JP2011126160A - 成型用ハードコートフィルム - Google Patents

成型用ハードコートフィルム Download PDF

Info

Publication number
JP2011126160A
JP2011126160A JP2009287457A JP2009287457A JP2011126160A JP 2011126160 A JP2011126160 A JP 2011126160A JP 2009287457 A JP2009287457 A JP 2009287457A JP 2009287457 A JP2009287457 A JP 2009287457A JP 2011126160 A JP2011126160 A JP 2011126160A
Authority
JP
Japan
Prior art keywords
hard coat
film
molding
mass
ionizing radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009287457A
Other languages
English (en)
Other versions
JP5428830B2 (ja
Inventor
Kaoru Sawada
薫 澤田
Hiroki Haraguchi
裕樹 原口
Kenichi Mori
憲一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009287457A priority Critical patent/JP5428830B2/ja
Publication of JP2011126160A publication Critical patent/JP2011126160A/ja
Application granted granted Critical
Publication of JP5428830B2 publication Critical patent/JP5428830B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

【課題】加熱時の寸法安定性に優れ、高い表面硬度と成型性を兼ね備えた成型用ハードコートフィルムを提供する。
【解決手段】基材フィルムの少なくとも一方の面に塗布液を塗布硬化させてなるハードコート層を有する成型用ハードコートフィルムであって、前記基材フィルムが、共重合ポリエステルを含む二軸配向ポリエステルフィルムであり、前記塗布液が、3以上の官能基を有する電離放射線硬化型化合物と、1および/または2官能の電離放射線硬化型化合物とを少なくとも含み、前記塗布液に含まれる電離放射線硬化型化合物中の1および/または2官能の電離放射線硬化型化合物の含有量が5質量%以上95質量%以下であり、長手方向及び幅方向の平均熱収縮率が、150℃において0.001〜2.0%、及び80℃において0.0〜0.5%である成型用ハードコートフィルム。
【選択図】なし

Description

本発明は、加熱時の寸法安定性に優れ、表面硬度、耐擦傷性が優れていて、かつ、成型性にも優れる成型用ハードコートフィルムに関するものである。
従来、成型用フィルムとしては、ポリ塩化ビニルフィルムが代表的であり、近年の耐環境性のニーズにより、環境負荷が小さいポリエステル、ポリカーボネートおよびアクリル系樹脂よるなる未延伸フィルム、さらには耐熱性や耐溶剤性に優れた二軸延伸ポリエステルフィルム等が使用されている。(例えば、特許文献1〜10を参照)。
例えば、家電、自動車の銘板用または建材用部材など、成型用フィルムを外部に触れる位置に装着する場合、キズつき防止のため、成型用フィルムの表面硬度を補い、耐擦傷性を向上させる目的で、表面にハードコート層を設けることが行われる。
成型用フィルムにハードコート層を設ける方法として、圧空成型法や真空成型法等で成型した後、ディッピング方式、スプレー方式等によって後加工し、ハードコート層を積層させる方法が一般的である。しかしながら、前述の方法では枚葉加工でハードコート層を積層させるため、生産速度の向上に限界があるほか、品質の安定性に課題があった。そのため、ハードコート層を成型前のフィルムにロール・トゥ・ロール方式で設けた後、成型を行う方法での成型体が求められるようになった。
成型前にハードコート層を積層させる方式の場合、ハードコート層に求められる特性として、成形後の後加工でハードコート層を設ける方式と同程度の表面硬度、耐擦傷性が必要であるほか、成型時に伴う変形に追随可能な成型性が必須となる。しかしながら、一般的なハードコート樹脂の場合、表面硬度を満足させるために、ハードコート層が硬すぎるため、成型性が無く、成型加工時の変形によりハードコート層にクラック(ハードコート層の割れ)が発生する問題が生じていた。
そこで、硬化後もある程度の表面硬度を有しながらも柔軟性のある樹脂を積層させ、成型性を向上させたハードコートフィルムや、基材上に柔軟性のある層と強い表面硬度がある層を複数積層させることで強い表面硬度と、屈曲性を有するハードコートフィルムが提案されている(特許文献11〜14)。
特開平9−156267号公報 特開平9−187903号公報 特開平10−296937号公報 特開平11−268215号公報 特開2001−129951号公報 特開2001−212868号公報 特開2002−249652号公報 特開2003−211606号公報 特開2004−075713号公報 特開2005−290354号公報 特開2005−305383号公報 特開2007−284626号公報 特開2007−313728号公報 国際公開第2008/029666号パンフレット
しかしながら、特許文献11、13で提案されているハードコートフィルムは、適度な表面硬度を有するものの、成型性については屈曲性や打ち抜き加工といった限定的な加工特性しか有さず、特許文献12で提案されるハードコートフィルムは、伸張性は有するものの、表面硬度については満足のいくものではなくかった。また、特許文献14で提案されるハードコートフィルムでは表面硬度と成形性の両立が試みられているものの、より高度な成形性や、より高度な表面硬度が要求される分野においては十分な性能が発揮できない場合もあった。すなわち、上記特許文献は、高い表面硬度と、高い成型性と両方の特性を同時に満足するような成型用ハードコートフィルムを提供するものではなかった。
加えて、成型用ハードコートフィルムのハードコート層の反対面に印刷で加飾処理を施す場合、予備熱処理の段階でフィルムの平面性が悪化するという問題、或いは多色印刷の際に各色印刷毎に行う乾燥工程において寸法変動が起こり易くピッチズレによる印刷不良発生の原因になるなど、後工程の加熱処理により成型体が歪むなどの問題があった。特に、生産性の向上に伴い、より高温での処理が志向されており、係る問題が顕在化しつつある。
本発明の目的は、上記課題を解決するためになされたものであり、すなわち、加熱時の寸法安定性に優れ、成型前に成型用フィルムにハードコート層を加工、積層させることで、生産性、品質の安定性を向上に寄与することができ、かつ、表面硬度、耐擦傷性と成型時の変形に追随可能な成型性の両方を兼ね備える成型用ハードコートフィルムを提供することにある。
本発明者らは上記の課題を解決するため、鋭意研究した結果、ついに本発明を完成するに到った。即ち、本発明は、以下の通りである。
第1の発明は、基材フィルムの少なくとも一方の面に塗布液を塗布硬化させてなるハードコート層を有する成型用ハードコートフィルムであって、前記基材フィルムが、共重合ポリエステルを含む二軸配向ポリエステルフィルムであり、前記塗布液が、3以上の官能基を有する電離放射線硬化型化合物と、1および/または2官能の電離放射線硬化型化合物とを少なくとも含み、前記塗布液に含まれる電離放射線硬化型化合物中の1および/または2官能の電離放射線硬化型化合物の含有量が5質量%以上95質量%以下であり、長手方向及び幅方向の平均熱収縮率が、150℃において0.001〜2.0%、及び80℃において0.0〜0.5%である成型用ハードコートフィルムである。
第2の発明は、前記基材フィルムの融解温度が200〜245℃であり、前記基材フィルムの長手方向及び幅方向における100%伸張時応力が、25℃において30〜300MPa、100℃において1〜100MPaであり、前記基材フィルムの面配向度が0.050〜0.095である前記成型用ハードコートフィルムである。
第3の発明は、前記共重合ポリエステルが、テレフタル酸単位を含むジカルボン酸成分とエチレングリコール単位及び分岐状脂肪族グリコール単位及び/又は脂環族グリコール単位を含むグリコール成分から構成される共重合ポリエステルである前記成型用ポリエステルフィルムである。
第4の発明は、前記塗布液に含まれる電離放射線硬化化合物の少なくとも1種がアミノ基を有する電離放射線硬化化合物である前記成型用ハードコートフィルムである。
第5の発明は、前記ハードコート層中に平均粒子径10nm以上300nm以下の粒子を含み、前記粒子のハードコート層中の含有量が5質量%以上70質量%以下である前記成型用ハードコートフィルムである。
第6の発明は、前記ハードコート層中に電離放射線硬化型シリコーン樹脂を含み、前記電離放射線硬化型シリコーン樹脂のハードコート層中の含有量が前記電離放射線硬化型化合物100質量部に対して0.15質量部以上15質量部以下である前記成型用ハードコートフィルムである。
第7の発明は、前記成型用ハードコートフィルムを成型してなる成型体である。
本発明の成型用ハードコートフィルムは、加熱時の寸法安定性に優れ、表面硬度、耐擦傷性と成型時の変形に追随可能な成型性の両方の特性を有する。本願発明は高い表面硬度と、優れた伸張性を備える為、好ましい実施態様として、例えば銘板用または建材用の部材などに好適に使用しうる。また、本願発明の好ましい実施態様として、アミノ基を有する電離放射線硬化樹脂もしくは/および粒子を用いる場合は、表面硬度と成型性の両方の特性をより高度に両立でき、例えば筐体などの部材として好適に使用しうる。さらに、本発明は成型後のハードコート加工が不要であり、成型加工の製造面で生産性、品質の安定性に寄与することができ、本願発明の好ましい実施態様として成型用フィルムロールとして用いる場合は成型体の品質の安定性に優れる。
以下、本発明を詳細に説明する。
(基材フィルム)
本発明において、基材フィルムとしては、低い温度や低い圧力下での加熱成型時の成型性に優れた共重合ポリエステルを含むポリエステルフィルムを用いる。ここで成型性とは、金型成型や圧空成型、真空成型などの成型加工により成型体を形成しうることをいう。具体的には成型によって局部的に伸長された部分において、部分的に高い応力が発生した際にも基材フィルムの破断なく成型体を形成可能なフィルム応力特性を有するものである。
本発明の基材フィルムの融解温度は、耐熱性及び成型性の点から、200〜245℃でが好ましい。使用するポリマーの種類や組成、さらに製膜条件を前記融解温度の範囲内に制御することにより、成型性と仕上がり性とのバランスが取れ、高品位の成型品を経済的に生産することができる。ここで、融解温度とは、示差走査熱量測定(DSC)の1次昇温時に検出される融解時の吸熱ピーク温度のことである。融解温度の下限値は、210℃がさらに好ましく、特に好ましくは230℃である。融解温度が200℃未満であると、耐熱性が悪化する傾向がある。そのため、成型時や成型品の使用時に高温にさらされた際に、問題となる場合がある。
前記融解温度の上限値は、耐熱性の点からは高いほうが良いが、ポリエチレンテレフタレート単位を主体とした場合、融解温度が250℃を超えるフィルムでは、成型性が悪化する傾向がある。また、透明性も悪化する傾向がある。さらに、高度な成型性や透明性を得るためには、融解温度の上限を245℃に制御することが望ましい。
本発明の成型用ハードコートフィルムにおいては、フィルムの長手方向及び幅方向の平均熱収縮率が150℃において0.001〜2.0%であり、同時に80℃においては0.0〜0.5%である。係る態様により、印刷処理など後加工の高温処理においても高い寸法安定性を有する。
150℃における長手方向及び幅方向の平均熱収縮率の下限値は、0.5%が好ましく、より好ましくは0.05%であり0.01%以下である場合が特に好ましい。一方、150℃における長手方向及び幅方向の平均熱収縮率の上限値は、2.0%以下が必要であり、好ましくは1.0%、さらに好ましくは0.5%である。
150℃における長手方向及び幅方向の平均熱収縮率が2.0%を超えると、特に真空成型などの低圧力熱成型法や比較的低温での熱成型条件で成型した場合には、成型後の成型体製品を加熱、冷却下などでの耐久性テストを行った場合に、成型加工により変形させた部分が平坦に戻る又は、成型体が歪むなどの不具合を生じる
場合がある。
150℃における長手方向及び幅方向の平均熱収縮率が0.001%を下回る場合には、成型体の歪みなどの不具合を生じるわけではなく、その点での問題はないが、耐熱性、耐屈曲性などの耐久性を得るためのプロセスにおける生産性と矛盾し、実質的に150℃における長手方向及び幅方向の平均熱収縮率が0.001%未満のフィルムを製造することは、連続的工業生産することは事実上困難である。
更に、本発明の成型用ハードコートフィルムにおいて、フィルムの80℃における長手方向及び幅方向の平均熱収縮率の範囲は、0.0%〜0.5%であり、好ましくは0.0〜0.2%、より好ましくは0.0〜0.05%であり、0.0〜0.01%である場合が特に好ましい。0.0%である場合が理想的である。
80℃における長手方向及び幅方向の平均熱収縮率が0.5%を上回る場合には、フィルムをスクリーン印刷などの方法で印刷する場合に、通常フィルム印刷前に、印刷位置安定性向上のために行われるシート状での熱処理工程や、多色印刷におけるインキ乾燥工程において、フィルムの波うち状平面性不良や、カール発生、印刷のピッチずれなどの不具合を招きやすく著しく生産性を落とすとともに、成型品における優れた意匠効果を得ることが困難となる重要な特性である。
これら、150℃における自由張力下のフィルムの長手方向及び幅方向の平均熱収縮率と、80℃における自由張力下のフィルムの長手方向及び幅方向の平均熱収縮率の範囲を
特定範囲に両立させることにより、ポリエステルフィルムの優れた耐溶剤性、耐熱性、耐屈曲性などの耐久性を維持しつつ延伸フィルム特有のフィルム内部応力が印刷、成型加工などそれぞれの加熱プロセスにおいて発現を最小化することによって、印刷時不具合や、成型体歪みの問題点を改善し得る。
本発明では、さらに低温・低圧力での良好な成型性を得るとともに耐溶剤性、耐熱性、耐屈曲性などの耐久性に優れた成型体を得る上では、後述するように、さらにポリエステルフィルムを特定のF100の範囲値に制御することが好ましい。これにより上記特性とあいまって、ポリエステルフィルムの優れた特性を維持しつつ高度の成型性と、印刷時安定性をより高度に両立することができる。
本発明において、フィルムの長手方向及び幅方向における100%伸長時の応力(F100)とは、フィルムの成型性と密接な関連がある尺度である。F100がフィルムの成型性と密接な関連を持つ理由として、例えば、真空成形法などを用いて二軸配向ポリエステルフィルムを成型する際、金型のコーナー付近では、フィルムは局部的に100%以上に伸長される場合がある。F100が高いフィルムでは、このような局所的に伸長された部分において、部分的に極めて高い応力集中によりフィルムが破断し、成形性が低下し意図する賦型性が得られ難い。
一方、F100が小さすぎるフィルムでは、成形性は良好となるものの、金型の平面部のような均一に伸長される部分において、極めて弱い応力しか発生せず、その結果、各部分におけるフィルムの均一な伸張が得られ難いと考えられる。
本発明では、成型時の温度に対応する成型性と関連のある物性として、100℃における100%伸長時応力(F100100)を用いる。また、凹凸や窪みのある金型を用いて成型する際に、成型前のフィルムを事前にそれらの型に軽く追随させて成型する際の成型性と関連のある物性として、25℃における100%伸長時応力(F10025)を用いる。本発明におけるポリエステルフィルムは、フィルムの長手方向及び幅方向における25℃での100%伸張時応力(F10025)がいずれも30〜300MPaであることが好ましい。
フィルムの長手方向及び幅方向におけるF10025は、下限値は30MPa、好ましくは50MPa、より好ましくは60MPaである。また上限値は300MPa、好ましくは250MPa、より好ましくは200MPa、さらに好ましくは180MPaである。F10025が30MPa未満の場合、ロール状のフィルムを引っ張って巻きだすときに、フィルムが伸びたり破れたりするため作業性が不良となる場合がある。また、印刷加工時や蒸着、スパッタリングなど意匠性付与加工や樹脂シートなどとのラミネート加工などの際に寸法が安定しない場合がある。
一方、F10025が300MPaを超える場合、成型性が不良になり意図する形状が得られない場合がある。特に、凹凸や窪みのある金型を用いて成型する場合に、成型前のフィルムを事前にそれらの型に軽く追随させて成型することがある。そのような場合に、フィルムの型がつきにくくなったり、位置がずれたりしやすく完成品の意匠性が不良となることがある。
また、本発明における成型用ポリエステルフィルムは、フィルムの長手方向及び幅方向における100℃での100%伸張時応力(F100100)が、いずれも1〜100MPaであることが好ましい。
フィルムの長手方向及び幅方向におけるF100100の上限は、成型性の点から、90MPaが好ましく、80MPaがより好ましく、70MPaが特に好ましい。一方、F100100の下限は、成型品を使用する際の弾性や形態安定性の点から、5MPaが好ましく、10MPaがより好ましく、20MPaであることが特に好ましい。
本発明において、基材フィルムの面配向度(ΔP)は、成形性と関連のある物性であり、面配向度が高いほど分子鎖が面方向に配列し、成形性が低下する。本発明では、基材フィルムの面配向度は0.050〜0.095であることが好ましい。好ましくは0.085以下である。また、成型用ポリエステルフィルムの面配向度は小さいほど成型性は良くなるが、フィルムの強度が低下する場合や厚み斑などの平面性が悪化する場合があるので、面配向度の下限は0.050とすることが重要であり、0.06以上がより好ましい。
面配向度は、JIS K 7142「プラスチックの屈折率測定方法(A法)」に準拠して、長手方向の屈折率(Nz)、幅方向の屈折率(Ny)、厚み方向の屈折率(Nz)の値より下記の式から面配向度(ΔP)を算出した。
ΔP=((Nx+Ny)/2)−Nz
本発明の基材フィルムは、原料として共重合ポリエステルを含有する。
共重合ポリエステルとしては、テレフタル酸単位を含むジカルボン酸成分と、エチレングリコール単位、及び分岐状脂肪族グリコール単位又は脂環族グリコール単位を含むグリコール成分から構成される共重合ポリエステル、及び/又はテレフタル酸単位及びイソフタル酸単位を含むジカルボン酸成分と、エチレングリコールを含むグリコール成分から構成される共重合ポリエステルが好適である。更に、テレフタル酸単位を含むジカルボン酸成分と、1,3−プロパンジオール又は1,4−ブタンジオール単位を含むグリコール成分から構成される共重合ポリエステルを含むと更に成型性が向上するので好適である。
本発明の基材フィルムの原料としては、前記共重合ポリエステルをそのままフィルム原料として用いてもよいし、共重合成分が多い共重合ポリエステルをホモポリエステル(例えば、PET、PTT、PBTなど)とブレンドして共重合成分量を調整しても構わない。また、共重合ポリエステルと前記共重合ポリエステルとのブレンドでも構わない。これらの中でも、1種類以上のホモポリエステルと前記共重合ポリエステルとをブレンドする方法が融解温度の低下を抑制する点から好適である。
本発明の基材フィルムの融解温度は、耐熱性及び成型性の点から、200〜245℃である必要があるので、成型用ポリエステルフィルムの原料としては、それを満たすように前記共重合ポリエステルの共重合組成、ホモポリエステルの種類、それらのブレンド比などを調整する必要がある。
前記の共重合ポリエステル及びホモポリエステルを製造する際に用いる重合触媒としては、例えば、アルカリ土類金属化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、チタン/ケイ素複合酸化物、ゲルマニウム化合物などが使用できる。これらのなかでも、チタン化合物、アンチモン化合物、ゲルマニウム化合物が触媒活性の点から好ましい。
また、前記の共重合ポリエステル及びホモポリエステルは、直接エステル化法、エステル交換法の何れにおいても生産することができるが、エステル交換法の場合、上記のチタン化合物、アンチモン化合物、ゲルマニウム化合物の触媒以外にエステル交換触媒を使用する必要がある。前記エステル交換触媒としては、Mn化合物、Zn化合物等が好ましい。
本発明の基材フィルムの固有粘度は、成型性、密着性、製膜安定性の点から、0.50〜1.00dl/gであることが好ましいので、成型用ポリエステルフィルムの原料となる共重合ポリエステル及び/又はホモポリエステルの固有粘度は、それを満たすように配合する必要があり、通常はそれぞれの固有粘度を0.50〜1.00dl/gにすることが好ましい。
フィルムの滑り性や巻き取り性などのハンドリング性を改善するために、フィルム表面に凹凸を形成させることが好ましい。フィルム表面に凹凸を形成させる方法としては、一般にフィルム中に粒子を含有させる方法が用いられる。このため基材フィルムの原料となる共重合ポリエステル及び/又はホモポリエステルには、粒子を含有させることが好ましい。
前記粒子としては、平均粒子径が0.01〜10μmの内部析出粒子、無機粒子及び/又は有機粒子などの外部粒子が挙げられる。平均粒子径が10μmを越える粒子を使用すると、フィルムの欠陥が生じ易くなり、意匠性や透明性が悪化する傾向がある。一方、平均粒子径が0.01μm未満の粒子では、フィルムの滑り性や巻き取り性などのハンドリング性が低下する傾向がある。前記粒子の平均粒子径は、滑り性や巻き取り性などのハンドリング性の点から、下限は0.10μmとすることがさらに好ましく、特に好ましくは0.50μmである。一方、前記粒子の平均粒子径は、透明性や粗大突起によるフィルム欠点の低減の点から、上限は5μmとすることがさらに好ましく、特に好ましくは2μmである。
なお、粒子の平均粒子径は、少なくとも200個以上の粒子を電子顕微鏡法により複数枚写真撮影し、OHPフィルムに粒子の輪郭をトレースし、該トレース像を画像解析装置にて円相当径に換算して算出する。
前記外部粒子としては、例えば、湿式及び乾式シリカ、コロイダルシリカ、珪酸アルミニウム、酸化チタン、炭酸カルシウム、リン酸カルシウム、硫酸バリウム、アルミナ、マイカ、カオリン、クレー、ヒドロキシアパタイト等の無機粒子及びスチレン、シリコーン、アクリル酸類等を構成成分とする有機粒子等を使用することができる。なかでも、乾式、湿式及び乾式コロイド状シリカ、アルミナ等の無機粒子及びスチレン、シリコーン、アクリル酸、メタクリル酸、ポリエステル、ジビニルベンゼン等を構成成分とする有機粒子等が、好ましく使用される。これらの内部粒子、無機粒子及び/又は有機粒子は二種以上を、本願発明で規定した特性を損ねない範囲内で併用してもよい。
さらに、前記粒子のフィルム中での含有量は0.001〜10質量%の範囲であることが好ましい。0.001質量%未満の場合、フィルムの滑り性が悪化したり、巻き取りが困難となったりするなどハンドリング性が低下しやすくなる。一方、10質量%を越えると、粗大突起の形成、製膜性や透明性の悪化などの原因となりやすい。基材フィルムの原料としては、上記のフィルム中の粒子含有量を満たすように共重合ポリエステル及び/又はホモポリエステルに粒子を含有させて、それらのブレンド比を調整すればよい。
また高い透明性が要求される用途では、上記の基材フィルム中に実質的に粒子を含有させず、厚みが0.01〜5μmの表面層を形成して表面層にのみ粒子を含有させた積層構造とすることが好ましい。
なお、「基材フィルム中に実質的に粒子を含有させず」とは、例えば無機粒子の場合、ケイ光X線分析で無機元素を定量した場合に検出限界以下となる含有量を意味する。これは意識的に粒子を基材フィルムに添加させなくても、外来異物由来のコンタミ成分などが混入する場合があるためである。へーズが低いフィルムを得るには、基材フィルム中に実質的に粒子を含有させないことが好ましいが、30ppm以下であれば基材フィルム中に粒子を添加しても構わない。
基材フィルムのハードコート層とは反対側の面に印刷層を設ける場合は、易接着層を設けることが好ましい。易接着層はコーティング法または共押出し法によって行うことができる。なかでも、コーティング法の場合、粒子を含有する密着性改質樹脂からなる組成物を塗布層として用いることで、印刷層との密着性も改良することができるので好ましい方法である。前記の密着性改質樹脂としては、ポリエステル、ポリウレタン、アクリル系重合体および/またはそれらの共重合体から選ばれた少なくとも1種からなる樹脂が好ましい。
前記易接着層に含有させる粒子としては、前記で記載した粒子と同様のものを使用することができる。粒子のなかでも、シリカ粒子、ガラスフィラー、シリカ−アルミナ複合酸化物粒子は屈折率がポリエステルに比較的近いため、透明性の点から特に好適である。
さらに、前記易接着層における粒子含有量は、0.01〜25質量%の範囲であることが好ましい。0.01質量%未満の場合、フィルムの滑り性が悪化したり、巻き取りが困難となったりするなどハンドリング性が低下しやすくなる。一方、25質量%を越えると、透明性や塗布性が悪化しやすくなる。
前記基材フィルムの製造方法は特に限定されないが、例えばポリエステル樹脂を必要に応じて乾燥した後、公知の溶融押出機に供給し、スリット状のダイからシート状に押出し、静電印加などの方式によりキャスティングドラムに密着させ、冷却固化し、未延伸シート(原反)を得た後、かかる未延伸シートを二軸延伸する方法が例示される。
二軸延伸方法としては、未延伸シートをフィルムの長手方向(MD)及び幅方向(TD)に延伸、熱処理し、目的とする面内配向度を有する二軸延伸フィルムを得る方法が採用される。これらの方式の中でも、フィルム品質の点で、長手方向に延伸した後、幅方向に延伸するMD/TD法、又は幅方向に延伸した後、長手方向に延伸するTD/MD法などの逐次二軸延伸方式、長手方向及び幅方向をほぼ同時に延伸していく同時二軸延伸方式が望ましい。また、同時二軸延伸法の場合、リニアモーターで駆動するテンターを用いてもよい。さらに、必要に応じて、同一方向の延伸を多段階に分けて行う多段延伸法を用いても構わない。
二軸延伸する際のフィルム延伸倍率としては、長手方向と幅方向に1.6〜4.2倍とすることが好ましく、特に好ましくは1.7〜4.0倍である。この場合、長手方向と幅方向の延伸倍率はどちらを大きくしてもよいし、同一倍率としてもよい。長手方向の延伸倍率は2.8〜4.0倍、幅方向の延伸倍率は3.0〜4.5倍で行うことがより好ましい。
本発明の成型用ポリエステルフィルムを製造する際の延伸条件としては、例えば、下記の条件を採用することが好ましい。縦延伸においては、後の横延伸がスムースにできるように、延伸温度は50〜110℃、延伸倍率は1.6〜4.0倍とすることがさらに好ましい。
通常、ポリエチレンテレフタレートを延伸する際に、適切な条件に比べ延伸温度が低い場合は、横延伸の開始初期で急激に降伏応力が高くなるため、延伸ができない。また、たとえ延伸ができても厚みや延伸倍率が不均一になりやすいため好ましくない。
また、適切な条件に比べ延伸温度が高い場合は初期の応力は低くなるが、延伸倍率が高くなっても応力は高くならない。そのため、25℃における100%伸張時応力が小さいフィルムとなる。よって、最適な延伸温度をとることにより、延伸性を確保しながら配向の高いフィルムを得ることができる。
しかしながら、前記共重合ポリエステルが共重合成分を1〜40モル%含む場合、降伏応力をなくすように延伸温度を高くしていくと、延伸応力は急激に低下する。特に、延伸の後半でも応力が高くならないため、配向が高くならず、25℃における100%伸張時応力が低下する。
このような現象は、フィルムの厚さが60〜500μmで発生しやすく、特に厚みが100〜300μmのフィルムで顕著に見られる。そのため、本発明の共重合したポリエステルを用いたフィルムの場合、横方向の延伸温度は、以下の条件とすることが好ましい。
まず、予熱温度はフィルム材料を押出機で押出した後の混合物(原反)をDSCにおいて測定した場合のガラス転移温度の+10℃〜+50℃の範囲で行う。次いで、横延伸の前半部では延伸温度は予熱温度に対して−20℃〜+15℃とすることが好ましい。た、横延伸の後半部では、延伸温度は前半部の延伸温度に対して0℃〜−30℃とすることが好ましく、特に好ましくは−10℃〜−20℃とする。このような条件を採用することにより、横延伸の前半では降伏応力が小さいため延伸しやすく、また後半では配向しやすくなる。なお、横方向の延伸倍率は、2.5〜5.0倍とすることが好ましい。その結果、本発明で規定したF10025やF100100を満足するフィルムを得ることが可能である。
さらに、二軸延伸後にフィルムの熱処理(熱固定処理)を行う。熱処理は緊張熱処理、弛緩熱処理のいずれでも構わない。熱収縮率を低くするためには、3〜10%の弛緩熱処理が好ましい。一般に、面配向度を下げる手段としては延伸倍率を下げる方法と共重合成分の配合量を増加させる方法が知られているが、前者の方法はフィルムの厚み斑が悪化し、後者の方法ではフィルムの融解温度が低下し、耐熱性が悪化するため好ましくない。本発明において、二軸配向ポリエステルフィルムの面配向度と150℃の熱収縮率を小さくするために、通常よりも高温で熱固定を行う。熱固定は、融解温度の−5℃〜−35℃の範囲で行うことが好ましい。
本発明においては、成型用ハードコートフィルムの長手方向及び幅方向の平均熱収縮率が150℃において0.001〜2.0%であり、同時に80℃においては0.0〜0.5%にするには、上記の熱固定処理を2段以上で行う方法や長手方向と幅方向と両方ともに熱弛緩処理を行う方法が有効である。
更に、一度巻き上げ、スリットされたフィルムロールを熱処理ゾーンを通すことによって低収縮化処理を行うことが好ましい。例えばスリットしたフィルムロールを、予備加熱ゾーン、熱処理ゾーン、冷却ゾーンを有し、熱処理ゾーン前後にテンションカットロールを有した熱処理ゾーンの張力を独立で制御することが可能な連続熱処理装置を用い、フィルム巻出しを低張力のもとで連続熱処理を行う方法が好ましい。
本発明の成型用ポリエステルフィルムは、他の機能を付与するために、公知の方法で積層構造とすることができる。かかる積層フィルムの形態は、特に限定されないが、例えば、A/Bの2種2層構成、B/A/B構成の2種3層構成、C/A/Bの3種3層構成の積層形態が挙げられる。
例えば、表層にのみ帯電防止剤、潤滑剤、紫外線吸収剤、着色剤などの機能を付与する材料を含有させることができる。
(ハードコート層)
本発明の成型用ハードコートフィルムは、基材フィルムの少なくとも片面に直接あるいは中間層を介してハードコート層が積層される。本発明においてハードコート層とは、基材フィルムからなる基材の表面硬度を補い、耐擦傷性を向上せしめるべく、基材よりも高硬度な被膜を有し、かつ、成型時の変形にも追随可能な優れた成型性を有する層を示す。より具体的には、本願発明の成型用ハードコートフィルムは表面硬度として少なくともH以上の鉛筆硬度を有し、かつ後述の評価法により少なくとも10%以上の伸度を有し、例えば家電などの銘板用または建材用の部材などとして好適に用いることができるものである。
本発明で使用可能なハードコート層は、電離放射線硬化型樹脂を主成分とすることが必要である。熱硬化型樹脂のように硬化時に加熱処理することを要せず、熱による基材フィルムの熱収縮を少なくすることができ好適である。本発明で電離放射線硬化型化合物とは、電子線、放射線、紫外線のいずれかを照射することによって重合、および/または反応する化合物のことを指し、かかる化合物が重合、および/または反応することによりハードコート層を構成する。本発明で用いられる電離放射線硬化型化合物としては、メラミン系、アクリル系、シリコン系の電離放射線硬化型化合物が挙げられるが、なかでも高い表面硬度を得る点でアクリレート系電離放射線硬化型化合物が好ましい。
なお、本発明で電離放射線硬化型化合物とは、単量体、前駆体だけでなく、それらが重合、および/または反応した電離放射線硬化型樹脂も当然に含まれる。例えば、前記アクリレート系電離放射線硬化型化合物としては、ポリウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、ポリオールアクリレート等が挙げられるが特に限定するものではなく、任意のアクリレート系電離放射線硬化型化合物を使用してよい。
本発明におけるハードコート層は、3以上の官能基を有する電離放射線硬化型化合物と、1および/または2官能の電離放射線硬化型化合物とを少なくとも含む塗布液を基材フィルムに塗布後、電子線、放射線、紫外線のいずれかを照射することによって重合、および/または反応せしめることにより硬化させる。
電離放射線硬化型化合物としてアクリレート系電離放射線硬化型化合物を用いる場合、本発明における1官能(単官能)のアクリレート系電離放射線硬化型化合物としては、分子内に少なくとも1個の(メタ)アクリロイル基を含有する化合物であれば特に制限されるものではない。例えば、アクリルアミド、(メタ)アクリロイルモルホリン、7−アミノ−3,7−ジメチルオクチル(メタ)アクリレート、イソブトキシメチル(メタ)アクリルアミド、イソボルニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、エチルジエチレングリコール(メタ)アクリレート、t−オクチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ジシクロペンタジエン(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、N,N−ジメチル(メタ)アクリルアミドテトラクロロフェニル(メタ)アクリレート、2−テトラクロロフェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、テトラブロモフェニル(メタ)アクリレート、2−テトラブロモフェノキシエチル(メタ)アクリレート、2−トリクロロフェノキシエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、2−トリブロモフェノキシエチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ビニルカプロラクタム、N−ビニルピロリドン、N−ビニルホルムアミド、フェノキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ペンタクロロフェニル(メタ)アクリレート、ペンタブロモフェニル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ボルニル(メタ)アクリレート、メチルトリエチレンジグリコール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ノニルフェニル(メタ)アクリレート、およびそのカプロラクトン変成物などの誘導体、アクリル酸等及びそれらの混合物等が挙げられる。
電離放射線硬化型化合物としてアクリレート系電離放射線硬化型化合物を用いる場合、本発明における2官能のアクリレート系電離放射線硬化型化合物としては、1分子中に2個以上のアルコール性水酸基を有する多価アルコールの該水酸基が2個の(メタ)アクリル酸のエステル化物となっている化合物などを用いることができる。具体的には、(a)炭素数2〜12のアルキレングリコールの(メタ)アクリル酸ジエステル類:エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオール(メタ)アクリレートなど、(b)ポリオキシアルキレングリコールの(メタ)アクリレート酸ジエステル類:ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレートなど、(c)多価アルコールの(メタ)アクリル酸ジエステル類:ペンタエリスリトールジ(メタ)アクリレートなど、(d)ビスフェノールAあるいはビスフェノールAの水素化物のエチレンオキシド及びプロピレンオキシド付加物の(メタ)アクリル酸ジエステル類:2,2'−ビス(4−アクリロキシエトキシフェニル)プロパン、2,2'−ビス(4−アクリロキシプロポキシフェニル)プロパンなど、(e)多価イソシアネート化合物と2個以上のアルコール性水酸基含有化合物を予め反応させて得られる末端イソシアネート基含有化合物に、更にアルコール性水酸基含有(メタ)アクリレートを反応させて得られる分子内に2個の(メタ)アクリロイルオキシ基を有するウレタン(メタ)アクリレート類、(f)分子内に2個以上のエポキシ基を有する化合物にアクリル酸又はメタクリル酸を反応させて得られる分子内に2個の(メタ)アクリロイルオキシ基を有するエポキシ(メタ)アクリレート類、などが挙げられる。
電離放射線硬化型化合物としてアクリレート系電離放射線硬化型化合物を用いる場合、本発明における3官能以上のアクリレート系電離放射線硬化型化合物としては、(a)具体的には、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートなど、(b)多価イソシアネート化合物と2個以上のアルコール性水酸基含有化合物を予め反応させて得られる末端イソシアネート基含有化合物に、更にアルコール性水酸基含有(メタ)アクリレートを反応させて得られる分子内に3個以上の(メタ)アクリロイルオキシ基を有するウレタン(メタ)アクリレート類、(c)分子内に3個以上のエポキシ基を有する化合物にアクリル酸又はメタクリル酸を反応させて得られる分子内に3個以上の(メタ)アクリロイルオキシ基を有するエポキシ(メタ)アクリレート類、などが挙げられる。
本発明において、前記塗布液中に含まれる電離放射線硬化型化合物中には、1または2官能の電離放射線硬化型化合物の他に3官能以上の電離放射線硬化型化合物が1種以上を含まれることが重要である。硬化後のハードコート層内に架橋密度の高い3官能以上の電離放射線硬化型化合物成分がハードセグメントとして、それらを結ぶ形で1および/または2官能の電離放射線硬化型化合物が反応し、1および/または2官能の電離放射線硬化型化合物成分がソフトセグメントとして存在するようになる。このように官能数の異なる2種類以上の電離放射線硬化型化合物を特定の濃度範囲で調整することで、ハードコート層にへテロな架橋構造を導入し、ハードセグメントによって表面硬度、耐擦傷性が付与し、かつ、ソフトセグメントの伸縮性により、成型性も付与するという二律背反した特性を両立するという顕著な効果をえることができたのである。
本発明では、高い表面硬度と優れた成型性、具体的にはH以上の鉛筆硬度と10%以上の伸度を両立するために、前記塗布液中に含まれる電離放射線硬化型化合物中の1および/または2官能の電離放射線硬化型化合物の含有量が5質量%以上95質量%以下であることが重要である。上記含有量が5質量%未満の場合には、被膜の可撓性が低下するだけでなく、成型時にハードコート層にクラックが発生するので好ましくない。また、上記含有量が95質量%を超える場合は、十分な表面硬度、耐擦傷性を有する硬化被膜が得られ難くい。上記含有量の下限は、10質量%以上がより好ましく、20質量%以上がさらに好ましい。また、上記含有量の上限は90質量%以下がより好ましく、80質量%以下がさらに好ましく、70質量%以下がよりさらに好ましい。。電離放射線硬化型化合物中の1および/または2官能の電離放射線硬化型化合物の含有量が20質量%以上80質量%以下である場合は、より高度に表面高度と成型性の両立が図られ、具体的には2H以上の鉛筆硬度と20%以上の伸度を両立させることができ、例えば自動車などの銘板用や携帯機器などの筐体のように高い硬度と高い加工性とが同時に要求される成型用フィルムに好適である。
さらに本願発明者は上記態様に加え、電離放射線硬化化合物としてアミノ基を有する電離放射線硬化化合物を用いることで、より高度に表面硬度と成型性を両立しえることを見出した。すなわち、前記塗布液に含まれる少なくとも1種の電離放射線硬化化合物がアミノ基を有することが好ましい。電離放射線硬化化合物としてアミノ基を有する化合物を用いることによる上記作用については以下のように考えられる。ハードコート層に部分的な硬度分布の差異がある場合、ハードコート層を伸張する際、局所的に割れ(クラック)が生じ易くなる。このような部分的な硬度分布の差異の要因として、酸素による電離放射線硬化樹脂の重合阻害(酸素阻害)がある。ここで、電離放射線硬化化合物としてアミノ基を有する化合物を用いた場合、アミノ基がラジカル酸素をトラップし、ハードコート層の表層部の硬化反応に及ぼす酸素阻害の影響が小さくなるため、層全体で均一な硬化反応が進行する。これにより成型時にハードコート層にかかる応力が層全体に分散され、成型時のクラックの発生が抑制される。そのため、より高度に表面高度と成型性の両立が図ることができると考えられる。また、上記効果に加え、電離放射線硬化樹脂としてアミノ基を含んでいることにより塗膜の速硬性の効果により、ハードコート層表面の硬化がアミノ基無含有時と比べ、より硬化が促進され表面硬度が向上することができる。
前記塗布液中に含まれる電離放射線硬化型化合物中のアミノ基を含む電離放射線硬化型化合物の含有量は2.5質量%以上95質量%以下であること好ましい。前記塗布液中に含まれる電離放射線硬化型化合物中のアミノ基を含む電離放射線硬化型化合物の含有量の下限は5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。また上記含有量の上限は92.5質量%以下であることがより好ましく、90質量%以下であることがさらに好ましく、50質量%以下であることがよりさらに好ましい。前記塗布液中に含まれる電離放射線硬化型化合物中のアミノ基を含む電離放射線硬化型化合物の含有量が2.5質量%未満の場合、ハードコート層全体で均一に硬化され難くため、成型時のクラックに対する耐性が得られにくくなる。また、アミノ基を含む電離放射線硬化型化合物が高濃度になると、アミノ基に起因してハードコート層の黄変が強くなるため、上記含有量が95質量%を超えると、高透明性が損なわれる場合がある。例えば、ハードコート層を積層しない面に印刷加工を施す場合、フィルムのカラーb値として2以下であることが好ましく、この場合、上記アミノ基を含む電離放射線硬化型化合物は92.5質量%以下であることが好ましい。
本発明において前記塗布液には、1および/または2官能の電離放射線硬化型化合物、および3以上の官能基を有する電離放射線硬化型化合物が含まれるが、上記実施態様においては、このうちの一部の電離放射線硬化型化合物がアミノ基を含むものであればよい。また、1官能の電離放射線硬化型化合物、もしくは2官能の電離放射線硬化型化合物、もしくは3以上の官能基を有する電離放射線硬化型化合物のいずれかがアミノ基を含む電離放射線硬化型化合物であることも好ましい実施態様である。
アミノ基を有する電離放射線硬化型化合物としてアクリレート系電離放射線硬化型化合物を用いる場合、例えば、アミノ基を有するアクリレート系電離放射線硬化型化合物としては、アクリルアミド、7−アミノ−3,7−ジメチルオクチル(メタ)アクリレート、イソブトキシメチル(メタ)アクリルアミド、t−オクチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、N,N−ジメチル(メタ)アクリルアミドテトラクロロフェニル(メタ)アクリレート、N−ビニルホルムアミドなどがあげられる。
また本願発明者は上記態様に加え、ハードコート層に粒子を含有することで、より成型性が向上し、さらに高度に表面硬度と成型性を両立しえることを見出した。ハードコート層に粒子を含有することで、より成型性が向上する作用については以下のように考えている。ハードコート層の硬度が上がると成型時の際に、硬度の高いハードコート層に一時に強い応力が生じることでハードコート層に一気に割れ(クラック)が生じる。ここで、ハードコート層内に粒子が存在することで、成型時にハードコート層にかかる内部応力を電離放射線硬化型化合物と粒子の界面で緩和し、クラックの発生が抑制されるほか、ハードコート層に外観を損ねない程度の目視では確認できない微小なクラックが先行して発生する効果があり、ハードコート層の致命的な割れの発生が遅れ、結果的に成型性が向上する効果が発現すると考えられる。
ハードコート層に含有させる粒子としては、例えば、アモルファスシリカ、結晶性シリカ、シリカ−アルミナ複合酸化物、カオリナイト、タルク、炭酸カルシウム(カルサイト型、バテライト型)、ゼオライト、アルミナ、ヒドロキシアパタイト等の無機粒子、架橋アクリル粒子、架橋PMMA粒子、架橋ポリスチレン粒子、ナイロン粒子、ポリエステル粒子、ベンゾグアナミン・ホルマリン縮合物粒子、ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物粒子メラミン・ホルムアルデヒド縮合物粒子等の耐熱性高分子粒子、シリカ・アクリル複合化合物のような有機・無機ハイブリッド微粒子が挙げられるが、本発明では、粒子の種類は特に限定されない。
粒子の形状として、例えば、球状、塊状、板状、繊維状、あるいはフレーク状が挙げられるが、特に限定されるものではないが、中でも、分散性や他の部材に接触した際に粒子の脱落する点から球状の粒子が好ましい。
本発明では、粒子の平均粒子径が10nm以上300nm以下であることが好ましく、さらに下限は40nm以上、上限は200nm以下であることが好ましく、特に下限は50nm以上、上限は100nm以下であることが好ましい。粒子の平均粒子径が10nmより小さい場合、平均粒子径が小さすぎるため、前述した粒子添加による表面硬度、耐擦傷性、成型性の向上効果のいずれも、もしくはいずれかが少ない場合がある。また、300nmを超える場合、ハードコート層が脆弱となり、成型性が低下する場合がある。なお、前記の平均粒子径はコールターカウンター(ベックマン・コールター製、マルチサイザーII型)を用いて、粒子を膨潤させない溶媒に分散させて測定した平均粒子径である。
本発明では、ハードコート層に含有させる粒子の含有量はハードコート層中の固形成分として5質量%以上70質量%以下であることが好ましく、特に好ましくは、前記含有量の下限は15質量%以上、上限は50質量%以下である。粒子の含有量が5質量%より少ない場合、前述した粒子添加による表面硬度、耐擦傷性、成型性の向上効果いずれも、もしくはいずれかが少なくなる場合がある。一方、粒子の含有量が70質量%を超える場合、成型時に前述した微小なクラックが多量に発生し、ヘーズが上昇(白化)し成型体の透明性を損ねてしまう。
さらに本願発明者は上記態様に加え、ハードコート層に電離放射線硬化型シリコーン樹脂を含有することで、滑り性が付与され、表面の耐擦傷性が向上し、さらに高度に表面硬度と成型性を両立しえることを見出した。また係る態様により、硬化反応によって電離放射線硬化型シリコーン樹脂自体が架橋すると共に、場合により、ハードコート層を構成する電離放射線硬化型樹脂とも架橋するので、金型成型でのシリコーン樹脂による金型の汚染防止や、本発明の成型用ハードコートフィルムを成型してなる成型体を長期間にわたって使用する際、経時による表面の耐擦傷性の機能が損なわれることがないという新たな効果を得ることができる。
電離放射線硬化型シリコーン樹脂とは、例えば分子内に、アルケニル基とメルカプト基を有するラジカル付加型、アルケニル基と水素原子を有するヒドロシリル化反応型、エポキシ基を有するカチオン重合型、(メタ)アクリル基を有するラジカル重合型のシリコーン樹脂等が挙げられる。これらの中でエポキシ基を有するカチオン重合型や(メタ)アクリル基を有するラジカル重合型が好ましい。
分子内にエポキシ基や(メタ)アクリル基を有するシリコーン樹脂としては、例えば、エポキシプロポキシプロピル末端ポリジメチルシロキサン、(エポキシシクロヘキシルエチル)メチルシロキサン−ジメチルシロキサンコポリマー、メタクリロキシプロピル末端ポリジメチルシロキサン、アクリロキシプロピル末端ポリジメチルシロキサン等が挙げられる。また、分子内にビニル基を有するシリコーン樹脂として、例えば、末端ビニルポリジメチルシロキサン、ビニルメチルシロキサンホモポリマー等を挙げることができる。
本発明では、ハードコート層に含有させる電離放射線硬化型シリコーン樹脂の添加量は、ハードコート層を構成するための前記電離放射線硬化型化合物100質量部に対し、好ましくは0.15〜15質量部、より好ましくは0.3〜13質量部、さらに好ましくは0.5〜5質量部を配合することが望ましい。電離放射線硬化型シリコーン樹脂の配合量が下限未満であると、成型体にした際の耐擦傷性の向上効果が乏しくなり、また、上限を超えると、ハードコート層形成時に、硬化が充分に行なわれない場合がある。なお、ハードコート層に含有させる電離放射線硬化型シリコーン樹脂は1種用いてもよいし、2種以上を組み合わせて用いてもよい。
本願発明では、上記のように成型用フィルムの用途に応じて、電離放射線硬化化合物にアミノ基を有する化合物を用いること、およびハードコート層への粒子の添加することを適宜選択もしくは組み合わせることが望ましい。特に、好ましい実施態様としては、これらを組み合わせることである。これにより、ハードコート層の表面硬度と成型性を極めて高度に両立することができ、具体的には表面硬度が2H以上で、かつ20%以上の伸度、より好ましくは表面硬度が2H以上で、かつ30%以上の伸度を有する成型用ハードコートフィルムを得ることができ、例えば自動車などのカバー部材や深底の筐体、容器など用途に好適に用いることができる。
本発明では、前記塗布液を重合、および/または反応させる方法として、電子線、放射線、紫外線を照射する方法が挙げられるが、紫外線照射する場合には前記塗布液に光重合開始剤を加えることが望ましい。
光重合開始剤の具体的な例としては、アセトフェノン、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、p−ジメチルアミノプロピオフェノン、ベンゾフェノン、2−クロロベンゾフェノン、4,4'−ジクロロベンゾフェノン、4,4'−ビスジエチルアミノベンゾフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、メチルベンゾイルフォメート、p−イソプロピル−α−ヒドロキシイソブチルフェノン、α−ヒドロキシイソブチルフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン等のカルボニル化合物、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、チオキサントン、2−クロロチオキサントン、2−メチルチオキサントンなどの硫黄化合物、ベンゾイルパーオキサイド、ジ−t−ブチルパーオキサイド等のパーオキサイド化合物が挙げられる。これらの光重合開始t−ブチルパーオキサイド等のパーオキサイド化合物が挙げられる。これらの光重合開始剤は単独で使用してもよいし、2種以上組み合わせてもよい。光重合開始剤の添加量は、前記塗布液中に含まれる電離放射線硬化型化合物100質量部当たり0.01質量部以上15質量部以下が適当であり、使用量が少ない場合は反応が遅く生産性が不良になるだけでなく、残存する未反応物により十分な表面硬度、耐擦傷性が得られない。逆に添加量が多い場合には、光重合開始剤によりハードコート層が黄変する問題が発生する。
本発明では、前記塗布液には、製造時の熱重合や貯蔵中の暗反応を防止するために、ハイドロキノン、ハイドロキノンモノメチルエーテル、2,5−t−ブチルハイドロキノンなど、公知の熱重合防止剤を加えることが好ましい。熱重合防止剤の添加量は、前記塗布液中に含まれる電離放射線硬化型化合物100質量部当たり0.005質量部以上0.05質量部以下が好ましい。
本発明では、前記塗布液には、塗工時の作業性の向上、塗工膜厚のコントロールを目的として、本発明の目的を損なわない範囲において、有機溶剤を配合することができる。
有機溶剤としては、基材フィルムとして融点が低い場合は塗布後の乾燥温度を150℃以下に調整することが必要な場合もあることから、有機溶媒の沸点は50℃以上150℃以下が好ましい。具体的な例としては、メタノール、エタノール、イソプロピルアルコールなどのアルコール系溶剤、酢酸メチル、酢酸エチル、酢酸ブチルなどの酢酸エステル系溶剤、アセトン、メチルエチルケトンなどのケトン系溶剤、トルエンなどの芳香族系溶剤、ジオキサンなどの環状エーテル系溶剤などを挙げることができる。これらの溶剤は単独あるいは2種以上を混合して用いることもできる。
本発明では、前記塗布液には、塗布液の表面張力を下げ、ハードコート層の塗工外観、特に、微小な泡によるヌケ、異物等の付着よる凹み、乾燥工程でのハジキを改善することを目的として、界面活性剤を含有させることができる。
界面活性剤は、カチオン系、アニオン系、ノニオン系の公知のものを好適に使用できるが、前記塗布液の変質やハードコート層の基材フィルムへの密着性不良等の問題から極性基を有していないノニオン系が好ましく、更には、界面活性能に優れるシリコーン系界面活性剤又はフッ素系界面活性剤が好ましい。
シリコーン系界面活性剤としては、ジメチルシリコン、アミノシラン、アクリルシラン、ビニルベンジルシラン、ビニルベンジシルアミノシラン、グリシドシラン、メルカプトシラン、ジメチルシラン、ポリジメチルシロキサン、ポリアルコキシシロキサン、ハイドロジエン変性シロキサン、ビニル変性シロキサン、ビトロキシ変性シロキサン、アミノ変性シロキサン、カルボキシル変性シロキサン、ハロゲン化変性シロキサン、エポキシ変性シロキサン、メタクリロキシ変性シロキサン、メルカプト変性シロキサン、フッ素変性シロキサン、アルキル基変性シロキサン、フェニル変性シロキサン、アルキレンオキシド変性シロキサンなどが挙げられる。
フッ素系界面活性剤としては、4フッ化エチレン、パーフルオロアルキルアンモニウム塩、パーフルオロアルキルスルホン酸アミド、パーフルオロアルキルスルホン酸ナトリウム、パーフルオロアルキルカリウム塩、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキルトリメチルアンモニウム塩、パーフルオロアルキルアミノスルホン酸塩、パーフルオロアルキルリン酸エステル、パーフルオロアルキルアルキル化合物、パーフルオロアルキルアルキルベタイン、パーフルオロアルキルハロゲン化物などが挙げられる。
塗布外観の向上や滑り性の点から、ハードコート層を構成する塗布液に対して界面活性剤の含有量を0.01質量%以上とすることが好ましい。一方、界面活性剤がハードコート層表面にブリードアウトし、ハードコート層に触れたものを汚染してしまうため、界面活性剤の含有量を2.00質量%以下とすることが好ましい。
また、用いる界面活性剤は、HLBが2以上12以下であることが好ましい。HLBが2以上の界面活性剤を使用することにより、界面活性能によるレベリング性を向上させることができる。界面活性剤のHLBは、3以上がさらに好ましく、特に好ましくは4以上である。一方、HLBが12以下の界面活性剤を使用することにより、滑り性の悪化を抑制することができる。
なお、HLBとは、アメリカのAtlas Powder社のW.C.GriffinがHydorophil Lyophile Balanceと名付け、界面活性剤の分子中に含まれる親水基と親油基のバランスを特性値として指標化した値である。このHLB値が低いほど親油性が、一方高いほど親水性が高くなる、ことを意味する。
本発明のハードコート層には、必要に応じて種々の添加剤を配合することができる。例えば、撥水性を付与する為のフッ素やシリコン系の化合物、塗工性や外観向上の為の消泡剤、更には、帯電防止剤や着色用の染料や顔料が挙げられる。
本発明において、ハードコート層は、有機溶剤中に、電離放射線硬化型化合物、粒子、光重合開始剤、界面活性剤を含む塗布液を、基材フィルム上に塗布乾燥後、硬化させて形成させることが好ましい。
ハードコート層を積層する方法としては、公知の方法が挙げられるが、前記塗布液を基材フィルム上に塗布乾燥後、硬化させる方法が好適である。塗布法としては、グラビアコート方式、キスコート方式、ディップ方式、スプレイコート方式、カーテンコート方式、エアナイフコート方式、ブレードコート方式、リバースロールコート方式、バーコート方式、リップコート方式などの公知の塗布方法が挙げられる。これらのなかで、ロール・トゥ・ロール方式で塗工可能で、均一に塗布することのできるグラビアコート方式、特にリバースグラビア方式が好ましい。
前記塗布液に含まれる電離放射線硬化型化合物、粒子、光重合開始剤等を有機溶剤中に溶解あるいは分散する方法としては、加温下で、これらを攪拌、分散する方法が好適である。塗布液を加温することにより、電離放射線硬化型化合物、粒子および光重合開始剤の溶解性を向上させることができる。そのため、未溶解物等による塗工外観の悪化を抑えることができる。
分散機は、公知のものを用いることができる。具体的には、ボールミル、サンドミル、アトライター、ロールミル、アジテータ、コロイドミル、超音波ホモジナイザー、ホモミキサー、パールミル、湿式ジェットミル、ペイントシェーカー、バタフライミキサー、プラネタリーミキサー、ヘンシェルミキサー等が挙げられる。
前記塗布液に含まれる電離放射線硬化型化合物、粒子、光重合開始剤等の固形分の濃度は、5質量%以上70質量%が好ましい。塗布液の固形分の濃度を5質量%以上に調整することにより、塗布後の乾燥時間が長くなることによる生産性の低下を抑えることができる。一方、塗布液の固形分の濃度を70質量%以下に調整することにより、塗布液の粘度の上昇によるレベリング性の悪化、及びそれにともなう塗布外観の悪化を防ぐことができる。また、塗布外観の点から、塗布液の粘度を0.5cps以上300cps以下の範囲になるように、塗布液の固形分濃度、あるいは有機溶剤の種類、界面活性剤の種類は配合量を調整することが好ましい。
塗布、硬化後のハードコート層の厚みは、成型時の伸長の程度によるが、成型後のハードコート層の厚みが0.5μm以上50μm以下になるようにすることが好ましい。具体的には、成型前のハードコート層の厚みの下限は0.6μm以上が好ましく、1.0μm以上がさらに好ましい。また、成型前のハードコート層の厚みの上限は100μm以下が好ましく、80μm以下がより好ましく、60μm以下がさらに好ましく、20μm以下がよりさらに好ましい。ハードコート層の厚みが0.6μmより薄い場合はハードコート性が得られ難く、逆に100μmを超える場合は、ハードコート層の硬化不良や硬化収縮によるカールが悪い傾向を示す。
塗布液に有機溶剤を配合した場合等、予備乾燥が必要な場合、基材フィルム上に塗布し、乾燥する方法としては、公知の熱風乾燥、赤外線ヒーター等が挙げられるが、乾燥速度が早い熱風乾燥が好ましい。
塗布後の乾燥温度は40℃以上120℃以下の条件下で行うことが好ましく、特には下限が45℃以上、上限が80℃以下が好ましい。40℃未満では、塗布液に含まれる有機溶剤が十分に除去できない他、ブラッシング等の問題が発生する場合がある。逆に120℃を超える温度では、泡由来の微小なコートヌケ、微小なハジキ、クラック等の塗膜の微小な欠点が発生しやすくなり、外観が不良になる場合がある。さらには、熱によりフィルムが強く収縮し、熱シワによりフィルムの平面性が悪化するため、成型時に均一な伸長が得られない、または、局部的な伸長が起こり、フィルムが破断する等の成型性が不良となる。
乾燥中にかかるフィルムの張力は50N/m以上300N/m以下が好ましく、特には下限が100N/m以上、上限が250N/m以下が好ましい。フィルムの張力は50N/m未満では、走行するフィルムが蛇行し、塗布液を塗工することは不可能である。逆に、300N/mを超える場合、フィルムにシワが発生し、平面性の悪化や、巻き取ったフィルムの外観が悪くなる。さらには、基材フィルムが低温で成型性に優れたものである場合は乾燥中にフィルムの進行方向に延伸され幅方向は収縮し、最悪の場合、破断する等の生産性に問題が生じる。
本発明において、ハードコート層を設けていない面に本発明の効果を阻害しない範囲でハードコート層、帯電防止層、易接着層、粘着層、易滑層、電磁波吸収層、染料や顔料等の色素を含有した樹脂層などの他の機能を付与しても構わない。
本発明では、塗布液に紫外線を照射する事によりハードコート層を形成させる。照射する積算光量として、好ましくは50mJ/cm2以上1000mJ/cm2以下、より好ましくは下限が300mJ/cm2以上、上限が700mJ/cm2以下である。なお、照射する際、窒素ガス雰囲気下で行なうことが酸素阻害が低減され、耐擦傷性が向上することから望ましい。積算光量が50mJ/cm2未満である場合、電離放射線硬化型化合物の重合反応が促進されず、ハードコート層の表面硬度が著しく低下する。積算光量が1000mJ/cm2を超える場合は、熱の影響により基材フィルムが変形する場合がある。なお、本発明における積算光量は、トプコン製「UVR−T35」により測定することができる。
また、電子線により塗布液を硬化させる場合には、照射線量は5kGy以上100kGy以下が好ましく、特には上限が30kGy以上、下限が70kGy以下がより好ましい。5kGy未満である場合、電離放射線硬化型化合物の重合反応が促進されず、ハードコート層の表面硬度が著しく低下する。100kGyを超える場合は、電子線照射管の寿命低下が著しく、生産コスト面で好ましくない。
(成型用ハードコートフィルム)
本発明の成型用ハードコートフィルムは、表面硬度に優れるフィルムである。具体的には、鉛筆硬度の測定値がH以上であることが好ましく、さらに2H以上であることが特に好ましい。ここで鉛筆硬度の評価はJIS−K5600に準拠して行った。
表面硬度を調整する方法としては、ハードコート層を形成する塗布液に含まれる電離放射線硬化型化合物中の1または2官能の電離放射線硬化型化合物の含有量やアミノ基を有する電離放射線硬化型化合物の含有量、ハードコート層中の粒子の存在量、ハードコート層の厚みにより変更することができる。
本発明の成型用ハードコートフィルムとは、耐擦傷性に優れるフィルムである。具体的には、JIS−K5600に準拠し、荷重500gfで#0000のスチールウールで表面を20往復し、傷の発生の有無及び傷の程度を目視により観察し、深いキズが10本以下の少量であることが好ましく、さらに深いキズが全く無いことが特に好ましい。
耐擦傷性を調整する方法としては、ハードコート層を形成する塗布液に含まれる電離放射線硬化型化合物中の1または2官能の電離放射線硬化型化合物の含有量やアミノ基を有する電離放射線硬化型化合物の含有量、ハードコート層中の粒子の存在量により変更することができる。
本発明の成型用ハードコートフィルムは、成型性に優れるフィルムである。具体的には、室温、フィルム実温が160℃時ともに伸度が10%以上であることが好ましく、20%以上であることがさらに好ましく、30%以上であることが特に好ましい。ここで伸度とは、長さ10mm、幅150mmの短冊状に成型用ハードコートフィルムを切り出し、フィルム実温が160℃時のそれぞれで引っ張った時に、ハードコート層にクラック、または白化が発生した時の延伸率を伸度(%)とした。
成型性(伸度)を調整する方法としては、ハードコート層を形成する塗布液に含まれる電離放射線硬化型化合物中の1または2官能の電離放射線硬化型化合物の含有量やアミノ基を有する電離放射線硬化型化合物の含有量、ハードコート層中の粒子の存在量により変更することができる。
本発明の成型用ハードコートフィルムは、ハードコート層を積層しない面に印刷加工を施す場合は、透明性があることが好ましい。具体的には、基材フィルムによって異なるが、共重合ポリエステルを含む二軸配向ポリエステルフィルムを基材フィルムとした成型用ハードコートフィルムの場合、ヘーズが5%以下であることが好ましい。ヘーズを調整する方法としては、ハードコート層中の粒子の存在量により変更することができる。
本発明の成型用ハードコートフィルムは、ハードコート層を積層しない面に印刷加工を施す場合は、着色がないことが好ましい。具体的には、基材フィルムによって異なるが、共重合ポリエステルを含む二軸配向ポリエステルフィルムを基材フィルムとした成型用ハードコートフィルムの場合、色調b*の値が2.0以下であることが好ましい。色調b*を調整する方法として、ハードコート層を形成する塗布液に含まれる電離放射線硬化型化合物中のアミノ基を有する電離放射線硬化型化合物の含有量や光開始重合剤の添加量により変更することができる。ここで色調b*は色差計(日本電色工業製、ZE−2000)を用いて、C光源、2度の視野角で色調b*値を測定し、5回の測定値を平均して求めた値である。
(成型用ハードコートフィルムロール)
本発明の成型用ハードコートフィルムロールは、長尺の成型用ハードコートフィルムを円筒状コアにロール状に連続的に巻き取る工程を経て得られる。成型用ハードコートフィルムロールを用いることにより、加工時の生産性が向上し、さらに成型体の品質の安定性に寄与しうる。長尺の成型用ハードコートフィルムを円筒状コアにロール状に連続的に巻き取られた成型用ハードコートフィルムロールの長さは用途により特に限定されないが、50m以上5000m以下であることが好ましく、100m以上3000m以下がより好ましい。巻長が短い場合には、例えば後工程での印刷層加工時の成型用ハードコートフィルムの切り替え頻度が高くなり作業性が悪化する。逆に、巻長が長い場合には、外部の環境温度により成型用ハードコートフィルムが膨張及び収縮し、巻き締まりが発生して、巻芯部の外観が不良となる。
成型用ハードコートフィルムロールの幅は用途により異なり、特に限定されないが、加工性の点からは100mm以上2000mm以下が好ましく、500mm以上1500mm以下がさらに好ましい。
成型用ハードコートフィルムを巻きつける円筒状コアは、プラスチック製コアが好ましい。一般的に使用される紙製のコアを用いた場合には、紙粉等が発生してハードコート層に付着して不良となりやすい。プラスチック製コアとしては、公知のものが好適に使用できるが、ポリプロピレン製コアやFRP製コアが強度の点で好ましい。円筒状コアのサイズは、直径が3インチ以上6インチ以下が好ましい。直径の小さいコアを用いた場合には、巻芯部で巻き癖が付き、後工程での取り扱い性が不良となる。一方、直径が大きい場合には、ロール径が大きくなり、ハンドリング性が不良となる。
コアに成型用ハードコートフィルムを巻きつけるためには、コアに両面テープを介して成型用ハードコートフィルムを固定してから巻き始めることが好ましい。両面テープを用いない場合には、巻き途中や運搬時に巻ズレが発生しやすくなる。両面テープとしては公知のものが使用できるが、プラスチックフィルムの両面に粘着層を有するものが、紙粉の発生や強度の点で好ましい。両面テープの厚みは、5μm以上50μm以下が好ましい。薄い場合には強度が低下して作業性が悪くなるとともに、フィルムの固定力が低下する。逆に、厚い場合には、テープによる段差で、巻芯部の成型用ハードコートフィルムの平面性が不良となる。
本発明において、成型用ハードコートフィルムの巾方向の両端に凹凸(エンボス)を付与することが好ましい。凹凸を付与することで、巻芯部の両面テープによる跡が付きにくくなるとともに、ハードコート層とその反対面の基材フィルム表層、または基材フィルム上に積層した前述したような機能性を付与した層との接触する箇所が低下して、ロール形態での保存安定性が良好となる。凹凸の高さの下限は、10μmが好ましく、さらに好ましくは15μmである。一方、凹凸の高さの上限は、40μmが好ましく、さらに好ましくは35μmである。凹凸の高さが低すぎると、凹凸によるロール形態での保存安定性の改善効果が小さくなる。一方、凹凸の高さが高すぎると、運送時に巻ズレ等が発生しやすくなる。凹凸を付与する方法としては、公知の方法を使用できる。具体的には、表面に突起のある金属ロールを押し付けて凹凸を付与する方法が挙げられる。なお、凹凸加工は基材フィルム上にハードコート層を形成する前に、予め基材フィルムに付与しておくことが好ましい。
(成型体)
本発明の成型用ハードコートフィルムは、真空成型、圧空成型、金型成型、プレス成型、ラミネート成型、インモールド成型、絞り成型、折り曲げ成型、延伸成型などの成型方法を用いて成型する成型用材料として好適である。本発明の成型用ハードコートフィルムを用いて成型した場合、成型時の変形にハードコート層が追随しクラックが発生せず、かつ、表面硬度、耐擦傷性を維持することができる。
上記の成型用ハードコートフィルムを成型してなる成型体のハードコート層の厚みは、0.5μm以上50μm以下が好ましく、特に好ましくは0.5μm以上10μm以下がよい。成型体のハードコート層の厚みが0.5μmより薄い場合はハードコート性が得られないことや、耐熱性の点で成型体に熱が加わった際、基材フィルムの収縮に追随できずハードコート層表面が波打つように荒れ、外観を損ねてしまう。逆に50μmを超える場合は、それ以上のハードコート層の厚みでの表面硬度に優位差が無く、品質の点でメリットは小さくなる。
このように成型された成型体は、ハードコート層を有することにより表面硬度を補っているため、外部に触れる位置に装着され、耐擦傷性が要求される家電用銘板、自動車用銘板、ダミー缶、建材、化粧板、化粧鋼鈑、転写シートなどの成型部材として好適に使用することができる。
以下、実施例によって本発明を詳細に説明する。なお、各実施例で得られたフィルム特性は以下の方法により測定、評価した。
(1)結晶融解温度、ガラス転移温度
JIS K 7121「プラスチックの転移温度測定方法」に準拠した示差走査熱量測定(DSC)のDSC曲線より得られる融解ピーク温度を融解温度(Tm)、中間点ガラス転移温度をガラス転移温度(Tg)とした。
(2)基材フィルムの100%伸張時応力
JIS K 7127「プラスチックフィルム及びシートの引張試験方法」に準拠して、加熱槽を有した引張試験機を用い、下記の条件で得た応力−ひずみ曲線から各方向の100%伸張時応力(MPa)を求めた。なお、100℃での測定では、予め温度が安定する時間(30sec)を確認し、試験を実施した。
試験片 :1号形試験片(幅10mm)
試験速度:100mm/min
試験温度:25℃=F10025、100℃=F100100
(3)基材フィルムの面配向度
JIS K 7142「プラスチックの屈折率測定方法(A法)」に準拠して、長手方向の屈折率(Nz)、幅方向の屈折率(Ny)、厚み方向の屈折率(Nz)の値より下記の式から面配向度(ΔP)を算出した。
ΔP=((Nx+Ny)/2)−Nz
(4)熱収縮率
JIS C 2318「電気用ポリエチレンテレフタレートフィルム(寸法変化)」に準拠して、成型用ハードコートフィルムの80℃及び150℃加熱前後の寸法変化率を熱収縮率とした。
(5)印刷時平面性
成型用ハードコートフィルムのハードコート面に延伸ポリエステルフィルムに粘着層が付与されたポリエステル製保護フィルムをラミネートした貼り合せフィルムを50cm×50cm正方形に断裁した。ハードコート層の反対面に対してシルクスクリーン印刷法により1色目のインキ付与(印刷)し、80℃×15分乾燥、さらに2色目の印刷の後、同条件で乾燥、3色目の印刷、乾燥を繰り返した後、最後に射出樹脂接着性付与のためのバインダー層を同様にシルクスクリーン法で付与した後、80℃×60分の最終乾燥・熱処理を行い、印刷を完了。得られた印刷シートを平面台状に置き、シートの波うち状況を観察し波打ちが少ない方から以下のA,B,C,Dの4ランクに分類評価した。
ランクA:波うち ほとんど無し
ランクB:波うち 僅かにあり
ランクC:波うち あり
ランクD:波うち 顕著
(6)伸度
得られた成型用ハードコートフィルムから長さ10mm、幅150mmの短冊状の試料片に切り出した。フィルム試料片の実温が160℃の環境下で、外観を目視観察しながら、フィルム両端を把持して試験速度250mm/分で引張り、ハードコート層にクラック、または白化が発生した時のフィルムの長さを測定した。
試験前のフィルム試料片長をa、試験後のフィルム試料片長をbとしたとき、下記式により伸度を算出した。
伸度(%)=(b−a)×100/a
ここで伸度が10%以上のものを成型性に優れているとし、30%以上のものを特に成型性に優れていると判断した。
(7)鉛筆硬度
得られた成型用ハードコートフィルムのハードコート層の鉛筆硬度をJIS−K5600に準拠して測定した。圧こん(痕)は目視で判定した。
ここで鉛筆硬度がH以上のものを優れた表面硬度があるものとし、2H以上であるものを特に優れた表面硬度があるものと判断した。
(8)耐擦傷性
得られた成型用ハードコートフィルムのハードコート層の耐擦傷性をJIS−K5600に準拠して測定した。ハードコート層表面を荷重500gfで#0000のスチールウールで20往復し、傷の発生の有無及び傷の程度を目視により観察した。観察結果をもとに以下の判定基準に従ってランクを判定した。この耐擦傷性のランクがC以上で耐擦傷性があるとし、B以上のものを耐擦傷性が良好と判断した。
A:傷の発生が無い、もしくは細い傷が少量程度観察される。
B:細い傷が観察されるが、深い傷は観察されない。
C:細い傷が観察され、深い傷も少量程度観察される。
D:深い傷が多量に観察される。
(9)色調b*
得られた成型用ハードコートフィルムの色調b*値を色差計(日本電色工業製、ZE−2000)を用いて、C光源、2度の視野角で色調b*値を測定し、5回の測定値を平均して求めた。
(10)成型後の鉛筆硬度、ハードコート層の厚み
前記(6)の伸度評価において、クラックが発生する直前で引っ張ることをやめることにより、延伸成型後の成型体を得た。成型後の鉛筆硬度を前記(7)の評価方法により評価した。また、成型後のフィルム試料片(成型体)の中央部における分光反射率を分光光度計(島津製作所製、UV−3150型)よりを求め、波長400nm以上600nm以下での波形からピークバレー法を用いてハードコート層の厚みを算出した。その際に必要とするハードコート層の屈折率は、各実施例、比較例のハードコート塗布液からハードコート層の単膜を作成し、アッベ屈折計(アタゴ製、NAR−1T SOLID)を用いて求めた。
(実施例1)
(フィルム原料樹脂)
テレフタル酸(TPA)、エチレングリコール(EG)をエステル化反応釜に仕込み、圧力0.25MPa、温度220〜240℃の条件下で120分間エステル化反応を行なった後、反応釜内を常圧にして、重合触媒としてチタニウムテトラブトキシドなどを加えて、撹拌しながら反応系内を徐々に減圧し、75分間で0.5hPaとすると共に、温度を280℃に昇温して、280℃で溶融粘度が所定の値となるまで撹拌を続けて重合反応を行い、その後、水中に吐出して冷却し、ポリエステル系樹脂Aを得た。
別にテレフタル酸(TPA)、ならびに、エチレングリコール(EG)、ネオペンチルグリコール(NPG)をそれぞれ、EG/NPGのmol比が70/30になるようにエステル化反応釜に仕込み、前述のポリエステル系樹脂A同様に重合反応を行い、ポリエステル系樹脂Bを得た。
(易接着層用塗布液の調整)
常法によりエステル交換反応および重縮合反応を行って、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸46モル%、イソフタル酸46モル%および5−スルホナトイソフタル酸ナトリウム8モル%、グリコール成分として(グリコール成分全体に対して)エチレングリコール50モル%およびネオペンチルグリコール50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。次いで、水51.4質量部、イソプロピルアルコール38質量部、n−ブチルセルソルブ5質量部、ノニオン系界面活性剤0.06質量部を混合した後、加熱撹拌し、77℃に達したら、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂5質量部を加え、樹脂の固まりが無くなるまで撹拌し続けた後、樹脂水分散液を常温まで冷却して、固形分濃度5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。さらに、凝集体シリカ粒子(富士シリシア(株)社製、サイリシア310)3質量部を水50質量部に分散させた後、上記水分散性共重合ポリエステル樹脂液99.46質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、塗布液を得た。
(基材フィルム)
これらのポリエステル系樹脂AとBをA/B=50質量%/50質量%の配合比でドライブレンドし、単軸押出機(ダムフライト付きメタリングタイプスクリュー、外径65mm)を使用し、押出機の圧縮部285℃、計量部270℃、スクリュー回転数50rpmで混合したものをTダイのスリットから溶融押出し、静電印加法により表面温度30℃のチルロール上に密着させ急冷固化させ未延伸フィルムを得た。得られた未延伸フィルムを加熱ロールと冷却ロールの間で縦方向に100℃で3.5倍に延伸した。次いで、一軸延伸フィルムの両面に以下の前記塗布液を塗布した。
次いで、塗布後の一軸延伸フィルムをテンターに導き、100℃で約10sec予熱して、前半部100℃、後半部90℃で、最終的に3.8倍に延伸し、次に0.5〜2%の弛緩を行ないながら、220℃で面配向度が0.093になるように熱処理を実施して、厚さが125μmのポリエステルフィルムロールを得た。
得られたフィルムの幅1060mm、長さ2000mのロールを、予備加熱ゾーン1室、熱処理ゾーン4室、冷却ゾーン1室を有し、熱処理ゾーン前後にテンションカットロールを有し加熱熱処理ゾーンの張力を独立で制御することが可能な連続熱処理装置を用い、フィルム巻出し張力250N/m,予備加熱ゾーン温度120℃、加熱熱処理ゾーン内張力110N/m、4室のゾーン内最高温度を160℃、冷却ゾーン温度90℃とし冷却ロールを介した後、フィルムの巻き取り張力を300N/mで、フィルム速度15m/minにて連続熱処理を行い、処理フィルムを巻き取り、厚さが125μmの基材フィルムを得た。
(成型用ハードコート)
得られた基材フィルム上に下記の塗布液Aをワイヤーバーを用いて塗布硬化後のハードコート層の厚みが2μmになるように塗布し、温度80℃の熱風で60秒乾燥し、出力120W/cmの高圧水銀灯下20cmの位置(積算光量300mJ/cm2)で8m/minのスピードで通過させて成型用ハードコートフィルムを得た。
(塗布液A)
下記の材料を下記に示す質量比で混合し、30分以上攪拌して溶解させた。次いで、公称ろ過精度が1μmのフィルターを用いて未溶解物を除去して、塗布液Aを作成した。
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例2)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Bに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液B)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 17.18質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 2.86質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 2.86質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例3)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Cに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液C)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 8.02質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 7.44質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 7.44質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例4)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Dに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液D)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 21.75質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 0.58質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 0.57質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例5)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Eに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液E)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 1.15質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 0.58質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 21.17質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例6)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Fに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液F)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 21.75質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 1.15質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例7)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Gに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液G)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 1.15質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 21.75質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例8)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Hに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液H)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 1.15質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・ジメチルアミノエチルメタクリレート 21.75質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムはアミン化合物の添加量が多いため着色が目立ちやや好ましくないが、成型性、表面硬度、耐擦傷性はともに良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例9)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Iに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液I)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジエチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDE、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例10)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Jに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液J)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・N−ビニルホルムアミド 5.72質量%
(荒川化学製、ビームセット770、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例11)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Kに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(ハードコート塗布液K)
・メチルエチルケトン 67.93質量%
・ペンタエリスリトールトリアクリレート 11.58質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.79質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.79質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 7.72質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.16質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例12)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Lに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液L)
・メチルエチルケトン 4.24質量%
・ペンタエリスリトールトリアクリレート 6.22質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 3.12質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 3.12質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 82.73質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 0.55質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.02質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例13)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Mに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液M)
・メチルエチルケトン 71.46質量%
・ペンタエリスリトールトリアクリレート 11.72質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.86質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.86質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 3.90質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 1.17質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例14)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Nに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液N)
・ペンタエリスリトールトリアクリレート 5.28質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 2.64質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 2.64質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 88.88質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・光重合開始剤 0.55質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.02質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例15)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Oに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液O)
・メチルエチルケトン 58.76質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 17.17質量%
(扶桑化学工業製、PL2L−MEK、固形分比率:20%、平均粒径:20nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例16)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Pに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液P)
・メチルエチルケトン 58.76質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 17.17質量%
(扶桑化学工業製、PL30L−MEK、固形分比率:20%、平均粒径:297nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例17)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Qに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液Q)
・メチルエチルケトン 58.76質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 17.17質量%
(日本触媒製、シーホスターKE−E50、固形分比率:20%、平均粒径:511nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例18)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Rに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液R)
・メチルエチルケトン 72.50質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・メラミン・ホルムアルデヒド縮合物微粒子 3.43質量%
(日本触媒製、エポスターS、平均粒径:196nm)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例19)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Sに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液S)
・メチルエチルケトン 75.08質量%
・ペンタエリスリトールトリアクリレート 11.85質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.93質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.92質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・光重合開始剤 1.19質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例20)
実施例1において、塗布硬化後のハードコート層の厚みが1.1μmになるように塗布すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例21)
実施例1において、塗布硬化後のハードコート層の厚みが50μmになるように塗布すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例22)
実施例1において、塗布硬化後のハードコート層の厚みが0.5μmになるように塗布すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。しかし、得られた成型用ハードコートフィルムより成型した成型体の表面硬度は、若干不良であった。これは成型によりハードコート層の厚みが表面硬度を維持できる範囲以外まで薄くことなったことが原因である。得られた結果を表1に示す。
(実施例23)
実施例1において、塗布硬化後のハードコート層の厚みが60μmになるように塗布すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表1に示す。
(実施例24)
熱処理ゾーン内の張力を150N/m、4室のゾーン内最高温度を150℃にして得られた基材フィルムを用いた以外は、実施例1と同様にして成型用ハードコートフィルムを得た。
(実施例25)
加熱熱処理ゾーン内張力80N/mにして得られた基材フィルムを用いた以外は、実施例1と同様にして成型用ハードコートフィルムを得た。
(比較例1)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Uに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液U)
・メチルエチルケトン 64.48質量%
・ペンタエリスリトールトリアクリレート 22.90質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャリティー製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは表面硬度、耐擦傷性、着色の程度ともに良好であったが成型性が不良で、成型用ハードコートフィルムとして不良であった。得られた結果を表1に示す。
(比較例2)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Vに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液V)
・メチルエチルケトン 64.48質量%
・トリプロピレングリコールジアクリレート 11.45質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 11.45質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒径:50nm)
・光重合開始剤 1.14質量%
(チバ・スペシャリティー製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、着色の程度ともに良好であったが、表面硬度、耐擦傷性が不良で、成型用ハードコートフィルムとして不良であった。得られた結果を表1に示す。
(比較例3)
実施例1において加熱熱処理ゾーン内張力200N/m、4室のゾーン内最高温度を130℃にして得られた基材フィルムを用いた以外は、実施例1と同様にして成型用ハードコートフィルムを得た。
(実施例26)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Wに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液W)
・メチルエチルケトン 63.62質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・電離放射線硬化型シリコーン化合物ポリエーテルアクリレート 0.86質量%
(ドイツケミーサービス社製、TEGO Rad2200N)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。
(実施例27)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Xに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液X)
・メチルエチルケトン 64.42質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・電離放射線硬化型シリコーン化合物ポリエーテルアクリレート 0.06質量%
(ドイツケミーサービス社製、TEGO Rad2200N)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。
(実施例28)
実施例1において、ハードコート層を形成する塗布液を下記の塗布液Yに変更すること以外は実施例1と同様にして、成型用ハードコートフィルムを得た。
(塗布液Y)
・メチルエチルケトン 61.62質量%
・ペンタエリスリトールトリアクリレート 11.45質量%
(新中村化学製、NKエステル A−TMM−3LM−N、官能基数3)
・トリプロピレングリコールジアクリレート 5.73質量%
(新中村化学製、NKエステル APG−200、官能基数2)
・ジメチルアミノエチルメタクリレート 5.72質量%
(共栄社化学製、ライトエステルDM、官能基数1)
・シリカ微粒子 11.45質量%
(日産化学工業製、MEK−ST−L、固形分比率:30%、平均粒子径:50nm)
・電離放射線硬化型シリコーン化合物ポリエーテルアクリレート 2.86質量%
(ドイツケミーサービス社製、TEGO Rad2200N)
・光重合開始剤 1.14質量%
(チバ・スペシャルティ・ケミカルズ製イルガキュア184)
・シリコーン系界面活性剤 0.03質量%
(東レ・ダウコーニング製、DC57)
得られた成型用ハードコートフィルムは成型性、表面硬度、耐擦傷性、着色の程度ともに良好で、成型用ハードコートフィルムとして良好であった。また、得られた成型用ハードコートフィルムより成型した成型体の表面硬度も良好であった。得られた結果を表2に示す。
Figure 2011126160
Figure 2011126160
本発明の成型用ハードコートフィルムはハードコート層を有することにより基材フィルムの表面硬度を補っているため、本発明の成型用ハードコートフィルムを成型してなる成型体は、耐擦傷性が要求される家電、自動車の銘板用または建材用部材、携帯電話、オーディオ、ポータブルプレーヤー/レコーダー、ICレコーダー、カーナビ、PDAなどの携帯機器やノートPCなどの筐体として好適である。また、成型加工の製造面でも、成型前に基材フィルムにハードコート層を加工、積層させることで、生産性、品質の安定性を向上に寄与することができ、産業界への寄与は大きい。

Claims (7)

  1. 基材フィルムの少なくとも一方の面に塗布液を塗布硬化させてなるハードコート層を有する成型用ハードコートフィルムであって、
    前記基材フィルムが、共重合ポリエステルを含む二軸配向ポリエステルフィルムであり、
    前記塗布液が、3以上の官能基を有する電離放射線硬化型化合物と、1および/または2官能の電離放射線硬化型化合物とを少なくとも含み、
    前記塗布液に含まれる電離放射線硬化型化合物中の1および/または2官能の電離放射線硬化型化合物の含有量が5質量%以上95質量%以下であり、
    長手方向及び幅方向の平均熱収縮率が、150℃において0.001〜2.0%、及び80℃において0.0〜0.5%である成型用ハードコートフィルム。
  2. 前記基材フィルムの融解温度が200〜245℃であり、
    前記基材フィルムの長手方向及び幅方向における100%伸張時応力が、25℃において30〜300MPa、100℃において1〜100MPaであり、
    前記基材フィルムの面配向度が0.050〜0.095である請求項1に記載の成型用ハードコートフィルム。
  3. 前記共重合ポリエステルが、テレフタル酸単位を含むジカルボン酸成分とエチレングリコール単位及び分岐状脂肪族グリコール単位及び/又は脂環族グリコール単位を含むグリコール成分から構成される共重合ポリエステルである請求項1または2に記載の成型用ポリエステルフィルム。
  4. 前記塗布液に含まれる電離放射線硬化化合物の少なくとも1種がアミノ基を有する電離放射線硬化化合物である請求項1〜3のいずれかに記載の成型用ハードコートフィルム。
  5. 前記ハードコート層中に平均粒子径10nm以上300nm以下の粒子を含み、
    前記粒子のハードコート層中の含有量が5質量%以上70質量%以下である請求項1〜4のいずれかに記載の成型用ハードコートフィルム。
  6. 前記ハードコート層中に電離放射線硬化型シリコーン樹脂を含み、
    前記電離放射線硬化型シリコーン樹脂のハードコート層中の含有量が前記電離放射線硬化型化合物100質量部に対して0.15質量部以上15質量部以下である請求項1〜5のいずれかに記載の成型用ハードコートフィルム。
  7. 請求項1〜6のいずれかに記載の成型用ハードコートフィルムを成型してなる成型体。
JP2009287457A 2009-12-18 2009-12-18 成型用ハードコートフィルム Active JP5428830B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009287457A JP5428830B2 (ja) 2009-12-18 2009-12-18 成型用ハードコートフィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009287457A JP5428830B2 (ja) 2009-12-18 2009-12-18 成型用ハードコートフィルム

Publications (2)

Publication Number Publication Date
JP2011126160A true JP2011126160A (ja) 2011-06-30
JP5428830B2 JP5428830B2 (ja) 2014-02-26

Family

ID=44289283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009287457A Active JP5428830B2 (ja) 2009-12-18 2009-12-18 成型用ハードコートフィルム

Country Status (1)

Country Link
JP (1) JP5428830B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056432A (ja) * 2011-09-07 2013-03-28 Dainippon Printing Co Ltd 耐候性フィルム
JP2013139105A (ja) * 2011-12-30 2013-07-18 Nippon Paper Industries Co Ltd 成型用積層ハードコートフィルム及びその製造方法、並びに樹脂成型品の製造方法
JP2015523241A (ja) * 2012-05-31 2015-08-13 エルジー・ケム・リミテッド ハードコーティングフィルム
JP2015525147A (ja) * 2012-05-31 2015-09-03 エルジー・ケム・リミテッド ハードコーティングフィルム
JP2016094016A (ja) * 2015-12-24 2016-05-26 大日本印刷株式会社 耐候性フィルム
US9778398B2 (en) 2012-05-31 2017-10-03 Lg Chem, Ltd. Hard coating film and preparation method thereof
US10000655B2 (en) 2012-08-23 2018-06-19 Lg Chem, Ltd. Hard coating composition
JP2019005975A (ja) * 2017-06-22 2019-01-17 三菱ケミカル株式会社 ケース組み立て用ハードコートシート及び包装ケース

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047361A (ja) * 2000-08-03 2002-02-12 Mitsubishi Rayon Co Ltd 耐熱性ポリエステルシート及びその成形品
WO2008029666A1 (fr) * 2006-09-06 2008-03-13 Toyo Boseki Kabushiki Kaisha Film de polyester pour moulage
JP2009234238A (ja) * 2008-03-28 2009-10-15 Dainippon Printing Co Ltd 真空成形用化粧シート
JP4392624B1 (ja) * 2008-06-18 2010-01-06 東洋紡績株式会社 成型用ハードコートフィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047361A (ja) * 2000-08-03 2002-02-12 Mitsubishi Rayon Co Ltd 耐熱性ポリエステルシート及びその成形品
WO2008029666A1 (fr) * 2006-09-06 2008-03-13 Toyo Boseki Kabushiki Kaisha Film de polyester pour moulage
JP2009234238A (ja) * 2008-03-28 2009-10-15 Dainippon Printing Co Ltd 真空成形用化粧シート
JP4392624B1 (ja) * 2008-06-18 2010-01-06 東洋紡績株式会社 成型用ハードコートフィルム
JP4392626B1 (ja) * 2008-06-18 2010-01-06 東洋紡績株式会社 成型用ハードコートフィルム
JP4457324B2 (ja) * 2008-06-18 2010-04-28 東洋紡績株式会社 成型用ハードコートフィルム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056432A (ja) * 2011-09-07 2013-03-28 Dainippon Printing Co Ltd 耐候性フィルム
JP2013139105A (ja) * 2011-12-30 2013-07-18 Nippon Paper Industries Co Ltd 成型用積層ハードコートフィルム及びその製造方法、並びに樹脂成型品の製造方法
US9778398B2 (en) 2012-05-31 2017-10-03 Lg Chem, Ltd. Hard coating film and preparation method thereof
JP2015525147A (ja) * 2012-05-31 2015-09-03 エルジー・ケム・リミテッド ハードコーティングフィルム
US9701862B2 (en) 2012-05-31 2017-07-11 Lg Chem, Ltd. Method of preparing hard coating film
JP2015523241A (ja) * 2012-05-31 2015-08-13 エルジー・ケム・リミテッド ハードコーティングフィルム
US9884977B2 (en) 2012-05-31 2018-02-06 Lg Chem, Ltd. Hard coating composition
US9896597B2 (en) 2012-05-31 2018-02-20 Lg Chem, Ltd. Method of preparing hard coating film
US9926461B2 (en) 2012-05-31 2018-03-27 Lg Chem, Ltd. Hard coating film
US10294387B2 (en) 2012-05-31 2019-05-21 Lg Chem, Ltd. Hard coating film
US10000655B2 (en) 2012-08-23 2018-06-19 Lg Chem, Ltd. Hard coating composition
JP2016094016A (ja) * 2015-12-24 2016-05-26 大日本印刷株式会社 耐候性フィルム
JP2019005975A (ja) * 2017-06-22 2019-01-17 三菱ケミカル株式会社 ケース組み立て用ハードコートシート及び包装ケース

Also Published As

Publication number Publication date
JP5428830B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP4392626B1 (ja) 成型用ハードコートフィルム
JP5471419B2 (ja) 保護フィルム付成型用ハードコートフィルム
JP5428830B2 (ja) 成型用ハードコートフィルム
JP2011148301A (ja) 成型用マットハードコートフィルム
JP2011131409A (ja) 成型用ポリエステルフィルムおよび成型用ハードコートフィルム
JP2011126165A (ja) 成型用ハードコートフィルム
JP5370124B2 (ja) 成型用ポリエステルフィルムおよび成型用ハードコートフィルム
JP5471077B2 (ja) 成型用ポリエステルフィルムおよび成型用ハードコートフィルム
JP2011131407A (ja) 成型用ハードコートフィルム
JP2011131404A (ja) 成型用ハードコートフィルム
JP2011126162A (ja) 成型用ポリエステルフィルムおよび成型用ハードコートフィルム
JP2011126164A (ja) 成型用帯電防止ハードコートフィルム
JP4766122B2 (ja) 成型用ハードコートフィルム
JP2011148964A (ja) 成型用ハードコートフィルム
JP2011131403A (ja) 成型用ハードコートフィルム
JP2011131406A (ja) 成型用ハードコートフィルム
JP5428829B2 (ja) 成型用ハードコートフィルム
JP2011131408A (ja) 成型用ハードコートフィルム
JP5605489B2 (ja) 保護フィルム付成型用ハードコートフィルム
JP5304484B2 (ja) 成型用ポリエステルフィルムおよび成型用ハードコートフィルム
JP5560693B2 (ja) 成型用ハードコートフィルム及び成型体
JP5428831B2 (ja) 成型用ハードコートフィルム
JP5716810B2 (ja) 保護フィルム付成型用ハードコートフィルム
JP2011131405A (ja) 成型用ハードコートフィルム
JP2011126161A (ja) 成型用ハードコートフィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R151 Written notification of patent or utility model registration

Ref document number: 5428830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350