間圧延を行い、引き続き、(Ar−30℃)以上の温度から10℃/秒以上の冷却速度で、鋼板表面温度が350〜550℃まで加速冷却を行うことにより製造した鋼板を用いて、冷間成形により鋼管形状とし、突き合せ部を溶接し、次いで拡管率が0.4%〜1.2%の拡管を施すことを特徴とする、高圧縮強度ラインパイプ用溶接鋼管の製造方法。
  5. 請求項1〜3のいずれかの項に記載の成分を有する鋼を、1000〜1200℃に加熱し、未再結晶温度域の圧下率が60%以上、圧延終了温度がAr以上の熱間圧延を行い、引き続き、(Ar−30℃)以上の温度から10℃/秒以上の冷却速度で、鋼板表面温度が250〜550℃まで加速冷却を行い、引き続いて鋼板表面温度が550〜720℃で、かつ、鋼板中心温度が550℃未満となる再加熱を行うことにより製造した鋼板を用いて、冷間成形により鋼管形状とし、突き合せ部を溶接し、次いで拡管率が0.4%〜1.2%の拡管を施すことを特徴とする、高圧縮強度ラインパイプ用溶接鋼管の製造方法。
JP2010261869A 2009-11-25 2010-11-25 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法 Active JP5857400B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261869A JP5857400B2 (ja) 2009-11-25 2010-11-25 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009267257 2009-11-25
JP2009267257 2009-11-25
JP2010261869A JP5857400B2 (ja) 2009-11-25 2010-11-25 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法

Publications (2)

Publication Number Publication Date
JP2011132599A true JP2011132599A (ja) 2011-07-07
JP5857400B2 JP5857400B2 (ja) 2016-02-10

Family

ID=44066682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261869A Active JP5857400B2 (ja) 2009-11-25 2010-11-25 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法

Country Status (6)

Country Link
US (1) US9089919B2 (ja)
EP (1) EP2505682B1 (ja)
JP (1) JP5857400B2 (ja)
KR (2) KR101511617B1 (ja)
CN (1) CN102666898A (ja)
WO (1) WO2011065579A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133476A (ja) * 2011-12-26 2013-07-08 Jfe Steel Corp 耐サワー特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板及びその製造方法
WO2015012317A1 (ja) * 2013-07-25 2015-01-29 新日鐵住金株式会社 ラインパイプ用鋼板及びラインパイプ
WO2015030210A1 (ja) 2013-08-30 2015-03-05 新日鐵住金株式会社 耐サワー性、耐圧潰特性及び低温靭性に優れた厚肉高強度ラインパイプ用鋼板とラインパイプ
JP2020012169A (ja) * 2018-07-19 2020-01-23 日本製鉄株式会社 ラインパイプ用厚鋼板およびその製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666898A (zh) 2009-11-25 2012-09-12 杰富意钢铁株式会社 高压缩强度优异的管线管用焊接钢管及其制造方法
EP2505681B1 (en) * 2009-11-25 2022-07-06 JFE Steel Corporation Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
KR101511614B1 (ko) * 2009-11-25 2015-04-13 제이에프이 스틸 가부시키가이샤 높은 압축 강도 및 내사우어성을 갖는 라인파이프용 용접 강관의 제조 방법
GB2508175B (en) * 2012-11-22 2015-06-24 Technip France Mechanically lined pipe
CN103008386B (zh) * 2012-11-30 2015-03-25 洛阳双瑞精铸钛业有限公司 一种厚径比直缝钛及钛合金焊管的制备方法
CN105102654B (zh) 2013-03-29 2017-08-25 杰富意钢铁株式会社 厚壁钢管用钢板、其制造方法以及厚壁高强度钢管
CN103436790B (zh) * 2013-08-29 2016-03-30 宝山钢铁股份有限公司 一种矿浆输送焊管管线用耐磨钢及其制造方法
CN103757540A (zh) * 2014-01-09 2014-04-30 鞍钢股份有限公司 一种出口s355j2加钛钢板及其生产方法
RU2653740C2 (ru) * 2014-03-31 2018-05-14 ДжФЕ СТИЛ КОРПОРЕЙШН Сталь для высокодеформируемых труб магистральных трубопроводов с высокой стойкостью к деформационному старению и водородному охрупчиванию, способ их изготовления и сварная стальная труба
CN106133175B (zh) 2014-03-31 2018-09-07 杰富意钢铁株式会社 耐应变时效特性和耐hic特性优良的高变形能力管线管用钢材及其制造方法以及焊接钢管
JP6386051B2 (ja) 2014-07-29 2018-09-05 株式会社東芝 X線管用回転陽極ターゲットの製造方法、x線管の製造方法、およびx線検査装置の製造方法
JP6276163B2 (ja) * 2014-10-31 2018-02-07 株式会社神戸製鋼所 高強度鋼板
CN105779904B (zh) * 2014-12-23 2018-02-27 鞍钢股份有限公司 一种低成本x80直缝焊管及其制备方法
US10697036B2 (en) 2015-03-16 2020-06-30 Jfe Steel Corporation Steel material for composite pressure vessel liner and steel pipe or tube for composite pressure vessel liner
JP6256652B2 (ja) * 2015-03-26 2018-01-10 Jfeスチール株式会社 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管
WO2016157862A1 (ja) * 2015-03-31 2016-10-06 Jfeスチール株式会社 高強度・高靭性鋼板およびその製造方法
CN107532253B (zh) 2015-03-31 2019-06-21 杰富意钢铁株式会社 高强度/高韧性钢板及其制造方法
WO2017094593A1 (ja) * 2015-12-04 2017-06-08 株式会社神戸製鋼所 溶接熱影響部の低温靭性劣化および溶接熱影響部の硬さを抑制した高降伏強度を有する非調質鋼板
EP3498875B1 (en) * 2016-08-12 2021-04-21 JFE Steel Corporation Composite pressure vessel liner, composite pressure vessel, and method for producing composite pressure vessel liner
KR102031447B1 (ko) 2017-12-22 2019-10-11 주식회사 포스코 열연강판 및 그 제조방법
EP3733879B1 (en) * 2018-01-30 2021-11-17 JFE Steel Corporation Steel material for line pipes, production method for same, and production method for line pipe
CN112313357B (zh) * 2018-06-29 2021-12-31 日本制铁株式会社 钢管和钢板
CN111041362B (zh) * 2019-12-16 2021-05-25 首钢集团有限公司 一种提高非调质螺栓钢包辛格效应的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340518A (ja) * 2002-05-24 2003-12-02 Nippon Steel Corp 圧潰強度に優れたuoe鋼管の製造方法
JP2006183133A (ja) * 2004-12-02 2006-07-13 Jfe Steel Kk 溶接熱影響部靭性に優れた高強度蒸気配管用鋼板の製造方法
JP2007119884A (ja) * 2005-10-31 2007-05-17 Jfe Steel Kk 中温域での強度に優れた高強度高靭性鋼材の製造方法
JP2008121036A (ja) * 2006-11-09 2008-05-29 Jfe Steel Kk 高強度高靱性鋼板の製造方法
JP2009052137A (ja) * 2007-07-31 2009-03-12 Jfe Steel Kk 高強度耐サワーラインパイプ用鋼板およびその製造方法および鋼管
WO2009061006A1 (ja) * 2007-11-07 2009-05-14 Jfe Steel Corporation ラインパイプ用鋼板及び鋼管
JP2009221534A (ja) * 2008-03-15 2009-10-01 Jfe Steel Corp ラインパイプ用鋼板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949025A (ja) 1995-08-07 1997-02-18 Sumitomo Metal Ind Ltd 耐コラプス性に優れたuoe鋼管の製造法
JP2002102931A (ja) 2000-09-28 2002-04-09 Kawasaki Steel Corp Uoe鋼管の製造方法
JP2003340519A (ja) 2002-05-24 2003-12-02 Nippon Steel Corp 圧潰強度に優れたuoe鋼管
JP4071995B2 (ja) 2002-05-24 2008-04-02 新日本製鐵株式会社 圧潰強度に優れたuoe鋼管の製造方法
JP4072009B2 (ja) 2002-07-01 2008-04-02 新日本製鐵株式会社 圧潰強度の高いuoe鋼管の製造方法
CA2527594C (en) 2003-06-12 2010-11-02 Jfe Steel Corporation Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe, and method for manufacturing the same
CA2644892C (en) 2006-03-16 2015-11-24 Sumitomo Metal Industries, Ltd. Steel plate for submerged arc welding
JP5098256B2 (ja) 2006-08-30 2012-12-12 Jfeスチール株式会社 耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板およびその製造方法
JP5094275B2 (ja) 2007-08-23 2012-12-12 ユニバーサル造船株式会社 シーチェスト
JP5217773B2 (ja) 2007-09-19 2013-06-19 Jfeスチール株式会社 溶接熱影響部靭性に優れた引張強度が570MPa以上760MPa以下の低温用高強度溶接鋼管およびその製造方法
EP2505681B1 (en) 2009-11-25 2022-07-06 JFE Steel Corporation Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
CN102666898A (zh) 2009-11-25 2012-09-12 杰富意钢铁株式会社 高压缩强度优异的管线管用焊接钢管及其制造方法
KR101511614B1 (ko) * 2009-11-25 2015-04-13 제이에프이 스틸 가부시키가이샤 높은 압축 강도 및 내사우어성을 갖는 라인파이프용 용접 강관의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340518A (ja) * 2002-05-24 2003-12-02 Nippon Steel Corp 圧潰強度に優れたuoe鋼管の製造方法
JP2006183133A (ja) * 2004-12-02 2006-07-13 Jfe Steel Kk 溶接熱影響部靭性に優れた高強度蒸気配管用鋼板の製造方法
JP2007119884A (ja) * 2005-10-31 2007-05-17 Jfe Steel Kk 中温域での強度に優れた高強度高靭性鋼材の製造方法
JP2008121036A (ja) * 2006-11-09 2008-05-29 Jfe Steel Kk 高強度高靱性鋼板の製造方法
JP2009052137A (ja) * 2007-07-31 2009-03-12 Jfe Steel Kk 高強度耐サワーラインパイプ用鋼板およびその製造方法および鋼管
WO2009061006A1 (ja) * 2007-11-07 2009-05-14 Jfe Steel Corporation ラインパイプ用鋼板及び鋼管
JP2009221534A (ja) * 2008-03-15 2009-10-01 Jfe Steel Corp ラインパイプ用鋼板

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133476A (ja) * 2011-12-26 2013-07-08 Jfe Steel Corp 耐サワー特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板及びその製造方法
WO2015012317A1 (ja) * 2013-07-25 2015-01-29 新日鐵住金株式会社 ラインパイプ用鋼板及びラインパイプ
CN105143489A (zh) * 2013-07-25 2015-12-09 新日铁住金株式会社 管线管用钢板和管线管
KR20150138301A (ko) * 2013-07-25 2015-12-09 신닛테츠스미킨 카부시키카이샤 라인 파이프용 강판 및 라인 파이프
KR101709887B1 (ko) 2013-07-25 2017-02-23 신닛테츠스미킨 카부시키카이샤 라인 파이프용 강판 및 라인 파이프
RU2623569C1 (ru) * 2013-07-25 2017-06-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн Толстолистовая сталь для магистральной трубы и магистральная труба
WO2015030210A1 (ja) 2013-08-30 2015-03-05 新日鐵住金株式会社 耐サワー性、耐圧潰特性及び低温靭性に優れた厚肉高強度ラインパイプ用鋼板とラインパイプ
JP2020012169A (ja) * 2018-07-19 2020-01-23 日本製鉄株式会社 ラインパイプ用厚鋼板およびその製造方法
JP7155703B2 (ja) 2018-07-19 2022-10-19 日本製鉄株式会社 ラインパイプ用厚鋼板およびその製造方法

Also Published As

Publication number Publication date
EP2505682A1 (en) 2012-10-03
US20120285576A1 (en) 2012-11-15
WO2011065579A1 (ja) 2011-06-03
CN102666898A (zh) 2012-09-12
KR20150013362A (ko) 2015-02-04
KR101681626B1 (ko) 2016-12-01
EP2505682A4 (en) 2013-05-08
JP5857400B2 (ja) 2016-02-10
KR101511617B1 (ko) 2015-04-13
US9089919B2 (en) 2015-07-28
EP2505682B1 (en) 2021-01-06
KR20120083935A (ko) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5857400B2 (ja) 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法
JP5561119B2 (ja) 高圧縮強度耐サワーラインパイプ用溶接鋼管及びその製造方法
JP5561120B2 (ja) 高圧縮強度高靭性ラインパイプ用溶接鋼管及びその製造方法
JP5782827B2 (ja) 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法
JP5782828B2 (ja) 高圧縮強度鋼管及びその製造方法
JP2015189984A (ja) 低降伏比高強度高靭性鋼板、低降伏比高強度高靭性鋼板の製造方法および鋼管
JP5786351B2 (ja) 耐コラプス性能の優れたラインパイプ用鋼管
JP6635231B2 (ja) ラインパイプ用鋼材およびその製造方法ならびにラインパイプの製造方法
JP5782830B2 (ja) 高圧縮強度鋼管及びその製造方法
JP6819835B1 (ja) ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法
CN111655872B (zh) 管线管用钢材及其制造方法以及管线管的制造方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150929

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5857400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250