CN107532253B - 高强度/高韧性钢板及其制造方法 - Google Patents

高强度/高韧性钢板及其制造方法 Download PDF

Info

Publication number
CN107532253B
CN107532253B CN201680019421.6A CN201680019421A CN107532253B CN 107532253 B CN107532253 B CN 107532253B CN 201680019421 A CN201680019421 A CN 201680019421A CN 107532253 B CN107532253 B CN 107532253B
Authority
CN
China
Prior art keywords
less
cooling
steel plate
plate thickness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680019421.6A
Other languages
English (en)
Other versions
CN107532253A (zh
Inventor
木村英之
安田恭野
石川信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp filed Critical NKK Corp
Publication of CN107532253A publication Critical patent/CN107532253A/zh
Application granted granted Critical
Publication of CN107532253B publication Critical patent/CN107532253B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

提供一种表面特性优异的具有高吸收能量的高强度/高韧性钢板。以质量%计,具有C:0.03~0.08%、Si:0.01~0.50%、Mn:1.5~2.5%、P:0.001~0.010%、S:0.0030%以下、Al:0.01~0.08%、Nb:0.010~0.080%、Ti:0.005~0.025%、N:0.001~0.006%,进而具有选自Cu:0.01~1.00%、Ni:0.01~1.00%、Cr:0.01~1.00%、Mo:0.01~1.00%、V:0.01~0.10%、B:0.0005~0.0030%中的1种以上,剩余部分由Fe和不可避免的杂质构成,关于表层部和板厚中央部,岛状马氏体的面积率小于3%,贝氏体的面积率为90%以上,并且在板厚中央部贝氏体中的渗碳体的平均粒径为0.5μm以下。

Description

高强度/高韧性钢板及其制造方法
技术领域
本发明涉及高强度/高韧性钢板及其制造方法,特别是涉及具有高强度、高却贝冲击吸收能量和优异的DWTT性能的适合于管道用钢管用原材料的高强度/高韧性钢板及其制造方法。
背景技术
对于作为天然气、原油等的输送用所使用的管道来说,为了提高基于高压化的输送效率、提高基于薄壁化的现场焊接施工效率,高强度化的要求变得非常高。特别是,对于输送高压气体的管道(下文中也记为高压气体管道)来说,不仅需要作为通常的结构用钢所要求的强度、韧性等材料特性,还需要与气体管道特有的耐断裂性相关的材料特性。
通常的结构用钢中的断裂韧性值表示对于脆性断裂的抵抗特性,作为为了在使用环境下不发生脆性断裂而设计的指标来使用。另一方面,对于高压气体管道来说,仅通过抑制脆性断裂来针对避免大规模的断裂并不充分,进一步还需要抑制被称为不稳定韧性断裂的韧性断裂。
该不稳定韧性断裂是在高压气体管道中韧性断裂沿着管轴方向以100m/s以上的速度传播的现象,由此可能产生达到几km的大规模断裂。因此,过去的由实际管气体破裂试验结果求出的为了抑制不稳定韧性断裂所需要的却贝冲击吸收能量值和DWTT(DropWeight Tear Test,落锤撕裂试验)试验值受到规定,要求高的却贝冲击吸收能量及优异的DWTT特性。需要说明的是,此处所说的DWTT试验值是指塑性断口率(延性破面率)达到85%的断口转变临界温度。
针对这样的要求,专利文献1中提出了一种钢管原材料用厚钢板及其制造方法,其在抑制了轧制终止后的空气冷却过程中的铁素体生成的成分体系中,使700℃以下的累积压下量为30%以上,从而形成织构发达的贝氏体主体的组织,同时,通过使在旧奥氏体晶粒边界存在的铁素体的面积率为5%以下,从而具有高的却贝冲击吸收能量和优异的DWTT特性。
专利文献2中提出了一种不产生裂口(セパレーション)的具有高吸收能量的板厚为15mm以下的高强度钢板的制造方法,其中,对于以质量%计含有C:0.03~0.1%、Mn:1.0~2.0%、Nb:0.01~0.1%、P≤0.01%、S≤0.003%、O≤0.005%的钢,在Ar3+80℃~950℃的温度范围中以累积压下率为50%以上的方式实施轧制,空气冷却片刻后,在Ar3~Ar3-30℃的温度范围中以累积压下量为10~30%的方式进行轧制,由此不使轧制织构发达,利用了加工铁素体。
专利文献3中提出了一种具有优异的韧性和高速韧性断裂特性的高张力钢板及其制造方法,其中,对于以质量%计C:0.02~0.1%、Si:0.6%以下、Mn:1.6~2.5%、Ni:0.1~0.7%、Nb:0.01~0.1%、Ti:0.005~0.03%、碳当量Pcm为0.180~0.220%所构成的钢,进行特定的连续铸造,由此降低了Mn的中心偏析,同时在特定的条件下实施热轧后,以10~45℃/s的冷却速度从Ar3-50℃以上的温度冷却至300~500℃的温度区域,根据需要以小于Ac1点实施回火,由此降低了表层部的岛状马氏体的分数及硬度。
专利文献4中提出了一种耐切断裂纹性和DWTT特性优异的高强度/高韧性厚钢板,其特征在于,对于以质量%计含有C:0.03~0.12%、Si≤0.5%、Mn:1.5~3.0%、Nb:0.01~0.08%、Ti:0.005~0.025%、进而含有Cu、Ni、Cr、Mo、V、B中的一种以上的钢,在950℃以下的奥氏体未再结晶温度区域以累积压下率≥67%进行热轧,之后,以20~80℃/s的冷却速度从600℃以上的冷却开始温度冷却至250℃以下的温度区域后,进行再加热处理至300~500℃为止,从而包含贝氏体或马氏体,在这些组织中存在的渗碳体的平均粒径为0.5μm以下。
现有技术文献
专利文献
专利文献1:日本特开2010-222681号公报
专利文献2:日本特开2003-96517号公报
专利文献3:日本特开2006-257499号公报
专利文献4:日本特开2013-057125号公报
发明内容
发明所要解决的课题
然而,作为适用于近年来的高压气体管道等的钢板,要求具有更高的强度且具有高韧性,具体而言,希望拉伸强度为625MPa以上、-40℃的却贝冲击吸收能量为375J以上、-40℃的DWTT试验中得到的塑性断口率为85%以上。另外,与这样的特性对应,也希望使表面特性更加优异。
专利文献1中,实施例中的却贝冲击试验是利用从板厚的1/4位置处采集的试验片实施的,因此,在轧制后的冷却速度慢的板厚中央部无法得到所期望的组织,担心特性劣化,作为管道用钢管原材料,对于不稳定韧性断裂的停止性能可能较低。
专利文献2中记载的技术需要在Ar3+80℃至950℃以下的温度区域以50%以上的累积压下量进行压下,之后至Ar3~Ar3-30℃的温度区域的轧制为止需要进行空气冷却,因而轧制时间长,轧制效率的降低令人担忧。另外,没有关于DWTT试验的记载,脆性断裂的传播停止性能差令人担忧。
专利文献3中,为了降低表层部的MA(岛状马氏体、Martensite-Austeniteconstituent(马氏体-奥氏体组元))比例及硬度,轧制后以10~45℃/s的冷却速度从Ar3-50℃以上的温度冷却至300~500℃的温度区域,根据需要以小于Ac1点实施了回火,但在未进行基于加热的回火处理时,需要对马氏体相变后的温度和之后的冷却过程进行控制,有时难以稳定地得到所期望的特性。另外,在实施了基于加热的回火的实施例(试验号9)中,DWTT中的85%FATT为-29℃,在假定于-40℃以下的极寒地区使用时,很难说是充分的。需要说明的是,专利文献3中记载的技术为了获得高强度和高韧性,使与表层部相比内部的组织实质上为铁素体和贝氏体的混合组织。但是,铁素体与贝氏体的界面会成为韧性裂缝或脆性裂缝的产生起点。因此,在假定了-40℃这样的更苛刻的使用环境时,不能说具有充分的却贝冲击吸收能量,作为管道用钢管原材料,对于不稳定韧性断裂的停止性能可能不足。实际上,专利文献3虽然利用-20℃的却贝冲击吸收能量进行了评价,但在假定于-40℃以下的极寒地区使用的情况下,仍然难以说高速韧性断裂特性是充分的。
关于专利文献4中记载的技术,从高强度化的方面出发,将钢板的微观组织进行贝氏体或马氏体组织化,因此使冷却停止温度为250℃以下。但是,冷却停止温度低的情况下,不仅有时会因冷却应变而导致板形状的劣化,而且在冷却速度快的表层部,硬度容易变得过高,因而在钢管制造时褶皱或裂纹等表面缺陷的产生令人担忧。
利用这样的专利文献1~4中记载的技术,无法实现稳定地制造拉伸强度为625MPa以上、-40℃的却贝冲击吸收能量为375J以上、-40℃的DWTT试验中得到的塑性断口率为85%以上、并且具有充分的表面特性的钢板。
因此,鉴于上述情况,本发明的目的在于提供一种母材的拉伸强度为625MPa以上、-40℃的却贝冲击吸收能量为375J以上、且-40℃的DWTT试验中得到的塑性断口率(SA值)为85%以上、表面特性优异的高强度/高韧性钢板及其制造方法。
用于解决课题的手段
本发明人对于影响到却贝冲击吸收能量、DWTT特性、表面特性的各种因素,以管道用钢板为对象进行了深入研究。结果发现,在含有C、Mn、Nb、Ti等的钢板中,
(1)对奥氏体未再结晶温度区域中的累积压下率、轧制温度进行控制,
(2)在轧制后的冷却工序中,适当地控制冷却开始温度和冷却停止温度进行,并且,
(3)适当地控制冷却开始温度至冷却停止温度的温度下降量(△T),
(4)进而在冷却后在特定的条件下实施再加热处理,
从而能够形成在表层部和板厚中央部也极力降低了岛状马氏体(Martensite-Austenite constituent、下文中也记为MA)的贝氏体主体的组织,进而能够将在板厚中央部的贝氏体中存在的渗碳体的平均粒径抑制为0.5μm以下。另外,其结果,发现可得到表层部与板厚中央部的维氏硬度差(△HV)小、具有高却贝冲击吸收能量、优异的DWTT特性、优异的表面特性的高强度/高韧性钢板。
本发明的要点如下。
[1]一种高强度/高韧性钢板,该钢板具有下述成分组成:以质量%计,含有C:0.03%以上0.08%以下、Si:0.01%以上0.50%以下、Mn:1.5%以上2.5%以下、P:0.001%以上0.010%以下、S:0.0030%以下、Al:0.01%以上0.08%以下、Nb:0.010%以上0.080%以下、Ti:0.005%以上0.025%以下、N:0.001%以上0.006%以下,进而含有选自Cu:0.01%以上1.00%以下、Ni:0.01%以上1.00%以下、Cr:0.01%以上1.00%以下、Mo:0.01%以上1.00%以下、V:0.01%以上0.10%以下、B:0.0005%以上0.0030%以下中的1种以上,剩余部分由Fe和不可避免的杂质构成,该钢板具有下述微观组织:该钢板的表层部和板厚中央部各自的岛状马氏体的面积率小于3%,进而所述钢板的表层部和板厚中央部各自的贝氏体的面积率为90%以上,并且在板厚中央部的贝氏体中存在的渗碳体的平均粒径为0.5μm以下,表层部和板厚中央部的维氏硬度差(△HV)为20以下。
[2]如上述[1]所述的高强度/高韧性钢板,其中,除了所述成分组成外,以质量%计进一步含有选自Ca:0.0005%以上0.0100%以下、REM:0.0005%以上0.0200%以下、Zr:0.0005%以上0.0300%以下、Mg:0.0005%以上0.0100%以下中的1种以上。
[3]一种高强度/高韧性钢板的制造方法,其为上述[1]或[2]所述的高强度/高韧性钢板的制造方法,该制造方法中,将钢坯加热至1000℃以上1250℃以下,在奥氏体再结晶温度区域轧制后,在奥氏体未再结晶温度区域进行累积压下率为60%以上的轧制,以770℃以上850℃以下的温度终止轧制,从750℃以上830℃以下的冷却开始温度以10℃/s以上80℃/s以下的冷却速度加速冷却至250℃以上400℃以下的冷却停止温度,使温度下降量(△T)为350℃以上,之后,立即以3℃/s以上的升温速度再加热至400℃以上500℃以下的温度。
需要说明的是,本发明中所说的表层部是指从钢板表面起在板厚方向上2mm以内的区域。另外,本发明中所说的板厚中央部是指板厚方向的3/8~5/8的区域(将板厚设为t时,从一个板表面起的板厚方向深度为3/8t~5/8t的区域)。本发明中,只要没有特别声明,则制造条件中的温度均为钢板平均温度。钢板平均温度由板厚、表面温度和冷却条件等通过模拟计算等求出。例如,使用差分法计算板厚方向的温度分布,由此求出钢板的平均温度。另外,本发明中所说的温度下降量(△T)是指冷却开始温度与冷却停止温度之差。
发明的效果
根据本发明,通过适当地控制轧制条件和轧制后的冷却条件,从而能够使表层部和板厚中央部的钢的微观组织为贝氏体主体,并且能够使在板厚中央部的贝氏体中存在的渗碳体的平均粒径为0.5μm以下,其结果,表层部与板厚中央部的维氏硬度差(△HV)为20以下,由此使表面特性优异,得到母材的拉伸强度为625MPa以上、-40℃的却贝冲击吸收能量为375J以上、且-40℃的DWTT试验中得到的塑性断口率(SA值)为85%以上的钢板,在工业上极其有益。
具体实施方式
下面,对本发明进行详细说明。
本发明的高强度/高韧性钢板具有下述成分组成:以质量%计,含有C:0.03%以上0.08%以下、Si:0.01%以上0.50%以下、Mn:1.5%以上2.5%以下、P:0.001%以上0.010%以下、S:0.0030%以下、Al:0.01%以上0.08%以下、Nb:0.010%以上0.080%以下、Ti:0.005%以上0.025%以下、N:0.001%以上0.006%以下,进而含有选自Cu:0.01%以上1.00%以下、Ni:0.01%以上1.00%以下、Cr:0.01%以上1.00%以下、Mo:0.01%以上1.00%以下、V:0.01%以上0.10%以下、B:0.0005%以上0.0030%以下中的1种以上,剩余部分由Fe和不可避免的杂质构成,该钢板具有下述微观组织:关于该钢板的表层部和板厚中央部各自,岛状马氏体的面积率小于3%,进而贝氏体的面积率为90%以上,并且在板厚中央部的贝氏体中存在的渗碳体的平均粒径为0.5μm以下,表层部和板厚中央部的维氏硬度差(△HV)为20以下。
首先,说明本发明的成分组成的限定理由。需要说明的是,关于成分的“%”表示是指质量%。
C:0.03%以上0.08%以下
C在加速冷却后形成贝氏体主体组织,有效地作用于基于相变强化的高强度化。但是,C量小于0.03%时,在冷却中容易产生铁素体相变、珠光体相变,因而有时无法得到特定量的贝氏体,无法得到所期望的拉伸强度(≥625MPa)。另一方面,若含有超过0.08%的量的C,则在加速冷却后容易生成硬质的马氏体,有时母材的却贝冲击吸收能量降低、或者DWTT特性变差。因此,C量为0.03%以上0.08%以下,优选为0.03%以上0.07%以下。
Si:0.01%以上0.50%以下
Si是脱氧所需要的元素,进而具有通过固溶强化而提高钢材强度的效果。为了得到这样的效果,需要含有0.01%以上的Si,优选含有0.05%以上,进一步优选含有0.10%以上。另一方面,若Si量超过0.50%,则容易生成可成为韧性裂缝或脆性裂缝的起点的岛状马氏体,因而焊接性和母材的却贝冲击吸收能量降低。因此,Si量为0.01%以上0.50%以下。需要说明的是,从防止钢管焊接区的软化和防止焊接热影响区的韧性劣化的方面出发,Si量优选为0.01%以上0.20%以下。
Mn:1.5%以上2.5%以下
Mn与C同样地在加速冷却后形成贝氏体主体组织,有效地作用于基于相变强化的高强度化。但是,Mn量小于1.5%时,在冷却中容易产生铁素体相变、珠光体相变,因而有时无法得到特定量的贝氏体,无法得到所期望的拉伸强度(≥625MPa)。另一方面,若含有超过2.5%的Mn,则Mn在铸造时不可避免地形成的偏析部变浓,在该部分引起却贝冲击吸收能量降低、或DWTT性能变差,因而Mn量为1.5%以上2.5%以下。需要说明的是,从提高韧性的方面出发,Mn量优选为1.5%以上2.0%以下。
P:0.001%以上0.010%以下
P是通过固溶强化而对钢板的高强度化有效的元素。但是,P量小于0.001%时,不仅其效果未得到体现,而且在制钢工序中有时会导致脱磷成本上升,因而P量为0.001%以上。另一方面,若P量超过0.010%,则韧性、焊接性显著变差。因此,P量为0.001%以上0.010%以下。
S:0.0030%以下
S除了会引起热脆性以外,还作为硫化物系夹杂物存在于钢中,是使韧性、延展性变差的有害元素。因此,优选极力降低S,本发明中S量的上限为0.0030%,优选为0.0015%以下。虽然没有特别的下限,但极度降低S会使制钢成本上升,因而优选为0.0001%以上。
Al:0.01%以上0.08%以下
Al是作为脱氧材料所含有的元素。另外,Al具有固溶强化能力,因而有效地作用于钢板的高强度化。但是,Al量小于0.01%时,无法得到上述效果。另一方面,Al量超过0.08%时,会引起原料成本的上升,并且有时使韧性变差。因此,Al量为0.01%以上0.08%以下,优选为0.01%以上0.05%以下。
Nb:0.010%以上0.080%以下
Nb对于析出强化或淬火性增大效果所引起的钢板的高强度化有效。另外,Nb具有扩大热轧时的奥氏体的未再结晶温度区域的效果,对于未再结晶奥氏体区域轧制的微细化效果所引起的韧性提高有效。为了得到这些效果,含有0.010%以上的Nb。另一方面,若Nb量超过0.080%,则在加速冷却后容易生成硬质的马氏体,有时母材的却贝冲击吸收能量降低、或者DWTT特性变差。另外,HAZ区(下文中也记为焊接热影响区)的韧性显著变差。因此,Nb量为0.010%以上0.080%以下,优选为0.010%以上0.040%以下。
Ti:0.005%以上0.025%以下
Ti在钢中形成氮化物(主要为TiN),特别是若含有0.005%以上的Ti,则因氮化物的钉扎效应而具有使奥氏体晶粒微细化的效果,有助于确保母材的韧性、确保焊接热影响区的韧性。另外,Ti是对析出强化所引起的钢板的高强度化有效的元素。为了得到这些效果,含有0.005%以上的Ti。另一方面,若含有超过0.025%的Ti,则TiN等粗大化,不能有助于奥氏体晶粒的微细化,无法获得韧性提高效果,而且粗大的TiN成为韧性裂缝或脆性裂缝的产生起点,因而,却贝冲击吸收能量显著降低,DWTT特性显著变差。因此,Ti量为0.005%以上0.025%以下,优选为0.008%以上0.018%以下。
N:0.001%以上0.006%以下
N与Ti形成氮化物,抑制奥氏体的粗大化,有助于韧性的提高。为了获得这样的钉扎效应,含有0.001%以上的N。另一方面,若N量超过0.006%,则在焊接区、特别是在固相线附近加热至1450℃以上的焊接热影响区TiN发生分解的情况下,固溶N所引起焊接热影响区的韧性有时变差。因此,N量为0.001%以上0.006%以下,在对焊接热影响区的韧性所要求的水平高的情况下,N量优选为0.001%以上0.004%以下。
本发明中,除了上述必要元素以外,进一步含有选自Cu、Ni、Cr、Mo、V、B中的1种以上作为可选元素。
Cu:0.01%以上1.00%以下、Cr:0.01%以上1.00%以下、Mo:0.01%以上1.00%以下
Cu、Cr、Mo均为淬火性提高元素,与Mn同样地得到低温相变组织,有助于母材或焊接热影响区的高强度化。为了得到该效果,需要含有0.01%以上。另一方面,Cu、Cr、Mo量分别超过1.00%时,高强度化的效果饱和。因此,在含有Cu、Cr、Mo的情况下,分别为0.01%以上1.00%以下。
Ni:0.01%以上1.00%以下
Ni也是淬火性提高元素,即便含有Ni,也不发生韧性的劣化,因而是有用的元素。为了得到该效果,需要含有0.01%以上的Ni。另一方面,Ni非常昂贵,而且若Ni量超过1.00%,则其效果饱和,因而在含有Ni的情况下,Ni为0.01%以上1.00%以下。
V:0.01%以上0.10%以下
V形成碳化物,是对于析出强化所引起的钢板的高强度化有效的元素,为了得到该效果,需要含有0.01%以上的V。另一方面,若V量超过0.10%,则碳化物量过剩,有时会导致韧性的降低。因此,在含有V的情况下,V为0.01%以上0.10%以下。
B:0.0005%以上0.0030%以下
B在奥氏体晶粒边界发生偏析,通过对铁素体相变进行抑制,从而特别有助于防止焊接热影响区的强度降低。为了得到该效果,需要含有0.0005%以上的B。另一方面,若B量超过0.0030%,则其效果饱和,因而在含有B的情况下,B为0.0005%以上0.0030%以下。
上述成分以外的剩余部分由Fe和不可避免的杂质构成,根据需要,可以含有选自Ca:0.0005%以上0.0100%以下、REM:0.0005%以上0.0200%以下、Zr:0.0005%以上0.0300%以下、Mg:0.0005%以上0.0100%以下中的1种以上。
Ca、REM、Zr、Mg具有固定钢中的S、使钢板的韧性提高的作用,通过含有0.0005%以上,可发挥出效果。另一方面,若含有超过0.0100%的Ca、超过0.0200%的REM、超过0.0300%的Zr、超过0.0100%的Mg,则钢中的夹杂物增加,有时使韧性劣化。因此,在含有这些元素的情况下,Ca为0.0005%以上0.0100%以下、REM为0.0005%以上0.0200%以下、Zr为0.0005%以上0.0300%以下、Mg为0.0005%以上0.0100%以下。
接着,对微观组织进行说明。
关于本发明的高强度/高韧性钢板的微观组织,为了稳定地得到表层部与板厚中央部的维氏硬度差(△HV)为20以下、母材的拉伸强度为625MPa以上、-40℃的却贝冲击吸收能量为375J以上、且-40℃的DWTT试验中得到的塑性断口率(SA值)为85%以上的特性,关于表层部和板厚中央部各自,需要具有以岛状马氏体的面积率小于3%的贝氏体组织为主体的组织,并且需要在板厚中央部的贝氏体中存在的渗碳体的平均粒径为0.5μm以下。此处,以贝氏体为主体的组织是指贝氏体的面积率为90%以上、实质上由贝氏体组织构成的情况。作为剩余部分组织,除了允许面积率小于3%的岛状马氏体以外,也可以包含铁素体、珠光体、马氏体等贝氏体以外的相,只要这些剩余部分组织的合计面积率为10%以下,就能够表现出本发明的效果。此处所说的表层部是指从钢板表面起在板厚方向上2mm以内的区域。另外,此处所说的板厚中央部是指板厚方向的3/8~5/8的区域(将板厚设为t时,从一个板表面起的板厚方向深度为3/8t~5/8t的区域)。
表层部和板厚中央部各自的岛状马氏体的面积率:小于3%
岛状马氏体的硬度高,会成为韧性裂缝、脆性裂缝的产生起点,因而在岛状马氏体的面积率为3%以上时,却贝冲击吸收能量、DWTT特性显著降低。另一方面,若岛状马氏体的面积率小于3%,则却贝冲击吸收能量不会降低,DWTT特性不会变差,因而本发明中对于表层部和板厚中央部各自,将岛状马氏体的面积率限定为小于3%。上述的岛状马氏体的面积率优选为2%以下。
表层部和板厚中央部各自的贝氏体的面积率:90%以上
贝氏体相为硬质相,对于通过相变组织强化而使钢板强度增加有效,通过形成贝氏体主体的组织,能够较高地稳定却贝冲击吸收能量、DWTT特性,同时能够实现高强度化。另一方面,贝氏体的面积率小于90%时,铁素体、珠光体、马氏体和岛状马氏体等剩余部分组织的合计面积率超过10%,在这种复合组织中,异相界面成为韧性裂缝或脆性裂缝的产生起点,因而有时无法得到目标却贝冲击吸收能量或DWTT特性。因此,本发明中,对于表层部和板厚中央部各自,贝氏体的面积率为90%以上,优选为95%以上。此处,贝氏体是指板条状的贝氏体铁素体,是其内部析出有渗碳体颗粒的组织。
在板厚中央部的贝氏体中存在的渗碳体的平均粒径:0.5μm以下
板厚中央部与表层或板厚的1/4位置相比,加速冷却时的冷却速度慢,因而容易发生渗碳体的粗大化。贝氏体中的渗碳体有时会成为韧性裂缝或脆性裂缝的起点,若渗碳体的平均粒径超过0.5μm,则却贝冲击吸收能量显著降低,DWTT特性显著变差。但是,板厚中央部的贝氏体中的渗碳体的平均粒径为0.5μm以下时,这些降低小,可以得到目标特性,因而渗碳体的平均粒径为0.5μm以下,优选为0.2μm以下。在表层或板厚的1/4位置处,加速冷却时的冷却速度比板厚中央部快,渗碳体也更加微细,因此对却贝冲击吸收能量的影响小。由此,本发明中,贝氏体中的渗碳体的平均粒径仅在板厚中央部进行限定。
此处,板厚中央部的贝氏体的面积率可以通过下述方式获得:从板厚的3/8~5/8的区域切割出样品,对L截面(与轧制方向平行的垂直截面)进行镜面研磨后,用硝酸乙醇进行腐蚀,利用扫描型电子显微镜(SEM)以2000倍的倍率随机地观察5个视野,由所拍摄的组织照片鉴定组织,通过图像分析求出贝氏体、马氏体、铁素体、珠光体等各相的面积率,由此求出。进而,对于相同的试样,利用电解蚀刻法(电解液:100ml蒸馏水+25g氢氧化钠+5g苦味酸)使岛状马氏体露出后,利用扫描型电子显微镜(SEM)以2000倍的倍率随机地观察5个视野,通过图像分析可以由所拍摄的组织照片求出岛状马氏体的面积率。此外,再次进行镜面研磨后,利用选择性低电位电解蚀刻法(电解液:10体积%乙酰丙酮+1体积%四甲基氯化铵甲醇)将渗碳体抽出后,利用SEM以2000倍的倍率随机地观察5个视野,对所拍摄的组织照片进行图像分析,可以将渗碳体颗粒的圆当量直径平均算出。
另外,关于表层部的贝氏体的面积率和岛状马氏体的面积率,由距离除去了表面氧化物(氧化皮)后的表面2mm以内的区域切割出样品,利用与上述板厚中央部同样的方法求出。
以上构成的本发明的具有高吸收能量的高强度/高韧性钢板具有下述特性。
(1)表层部与板厚中央部的维氏硬度差(△HV)为20以下:在轧制后的冷却速度快的钢板表层部,容易生成硬质的岛状马氏体,表面硬度上升。这种表面硬度的上升在应力集中容易发生于钢板表面的钢管制造时有时会成为褶皱或裂纹等表面缺陷的原因。另外,具有这种表面缺陷的钢管在应用于高压气体管道的情况下,表面缺陷会成为韧性断裂或脆性断裂的产生起点,引起大规模断裂,这令人担忧。因此,适当地控制表层部的硬度很重要,本发明中使表层部与板厚中央部的维氏硬度差(△HV)为20以下,优选使表层部的维氏硬度的绝对值为260以下。此处,表层部的维氏硬度如下获得:对L截面(与轧制方向平行的垂直断面)进行机械研磨,在从表层起板厚方向上2mm以内的区域(表层部)中,以负荷10kgf测定各10点的维氏硬度,求出其平均值。另外,关于板厚中央部的维氏硬度,在板厚方向的1/2t位置(板厚中央部)处进行同样的维氏硬度试验,求出两者的维氏硬度差(△HV),由此得到。
(2)母材的拉伸强度为625MPa以上:对于作为天然气、原油等的输送用所使用的管道来说,为了提高基于高压化的输送效率、提高基于薄壁化的现场焊接施工效率,高强度化的要求变得非常高。为了应对这些要求,本发明中使母材的拉伸强度为625MPa。此处,拉伸强度可以采取依照API-5L的拉伸方向为C方向的全厚拉伸试验片并实施拉伸试验来测定。需要说明的是,在本发明的组成和组织的情况下,母材的拉伸强度至850MPa左右为止可以没有问题地进行制造。
(3)-40℃的却贝冲击吸收能量为375J以上:在高压气体管道中已知会发生高速韧性断裂(不稳定韧性断裂),即,由于外因性的事故而产生的韧性裂缝在管轴方向以100m/s以上的速度传播,由此可能产生达到几km的大规模断裂。为了防止这样的高速韧性断裂,高吸收能量化是有效的,因此,本发明中-40℃的却贝冲击吸收能量为375J以上、优选为400J以上。此处,-40℃的却贝冲击吸收能量可以通过在-40℃实施依照ASTM A370的却贝冲击试验来测定。
(4)-40℃的DWTT试验中得到的塑性断口率(SA值)为85%以上:对于作为天然气、原油等的输送用所使用的管道来说,从防止脆性裂缝传播的方面出发,希望DWTT试验中的塑性断口率的值高,在本发明范围中使-40℃的DWTT试验中得到的塑性断口率(SA值)为85%以上。此处,由-40℃的DWTT试验得到的塑性断口率(SA值)可以如下求出:采取依照API-5L的长度方向为C方向的压制缺口型全厚DWTT试验片,在-40℃通过落锤施加冲击弯曲负荷,由断裂的断面求出塑性断口率。
接着,对本发明的高强度/高韧性钢板的制造方法进行说明。
关于本发明的高强度/高韧性钢板的制造方法,将由上述成分组成构成的钢坯加热至1000℃以上1250℃以下,在奥氏体再结晶温度区域轧制后,在奥氏体未再结晶温度区域进行累积压下率为60%以上的轧制,以770℃以上850℃以下的温度终止轧制,从750℃以上830℃以下的冷却开始温度以10℃/s以上80℃/s以下的冷却速度加速冷却至250℃以上400℃以下的冷却停止温度,使温度下降量(△T)为350℃以上,之后,立即以3℃/s以上的升温速度再加热至400℃以上500℃以下的温度,由此可以得到。需要说明的是,此处所说的温度下降量(△T)是指冷却开始温度与冷却停止温度之差。
钢坯加热温度:1000℃以上1250℃以下
本发明的钢坯优选利用连续铸造法进行制造,以防止成分的宏观偏析,也可以利用铸锭法进行制造。另外,除了(1)在制造出钢坯后暂时冷却至室温、之后再次进行加热的现有方法以外,也可以没有问题地应用
(2)不进行冷却而以热钢坯的状态装入加热炉进行热轧的直送轧制;或者
(3)在进行略微的保温后立即热轧的直送轧制/直接轧制;
(4)以高温状态装入加热炉而省略一部分再加热的方法(热钢坯装入)等节能工艺。
加热温度小于1000℃时,钢坯中的Nb、V等的碳化物有时无法充分固溶,无法得到析出强化所引起的强度上升效果。另一方面,加热温度超过1250℃时,初期的奥氏体晶粒粗大化,因而有时母材的却贝冲击吸收能量降低、或者DWTT特性变差。因此,钢坯加热温度为1000℃以上1250℃以下、优选为1000℃以上1150℃以下。
奥氏体再结晶温度区域的累积压下率:50%以上(优选范围)
钢坯加热保持后,进行奥氏体再结晶温度区域的轧制,由此奥氏体通过再结晶而细粒化,有助于母材的却贝冲击吸收能量或DWTT特性的提高。再结晶温度区域的累积压下率没有特别规定,优选为50%以上。需要说明的是,在本发明的钢的成分范围中,奥氏体再结晶的下限温度约为950℃。
奥氏体未再结晶温度区域的累积压下率:60%以上
通过在奥氏体的未再结晶温度区域进行累积为60%以上的压下,从而奥氏体晶粒伸展,特别是在板厚方向成为细粒,以该状态进行加速冷却而得到的钢的却贝冲击吸收能量、DWTT特性变得良好。另一方面,压下量小于60%时,细粒化效果变得不充分,有时无法得到目标却贝冲击吸收能量、DWTT特性。因此,奥氏体的未再结晶温度区域的累积压下率为60%以上,在需要进一步提高韧性的情况下,优选为70%以上。
轧制终止温度:770℃以上850℃以下
奥氏体的未再结晶温度区域的高累积压下率下的大压下对于却贝冲击吸收能量、DWTT特性的提高有效,通过在更低的温度区域进行压下,其效果进一步增大。但是,在小于770℃的低温区域轧制时,奥氏体晶粒中织构发达,之后加速冷却而形成贝氏体主体组织的情况下,织构还部分转移到相变组织,其结果,容易发生裂口,却贝冲击吸收能量显著降低。另一方面,若超过850℃,有时无法充分得到对于提高DWTT特性有效的微细化效果。因此,轧制终止温度为770℃以上850℃以下,优选为770℃以上820℃以下。
加速冷却的冷却开始温度:750℃以上830℃以下
加速冷却的冷却开始温度小于750℃时,热轧后,在至加速冷却开始为止的空气冷却过程中,由奥氏体晶粒边界生成初析铁素体,母材强度有时会降低。另外,若初析铁素体的生成量增加,则成为韧性裂缝或脆性裂缝的产生起点的铁素体与贝氏体的界面增加,因此有时却贝冲击吸收能量降低、DWTT特性变差。另一方面,若冷却开始温度超过830℃,则轧制终止温度也高,因而有时无法充分得到对于提高DWTT特性有效的微观组织微细化效果。此外,若冷却开始温度超过830℃,即便轧制终止后至加速冷却开始为止的空气冷却时间略短,有时奥氏体的恢复、晶粒生长也会进行,DWTT特性有时降低。因此,加速冷却的冷却开始温度为750℃以上830℃以下,优选为750℃以上800℃以下。
加速冷却的冷却速度:10℃/s以上80℃/s以下
加速冷却的冷却速度小于10℃/s时,在冷却中有时会发生铁素体相变,母材强度降低。另外,若铁素体的生成量增加,则成为韧性裂缝或脆性裂缝的产生起点的铁素体与贝氏体的界面增加,因而有时却贝冲击吸收能量降低、DWTT特性变差。此外,板厚中央部的贝氏体中的渗碳体容易发生凝集/粗大化,有时母材的却贝冲击吸收能量降低、DWTT特性变差。另一方面,若加速冷却的冷却速度超过80℃/s,特别是在钢板表层附近岛状马氏体增加,并且表面硬度过度升高,因此有时无法得到所期望的表层部与板厚中央部的维氏硬度差(△HV),在钢管制造时有时会引起褶皱或裂纹等表面缺陷。另外,在具有该表面缺陷的钢管被应用于高压气体管道的情况下,有时会成为韧性断裂或脆性断裂的产生起点,引起大规模断裂,这令人担忧。因此,加速冷却的冷却速度为10℃/s以上80℃/s以下。需要说明的是,冷却速度是指将冷却开始温度与冷却停止温度之差除以所需时间而得到的平均冷却速度。
冷却开始温度至冷却停止温度的温度下降量(△T):350℃以上
冷却开始温度至冷却停止温度的温度下降量(△T)的控制在本发明中很重要。温度下降量(△T)越大,则贝氏体的核生成越增加,因此贝氏体组织微细化,进而构成贝氏体的束、板条也被微细化。另外,△T越大,则在因冷却而相变生成的贝氏体中过饱和地固溶的碳越会在后述的加热处理中微细地析出,可获得高的却贝冲击吸收能量、优异的DWTT性能。为了稳定地得到这些效果,△T需要为350℃以上,优选为400℃以上。另一方面,△T小于350℃时,组织的微细化效果不充分,因此有时无法得到所期望的却贝冲击吸收能量、DWTT特性。因此,△T为350℃以上,优选为400℃以上。需要说明的是,此处所说的温度下降量(△T)是指冷却开始温度与冷却停止温度之差。
加速冷却的冷却停止温度:250℃以上400℃以下
加速冷却的冷却停止温度小于250℃时,有时会发生马氏体相变,虽然母材强度上升,但有时母材的却贝冲击吸收能量显著降低、DWTT特性显著变差,特别是在钢板表层附近该倾向变得显著。另外,在冷却速度快的表层部,硬度容易过度升高,其结果,有时无法得到所期望的表层部与板厚中央部的维氏硬度差(△HV),在钢管制造时引起褶皱或裂纹等表面缺陷。由此,冷却停止温度为250℃以上,优选为255℃以上。另一方面,冷却停止温度超过400℃时,在后述回火后有时无法得到充分的强度,而且贝氏体中的渗碳体发生凝集/粗大化,有时母材的却贝冲击吸收能量降低、DWTT特性变差。因此,加速冷却的冷却停止温度为250℃以上400℃以下。
再加热处理
在板厚中央部,由于与冷却过程中的贝氏体相变相伴的碳或合金元素在未相变的奥氏体的变浓,有时会生成岛状马氏体。另外,在冷却速度比较快的表层部,除了岛状马氏体外,有时还会生成马氏体。这些硬质相成为脆性裂缝或韧性裂缝的产生起点,因此在使母材的韧性显著劣化、进而表面硬度过剩增加的情况下,有时会引起钢管制造时的褶皱或裂纹等表面缺陷。因此,需要利用再加热处理进行适当的组织控制,进行母材韧性的改善或表面缺陷的抑制。需要说明的是,加热方法没有特别限定,优选高频加热装置。此处,在加速冷却停止后立即进行再加热是指,加速冷却停止后在120秒以内以3℃/s以上的升温速度进行再加热。
加速冷却后的再加热处理中的升温速度(再加热速度):3℃/s以上
加速冷却后的再加热中的升温速度小于3℃/s时,贝氏体中的渗碳体发生凝集/粗大化,有时母材的却贝冲击吸收能量降低、DWTT特性变差,因此升温速度为3℃/s以上。上限没有特别限定,但必然受到加热手段的能力的限制。
加速冷却后的再加热温度:400℃以上500℃以下
加速冷却后生成的岛状马氏体、马氏体或贝氏体等硬质相会使母材的韧性降低,因此,需要通过利用再加热处理进行回火来改善母材韧性。再加热温度小于400℃时,岛状马氏体、马氏体或贝氏体等硬质相的回火不充分,因此有时无法得到母材韧性的改善效果。另外,若表层部残存硬质相,则表面硬度过剩地增加,有时会引起钢管制造时的褶皱或裂纹等表面缺陷。另一方面,再加热温度超过500℃时,回火引起的强度降低变得显著,有时无法得到所期望的母材强度,此外,贝氏体中的渗碳体方式凝集/粗大化,有时母材的却贝冲击吸收能量降低、DWTT特性变差。因此,加速冷却后的再加热温度为400℃以上500℃以下。
通过上述轧制工序所制造的本发明的钢板适合用作高强度管道的材料。为了使用本发明的钢板制造高强度管道,利用U型压力机或O型压力机等,或者利用反复进行3点弯曲的压弯法,成型为近似圆筒状,并进行埋弧焊等焊接而制成焊接钢管,并扩管为特定的形状。如此制造的高强度管道可以根据需要在表面进行涂布,也可以进行以提高韧性等为目的的热处理。
实施例1
下面,对发明的实施例进行说明。
利用转炉对由表1所示的成分组成(剩余部分由Fe和不可避免的杂质)构成的钢液进行熔炼,制成厚度220mm的钢坯后,实施表2所示的热轧、加速冷却、加速冷却后的再加热,制造出板厚为30mm的厚钢板。
由通过上述方式得到的厚钢板采集依照API-5L的拉伸方向为C方向的全厚拉伸试验片,实施拉伸试验,求出屈服强度(0.5%YS)、拉伸强度(TS)。另外,关于却贝冲击试验,从板厚方向的1/2位置采集具有2mm的V形缺口的长度方向为C方向的却贝试验片,在-40℃实施依照ASTM A370的却贝冲击试验,求出却贝冲击吸收能量(vE-40℃)。进而,采集依照API-5L的长度方向为C方向的压制缺口型全厚DWTT试验片,在-40℃通过落锤施加冲击弯曲负荷,求出断裂的断面的塑性断口率(SA-40℃)。
另外,由所得到的厚钢板采集硬度测定用试验片,对L截面(与轧制方向平行的垂直截面)进行机械研磨,在从表层起板厚方向上2mm以内的区域(表层部)中,以负荷10kgf测定各10点的维氏硬度,求出其平均值。进而,在板厚方向的1/2t位置(板厚中央部)处进行同样的维氏硬度试验,求出两者的维氏硬度差(△HV)。
另外,从由表层起在板厚方向上2mm以内的区域(表层部)和板厚的3/8~5/8的区域(板厚中央部)采集组织观察用试验片,利用上述方法进行组织的鉴定,求出贝氏体、岛状马氏体和剩余部分组织的面积率以及渗碳体的平均粒径。
此外,作为钢板的表面特性的评价,在制造外径为1200mm(D/t=40)的钢管时,利用目视评价有无褶皱或裂纹等表面缺陷的产生,将未产生表面缺陷的情况记为○,将产生了表面缺陷的情况记为×。
<组织观察>
从钢板的板厚的3/8~5/8的区域(板厚中央部)采集组织观察用试验片,对L截面(与轧制方向平行的垂直截面)进行镜面研磨,用硝酸乙醇进行腐蚀后,利用扫描型电子显微镜(SEM)以2000倍的倍率随机地观察5个视野,由所拍摄的组织照片鉴定组织,通过图像分析求出贝氏体、马氏体、铁素体、珠光体等各相的面积率。
接着,对于相同的试样,利用电解蚀刻法(电解液:100ml蒸馏水+25g氢氧化钠+5g苦味酸)仅使岛状马氏体露出后,利用SEM以2000倍的倍率随机地观察5个视野,通过图像分析由所拍摄的组织照片求出板厚方向的1/2位置处的岛状马氏体的面积率。
此外,再次进行镜面研磨后,利用选择性低电位电解蚀刻法(电解液:10体积%乙酰丙酮+1体积%四甲基氯化铵甲醇)将渗碳体抽出后,利用SEM以2000倍的倍率随机地观察5个视野,通过图像分析由所拍摄的组织照片求出板厚方向的1/2位置处的渗碳体的平均粒径(圆当量直径)。另外,由距离除去了氧化皮后的表面2mm以内的区域(表层部)切割出样品,利用与上述板厚中央部同样的方法求出贝氏体的面积率和岛状马氏体的面积率。
将所得到的结果示于表3。
由表3可知,No.2~13的钢板是成分组成和制造方法适合于本发明的发明例,表层部与板厚中央部的维氏硬度差(△HV)为20以下,母材的拉伸强度(TS)为625MPa以上,-40℃的却贝冲击吸收能量(vE-40℃)为375J以上,且-40℃的DWTT试验中得到的塑性断口率(SA-40℃)为85%以上,成为了表面特性优异的具有高吸收能量的高强度/高韧性钢板。
与此相对,比较例的No.1的C量、比较例的No.18的Mn量分别低于本发明,因此,在表层部和板厚中央部,冷却中产生的铁素体、珠光体的生成量多,未得到特定量的贝氏体,未得到所期望的拉伸强度(TS)。比较例的No.14的Nb量、比较例的No.15的C量、比较例的No.17的Mn量分别超过了本发明,因此,加速冷却后的再加热后的马氏体量增加,未得到所期望的却贝冲击吸收能量(vE-40℃)、DWTT特性(SA-40℃)。另外,在冷却速度快的表层部,与板厚中央部相比马氏体的生成量多,因此表层硬度非常高,其结果,表层部与板厚中央部的维氏硬度差(△HV)超过特定值,因而在钢管制造时会产生褶皱或裂纹等表面缺陷,表面特性差。比较例的No.16由于Si量超过了本发明范围,因此,成为韧性裂缝或脆性裂缝的产生起点的岛状马氏体的面积率较多地生成,未得到所期望的却贝冲击吸收能量(vE-40℃)、DWTT特性(SA-40℃)。比较例的No.19由于Ti量超过了本发明范围,因此,TiN粗大化,成为韧性裂缝或脆性裂缝的产生起点,未得到所期望的却贝冲击吸收能量(vE-40℃)、DWTT特性(SA-40℃)。比较例的No.20由于Ti量低于本发明范围,因此,未通过氮化物(TiN)的钉扎效应而获得奥氏体晶粒的微细化效果,未得到所期望的DWTT特性(SA-40℃)。比较例的No.21由于Nb量低于本发明范围,因此,未得到未再结晶区域轧制的微细化效果,未得到所期望的DWTT特性(SA-40℃)。另外,由于冷却中生成的铁素体、珠光体的生成量多,因此,未得到特定量的贝氏体,未得到所期望的拉伸强度(TS)。
实施例2
利用转炉对由表1所示的钢D和I的成分组成(剩余部分由Fe和不可避免的杂质)构成的钢液进行熔炼,制成厚度220mm的钢坯后,实施表4所示的热轧、加速冷却、加速冷却后的再加热,制造出板厚为30mm的厚钢板。
对于通过上述方式得到的厚钢板,与实施例1同样地实施全厚拉伸试验、却贝冲击试验、压制缺口型全厚DWTT试验,测定了屈服强度(0.5%YS)、拉伸强度(TS)、却贝冲击吸收能量(vE-40℃)和塑性断口率(SA-40℃)及维氏硬度。
将所得到的结果示于表5。
由表5可知,满足本发明的制造条件的No.22~26、35~37的钢板是成分组成和制造方法适合于本发明的发明例,表层部与板厚中央部的维氏硬度差(△HV)为20以下,母材的拉伸强度(TS)为625MPa以上,-40℃的却贝冲击吸收能量(vE-40℃)为375J以上,且-40℃的DWTT试验中得到的塑性断口率(SA-40℃)为85%以上,成为了表面特性优异的具有高吸收能量的高强度/高韧性钢板。此外,No.22、24和25由于未再结晶温度区域的累积压下率、轧制终止温度、冷却开始温度和冷却开始温度至冷却停止温度的温度下降量(△T)在优选范围,因此,通过贝氏体的微细化效果、或在因加速冷却而相变生成的贝氏体中过饱和地固溶的碳在再加热处理中微细析出的效果,却贝冲击吸收能量(vE-40℃)、塑性断口率(SA-40℃)在相同组成的钢板中升高。另外,No.36虽然△T在优选范围,但未再结晶温度区域的累积压下率、轧制终止温度和冷却开始温度不在优选范围,因而相对于No.35的特性略低。
与此相对,比较例的No.27由于钢坯加热温度超过本发明范围,因此,由于初期的奥氏体晶粒的粗大化,未得到所期望的DWTT特性(SA-40℃)。比较例的No.28由于轧制终止温度和与轧制终止温度联动的冷却开始温度超过了本发明范围,因此,未充分得到对于提高DWTT特性有效的微细化效果,未得到所期望的DWTT特性(SA-40℃)。比较例的No.29由于钢坯加热温度低于本发明范围,因此,钢坯中的Nb、V等的碳化物未充分固溶,未得到由析出强化产生的强度上升效果,因此未得到所期望的拉伸强度(TS)。比较例的No.30由于轧制终止温度和冷却开始温度低于本发明范围,因此,轧制中或冷却中生成的铁素体的生成量多,未得到特定量的贝氏体,未得到所期望的拉伸强度(TS)。另外,轧制时因发达的织构的影响而产生裂口,未得到所期望的却贝冲击吸收能量(vE-40℃)。比较例的No.31由于加速冷却时的冷却速度低于本发明范围,因此,冷却中生成的铁素体、珠光体的生成量多,未得到特定量的贝氏体,未得到所期望的拉伸强度(TS)。比较例的No.32由于再加热时的加热速度低于本发明范围,因此,贝氏体中的渗碳体发生凝集/粗大化,未得到所期望的DWTT特性(SA-40℃)。比较例的No.33由于再加热温度超过本发明范围,因此,贝氏体中的渗碳体发生凝集/粗大化,未得到所期望的却贝冲击吸收能量(vE-40℃)、DWTT特性(SA-40℃)。比较例的No.34由于再加热温度低于本发明范围,因此,再加热处理中的回火的效果不充分,未得到所期望的却贝冲击吸收能量(vE-40℃)、DWTT特性(SA-40℃)。另外,由于在表层部残存的岛状马氏体等硬质相所引起的表面硬度的增加,未得到所期望的表面特性。比较例的No.38由于再加热时的加热速度低于本发明范围,因此,贝氏体中的渗碳体发生凝集/粗大化,未得到所期望的却贝冲击吸收能量(vE-40℃)和DWTT特性(SA-40℃)。比较例的No.39由于冷却停止温度超过本发明范围,进而再加热温度超过本发明范围,因此,贝氏体中的渗碳体发生凝集/粗大化,未得到所期望的拉伸强度(TS)、DWTT特性(SA-40℃)。另外,还由于温度下降量(△T)小于350℃,因而未得到所期望的DWTT特性(SA-40℃)。比较例的No.40由于加速冷却时的冷却速度超过本发明范围,因此,加速冷却后硬质的马氏体的生成量增加,未得到所期望的却贝冲击吸收能量(vE-40℃)、DWTT特性(SA-40℃)。另外,由于在表层部残存的硬质的马氏体所引起的表面硬度的增加,未得到所期望的表面特性。比较例的No.41由于冷却停止温度低于本发明范围,因此,加速冷却后的马氏体的生成量增加,未得到所期望的却贝冲击吸收能量(vE-40℃)、DWTT特性(SA-40℃)。另外,由于在表层部残存的硬质的马氏体所引起的表面硬度的增加,未得到所期望的表面特性。
工业实用性
通过将本发明的具有高吸收能量的高强度/高韧性钢板应用于作为天然气或原油等的输送用使用的管道,从而能够对基于高压化的输送效率的提高、基于薄壁化的现场焊接施工效率的提高做出很大的贡献。

Claims (3)

1.一种高强度/高韧性钢板,该钢板具有下述成分组成:
以质量%计,含有
C:0.03%以上0.08%以下、
Si:0.01%以上0.50%以下、
Mn:1.5%以上2.5%以下、
P:0.001%以上0.010%以下、
S:0.0030%以下、
Al:0.01%以上0.08%以下、
Nb:0.010%以上0.080%以下、
Ti:0.005%以上0.025%以下、
N:0.001%以上0.006%以下,
进而含有选自
Cu:0.01%以上1.00%以下、
Ni:0.01%以上1.00%以下、
Cr:0.01%以上1.00%以下、
Mo:0.01%以上1.00%以下、
V:0.01%以上0.10%以下、
B:0.0005%以上0.0030%以下中的1种以上,
剩余部分由Fe和不可避免的杂质构成,
该钢板具有下述微观组织:该钢板的表层部和板厚中央部各自的岛状马氏体的面积率小于3%,进而所述钢板的表层部和板厚中央部各自的贝氏体的面积率为90%以上,
并且在板厚中央部的贝氏体中存在的渗碳体的平均粒径为0.5μm以下,
表层部和板厚中央部的维氏硬度差△HV为20以下,
所述钢板的-40℃的却贝冲击吸收能量为375J以上、-40℃的DWTT试验中得到的塑性断口率为85%以上。
2.如权利要求1所述的高强度/高韧性钢板,其中,除了所述成分组成外,以质量%计进一步含有选自
Ca:0.0005%以上0.0100%以下、
REM:0.0005%以上0.0200%以下、
Zr:0.0005%以上0.0300%以下、
Mg:0.0005%以上0.0100%以下中的1种以上。
3.一种高强度/高韧性钢板的制造方法,其为权利要求1或2所述的高强度/高韧性钢板的制造方法,该制造方法中,
将钢坯加热至1000℃以上1250℃以下,
在奥氏体再结晶温度区域轧制后,
在奥氏体未再结晶温度区域进行累积压下率为60%以上的轧制,
以770℃以上850℃以下的温度终止轧制,
从750℃以上830℃以下的冷却开始温度以10℃/s以上80℃/s以下的冷却速度加速冷却至255℃以上400℃以下的冷却停止温度,使温度下降量(△T)为350℃以上,
之后,立即以3℃/s以上的升温速度再加热至400℃以上500℃以下的温度。
CN201680019421.6A 2015-03-31 2016-03-25 高强度/高韧性钢板及其制造方法 Active CN107532253B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015071932 2015-03-31
JP2015-071932 2015-03-31
PCT/JP2016/001744 WO2016157863A1 (ja) 2015-03-31 2016-03-25 高強度・高靭性鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
CN107532253A CN107532253A (zh) 2018-01-02
CN107532253B true CN107532253B (zh) 2019-06-21

Family

ID=57006852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680019421.6A Active CN107532253B (zh) 2015-03-31 2016-03-25 高强度/高韧性钢板及其制造方法

Country Status (7)

Country Link
US (1) US10640841B2 (zh)
EP (1) EP3279352B1 (zh)
JP (1) JP6123973B2 (zh)
KR (1) KR102051199B1 (zh)
CN (1) CN107532253B (zh)
CA (1) CA2977017C (zh)
WO (1) WO2016157863A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544478B2 (en) 2015-03-31 2020-01-28 Jfe Steel Corporation High-strength, high-toughness steel plate, and method for producing the same
JP6926773B2 (ja) * 2017-07-21 2021-08-25 日本製鉄株式会社 鋼板および鋼板の製造方法
JP6926774B2 (ja) * 2017-07-21 2021-08-25 日本製鉄株式会社 鋼板および鋼板の製造方法
EP3733878B1 (en) * 2018-01-30 2021-10-13 JFE Steel Corporation Steel material for line pipes, production method for same, and production method for line pipe
RU2749085C1 (ru) * 2018-01-30 2021-06-03 ДжФЕ СТИЛ КОРПОРЕЙШН Стальной материал для магистральных труб, способ его получения и способ изготовления магистральной трубы
CN112334589B (zh) * 2018-06-27 2022-07-29 杰富意钢铁株式会社 包覆钢板及其制造方法
KR102119975B1 (ko) * 2018-11-29 2020-06-08 주식회사 포스코 저온인성과 연신율이 우수하며, 항복비가 작은 후물 고강도 라인파이프용 강재 및 그 제조방법
JP6819835B1 (ja) * 2019-03-28 2021-01-27 Jfeスチール株式会社 ラインパイプ用鋼材およびその製造方法ならびにラインパイプおよびその製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918308A (zh) * 2004-07-07 2007-02-21 杰富意钢铁株式会社 高张力钢板的制造方法
JP2009242849A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 高靱性鋼の製造方法
EP1870484A4 (en) * 2005-03-31 2011-08-17 Jfe Steel Corp HIGH STRENGTH STEEL SHEET AND PROCESS FOR PRODUCTION THEREOF AND HIGH STRENGTH STEEL PIPE
CN102666899A (zh) * 2009-11-25 2012-09-12 杰富意钢铁株式会社 高压缩强度和高韧性优异的管线管用焊接钢管及其制造方法
CN102906291A (zh) * 2010-03-09 2013-01-30 杰富意钢铁株式会社 高强度冲压部件及其制造方法
JP2013057125A (ja) * 2004-12-28 2013-03-28 Jfe Steel Corp 耐切断割れ性とdwtt特性に優れた高強度・高靭性厚鋼板
JP2013095926A (ja) * 2011-10-28 2013-05-20 Nippon Steel & Sumitomo Metal Corp 溶接性に優れた高張力鋼板およびその製造方法
JP2013133476A (ja) * 2011-12-26 2013-07-08 Jfe Steel Corp 耐サワー特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板及びその製造方法
JP2013139628A (ja) * 2011-12-09 2013-07-18 Jfe Steel Corp 鋼板内の材質均一性に優れたラインパイプ用高強度鋼板とその製造方法
JP2013204103A (ja) * 2012-03-29 2013-10-07 Jfe Steel Corp 耐座屈性能に優れた低温用高強度溶接鋼管とその製造方法および耐座屈性能に優れた低温用高強度溶接鋼管用鋼板の製造方法
JP5573265B2 (ja) * 2010-03-19 2014-08-20 Jfeスチール株式会社 引張強度590MPa以上の延靭性に優れた高強度厚鋼板およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705287B2 (ja) 2001-09-20 2011-06-22 新日本製鐵株式会社 高い吸収エネルギーを有する薄手高強度鋼板の非水冷型製造方法
JP4696615B2 (ja) 2005-03-17 2011-06-08 住友金属工業株式会社 高張力鋼板、溶接鋼管及びそれらの製造方法
JP4309946B2 (ja) 2007-03-05 2009-08-05 新日本製鐵株式会社 脆性き裂伝播停止特性に優れた厚手高強度鋼板およびその製造方法
JP5439889B2 (ja) 2009-03-25 2014-03-12 Jfeスチール株式会社 厚肉高靭性鋼管素材用厚鋼板およびその製造方法
RU2502820C1 (ru) 2009-09-30 2013-12-27 ДжФЕ СТИЛ КОРПОРЕЙШН Толстолистовая сталь, характеризующаяся низким соотношением между пределом текучести и пределом прочности, высокой прочностью и высоким равномерным относительным удлинением, и способ ее изготовления
CN102666898A (zh) 2009-11-25 2012-09-12 杰富意钢铁株式会社 高压缩强度优异的管线管用焊接钢管及其制造方法
JP5561119B2 (ja) * 2009-11-25 2014-07-30 Jfeスチール株式会社 高圧縮強度耐サワーラインパイプ用溶接鋼管及びその製造方法
JP5782827B2 (ja) * 2011-05-24 2015-09-24 Jfeスチール株式会社 高圧縮強度耐サワーラインパイプ用鋼管及びその製造方法
JP5782828B2 (ja) * 2011-05-24 2015-09-24 Jfeスチール株式会社 高圧縮強度鋼管及びその製造方法
WO2013089156A1 (ja) * 2011-12-15 2013-06-20 新日鐵住金株式会社 低温靭性に優れた高強度h形鋼及びその製造方法
JP5516785B2 (ja) * 2012-03-29 2014-06-11 Jfeスチール株式会社 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
BR112014031808B1 (pt) 2012-06-18 2019-05-14 Jfe Steel Corporation Método para produzir tubos de condução de alta resistência, resistentes a ácido e espessos.
JP5692305B2 (ja) 2013-08-22 2015-04-01 Jfeスチール株式会社 大入熱溶接特性と材質均質性に優れた厚鋼板およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1918308A (zh) * 2004-07-07 2007-02-21 杰富意钢铁株式会社 高张力钢板的制造方法
JP2013057125A (ja) * 2004-12-28 2013-03-28 Jfe Steel Corp 耐切断割れ性とdwtt特性に優れた高強度・高靭性厚鋼板
EP1870484A4 (en) * 2005-03-31 2011-08-17 Jfe Steel Corp HIGH STRENGTH STEEL SHEET AND PROCESS FOR PRODUCTION THEREOF AND HIGH STRENGTH STEEL PIPE
JP2009242849A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 高靱性鋼の製造方法
CN102666899A (zh) * 2009-11-25 2012-09-12 杰富意钢铁株式会社 高压缩强度和高韧性优异的管线管用焊接钢管及其制造方法
CN102906291A (zh) * 2010-03-09 2013-01-30 杰富意钢铁株式会社 高强度冲压部件及其制造方法
JP5573265B2 (ja) * 2010-03-19 2014-08-20 Jfeスチール株式会社 引張強度590MPa以上の延靭性に優れた高強度厚鋼板およびその製造方法
JP2013095926A (ja) * 2011-10-28 2013-05-20 Nippon Steel & Sumitomo Metal Corp 溶接性に優れた高張力鋼板およびその製造方法
JP2013139628A (ja) * 2011-12-09 2013-07-18 Jfe Steel Corp 鋼板内の材質均一性に優れたラインパイプ用高強度鋼板とその製造方法
JP2013133476A (ja) * 2011-12-26 2013-07-08 Jfe Steel Corp 耐サワー特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板及びその製造方法
JP2013204103A (ja) * 2012-03-29 2013-10-07 Jfe Steel Corp 耐座屈性能に優れた低温用高強度溶接鋼管とその製造方法および耐座屈性能に優れた低温用高強度溶接鋼管用鋼板の製造方法

Also Published As

Publication number Publication date
EP3279352A1 (en) 2018-02-07
JPWO2016157863A1 (ja) 2017-06-15
CA2977017A1 (en) 2016-10-06
US10640841B2 (en) 2020-05-05
EP3279352A4 (en) 2018-02-07
EP3279352B1 (en) 2022-12-07
WO2016157863A1 (ja) 2016-10-06
JP6123973B2 (ja) 2017-05-10
KR20170118939A (ko) 2017-10-25
US20180057908A1 (en) 2018-03-01
KR102051199B1 (ko) 2019-12-02
CA2977017C (en) 2020-02-04
CN107532253A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
CN107532253B (zh) 高强度/高韧性钢板及其制造方法
CN107406951B (zh) 高强度和高韧性钢板及其制造方法
JP6677310B2 (ja) 鋼材及び油井用鋼管
CN101965414B (zh) 低温韧性优异的高强度钢板和钢管以及它们的制造方法
Zou et al. High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite
CN104024453B (zh) 变形性能和低温韧性优异的高强度钢管、高强度钢板、以及前述钢板的制造方法
CN108368595A (zh) 抗氢致开裂性优异的压力容器用钢材及其制造方法
JP5146051B2 (ja) 靭性および変形能に優れた板厚:25mm以上の高強度鋼管用鋼材およびその製造方法
JP5092498B2 (ja) 低降伏比高強度高靱性鋼板及びその製造方法
JP2013227670A (ja) 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP5796351B2 (ja) 耐圧潰性に優れた高強度耐サワーラインパイプおよびその製造方法
JP5845674B2 (ja) 曲げ加工性および低温靱性に優れる高張力鋼板およびその製造方法
CN106133176B (zh) 燃料喷射管用无缝钢管
JP6171851B2 (ja) 継目無鋼管製造用装置列およびそれを利用した油井用高強度ステンレス継目無鋼管の製造方法
CN104838026A (zh) 热轧钢板及其制造方法
TW201243061A (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
CN108603266A (zh) 高强度高韧性钢管用钢板及其制造方法
CN1318631C (zh) 高强度高韧性x80管线钢及其热轧板制造方法
JP2020012168A (ja) 耐サワーラインパイプ用厚鋼板およびその製造方法
CN108103410A (zh) 一种屈服强度≥910MPa的管线钢及其制备方法
CN108368593A (zh) 具有优异的低温应变时效冲击特性的高强度钢材及其制造方法
CN110225987A (zh) 连续管用电阻焊钢管及其制造方法
JP4507708B2 (ja) 低降伏比高強度高靱性鋼板の製造方法
JP3845554B2 (ja) 曲げ加工性に優れた超高強度冷延鋼板
JP7006154B2 (ja) 厚鋼板および厚鋼板の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant