JP2011127931A - アプリケータおよびその使用方法 - Google Patents

アプリケータおよびその使用方法 Download PDF

Info

Publication number
JP2011127931A
JP2011127931A JP2009284450A JP2009284450A JP2011127931A JP 2011127931 A JP2011127931 A JP 2011127931A JP 2009284450 A JP2009284450 A JP 2009284450A JP 2009284450 A JP2009284450 A JP 2009284450A JP 2011127931 A JP2011127931 A JP 2011127931A
Authority
JP
Japan
Prior art keywords
liquid
path
applicator
introduction
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009284450A
Other languages
English (en)
Other versions
JP5507991B2 (ja
Inventor
Tsutomu Horiuchi
勉 堀内
Tatsu Miura
達 三浦
Gen Iwasaki
弦 岩崎
Tomoko Seyama
倫子 瀬山
Takeshi Hayashi
剛 林
Junichi Takahashi
淳一 高橋
Tsuneyuki Haga
恒之 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009284450A priority Critical patent/JP5507991B2/ja
Publication of JP2011127931A publication Critical patent/JP2011127931A/ja
Application granted granted Critical
Publication of JP5507991B2 publication Critical patent/JP5507991B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Use In Laboratory Experiments (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】測定チップへの検体液の導入操作を簡便、低コスト化し、またオペレータの待ち時間を低減し、並列測定などにより検査処理能力を向上させる。
【解決手段】液体導入口12と、この液体導入口12を上方として液体導入口12よりも下方に延在する液体導入路10と、この液体導入路10の下方に延在する液体導出路11と、この液体導出路11の下方に位置した液体導出口13とからなり、液体導入路10にて毛細管力により吸引する液体体積が液体導出路11にて毛細管力により吸引する液体体積よりも大きいことを特徴とする。
【選択図】図1

Description

本発明は、液体溶液をサンプリングし、検出器に液体溶液を供給するアプリケータおよびその使用方法に関するものである。
抗原抗体反応やDNAプローブとDNAとの結合などの高度な生体分子の識別能を利用した測定は、臨床検査、生化学分野での測定、および環境汚染物質の測定で重要な技術となっている。例えば、マイクロTAS(Total Analysis Systems)、マイクロコンビナトリアルケミストリー、化学IC、化学センサ、バイオセンサ、微量分析、電気化学分析、QCM測定、SPR測定、ATR測定などがある。この中で、SPRは簡便で非常に高感度な測定技術として知られている。SPRは測定対象の検体が接触した金属の表面における、エバネッセント波と表面プラズモン波との共鳴を用いるものである。
この測定は、図7に示すSPR測定装置を用いて行う。測定においては、まず、光源501から出射された光を入射側レンズ502で集光してプリズム503に入射させ、プリズム503の測定面503aに密着させているセンサチップ(測定チップ)505の測定領域に照射する。センサチップ505の測定領域には金(以下、Auと称す)の薄膜が形成されており、このAuの薄膜の表面に検体を接触させた状態で置き、Auの薄膜の裏面に、センサチップ505を透過してきた集光光が照射される。
このようにして照射された集光光は、Auの薄膜の裏面で反射し、いわゆるCCDイメージセンサなどの撮像素子よりなる光検出部504で強度(光強度)が測定され、図8に示すように、上記共鳴が起こる角度で反射率が低くなる谷が観測される。なお、図7では示していないが、光源および入射側レンズなどの光学系の位置(角度)および、光検出部を含む受光側の光学系の位置(角度)を制御する制御部(不図示)を備える。これらの、光源501、入射側レンズ502、プリズム503、光検出部504、および、制御部が、SPR測定装置500の測定部を構成している。
SPR測定を医療分野における生体物質検出に用いる場合、検体間交差汚染を避けるためや同一感度の測定を維持するため、測定チップは使いきりであることが望まれる。また測定対象の液体は微量な液体の場合が多く、微量な液体溶液を薄めることなく高感度で測定するために微小な流路に検出領域を設けた微少量の測定チップを用いるようにしている(例えば、特許文献1参照)。
医療分野においては、検体量が限られ、専門のオペレータが測定するため、測定チップへの検体の導入は、自動分注器やマイクロピペッタなどが利用される。
これに対して、食品などの品質検査や品質管理のための測定では、検体の量は十分にある場合が多いが、測定チップに内蔵する高価な抗体の塗布量の低減や、測定後の汚染廃棄物の処理コストの低減から、やはり微少量の測定チップを用いることが望まれる。
さらに医療サンプルや食品サンプルは夾雑物が多く、SPR測定においては、夾雑物の沈降による偽シグナルを分離するため、溶液を流しなら測定するフロー分析が一般的である。SPRによる免疫測定を精度よく行うためには、数分間一定の速度で溶液を流し続ける必要があることや、従来のマイクロピペットとのコンパチビリティを確保するために、数十マイクロリットルの検体量で測定するよう測定チップが設計されている。
特開2009−180707号公報
上述したように、医療や食品分野での検査では、使い切り型の測定チップが望ましい。通常、測定チップは検体液を一定量導入することが前提で設計されており、チップ導入前に微量定量が必要である。これには、マイクロピペッタなどが用いられる。マイクロピペッタはメカニカルな機構を用いてサンプリング量を広い領域に渡って調整できる。しかし、一方で、ピペッタの価格が高い、ピペット用チップが別途必要、繰り返し使用によるピペッタ内部の汚染がおこりやすい、校正のために定期的なメンテナンスが必要等の使用上の不便さがあった。
しかしながら、測定チップに導入する検体液の量は測定チップの設計値で決まっており、サンプリング量を調整する必要は無く、簡便な操作で、毎回一定量をチップに導入できればよい。
さらに、SPR用に設計されたチップ(特許文献1参照)では、参照液と検体液との差分測定を行う必要から、はじめに参照液、一定時間経過した後、検体液を導入する必要があった。このため、参照液をチップ内に貯蔵する構造を有する測定チップがあるが、参照液から検体液への切り替えは、インレット内の参照液の残量を常時オペレータが観察し、そのタイミングを測っていた。この間オペレータは測定装置に時間的に拘束され、別装置での測定を行う事ができず、検査処理能力の低下を招いていた。
本発明は、以上のような問題点を解消するためになされたものであり、SPRセンサチップなどの測定チップへの検体液の導入操作を簡便、低コスト化し、またオペレータの待ち時間を低減し、並列測定などにより検査処理能力を向上させることを目的とする。
上記の課題を解決するために、請求項1に記載した発明は、請求項1に記載の発明において、液体導入口(例えば、実施形態における液体導入口12,112)と、この液体導入口を上方として前記液体導入口より下方に延在する液体導入路(例えば、実施形態における液体導入路10、110a,110b,110c)と、この液体導入路の下方に延在する液体導出路(例えば、実施形態における液体導出路11、111)と、この液体導出路の下方に位置した液体導出口(例えば、実施形態における液体導出口13、113)とからなり、前記液体導入路にて毛細管力により吸引する液体体積が前記液体導出路にて毛細管力により吸引する液体体積よりも大きいことを特徴とする。
請求項2に記載した発明は、請求項1に記載の発明において、前記液体導入口から前記液体導出口へ至る主流路とは別に、さらに毛細管力により液体を収容する流路(例えば、実施形態における液体導入路110a,110c)が液体導入口に形成されていることを特徴とする。
請求項3に記載した発明は、請求項1又は2に記載の発明において、複数の液体導入口と複数の液体導入路が複数の液体導出路と複数の液体導出口に接続され、液体導入路にて毛細管力により吸引する液体体積の総和が、液体導出路にて毛細管力により吸引する液体体積の総和が大きいことを特徴とする。
請求項4に記載した発明は、請求項1乃至3の何れか一項に記載の発明において、前記液体導入路と前記液体導出路が内部リザーバ(例えば、実施形態における内部リザーバR)を介して接続されていることを特徴とする。
請求項5に記載した発明は、請求項1乃至4の何れか一項に記載の発明において、前記液体導入路および前記液体導出路の管路外側を伝わる液体を収容するためのリザーバ(例えば、実施形態におけるストッパー兼リザーバ14)が形成されていることを特徴とする。
請求項6に記載した発明は、請求項1乃至5の何れか一項に記載の発明において、前記液体導入路を液体中に浸漬する際の上限を規定するストッパー(例えば、実施形態におけるストッパー兼リザーバ14)が形成されていることを特徴とする。
請求項7に記載した発明は、請求項1乃至6の何れか一項に記載の発明において、前記液体を吐出する際に、アプリケータが自立しかつ設置角度を規定するための脚(例えば、実施形態における設置用脚部17)が形成されていることを特徴とする。
請求項8に記載した発明は、請求項1乃至7の何れか一項に記載の発明において、前記液体導入路および前記液体導出路の全部あるいは一部が透明基材からなることを特徴とする。
請求項9に記載した発明は、請求項1乃至8の何れか一項に記載されたアプリケータを用いた液体の導入方法であって、前記液体導入口を下方へ向けた状態で前記液体導入路と前記液体導出路とを液体に浸漬させ、次いで、前記液体導入路と前記液体導出路とを前記液体から引き上げ、その後、前記液体導出口を下方へ向けた状態で該液体導出口を被導入位置に配置させることを特徴とする。
請求項10に記載した発明は、請求項9に記載の発明において、各アプリケータの吐出量、吐出開始時間、吐出速度の違いにより、異なる液体の順次吐出や、同一液体の総吐出量、吐出速度の増大を制御することを特徴とする。
本発明によれば、アプリケータ内部にメカニカルな部分がなく、構造が簡単なため容易に作製でき、アプリケータ全体を使いきり型にできるため、検体間の交差汚染を防ぐ事ができる効果がある。
さらに、測定チップへアプリケータをマウントしてから一定時間後に検体液(液体)がチップに自動的に導入されるため、オペレータは余裕をもって測定チップにマウントできる。
また、あらかじめ参照液を測定チップに導入した後で、検体液用のアプリケータをマウントすれば、オペレータ作業は終了し、別な作業を行う事ができ作業効率を上げることができる。
あるいは時間差の異なるアプリケータを組み合わせれば、1回のマウントで参照液、検体液などの液体を順次導入可能となり、同様の効果を得る事ができる。
本発明の第1実施形態におけるアプリケータの斜視図である。 本発明の第1実施形態におけるアプリケータの使用方法を示す図であり、(a)は浸漬時、(b)は浸漬からの引き上げ時、(c)は、SPRセンサチップへの導入時の状態を示す図である。 本発明の第2実施形態におけるアプリケータを示す図であり、(a)は正面図、(b)は分解斜視図である。 本発明の第3実施形態におけるアプリケータの分解斜視図である。 本発明の第4実施形態におけるアプリケータの正面図である。 本発明の第5実施形態におけるアプリケータを示す図であり、(a)は正面図、(b)は浸漬時の状態、(c)はSPRセンタチップへの導入時の状態を示す図である。 SPR測定装置の概略構成図である。 SPR測定装置で測定された検出部の反射率と反射角度との関係の一例を示すグラフである。
以下、本発明の第一実施形態について図面を参照して説明する。
図1は、本実施形態におけるアプリケータ1の構造を示す斜視図である。このアプリケータ1は、異径の2本の透明な毛細管である略円管状の液体導入路10と液体導出路11とを直列に接続して備える。液体導入路10は、液体導出路11の側でない端部に液体導入口12を有し、液体導出路11は、液体導入路10の側でない端部に液体導出口13を有し、液体導入路10と液体導出路11とは、互いに曲面により滑らかに接続されている。
ここで、断面が半径rの円形の毛細管を考えると、この毛細管を液面に垂直に立てたときに、毛細管力が吸い上げる高さhは以下の(1)式で与えられる。
h=(2γcosθ)/(ρgr)・・・・・・(1)
但し、γは表面張力、θは接触角度、ρは液体の密度、gは重力加速度である。
従って、半径rの毛細管が吸い上げる液体の体積Vはhπrとなるから、
V=(2πrγcosθ)/(ρg)・・・・・・(2)
となり半径に比例する。
次に、半径r1、半径r2の2本の毛細管(r1>r2)を考えたとき、半径r1の毛細管で吸い上げる体積V1は、半径r2の毛細管で吸い上げる体積V2よりも大きく、その差ΔVは、
ΔV=V1−V2=(r1−r2)(2πγcosθ)/(ρg)・・・(3)
となる。
細い方の毛細管である液体導出路11の外側には、受け皿状のストッパー兼リザーバ部14が形成されている。このストッパー兼リザーバ部14は、液体導入路10側に向かって開口し、その内部空間15は液体導出口13側から液体導入口12側へ向かって徐々に拡径して形成される。また、ストッパー兼リザーバ部14は、液体導出路11の径方向に沿って形成された底面16を備えている。この底面16の面積は、後述する検体容器などの液体が入った容器の開口面積よりも大きく設定される。
液体導出路11の外側には、さらにアプリケータ1を自立させるための設置用脚部17が形成されている。この設置用脚部17は、図1に示す状態でアプリケータ1を自立させるためのものであり略半球状の外形、すなわちストッパー兼リザーバ部14よりも液体導出口13側の液体導出路11の外面に接続され、ここから液体導出口13に向かって徐々に拡径して形成される。また、設置用脚部17の径方向内側には空間が形成されてその径方向の略中央に上述した液体導出口13が配置される。
図2は上述したアプリケータ1の使用例を示している。なお、図2の使用例では、液体である検体液を、アプリケータ1を用いてSPRチップ(測定チップ)に導入する場合を示している。
はじめに、図2(a)に示すように、検体液Lが入った容器Cに、アプリケータ1の太い径の毛細管である液体導入路10を、液体導入口12が下方を向いた状態で容器Cの開口から下方に向かって挿入し容器C内の検体液Lに浸漬させる。この際、容器Cの開口にストッパー兼リザーバ14の底面16が当接して、所定以上のアプリケータ1の下方への移動が制限される。これにより検体液Lは、アプリケータ1のストッパー兼リザーバ14で制限された位置の液面高さに加えて毛細管力による液面上昇分(図では不指示)だけ、液体導入路10および液体導出路11の毛細管の中に入り込む。この時、毛細管内側の大部分が検体液Lと接触することにより、毛細管の内側の濡れ性が均一化されるため、個体差によりアプリケータ1により吸い上げ可能な液体量の特性がばらつくのを小さく抑えることができる。
次に、図2(b)に示すように、検体液Lに浸漬されたアプリケータ1全体をゆっくり持ち上げ、アプリケータ1を検体液Lの表面から分離する。この時、太い径の毛細管である液体導入路10の下部に毛細管力により上述の体積V1だけ検体液Lが吸引された状態になる。
次に、図2(c)に示すようにアプリケータ1を上下反転させ、設置用脚部17の底部18をSPRチップ20の周囲に接地させることでアプリケータ1を自立させ、これと同時に細い径の毛細管の先端すなわち、液体導出路11の液体導出口13をSPRセンサチップ20のインレット21に挿入させる。これにより、アプリケータ1の上部すなわち、液体導入路10内にあった検体液Lは重力の影響を受け、下部の液体導出路11に移動する。この検体液Lは、ある一定時間後に液体導出口13に到着するが、液体導出路11では、毛細管力により液体体積V2しか保持できないため、液体導出路11の毛細管力により吸引可能な液体体積V2と液体導入路10の毛細管力により吸引可能な液体体積V1との差分ΔVの検体液Lが、液体導出口13を介してアプリケータ1の外部すなわち、SPRセンサチップ20のインレット21に供給される。
例えば、半径1mm,0.5mmの2本のガラス毛細管が接続されたアプリケータ1で水をサンプリングする場合、表面張力0.073N/m,接触角20度,水の密度1000kg/m3,重力加速度9.8m/s2,を用いて計算すると、半径1mmの毛細管で吸い上げる高さは14mm,半径0.5mmの毛細管で吸い上げる高さは28mm,吐出量ΔVは22マイクロリットルと計算される。つまり、この計算より長さ5cm程度のアプリケータ1で22マイクロリットルを定量することができ、現実的な大きさで適量を定量するアプリケータ1が実現可能であることが分かる。
上述のアプリケータ1を上下反転させる際には、液体導入路10の外表面にも検体液Lが付着し、この付着した検体液Lが重力の影響で下部に移動してしまうが、ストッパー兼リザーバ14で受け止められて下方への移動が妨げられ、SPRセンサチップ20及びSPR装置(不図示)が汚染されることはない。
なお、上述した第一実施形態では、一体的に形成されたストッパー兼リザーバ14に、ストッパーおよびリザーバの機能を持たせていたが、それぞれ、ストッパーおよびリザーバを個別の部品で構成してもよい。
さらに、ストッパーやリザーバを上下に移動可能に形成して、検体液の量、検体容器の形状に応じて適宜移動させても良い。
また、検体液LのSPRセンサチップ20への導入速度や導入量を調整するために、設置用脚部17に液体導出路11の角度を変化させる調整機構を設けても良い。
また、SPRセンサチップ20やSPR装置側にアプリケータ1をマウントする機構が設けてある場合、設置用脚部17を省略してもよい。
次に、本発明の第2実施形態について図3を参照して説明する。なお、この第2実施形態は上述した第1実施形態のアプリケータ1をプレート型にしたものであるため、第1実施形態と同一部分に同一符号を付して説明する。また図3では、図示都合上、リザーバ、ストッパー、および、設置用脚を省略している。使用状況に合わせて、リザーバ、ストッパー、設置用脚は装備されていてもいなくても良い。
図3(a)は本実施形態のアプリケータ101の平面図であり、図3(b)は本実施形態のアプリケータ101の分解斜視図である。本実施形態のアプリケータ101は、透明アクリル(透明基材)の平面基板102と、黒色アクリルに溝を刻んだ平面基板103とを張り合わせた構造となっており、溝が平面基板102により覆われることで、液体流路が形成される。ここでは液体導入路110a,110b,110c、液体導出路111の合計四本の液体流路があり、液体導入路110a,110b,110cは、略平行に配置されて一本の液体導出路111に合流接続される。これら液体流路の断面積は、液体導入路(中央)110b>液体導入路(左)110a=液体導入路(右)110c>液体導出路111の関係になっている。なお、液体導入口112から液体導出口113に至る液体導入路110b、液体導出路111が主流路である。つまり、第2実施形態では、この主流路とは別に液体を収容可能な流路として、液体導入路110a,110cが設けられている。
上述した合流部分では、アプリケータ101の幅方向外側に配置された液体導入路110a,110cの外側壁105が、それぞれ、流路外側に向かって凸となる曲面106を介して、液体導出路111の液体導入路110a,110b,110c側の入口107に至っており、三本の液体導入路110a,110b,110cの間を仕切っている仕切り壁108は、その下端部が正面視略U字状の曲面に形成されている。
また、アプリケータ101の液体導出口113側には、液体導出口113に近づくほど先細りとなる突出部122が形成されている。この突出部122は、平面基板103の突出部122aと平面基板102の突出部122bとの積層により形成されている。このように突出部122が先細り形状となっていることで、SPRセンサチップ20のインレット21へ液体導出口113を容易に挿入することが可能となっている。
次に、本実施形態のアプリケータ101の使用例として、牛乳を食品サンプルとして測定する方法について説明する。
まず、アプリケータ101の液体導出路111側を手で持ち、透明基板102を手前にして液体導入路110を液体導入口112側から牛乳中に浸漬させる。このとき、アプリケータ101をゆっくり浸漬させて液体導出路111と合流するところで、僅かに持ち上げて液体導入路110への牛乳の侵入の様子を確認すると、黒色基板を背景に白色の牛乳が観察されるため、コントラストがはっきりし、透明基板の外側が牛乳で濡れていても、毛細管への侵入が容易に確認することができる。
ここで牛乳が接続点すなわち液体導入路110と液体導出路111とが合流する部分に達していない時には、再び浸漬、観察を繰り返し、牛乳が上記合流する部分に達するまで繰り返し、合流部分に達したことが確認できたら、ウエスでアプリケータ101を挿み、その外表面についた牛乳を拭き取りながら、牛乳中から取り出す。なお、上述したリザーバ機能を有する場合は、この拭き取り作業を省略してもよい。
次にアプリケータ101を上下反転させて、液体導出口113をSPRセンサチップ20のインレット21に挿入する。すると、液体導入口112付近にあった牛乳は重力のために液体導入路110a,110b,110cを下方に移動し、液体導出路111の入口107付近で合流し、液体導出路111を通り、SPRセンサチップ20に供給される。この際、液体導入路110a,110b,110cの毛細管力により吸い上げられる牛乳体積の総和が、液体導出路111で毛細管力により保持できる牛乳体積より大きいので、この牛乳体積の差分がSPRセンサチップ20に供給されることとなる。
以下に測定例を示す。下記アプリケータは2mm厚の黒色アクリル板に両面テープを貼り、レーザで溝加工をした後、0.5mm厚の透明アクリル板を貼り合わせて作製したものである。表中「aアプリケータ」が液体導入路を3本とし、それぞれ液体導入路110a,110cの導入路幅を0.5mm、液体導入路110bの導入路幅を1.2mmに設定した場合であり、「bアプリケータ」が液体導入路を1本だけとして導入路幅を2.0mmとした場合である。導入路本数や幅を適切に設計することによって供給体積を制御することができた。
Figure 2011127931
したがって、上述した第2実施形態のアプリケータ101によれば、複数の液体導入路である液体導入路110a,110b,110cを設けたことによって、液体導入路を一本だけ設ける場合と比較して、液体導入路の毛細管力により吸引可能な液体体積と液体導出路111の毛細管力により保持可能な液体体積との差分を大きくすることが可能となるため、アプリケータ101による液体の供給総量を増加させることができる。
また、液体導入路110を牛乳すなわち液体中に浸漬し、液体導入路110a,110b,110cの内面を液体でいったん濡らすことによって、液体導入路110a,110b,110cでの液体の下降速度を均一化することができる。
さらに、三本の液体導入路110a,110b,110cのうち、最も断面積の大きな真ん中の液体導入路110bの中に導入された液体が最初に合流点である液体導出路111の入口107に到達することで、液体流路110bが空気抜け孔として機能し、両外側の断面積の小さな液体導入路110a,110cに導入されている液体の下降が妨げられるのを防止することができる。また、液体導入路110a,110b,110cの液体内に気泡が入った場合でも中央の最も太い液体流路110bから気泡が抜け易くなる。
一方、液体導出路111の断面積をより小さく形成することで、SPRセンサチップ20への液体の供給量を増大させることができる効果の他に、流路抵抗が断面積に反比例、長さに比例することから、流路抵抗を大きくし流速を遅くすることができる。これにより、アプリケータ101の流体導出口113を、時間的余裕をもってSPRセンサチップ20へ挿入することを可能にしている。
また、液体導入路110a,110b,110cと液体導出路111との合流点まで液体中に浸漬して、液体導出路111を濡らさないようにすることで、SPRセンサチップ20への液体の供給をさらに送らせることができる。
なお、上述した第2実施形態では、複数の液体導入口112および複数の液体導入路110を設け、一つの液体導出口113および一つの液体導出路111を設ける場合について説明したが、複数の液体導出口と複数の液体導出路を設けてもよく、この場合、複数の液体導入路にて毛細管力により吸引する液体体積の総和が、複数の液体導出路にて毛細管力により吸引する液体体積の総和よりも大きく設定される。
次に、本発明の第3実施形態のアプリケータ201について図4を参照して説明する。本実施形態のアプリケータ201は、上述したSPRセンサチップ20に検体液を供給する前に、検体液とは異なる液体である微量の参照液をSPRセンサチップ20に供給する機能を有するものである。なお、本実施形態のアプリケータ201は、上述したアプリケータ101を構成する透明アクリルの平面基板102の形状が異なるだけであるため、同一部分に同一符号を付して説明し、重複する説明は適宜省略する。
ここで、上記参照液の必要性について簡単に説明する。SPRでは屈折率を高感度に検出できるものの、検体液のみをSPRセンサチップ20へ供給した場合には、空気から検体液への屈折率変化を測定することになってしまい、その変化が非常に大きくなり、抗原抗体反応による小さな屈折率変化を覆い隠してしまう。そのため、検体に屈折率の近似した参照液を予め供給しておき、抗原抗体反応による屈折率変化を精度よく測定することが行われる。
また、SPRセンサチップ20は乾燥状態で保存させるため、内部にある抗体も乾燥状態にある。そのため、乾燥状態にある抗体に検体液を供給したとしても抗体は直ちに活性を復活させることができず、感度の低下を招いてしまう。そのため、検体液を供給する前に参照液で抗体を濡らし、その後、抗体の活性を復活させる一定の時間が必要となる。
図4に示すように、本実施形態のアプリケータ201は、上述した第2実施形態のアプリケータ101と同様の平面基板103を備え、この平面基板103に張り合わされる透明な平面基板202を備えて構成される。透明な平面基板202の液体導出口113側には、黒色の平面基板103の突出部122よりも突出量が大きい突出部222が形成されている。この突出部222の外表面には、その先端部から基部に亘り液体導出路111の延在方向に沿う断面略V字状の溝223が形成されている。
本実施形態のアプリケータ201は、上述した構成を備えており、次に、アプリケータ201の使用例について説明する。なお、この使用例の説明では、複数の液体として参照液と検体液とを単一のアプリケータ201によってSPRセンサチップ20のインレット21へ供給する場合を一例に説明する。
まず、液体容器に入れられた参照液(不図示)の上面に溝付き透明基板の突出部222の頂点tを接触させる。すると、V字型の溝223の部分の表面張力により、参照液がV字型の溝223に沿って吸い上げられる。
次に第2実施形態の牛乳の場合と同様に、アプリケータ201の上下を反転させて、容器中の検体液に浸漬して液体導入路110へ検体液を導入させ、その後、SPRセンサチップ20のインレット21に突出部222を頂点tから挿入する。この突出部222の頂点tはSPRセンサチップ20のインレット21の底部に接触する構造になっており、V字型の溝223の部分に表面張力で吸い上げられた参照液は、インレット21の底部に接触すると直ちにSPRセンサチップ20内を流れ、抗体領域を濡らす。一方、液体導入路110の検体液は、上述した第2実施形態と同様に時間をかけて液体導出路111を通りSPRセンサチップ20に導入される。
したがって、上述した第3実施形態のアプリケータ201によれば、参照液をSPRセンサチップ20に供給し一定時間が経過して抗体の活性が復活した後に検体液を供給することができるとともに、参照液−検体液間の屈折率を測定することができるため、抗原抗体反応による小さな屈折率変化も精度よく検出することができる。
次に、本発明の第4実施形態のアプリケータ301について図5を参照して説明する。なお、本実施形態のアプリケータ301は、液体導入路と液体導出路との間に、液体が貯留されるリザーバ部Rを内蔵した構造となっているため、上述した各実施形態と同一部分に同一符号を付して説明する。
内部リザーバ部Rは、図5に示すように、液体導入路110a,110b,110cのうち、左右の液体導入路110a,110cの幅方向外側の側壁と連なり、液体導出路111の入口107へ至る弧状の曲面により形成されている。つまり、内部リザーバ部Rは、液体導入路110a,110b,110cの全体の幅寸法と略等しい空間を有している。これにより、液体導入路110a,110b,110cに導入された検体液は、これら液体導入路110a,110b,110cを下降して、内部リザーバ部Rの液体導入路10の下部側において徐々に液滴が成長される。そして液滴が成長すると、3本の液体導入路110a,110b,110cの隣同士の液滴が一緒になり大きな液滴となり、内部リザーバ部R内を下降することとなる。
ここで、内部リザーバ部R内で液滴が成長し一体化するのに要する時間は、内部リザーバ部Rの形状で制御することができる。例えば、液体導入路110a,110cのリザーバ側口が、液体導出路110bのリザーバ側口を左右から回り込むよう曲げておけば、液的が一カ所で成長できるようになるため、短時間で液的が一体化する。さらに内部リザーバ部Rは横に広がる構造となるため、液体導出路からの液面高さが低くなったぶん、液体導出路にかかる圧力が小さくなり、供給時間を遅らせることができる。なお、アプリケータ301の使用方法は第2実施形態のアプリケータ101と同様であるため、その説明を省略する。
したがって、上述した第4実施形態のアプリケータ301によれば、上述した各実施形態のアプリケータと比較して、オペレータがさらに時間的余裕をもって操作できる。また、アプリケータ301に、第3実施形態の溝223の構成を組み合わせることによって、抗体活性の復活の時間を調整することができるようになり、より高精度の測定が可能になる。
アプリケータの内部リザーバ部Rの有無に応じた供給終了時間の測定結果を以下の表に示す。表中、「cアプリケータ」の3本の液体導入路110a,110b,110cが合流する部分に内部リザーバ部Rが形成され、内部リザーバ部Rの形状は、直径5mmの略半月状の形状であり、「dアプリケータ」には内部リザーバ部Rが形成されていない。「供給終了時間」はアプリケータを上下反転させてから、アプリケータ内の牛乳(液体)が外部に供給されなくなるまでの時間である。
Figure 2011127931
次に、本発明の第5実施形態について図6を参照して説明する。このアプリケータ401は、プレート型のものにおいて異なる溶液をサンプリングし、これら溶液が混じる事なくSPRセンサチップ20へ供給するための構成である。
図6(a)は、アプリケータ401の正面図を示している。アプリケータ401の平面基板103には液体導入路110a,110cとが独立に形成されている。また、液体導入路110a,110cとの間には、液体導入口12側が開口した空間部kが液体導入路110の長手方向に亘って形成されている。さらに、基板103には液体導入路110aに連通する液体導出路111aと、液体導入路110cに連通する液体導出路111cとが独立に形成されている。そして、これら液体導出路111a,111cとは、液体導出口113の直前で合流接続されている。液体導出路111aの流路断面積は液体導入路110aの流路断面積よりも小さく形成され、さらに、液体導出路111cの流路断面積は液体導入路110cの流路断面積よりも小さく形成される。ここで、図6では、液体導入路110aの流路断面積よりも液体導入路110cの流体断面積の方が大きく形成され、液体導出路111aの流体断面積よりも液体導出路111cの流体断面積の方が小さく形成される一例を示している。
次に、本実施形態のアプリケータ401の使用方法について図面を参照して説明する。このアプリケータ401の使用方法では、溶液が入った液体容器C2として仕切り壁Sにより区分けされて2つの異なる溶液が入った液体容器を用いる(図6(b)参照)。なお、異なる溶液が入った2つの液体容器を接近配置させて用いてもよい。
まず、アプリケータ401の空間部kの開口を下方へ向けた状態で、この開口から空間部kに液体容器C2の仕切り壁Sを挟み込むようにアプリケータ401を下げ、空間部kの底部と仕切り壁Sの上端部とが当接する状態にする。すると、アプリケータ401が仕切り壁Sによって支持され、液体導入路110aと、液体導入路110cとがそれぞれ異なる溶液中に浸漬されることとなる。これにより、それぞれ液体導入路110aと液体導入路110cとに毛細管力によって異なる溶液が導入される。
次いで、アプリケータ401をゆっくり持ち上げて液体容器C2から取り出し、図6(c)に示すように液体導出口113が下方を向くように上下反転させて液体導出口113をSPRセンサチップ20のインレット21に挿入させる。すると、液体導入路110aに導入された溶液が重力により液体導出路111aに移動し、液体導入路110cに導入された溶液が重力により液体導出路111cへ移動して、所定の時間経過した後に、それぞれ異なるタイミングで液体導出路111a,111cに導入された溶液が、混ざることなしに液体導出口113から外部へ吐出されてインレット21からSPRセンサチップ20へ導入される。ここで、液体導入路110a,110cおよび液体導出路111a,111cは、溶液の種類に応じて流路幅を適宜設計することで、図6(c)に示すように、順次溶液をSPRセンサチップ20に供給することができる。
上述した第5実施形態のアプリケータ401によれば、液体導出口113から最初に流れ出る液体を参照液、次に流れ出る液体を検体にすれば、第3実施形態と同様の作用効果を奏することができる。
また、第3実施形態のアプリケータ201の溝223を設けてもよく、この場合、溝223に吸い上げられる液体を参照液、液体導出口113から最初に流れ出る液体を検体、次に流れ出る液体を参照液に選べば、SPRセンサチップ20へは、参照液、検体液、参照液と順次流れるようになり、抗原−抗体反応の吸着曲線をより正確に求めることができ、より高精度の測定が可能となる。
なお、本発明は上述した各実施形態について説明したが、これらの実施形態に限られるものでなく、本発明の趣旨を逸脱しない範囲の設計変更も含まれる。例えば、液体導入路の本数は任意であるし、また液体導出路を分岐し液体導出口を複数有するようにすれば、同時に同じ溶液を複数のセンサチップに供給することができる。
さらに、第5実施形態のアプリケータ401に第4実施形態のアプリケータ301にもうけられた内部リザーバ部Rを設け、ミキサーとして用いれば、異なる溶液を混合し、一定時間後にSPRセンサチップ20へ供給することが可能になる。さらに同一平面上に第2実施形態〜第5実施形態で説明した複数の液体流路を形成することで、大量の測定および、様々な測定を同時に行う事ができる。
10、110a,110b,110c 液体導入路
11、111 液体導出路
12,112 液体導入口
13、113 液体導出口
R 内部リザーバ
14 ストッパー兼リザーバ(リザーバ,ストッパー)

Claims (10)

  1. 液体導入口と、
    この液体導入口を上方として前記液体導入口より下方に延在する液体導入路と、
    この液体導入路の下方に延在する液体導出路と、
    この液体導出路の下方に位置した液体導出口とからなり、
    前記液体導入路にて毛細管力により吸引する液体体積が前記液体導出路にて毛細管力により吸引する液体体積よりも大きいことを特徴とするアプリケータ。
  2. 前記液体導入口から前記液体導出口に至る主流路とは別に、さらに毛細管力により液体を収容する流路が液体導入口に形成されていることを特徴とする請求項1に記載のアプリケータ。
  3. 複数の液体導入口と複数の液体導入路が複数の液体導出路と複数の液体導出口に接続され、液体導入路にて毛細管力により吸引する液体体積の総和が、液体導出路にて毛細管力により吸引する液体体積の総和よりも大きいことを特徴とする請求項1又は2に記載のアプリケータ。
  4. 前記液体導入路と前記液体導出路が内部リザーバを介して接続されていることを特徴とする請求項1乃至3の何れか一項に記載のアプリケータ。
  5. 前記液体導入路および前記液体導出路の管路外側を伝わる液体を収容するためのリザーバが形成されていることを特徴とする請求項1乃至4の何れか一項に記載のアプリケータ。
  6. 前記液体導入路を液体中に浸漬する際の上限を規定するストッパーが形成されていることを特徴とする請求項1乃至5の何れか一項に記載のアプリケータ。
  7. 前記液体を吐出する際に、アプリケータが自立しかつ設置角度を規定するための脚が形成されていることを特徴とする請求項1乃至6の何れか一項に記載のアプリケータ。
  8. 前記液体導入路および前記液体導出路の全部あるいは一部が透明基材からなることを特徴とする請求項1乃至7の何れか一項に記載のアプリケータ。
  9. 請求項1乃至8の何れか一項に記載されたアプリケータの使用方法であって、
    前記液体導入口を下方へ向けた状態で前記液体導入路と前記液体導出路とを液体に浸漬させ、次いで、前記液体導入路と前記液体導出路とを前記液体から引き上げ、その後、前記液体導出口を下方へ向けた状態で該液体導出口を被導入位置に配置させることを特徴とするアプリケータの使用方法。
  10. 複数のアプリケータの吐出量、吐出開始時間、吐出速度を異ならせることで、複数種の液体の吐出順、液体毎の総吐出量、および、吐出速度の増大を制御することを特徴とする請求項9に記載のアプリケータの使用方法。
JP2009284450A 2009-12-15 2009-12-15 アプリケータ Active JP5507991B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009284450A JP5507991B2 (ja) 2009-12-15 2009-12-15 アプリケータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009284450A JP5507991B2 (ja) 2009-12-15 2009-12-15 アプリケータ

Publications (2)

Publication Number Publication Date
JP2011127931A true JP2011127931A (ja) 2011-06-30
JP5507991B2 JP5507991B2 (ja) 2014-05-28

Family

ID=44290690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009284450A Active JP5507991B2 (ja) 2009-12-15 2009-12-15 アプリケータ

Country Status (1)

Country Link
JP (1) JP5507991B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390901A (zh) * 2014-11-17 2015-03-04 成都柏森松传感技术有限公司 一种空气中微颗粒物浓度的监测方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951359A (ja) * 1982-09-18 1984-03-24 Nippon Tectron Co Ltd 生化学自動分析装置における試薬供給装置
JPS6269139A (ja) * 1985-09-18 1987-03-30 マイルス・インコーポレーテッド 反応性表面上に液体試料を施すための計量用毛細間隙装置及び計量方法
JPS6485634A (en) * 1987-02-05 1989-03-30 Livestock Control Holding Apparatus for sucking-up and dropping liquid
JPH01276042A (ja) * 1988-04-27 1989-11-06 Fuji Photo Film Co Ltd 液体定量採取器具
JP2007504438A (ja) * 2003-09-01 2007-03-01 インバーネス・メデイカル・スウイツツアーランド・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 毛管現象を用いるサンプリング装置
JP2009162636A (ja) * 2008-01-08 2009-07-23 Nippon Telegr & Teleph Corp <Ntt> 溶液自動供給装置
JP2009535635A (ja) * 2006-05-03 2009-10-01 エヌツェーエル ニュー コンセプト ラブ ゲーエムベーハー 化学的、生化学的、生物学的および物理学的分析、反応、アッセイなどのためのデバイスおよび方法
JP2009276320A (ja) * 2008-05-19 2009-11-26 Panasonic Corp 血漿成分分析センサチップ及び試料液抽出方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951359A (ja) * 1982-09-18 1984-03-24 Nippon Tectron Co Ltd 生化学自動分析装置における試薬供給装置
JPS6269139A (ja) * 1985-09-18 1987-03-30 マイルス・インコーポレーテッド 反応性表面上に液体試料を施すための計量用毛細間隙装置及び計量方法
JPS6485634A (en) * 1987-02-05 1989-03-30 Livestock Control Holding Apparatus for sucking-up and dropping liquid
JPH01276042A (ja) * 1988-04-27 1989-11-06 Fuji Photo Film Co Ltd 液体定量採取器具
JP2007504438A (ja) * 2003-09-01 2007-03-01 インバーネス・メデイカル・スウイツツアーランド・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 毛管現象を用いるサンプリング装置
JP2009535635A (ja) * 2006-05-03 2009-10-01 エヌツェーエル ニュー コンセプト ラブ ゲーエムベーハー 化学的、生化学的、生物学的および物理学的分析、反応、アッセイなどのためのデバイスおよび方法
JP2009162636A (ja) * 2008-01-08 2009-07-23 Nippon Telegr & Teleph Corp <Ntt> 溶液自動供給装置
JP2009276320A (ja) * 2008-05-19 2009-11-26 Panasonic Corp 血漿成分分析センサチップ及び試料液抽出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390901A (zh) * 2014-11-17 2015-03-04 成都柏森松传感技术有限公司 一种空气中微颗粒物浓度的监测方法及系统

Also Published As

Publication number Publication date
JP5507991B2 (ja) 2014-05-28

Similar Documents

Publication Publication Date Title
EP2226623B1 (en) Flow cell
CN101437616B (zh) 用于化学、生物化学、生物和物理分析、反应、测定等的装置和方法
WO2009145172A1 (ja) フローセル及び送液方法
JP4969060B2 (ja) 自動分析装置
JP4407271B2 (ja) チップ、反応分析装置、反応分析方法
WO2018009920A1 (en) Automated microscopic cell analysis
JPH04204136A (ja) 液定量取出し装置
JP4811267B2 (ja) マイクロチップ及びそれを用いた分析デバイス
EP2563901A1 (en) Sample analysis system and method of use
US9707560B2 (en) Method for filling a microfluidic device using a dispensing system and corresponding test system
US20150165435A1 (en) Autonomous and programmable sequential flow of solutions in capillary microfluidics
JPH09196739A (ja) 液体検知方法および器具
JP2007086036A (ja) 液体の性状変化検出装置及び方法
WO2014038399A1 (ja) 測定用器具および測定装置
US20090221089A1 (en) Probe chip, sensing apparatus using the same and method of detecting substances using the same
JP5507991B2 (ja) アプリケータ
JPH04372861A (ja) 液面検出装置
JP4471687B2 (ja) 生化学分析方法と生化学分析装置
EP2226622B1 (en) Flow cell
WO2006013832A1 (ja) 検体の光情報認識装置およびその認識方法
CN116171379A (zh) 用于分析组分的h-型过滤器装置
JP2013076674A (ja) 分注装置および吸引ノズル位置制御方法
JP4833228B2 (ja) 溶液自動供給装置
JP5483616B2 (ja) フローセルおよびフローセルの送液方法
JP2008180644A (ja) 液状試料のサンプリング量測定手段

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140320

R150 Certificate of patent or registration of utility model

Ref document number: 5507991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150