JP2011129490A - 固体酸化物形燃料電池発電システム - Google Patents

固体酸化物形燃料電池発電システム Download PDF

Info

Publication number
JP2011129490A
JP2011129490A JP2009289807A JP2009289807A JP2011129490A JP 2011129490 A JP2011129490 A JP 2011129490A JP 2009289807 A JP2009289807 A JP 2009289807A JP 2009289807 A JP2009289807 A JP 2009289807A JP 2011129490 A JP2011129490 A JP 2011129490A
Authority
JP
Japan
Prior art keywords
solid oxide
fuel cell
oxide fuel
air
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009289807A
Other languages
English (en)
Other versions
JP5550327B2 (ja
Inventor
Haruyoshi Mukumoto
陽喜 椋本
Norihisa Matake
徳久 眞竹
Katsuhito Kirikihira
勝仁 桐木平
Tatsuo Kahata
達雄 加幡
Masanori Nishiura
雅則 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009289807A priority Critical patent/JP5550327B2/ja
Publication of JP2011129490A publication Critical patent/JP2011129490A/ja
Application granted granted Critical
Publication of JP5550327B2 publication Critical patent/JP5550327B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】固体酸化物形燃料電池に導かれる空気を利用して、システム全体の効率を改善することが可能、かつ、システムの運転管理が容易とされた固体酸化物形燃料電池発電システムを提供することを目的とする。
【解決手段】複数の固体酸化物形燃料電池2A,2Bを空気および燃料流れに対して直列に配置し、空気は、空気流れに対して上流側の固体酸化物形燃料電池2Aから空気流れに対して下流側の固体酸化物形燃料電池2Bへと供給され、燃料は、空気流れに対して下流側の固体酸化物形燃料電池2Bから空気流れに対して上流側の固体酸化物形燃料電池2Aへと供給されることを特徴とする。
【選択図】図1

Description

本発明は、固体酸化物形燃料電池発電システムに関し、特に固体酸化物形燃料電池の空気の利用に関するものである。
固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)は、燃料極に燃料ガスを供給するとともに、空気極に酸化剤ガスを供給し、燃料ガスに含まれる燃料と酸化剤ガスに含まれる酸素とを固体電解質体を介して化学反応させることによって電力を発生させるものである。一般に、燃料ガスには、天然ガス、LPG、石油、メタノール、石炭ガス化ガスなどが使用され、酸化剤ガスには空気が使用される。
この固体酸化物形燃料電池において発電の効率を維持するための温度制御として、発電による自己発熱を利用することがある。この自己発熱は、固体酸化物形燃料電池の発電時に、燃料極と空気極とを備えるセルのジュール熱によって発生するものであり、固体酸化物形燃料電池の定常運転時に前記セルが高い導電性を維持する温度範囲を維持するために利用されている。
一方で、自己発熱により前記セルが過熱されると、該セルの許容温度範囲を超えてしまうことがある。そこで、前記空気極に供給される空気は、固体酸化物形燃料電池を適正な作動温度に保つ冷媒としても利用される。この時、前記空気は、発電に必要な空気量と冷却に必要な空気量とが必要になる。
しかしながら、発電によって発生した熱の冷却に空気を使用する場合、一般的に冷却に必要な空気量は、発電に必要な空気量(正確には空気中の酸素量)より多い。従って、冷却に必要な空気量が多くなると固体酸化物形燃料電池に導かれる全空気量に対する発電に使用される空気量の割合(以下「空気利用率」という。)が低下する。このことにより、空気利用率が低下するため固体酸化物形燃料電池発電システム全体の効率が低下するという問題があった。
特許文献1には、高温で作動する燃料電池において、冷媒として必要な空気量を低減させる一例として、溶融炭酸塩型燃料電池が開示されている。この溶融炭酸塩型燃料電池は、複数の溶融炭酸塩型燃料電池を複数設置して直列に接続し、上流側の燃料電池のカソード出口と下流側の燃料電池のカソード入口とを接続するカソードガスラインの途中に、熱交換器を設置するものである。
また、特許文献2には、固体酸化物形燃料電池を空気流れに対して直列に接続して、固体酸化物形燃料電池から導出された空気と熱とを下流側の固体酸化物形燃料電池に導くことが開示されている。
特開平4−12463号公報 特許第3349273号公報
上述した特許文献1及び特許文献2に開示の燃料電池によれば、空気流れに対して直列に燃料電池を接続することによって冷却用として供給する空気量を低減させることができる。しかしながら、各燃料電池に導入される空気中の酸素濃度に差が生じるため燃料電池間に出力差が生じて発熱量にも差が生じてしまう。
このように、発熱量に差が生じることによって固体酸化物形燃料電池間に温度差が発生した場合には、固体酸化物形燃料電池内の素子を損傷する可能性があり固体酸化物形燃料電池システムの運転管理が困難になるという問題があった。
本発明は、このような事情に鑑みてなされたものであって、空気利用率を向上させるとともに、複数の固体酸化物形燃料電池に導かれる空気の量と燃料の量とを最適化して各固体酸化物形燃料電池間の出力差を小さくすることで、システム全体の効率を改善することが可能、かつ、システムの運転管理が容易とされた固体酸化物形燃料電池発電システムを提供することを目的とする。
上記課題を解決するために、本発明の固体酸化物形燃料電池発電システムは、以下の手段を採用する。
すなわち、本発明にかかる固体酸化物形燃料電池発電システムによれば、複数の固体酸化物形燃料電池を空気流れおよび燃料流れに対して直列に配置し、空気は、前記空気流れに対して上流側の前記固体酸化物形燃料電池から前記空気流れに対して下流側の前記固体酸化物形燃料電池へと供給され、燃料は、前記空気流れに対して下流側の前記固体酸化物形燃料電池から前記空気流れに対して上流側の前記固体酸化物形燃料電池へと供給されることを特徴とする。
空気流れに対して直列に配置された固体酸化物形燃料電池は、空気流れに対して上流側の固体酸化物形燃料電池と、空気流れに対して下流側の固体酸化物形燃料電池とに供給される酸素濃度に差が生じる。そのため、各固体酸化物形燃料電池に供給される燃料が同量の場合には、各固体酸化物形燃料電池で出力差が生じ、発電によって発生する熱量に差を生じる。熱量に差を生じるため、固体酸化物形燃料電池間で温度差が発生して固体酸化物形燃料電池発電システムの運転管理が困難となる。
本発明においては、複数の固体酸化物形燃料電池を空気が通過する方向に対して直列に配置し、空気流れに対して上流側の固体酸化物形燃料電池から空気流れに対して下流側の固体酸化物形燃料電池へと空気を供給することとした。さらに、複数の固体酸化物形燃料電池を燃料が通過する方向に対して直列に配置し、空気流れに対して下流側の固体酸化物形燃料電池から空気流れに対して上流側の固体酸化物形燃料電池へと燃料を供給することとした。これにより、供給される酸素濃度が低い空気流れに対して下流側の固体酸化物形燃料電池には、燃料濃度の高い燃料を供給し、供給される酸素濃度が高い空気流れに対して上流側の固体酸化物形燃料電池には、燃料濃度が低い燃料を供給することができる。そのため、固体酸化物形燃料電池間の出力のバランスを図ることができ、固体酸化物形燃料電池間の温度差を抑制することができる。したがって、固体酸化物形燃料電池発電システムの運転管理を容易にすることが可能となる。
さらに、固体酸化物形燃料電池間の出力の平準化を図ることで、固体酸化物形燃料電池におけるセル間の温度差も抑制することができるので、セルを集積化する場合においても過熱することなく、セルにおける信頼性を向上させ、固体酸化物形燃料電池発電システムの長期運転における耐久性を向上させることが可能となる。
本発明にかかる固体酸化物形燃料電池発電システムによれば、前記空気流れの間に設けられ、該空気流れに対して上流側の前記固体酸化物形燃料電池を通過した空気と、前記空気流れに対して上流側の前記固体酸化物形燃料電池に供給される空気とが熱交換する熱交換器を備えることを特徴とする。
固体酸化物形燃料電池が空気と燃料とによって発電する際には、熱を生じる。この発生した熱を冷却するために、固体酸化物形燃料電池には、空気が導入される。
本発明は、固体酸化物形燃料電池の空気流れの間に熱交換器を設けることにした。これにより、空気流れに対して上流側の固体酸化物形燃料電池に供給される空気と、空気流れに対して上流側の固体酸化物形燃料電池を通過した温度の上昇した空気とが熱交換される。そのため、空気流れに対して上流側の固体酸化物形燃料電池空気から導出される温度の上昇した空気を冷却することができる。したがって、冷却に必要な空気量を確保するとともに、固体酸化物形燃料電池発電システム全体の効率を改善することが可能となる。
本発明にかかる固体酸化物形燃料電池発電システムによれば、前記空気流れおよび前記燃料流れの間に設けられ、前記空気流れに対して上流側の前記固体酸化物形燃料電池を通過した空気が導かれて燃料を改質燃料へと改質する改質器を備えることを特徴とする。
改質器では、吸熱反応によって供給された燃料が改質燃料へと改質される。そこで、空気流れに対して上流側の固体酸化物形燃料電池を通過して温度の上昇した空気を改質器へと導くこととした。そのため、上流側の固体酸化物形燃料電池を通過した空気の熱を利用して燃料を改質燃料へと改質することができる。したがって、固体酸化物形燃料電池発電システム全体の効率を上昇させることが可能となる。
本発明にかかる固体酸化物形燃料電池発電システムによれば、前記空気流れの間に設けられ、該空気流れに対して上流側の前記固体酸化物形燃料電池を通過した空気と、水とが熱交換するエコノマイザを備えることを特徴とする。
空気流れに対して上流側の固体酸化物形燃料電池を通過して温度の上昇した空気をエコノマイザに導くこととした。そのため、エコノマイザに供給された水は、空気流れに対して上流側の固体酸化物形燃料電池を通過した温度の上昇した空気の熱と熱交換して蒸気とされる。したがって、固体酸化物形燃料電池を通過した空気を熱源として有効に利用することができる。
本発明にかかる固体酸化物形燃料電池発電システムによれば、酸素供給手段を備え、該酸素供給手段によって発生した酸素を上記に記載の熱交換器、または上記に記載の改質器、または上記に記載のエコノマイザのいずれかの空気流れに対して下流側に供給することを特徴とする。
熱交換器、または改質器、またはエコノマイザの空気流れに対して下流側には、酸素供給手段によって酸素を供給することとした。そのため、空気流れに対して下流側の固体酸化物形燃料電池に供給される空気中の酸素濃度の低下を防止することができる。したがって、空気流れに対して下流側の固体酸化物形燃料電池の出力低下を抑制して、固体酸化物形燃料電池発電システム全体の効率を上昇させることが可能となる。
本発明にかかる固体酸化物形燃料電池発電システムによれば、前記燃料流れの間には、燃料追加供給手段を備えることを特徴とする。
空気流れに対して下流側の固体酸化物形燃料電池から導出された燃料には、燃料追加供給手段によって燃料を追加供給することにした。そのため、空気流れに対して上流側の固体酸化物形燃料電池に供給される燃料の濃度の低下を防止することができる。したがって、上流側の固体酸化物形燃料電池の出力低下を抑制して、固体酸化物形燃料電池発電システム全体の効率を上昇させることが可能となる。
上述した発明によれば、複数の固体酸化物形燃料電池を空気が通過する方向に対して直列に配置し、空気流れに対して上流側の固体酸化物形燃料電池から空気流れに対して下流側の固体酸化物形燃料電池へ空気を供給することとした。さらに、複数の固体酸化物形燃料電池を燃料が通過する方向に対して直列に配置し、空気流れに対して下流側の固体酸化物形燃料電池から空気流れに対して上流側の固体酸化物形燃料電池へ燃料を供給することとした。これにより、酸素濃度が低い空気流れに対して下流側の固体酸化物形燃料電池には、燃料濃度の高い燃料を供給し、酸素濃度が高い空気流れに対して上流側の固体酸化物形燃料電池には、燃料濃度が低い燃料を供給することができる。そのため、固体酸化物形燃料電池間の出力のバランスを図ることができ、固体酸化物形燃料電池間の温度差を抑制することができる。したがって、固体酸化物形燃料電池発電システムの運転管理が容易となる。さらに、空気と燃料の供給量を最適化することにより、供給する空気量を低減することができるので、システム効率を向上させることができる。
本発明の第1実施形態に係る熱交換器を有する固体酸化物形燃料電池発電システムの概略構成図である。 本発明の第1実施形態に係る固体酸化物形燃料電池発電システムの第1変形例の概略構成図である。 本発明の第1実施形態に係る固体酸化物形燃料電池発電システムの第2変形例の概略構成図である。 本発明の第1実施形態に係る固体酸化物形燃料電池発電システムの第3変形例の概略構成図である。 本発明の第1実施形態に係る固体酸化物形燃料電池発電システムの第4変形例の概略構成図である。 本発明の第2実施形態に係る改質器を有する固体酸化物形燃料電池発電システムの変形例である。 本発明の第3実施形態に係るエコノマイザを有する固体酸化物形燃料電池発電システムの概略構成図である。 本発明の第4実施形態に係る酸素供給手段および燃料追加供給手段を有する固体酸化物形燃料電池発電システムの概略構成図である。
以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
以下、本発明の第1実施形態について、図1を用いて説明する。
図1には、固体酸化物形燃料電池発電システム1の概略構成図が示されている。
固体酸化物形燃料電池発電システム1は、複数の固体酸化物形燃料電池2と、固体酸化物形燃料電池2に導入される空気と冷媒とが熱交換を行う熱交換器3とを備えている。
固体酸化物形燃料電池システム1は、従来統合されていた固体酸化物形燃料電池2を固体酸化物形燃料電池2に分離したシステムであって、図1では、2つに分離したシステムである。図1において、固体酸化粒形燃料電池システム1は、固体酸化物形燃料電池2を2つ直列に配置しているが、直列に接続される固体酸化物形燃料電池2の数は任意に選択することが可能である。
固体酸化物形燃料電池2は、水素や一酸化炭素等の燃料と空気中の酸素とが電気化学的に反応することによって発電する複数の発電素子(以下「単セル」という。)から構成されるものであって、構成単位としては複数のセル(図示せず)で構成されるカートリッジ単位であっても良い。また、複数のカートリッジ(図示せず)で構成されるサブモジュール単位であってもよい。さらに、複数のサブモジュール(図示せず)で構成されるモジュール単位であってもよい。固体酸化物形燃料電池2は、例えば、2つ設けられている。各固体酸化物形燃料電池2A,2Bは、導入される空気流れに対して直列になるように配置されている。固体酸化物形燃料電池(空気流れに対して上流側の固体酸化物形燃料電池)2Aは、固体酸化物形燃料電池(空気流れに対して下流側の固体酸化物形燃料電池)2Bよりも空気流れに対して上流側に配置されている。
熱交換器3は、固体酸化物形燃料電池2A,2Bの空気流れの間に設けられている。熱交換器3では、固体酸化物形燃料電池2Aから導出された温度の上昇した空気が、固体酸化物形燃料電池発電システム1内に設置されている図示しない空気供給管から導かれた冷媒である空気と熱交換する。
次に、本実施形態に係る固体酸化物形燃料電池発電システム1の空気流れについて説明する。
固体酸化物形燃料電池発電システム1内に設けられている空気供給管から配管20によって熱交換器3へと空気が導かれる。熱交換器3に導かれた空気は、熱交換器3を通過した後、配管21へと導出される。配管21に導出された空気は、固体酸化物形燃料電池2Aへと導入される。
固体酸化物形燃料電池2Aに導かれた空気中の酸素は、後述する配管30によって固体酸化物形燃料電池2Aに導かれた燃料と電気化学反応を行う。固体酸化物形燃料電池2A内で酸素と燃料とが電気化学反応を行うことによって、固体酸化物形燃料電池2Aが発電する。固体酸化物形燃料電池2Aが発電した際には、熱を発生する。
発生した熱は、固体酸化物形燃料電池2Aから酸素濃度が減少した空気とともに配管22へと導出される。配管22に導出された熱と酸素濃度が減少した空気(以下「排空気」と言う。)とは、熱交換器3へと導かれる。熱交換器3に導かれた排空気は、上述した配管20によって熱交換器3へと導かれる空気と熱交換を行う。熱交換器3において熱交換した排空気は、温度が下げられる。熱交換によって温度が下がった排空気は、熱交換器3から配管23へと導出される。配管23に導出された排空気の温度は、後述する固体酸化物形燃料電池2Bにおいて電気化学反応を行うのに適した温度とされる。
一方、配管20から熱交換器3へと導かれた空気には、排空気と熱交換することによって熱が与えられる。熱が与えられて温度が上昇した空気は、電気化学反応に適した温度となって固体酸化物形燃料電池2Aへと導かれる。
配管23に導出された排空気は、固体酸化物形燃料電池2Bへと導かれる。固体酸化物形燃料電池2Bに導かれた排空気中の残存酸素は、後述する配管31によって固体酸化物形燃料電池2Bに導かれた燃料と電気化学反応を行う。固体酸化物形燃料電池2B内において酸素と燃料とが電気化学反応を行うことによって、固体酸化物形燃料電池2Bが発電する。
固体酸化物形燃料電池2Bにおける発電によって発生した熱は、さらに酸素濃度が減少した空気とともに固体酸化物形燃料電池2Bから配管24へと導出される。配管24に導出された熱と空気とは、固体酸化物形燃料電池発電システム1内に設けられている空気排出管(図示せず)へと導かれる。
次に、本実施形態に係る固体酸化物形燃料電池発電システム1の燃料流れについて説明する。
固体酸化物形燃料電池発電システム1内に設けられている燃料貯蔵タンク等(図示せず)に接続されている配管31から固体酸化物形燃料電池2Bに燃料が導かれる。固体酸化物形燃料電池2Bに導かれた燃料は、上述した配管23によって導かれた排空気の酸素と電気化学反応を行う。
固体酸化物形燃料電池2Bに導かれた燃料と排空気中の酸素とによって、固体酸化物形燃料電池2Bが発電する。固体酸化物形燃料電池2Bにおける発電後、燃料濃度が低下した燃料(以下「燃料排ガス」と言う。)は、固体酸化物形燃料電池2Bから配管30へと導出される。
配管30に導出された燃料排ガスは、固体酸化物形燃料電池2Aへと導かれる。固体酸化物形燃料電池2Aに導かれた燃料排ガスは、上述した配管21から導かれた空気中の酸素と電気化学反応を行う。固体酸化物形燃料電池2A内において酸素と燃料とが電気化学反応を行うことによって、固体酸化物形燃料電池2Aが発電する。
固体酸化物形燃料電池2Aにおける発電後、燃料濃度がさらに低下した燃料は、配管32へと導出される。配管32に導出された燃料は、固体酸化物形燃料電池発電システム1内に設けられている燃料集合管(図示せず)へと導かれる。
以上の通り、本実施形態に係る固体酸化物形燃料電池発電システムによれば、以下の作用効果を奏する。
2つ(複数)の固体酸化物形燃料電池2A,2Bを空気が通過する方向に対して直列に配置し、固体酸化物形燃料電池(空気流れに対して上流側の固体酸化物形燃料電池)2Aから固体酸化物形燃料電池(空気流れに対して下流側の固体酸化物形燃料電池)2Bへと空気を供給することとした。さらに、燃料が通過する方向に対して直列に2つの固体酸化物形燃料電池2A,2Bを配置し、固体酸化物形燃料電池2Bから固体酸化物形燃料電池2Aへと燃料を供給することとした。
これにより、酸素濃度が低下した固体酸化物形燃料電池2Bには、燃料濃度の高い燃料を供給し、酸素濃度が高い固体酸化物形燃料電池2Aには、燃料濃度が低下した燃料排ガスを供給することができる。そのため、固体酸化物形燃料電池2A,2B間の出力のバランスを図ることができ、固体酸化物形燃料電池2A,2B間の温度差を抑制することができる。したがって、固体酸化物形燃料電池発電システム1の運転管理が容易となる。
さらに、固体酸化物形燃料電池2A,2B間の出力の平準化を図ることで、固体酸化物形燃料電池2A,2Bにおけるセル間の温度差も抑制することができる。そのため、セルを集積化する場合においても過熱することなく、セルにおける信頼性を向上させることができる。したがって、固体酸化物形燃料電池発電システム1の長期運転における耐久性を向上させることが可能となる。
固体酸化物形燃料電池2A,2Bの空気流れの間に熱交換器3を設けることにした。これにより、熱交換器3では、配管20から配管21を経て固体酸化物形燃料電池2Aに供給される空気と、固体酸化物形燃料電池2Aを通過した温度の上昇した排空気とが熱交換される。そのため、固体酸化物形燃料電池2Aから導出された温度の高い排空気を冷却することができる。したがって、排空気の冷却に必要な空気量を確保するとともに、固体酸化物形燃料電池発電システム1全体の効率を改善することが可能となる。また、固体酸化物形燃料電池2B供給される空気において、冷却に必要な温度を確保することもできる。
なお、本実施形態の固体酸化物形燃料電池発電システム1では、固体酸化物形燃料電池2A,2Bの間には熱交換器3のみを有するとして説明したが、本発明はこれに限定されるものではなく、熱交換器3の上流側に燃焼器8を設けてもよい。なお、本実施形態の変形例1の固体酸化物形燃料電池発電システムは、燃焼器8を有している点で第1実施形態と相違し、その他は同様である。したがって、同一の構成、空気流れおよび燃料流れについては、その説明を省略する。
燃焼器8は、図2に示す変形例1のように、固体酸化物形燃料電池2Aと、熱交換器3との排空気の間に設けられる。
第1ブロア9は、導かれた気体を圧縮して送風するものである。
本実施形態の変形例1に係る固体酸化物形燃料電池発電システム1の空気流れについて説明する。
固体酸化物形燃料電池2Aから配管22へと導出された排空気は、燃焼器8へと導かれる。燃焼器8に導かれた排空気は、燃焼によって温度の高い排ガスとなる。温度が上昇した排ガスは、熱交換器3へと導かれる。熱交換器3に導かれた排空気は、配管20によって導かれた空気と熱交換して温度が下げられる。温度の下がった排ガスは、熱交換器3から配管26へと導出される。配管26に導出された排ガスは、残存酸素が含まれている。熱交換器3から導出された排ガスは、配管26によって固体酸化物形燃料電池2Bへと導かれる。
次に、本実施形態の変形例1に係る固体酸化物形燃料電池発電システム1の燃料流れについて説明する。
配管32を流れる固体酸化物形燃料電池2Aから導出された燃料排ガスの一部は、分岐されて配管36へと導かれる。配管36上に設けられている第1ブロア9によって、配管36に導かれた燃料排ガスは昇圧される。第1ブロア9によって昇圧された燃料排ガスは、配管37へと導出される。配管37に導出された燃料排ガスは、配管31に合流される。配管31に合流された燃料排ガスと、燃料貯蔵タンク等から導かれた燃料とは、配管31によって固体酸化物形燃料電池2Bへと導かれる。
以上の通り、本変形例1に係る固体酸化物形燃料電池発電システムによれば、以下の作用効果を奏する。
熱交換器3のみでは、固体酸化物形燃料電池2Bを作動するための温度にまで空気を加熱できない場合であっても、燃焼器8を設けることによって固体酸化物形燃料電池2Bへと導かれる空気を所定の温度にまで加熱することができる。
なお、所定の温度とは、固体酸化物形燃料電池2Bを作動するための温度をいう。
また、本発明は、熱交換器の替わりにガスタービンを設けてもよい。
この場合には、ガスタービン11は、図3に示す変形例2のように、固体酸化物形燃料電池2Aと固体酸化物形燃料電池2Bとの排空気の間に設けられる。なお、本実施形態の変形例2の固体酸化物形燃料電池発電システムは、ガスタービン11を有している点で第1実施形態と相違し、その他は同様である。したがって、同一の構成、空気流れおよび燃料流れについては、その説明を省略する。
ガスタービン11は、燃焼器11aと、燃焼器11aから排出される排ガスが導かれるタービン11bと、タービン11bに接続されている軸11cと、軸11c上に設けられている圧縮機11dとを備えている。
第1ブロア9は、導かれた気体を圧縮して送風するものである。
次に、本変形例2に係る固体酸化物形燃料電池発電システム1の空気流れについて説明する。
固体酸化物形燃料電池2Aから配管22へと導出された排空気は、ガスタービン11の燃焼器11aへと導かれる。燃焼器11aにおいて排空気が燃焼されて排出された排ガスは、燃焼器11aからタービン11bへと導かれる。タービン11bに導かれ排ガスは、タービン11bを回転駆動する。タービン11bが回転駆動することによって、軸11cが回転駆動される。軸11cが回転駆動されるので、同軸11c上に設けられている圧縮機11dが回転駆動される。これにより、圧縮機11dは、空気を圧縮する。圧縮機11dによって圧縮された空気は、配管21へと導出される。配管21に導出された圧縮空気は、固体酸化物形燃料電池2Aへと導かれる。
燃焼器11aにおいて燃焼に使用されなかった酸素を含む排空気は、配管23へと導出されて、固体酸化物形燃料電池2Bへと導かれる。
次に、本変形例2に係る固体酸化物形燃料電池発電システム1の燃料流れについて説明する。
配管32を流れる固体酸化物形燃料電池2Aから導出された燃料排ガスの一部は、分岐されて配管36へと導かれる。配管36上に設けられている第1ブロア9によって、配管36に導かれた燃料排ガスは昇圧される。第1ブロア9によって昇圧された燃料排ガスは、配管37へと導出される。配管37に導出された燃料排ガスは、配管31に合流される。配管31に合流された燃料排ガスと、燃料貯蔵タンク等から導かれた燃料とは、配管31によって固体酸化物形燃料電池2Bへと導かれる。
以上の通り、本変形例2に係る固体酸化物形燃料電池発電システムによれば、以下の作用効果を奏する。
固体酸化物形燃料電池2A,2Bの空気流れの間に燃焼器11aを有しているガスタービン11を設けることとした。これにより、ガスタービン11は、圧縮した空気を固体酸化物形燃料電池2Aへと供給することができる。また、ガスタービン11から導出された排ガス中には、燃焼に使用されなかった酸素が含まれている。この酸素を含む排ガスを固体酸化物形燃料電池2Bへと導くこととした。これにより、空気を昇圧する機器を別途設置することなく、固体酸化物形燃料電池システム1全体の効率を改善することができる。
さらに、図2および図3に示した第1ブロア9に加えて図4の変形例3および図5の変形例4に示すように、固体酸化物形燃料電池2Bから導出された燃料排ガスを昇圧する第2ブロア10を追設しても良い。
この場合、固体酸化物形燃料電池2Bから導出された燃料排ガスは、配管38から第2ブロア10へと導かれる。第2ブロア10に導かれた燃料排ガスは、第2ブロア10によって昇圧されて配管40へと導出される。配管40に導出された昇圧された燃料排ガスの一部は、配管39によって固体酸化物形燃料電池2Aへと導かれる。
また、配管40に導出された昇圧された燃料排ガスの残りは、配管37へと合流される。配管37に合流された昇圧された燃料排ガスと、配管37を流れる固体酸化物形燃料電池2Aから導かれた燃料排ガスとは、配管31に合流される。配管31に合流された燃料排ガスは、燃料貯蔵タンク等から導かれた燃料と共に配管31によって固体酸化物形燃料電池2Bへと導かれる。
[第2実施形態]
以下、本発明の第2実施形態について図6を用いて説明する。本実施形態の固体酸化物形燃料電池発電システムは、改質器を有している点で第1実施形態と相違し、その他は同様である。したがって、同一の構成、空気流れおよび燃料流れについては、その説明を省略する。
図6には、改質器を備えている固体酸化物形燃料電池発電システム1の概略構成図が示されている。
改質器4は、原燃料(燃料)と水蒸気とを触媒上で反応させて水蒸気改質反応を行う。改質器4は、水蒸気反応を行うことによって、原燃料を水素を主成分とする改質燃料に改質する。改質器4は、固体酸化物形燃料電池2A,2Bの空気流れの間に設けられている。
次に、本実施形態に係る固体酸化物形燃料電池発電システム1の空気流れについて説明する。
固体酸化物形燃料電池発電システム1内に設けられている空気供給管(図示せず)に接続されている配管25から空気が固体酸化物形燃料電池2Aへと導入される。固体酸化物形燃料電池2Aに導かれた空気中の酸素は、配管30によって固体酸化物形燃料電池2Aに導かれた改質燃料と電気化学反応を行う。固体酸化物形燃料電池2A内において酸素と、改質燃料とが電気化学反応を行うことによって、固体酸化物形燃料電池2Aが発電する。
固体酸化物形燃料電池2Aにおいて発生した熱は、排空気とともに配管22へと導かれる。配管22に導かれた熱を含んだ排空気は、改質器4へと導かれる。改質器4に導かれた排空気中の熱は、後述する配管33から改質器4に導かれた原燃料の水蒸気改質反応に使用される。
改質器4における水蒸気改質反応は、吸熱反応である。そのため、改質器4における水蒸気改質反応には、配管22から改質器4に導かれた排空気中の熱が利用される。
改質器4における水蒸気改質反応によって、熱が利用された排空気は、温度が低下する。温度が低下した排空気は、改質器4から配管23へと導出される。配管23に導かれた温度の低下した排空気は、固体酸化物形燃料電池2Bへと導かれる。配管23から固体酸化物形燃料電池2Bへと導かれた排空気は、固体酸化物形燃料電池2Bにおいて電気化学反応を行うのに適した温度とされる。
次に、本実施形態に係る固体酸化物形燃料電池発電システム1の燃料流れについて説明する。
固体酸化物形燃料電池発電システム1内に設けられている燃料貯蔵タンク(図示せず)等に接続されている配管33によって、原燃料と水蒸気とが改質器4に導かれる。改質器4に導かれた原燃料は、上述した配管22から導かれた熱を含んだ排空気によって水素を主成分とする改質燃料に改質される。
改質燃料は、改質器4から配管34へと導出される。配管34に導出された改質燃料は、固体酸化物形燃料電池2Bへと導かれる。固体酸化物形燃料電池2Bに導かれた改質燃料は、上述した配管23によって導かれた排空気と電気化学反応を行う。
以上の通り、本実施形態に係る固体酸化物形燃料電池発電システムによれば、以下の作用効果を奏する。
固体酸化物形燃料電池(空気流れに対して上流側の固体酸化物形燃料電池)2Aを通過して温度の上昇した排空気を改質器4へと導くこととした。そのため、固体酸化物形燃料電池2Aを通過した排空気の熱を利用して原燃料(燃料)を改質燃料へと改質することができる。したがって、固体酸化物形燃料電池発電システム1全体の効率を上昇させることが可能となる。
[第3実施形態]
以下、本発明の第3実施形態について図7を用いて説明する。本実施形態の固体酸化物形燃料電池システムは、エコノマイザを有する点で第1実施形態と相違し、その他は同様である。したがって、同一の構成、空気流れおよび燃料流れについては、その説明を省略する。
図7には、エコノマイザ5を備えている固体酸化物形燃料電池発電システム1の概略構成図が示されている。
エコノマイザ5は、排熱を利用し、給水を加熱するものである。エコノマイザ5は、固体酸化物形燃料電池2A,2Bの空気流れの間に設けられている。
次に、本実施形態に係る固体酸化物形燃料電池発電システム1の空気流れについて説明する。
固体酸化物形燃料電池発電システム1内に設けられている空気供給管(図示せず)に接続されている配管25によって、空気が固体酸化物形燃料電池2Aへと導入される。固体酸化物形燃料電池2Aに導かれた空気中の酸素は、配管30によって固体酸化物形燃料電池2Aに導かれた燃料と電気化学反応を行う。固体酸化物形燃料電池2A内において酸素と燃料とが電気化学反応を行うことによって、固体酸化物形燃料電池2Aが発電する。固体酸化物形燃料電池2Aが発電した際には、熱を発生する。
発電によって発生した熱は、固体酸化物形燃料電池2Aから導出された排空気とともに配管22へと導かれる。配管22に導かれた熱を含んだ排空気は、エコノマイザ5へと導かれる。エコノマイザ5に導かれた排空気中の熱は、固体酸化物形燃料電池システム1内に設けられている給水管(図示せず)から配管40を経てエコノマイザ5に導かれた水と熱交換される。エコノマイザ5において熱交換された排空気は、エコノマイザ5に導かれた水に熱を与えて温度が下がる。温度が下がった排空気は、配管23へと導出される。
また、エコノマイザ5に導かれた水は、熱交換によって加熱されて配管41から導出される。
配管23に導出された温度の低下した排空気は、固体酸化物形燃料電池2Bへと導かれる。配管23から固体酸化物形燃料電池2Bに導かれた排空気は、固体酸化物形燃料電池2Bにおいて電気化学反応を行うのに適した温度とされる。
次に、本実施形態に係る固体酸化物形燃料電池発電システム1の燃料流れについて説明する。
固体酸化物形燃料電池発電システム1内に設けられている燃料貯蔵タンク(図示せず)に接続されている配管31によって、燃料が固体酸化物形燃料電池2Bへと導かれる。固体酸化物形燃料電池2Bに導かれた燃料は、上述した配管23によって導かれた排空気中の酸素と電気化学反応を行う。
以上の通り、本実施形態に係る固体酸化物形燃料電池システムによれば、以下の作用効果を奏する。
固体酸化物形燃料電池(空気流れに対して上流側の固体酸化物形燃料電池)2Aを通過して温度の上昇した排空気をエコノマイザ5に導くこととした。そのため、エコノマイザ5に供給された水は、固体酸化物形燃料電池2Aを通過した温度の上昇した排空気の熱と熱交換して加熱される。したがって、固体酸化物形燃料電池2Aを通過した排空気を熱源として有効に利用することができる。
[第4実施形態]
以下、本発明の第4実施形態について図8を用いて説明する。本実施形態の固体酸化物形燃料電池発電システムは、酸素供給手段および燃料追加供給手段を有している点で第1実施形態と相違し、その他は同様である。したがって、同一の構成、空気流れおよび燃料流れについては、その説明を省略する。
図8には、酸素供給手段6と、燃料追加供給手段7とを備えている固体酸化物形燃料電池発電システム1の概略構成図が示されている。
酸素供給手段6は、酸素を供給するものである。
燃料追加供給手段7は、燃料を追加供給するものである。
次に、本実施形態に係る固体酸化物形燃料電池発電システム1の空気流れについて説明する。
熱交換器3において熱交換されて温度が下げられ排空気は、配管23へと導出される。配管23に導出された排空気は、酸素濃度が低下している。そこで、酸素供給手段6によって、配管23中に酸素を供給する。これにより、固体酸化物形燃料電池2Bに導かれる排空気中の酸素濃度を固体酸化物形燃料電池2Aに導かれる空気中の酸素濃度と同じにすることができる。
次に、本実施形態に係る固体酸化物形燃料電池発電システム1の燃料流れについて説明する。
固体酸化物形燃料電池2Bから配管30へと導出された燃料排ガスは、燃料濃度が低下している。そこで、燃料追加供給手段7によって、配管30中に燃料を供給する。これにより、固体酸化物形燃料電池2Aに導かれる燃料濃度と、固体酸化物形燃料電池2Bに導かれる燃料濃度とを同じにすることができる。
以上の通り、本実施形態に係る固体酸化物形燃料電池発電システムによれば、以下の作用効果を奏する。
熱交換器3の下流側の配管23を流れる排空気には、酸素供給手段6から酸素を供給することとした。そのため、固体酸化物形燃料電池(空気流れに対して下流側の固体酸化物形燃料電池)2Bに供給する排空気中の酸素濃度の低下を防止して固体酸化物形燃料電池2Bの出力低下を抑制することができる。したがって、固体酸化物形燃料電池発電システム1全体の効率を上昇させることが可能となる。
固体酸化物形燃料電池2Bから導出された燃料排ガスには、燃料追加供給手段7によって燃料を供給することにした。そのため、固体酸化物形燃料電池(空気流れに対して上流側の固体酸化物形燃料電池)2Aに供給される燃料排ガスの濃度の低下を防止して固体酸化物形燃料電池2Aの出力低下を抑制することができる。したがって、固体酸化物形燃料電池発電システム1全体の効率を上昇させることが可能となる。
本実施形態では、熱交換器3を用いて説明したが、本発明はこれに限定されるものではなく改質器やエコノマイザなどであっても良い。
1 固体酸化物形燃料電池発電システム
2 固体酸化物形燃料電池
2A 空気流れに対して上流側の固体酸化物形燃料電池(固体酸化物形燃料電池)
2B 空気流れに対して下流側の固体酸化物形燃料電池(固体酸化物形燃料電池)

Claims (6)

  1. 複数の固体酸化物形燃料電池を空気流れおよび燃料流れに対して直列に配置し、
    空気は、前記空気流れに対して上流側の前記固体酸化物形燃料電池から前記空気流れに対して下流側の前記固体酸化物形燃料電池へと供給され、
    燃料は、前記空気流れに対して下流側の前記固体酸化物形燃料電池から前記空気流れに対して上流側の前記固体酸化物形燃料電池へと供給される固体酸化物形燃料電池発電システム。
  2. 前記空気流れの間に設けられ、該空気流れに対して上流側の前記固体酸化物形燃料電池を通過した空気と、前記空気流れに対して上流側の前記固体酸化物形燃料電池に供給される空気とが熱交換する熱交換器を備える請求項1に記載の固体酸化物形燃料電池発電システム。
  3. 前記空気流れおよび前記燃料流れの間に設けられ、前記空気流れに対して上流側の前記固体酸化物形燃料電池を通過した空気が導かれて供給された燃料を改質燃料へと改質する改質器を備える請求項1に記載の固体酸化物形燃料電池発電システム。
  4. 前記空気流れの間に設けられ、該空気流れに対して上流側の前記固体酸化物形燃料電池を通過した空気と、水とが熱交換するエコノマイザを備える請求項1に記載の固体酸化物形燃料電池発電システム。
  5. 酸素供給手段を備え、該酸素供給手段によって発生した酸素を請求項2に記載の熱交換器、または請求項3に記載の改質器、または請求項4に記載のエコノマイザのいずれかの空気流れに対して下流側に供給する請求項2から請求項4のいずれかに記載の固体酸化物形燃料電池発電システム。
  6. 前記燃料流れの間には、燃料追加供給手段を備える請求項5に記載の固体酸化物形燃料電池発電システム。

JP2009289807A 2009-12-21 2009-12-21 固体酸化物形燃料電池発電システム Active JP5550327B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289807A JP5550327B2 (ja) 2009-12-21 2009-12-21 固体酸化物形燃料電池発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289807A JP5550327B2 (ja) 2009-12-21 2009-12-21 固体酸化物形燃料電池発電システム

Publications (2)

Publication Number Publication Date
JP2011129490A true JP2011129490A (ja) 2011-06-30
JP5550327B2 JP5550327B2 (ja) 2014-07-16

Family

ID=44291843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289807A Active JP5550327B2 (ja) 2009-12-21 2009-12-21 固体酸化物形燃料電池発電システム

Country Status (1)

Country Link
JP (1) JP5550327B2 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547395A (ja) * 1991-08-16 1993-02-26 Chubu Electric Power Co Inc 燃料電池発電装置
JPH0696782A (ja) * 1992-09-11 1994-04-08 Mitsubishi Electric Corp 内部改質形燃料電池装置およびその運転方法
JP2002008681A (ja) * 2000-06-27 2002-01-11 Sumitomo Precision Prod Co Ltd 燃料電池
JP2003017103A (ja) * 2001-06-28 2003-01-17 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池システム
JP2003123818A (ja) * 2001-10-12 2003-04-25 Mitsubishi Heavy Ind Ltd 燃料電池システム及び複合発電システム
JP2004031135A (ja) * 2002-06-26 2004-01-29 Honda Motor Co Ltd 燃料電池およびその制御方法
JP2004044458A (ja) * 2002-07-10 2004-02-12 Mitsubishi Heavy Ind Ltd 複合発電プラント
JP2004171880A (ja) * 2002-11-19 2004-06-17 Nissan Motor Co Ltd 燃料電池システム
JP2005190670A (ja) * 2003-12-24 2005-07-14 Nippon Telegr & Teleph Corp <Ntt> 燃料電池及びその運転方法
JP2008300140A (ja) * 2007-05-30 2008-12-11 Sony Corp 燃料電池システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547395A (ja) * 1991-08-16 1993-02-26 Chubu Electric Power Co Inc 燃料電池発電装置
JPH0696782A (ja) * 1992-09-11 1994-04-08 Mitsubishi Electric Corp 内部改質形燃料電池装置およびその運転方法
JP2002008681A (ja) * 2000-06-27 2002-01-11 Sumitomo Precision Prod Co Ltd 燃料電池
JP2003017103A (ja) * 2001-06-28 2003-01-17 Mitsubishi Heavy Ind Ltd 固体電解質型燃料電池システム
JP2003123818A (ja) * 2001-10-12 2003-04-25 Mitsubishi Heavy Ind Ltd 燃料電池システム及び複合発電システム
JP2004031135A (ja) * 2002-06-26 2004-01-29 Honda Motor Co Ltd 燃料電池およびその制御方法
JP2004044458A (ja) * 2002-07-10 2004-02-12 Mitsubishi Heavy Ind Ltd 複合発電プラント
JP2004171880A (ja) * 2002-11-19 2004-06-17 Nissan Motor Co Ltd 燃料電池システム
JP2005190670A (ja) * 2003-12-24 2005-07-14 Nippon Telegr & Teleph Corp <Ntt> 燃料電池及びその運転方法
JP2008300140A (ja) * 2007-05-30 2008-12-11 Sony Corp 燃料電池システム

Also Published As

Publication number Publication date
JP5550327B2 (ja) 2014-07-16

Similar Documents

Publication Publication Date Title
US7846599B2 (en) Method for high temperature fuel cell system start up and shutdown
JP6513810B2 (ja) 高効率溶融炭酸塩形燃料電池システム及び方法
JP5331819B2 (ja) Mcfc発電システム
Lanzini et al. Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells
US8110310B2 (en) Power generating plant
JP3316393B2 (ja) 燃料電池発電システム及びその運転方法
WO2012091096A1 (ja) 燃料電池システム
US10381665B2 (en) Device and method for heating fuel cell stack and fuel cell system having the device
JP5871945B2 (ja) 固体酸化物形燃料電池システム及び固体酸化物形燃料電池システム運用方法
JP6064782B2 (ja) 燃料電池装置
JP2019169419A (ja) 燃料電池システム
JP4570904B2 (ja) 固体酸化物形燃料電池システムのホットスタンバイ法及びそのシステム
JP2014182923A (ja) 燃料電池システム及びその運転方法
JPWO2011093066A1 (ja) 燃料電池システム及びその運転方法
JP5550327B2 (ja) 固体酸化物形燃料電池発電システム
JP5502521B2 (ja) 燃料電池システム
KR101132538B1 (ko) 연료전지용 수증기 발생장치
JP5964082B2 (ja) 発電システム及び燃料電池の冷却方法
KR102548739B1 (ko) 열효율이 우수한 연료전지 시스템
KR101295237B1 (ko) 연료전지 시스템
US9246180B2 (en) Fuel cell module
JP2005044571A (ja) ハイブリッド型燃料電池システム
JP6800367B1 (ja) 燃料電池システム
JP2006156015A (ja) 燃料電池システムおよび燃料ガス供給方法
JP2009230909A (ja) 燃料電池発電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R151 Written notification of patent or utility model registration

Ref document number: 5550327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350