JP2011113095A - 高帯域マルチモード光ファイバ - Google Patents

高帯域マルチモード光ファイバ Download PDF

Info

Publication number
JP2011113095A
JP2011113095A JP2010261867A JP2010261867A JP2011113095A JP 2011113095 A JP2011113095 A JP 2011113095A JP 2010261867 A JP2010261867 A JP 2010261867A JP 2010261867 A JP2010261867 A JP 2010261867A JP 2011113095 A JP2011113095 A JP 2011113095A
Authority
JP
Japan
Prior art keywords
optical fiber
refractive index
depressed trench
cladding
multimode optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010261867A
Other languages
English (en)
Other versions
JP5732234B2 (ja
Inventor
Denis Molin
ムーラン ドゥニ
Pierre Sillard
シヤル ピエール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Draka Comteq BV
Original Assignee
Draka Comteq BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Draka Comteq BV filed Critical Draka Comteq BV
Publication of JP2011113095A publication Critical patent/JP2011113095A/ja
Application granted granted Critical
Publication of JP5732234B2 publication Critical patent/JP5732234B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Communication System (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

【課題】低減した曲げ損失と、クラッド効果が低減した高データレートアプリケーション用高帯域とを実現する光ファイバを提供する。
【解決手段】光ファイバは、外側クラッドに対するアルファ形屈折率分布を有する中心コアと、第1ディプレスト・トレンチと、内側クラッドと、第2ディプレスト・トレンチと、外側クラッド(例えば、外側光学クラッド)とを含む。第2ディプレスト・トレンチの体積は一般に、第1ディプレスト・トレンチの体積より大きい。
【選択図】図2

Description

本発明は、光ファイバおよびその伝送の分野に関し、より詳しくは、低減した曲げ損失および高データレートアプリケーション用高帯域を有するマルチモード光ファイバに関する。
光ファイバ(すなわち、一般に、1以上の被覆層で取り巻かれたガラス繊維)は、従来、光信号を伝送および/または増幅する光学コアと、コア内に光信号を閉じ込める光学クラッドとを含む。コアの屈折率nは、一般に光学クラッドの屈折率nより大きい( すなわち、n>n)。
光ファイバの屈折率分布は一般に、屈折率を光ファイバの半径と関連づける関数のグラフの外観によって分類される。 通常、光ファイバの中心までの距離rがx軸上に示され、半径rにおける屈折率と外側クラッド の屈折率との差がy軸上に示される。屈折率分布は、ステップ、台形、アルファ形、三角形を呈するグラフに対してそれぞれ、「ステップ」分布、「台形」分布、「アルファ形」分布、「三角形」分布と称される。これらの曲線は通常、光ファイバの理論分布または設定分布を表している。しかしながら、光ファイバの製造における制約により、実際は、分布形状がわずかに異なることもある。
一般に、光ファイバは主に、マルチモード光ファイバとシングルモード光ファイバの2つに分類される。マルチモード光ファイバでは、所与の波長に対して、光ファイバに沿っていくつかの光学モードが同時に伝搬されるのに対し、シングルモード光ファイバでは、高次モードが強く減衰させられる。シングルモードまたはマルチモードのガラス繊維の直径は通常、125μmである。マルチモード光ファイバのコアは通常、50〜62.5μmの直径を有するのに対し、シングルモード光ファイバのコアは通常、6〜9μmの直径を有する。マルチモード・システムは一般に、シングルモード・システムより安価である。これは、マルチモードの方が、光源、コネクタ、および保守をより低コストで得ることができるからである。
マルチモード光ファイバは通常、広帯域を必要とする短距離アプリケーション、例えばローカルネットワークまたはLAN(ローカルエリアネットワーク)に使用される。マルチモード光ファイバは、ITU−T G.651.1規格に準拠した国際標準化の対象となっている。この規格は、特に、光ファイバの互換性についての要件に関する標準(例えば、帯域、開口数、およびコア径)を策定している。
さらに、長距離(すなわち、300mを超える距離)に渡る高帯域アプリケーション(すなわち、1GbEより高いデータレート)の需要を満たすために、OM3規格が採用されている。高帯域アプリケーションの開発と共に、マルチモード光ファイバの平均コア径が62.5μmから50μmへと低減されてきた。
一般に、 光ファイバは、高帯域アプリケーションに使用できるように、可能な限り広い帯域を持つべきである。所与の波長に対して、光ファイバの帯域を、いくつかの異なる方式で特徴付けることができる。一般には、いわゆる「全モード励振」(OFL)状態の帯域と、いわゆる「実効伝送帯域」(EMB)状態の帯域とに区別される。OFL帯域を得るには、光ファイバの半径方向の全域に渡って一様な励振を示す光源の使用(例えば、レーザダイオードまたは発光ダイオード(LED)の使用)が前提となる。
高帯域アプリケーションに使用される近年開発された光源、例えばVCSEL(垂直共振器面発光レーザ)は、光ファイバの半径方向に不均一な励振を示す。この種の光源では、OFL状態で測定される帯域は不適切であるので、実効伝送帯域(EMB)を用いることが好ましい。計算実効伝送帯域(EMBc)の計算により、用いられるVCSELの種類とは無関係に、マルチモード光ファイバの最小EMBが推定される。EMBcは、DMD測定(例えば、FOTP−220規格に記載されたようなもの)から得られる。
図1は、2002年11月22日発行のTIA SCFO−6.6バージョンに記載のFOTP−220規格によるDMD測定の概略図である。図1は、光ファイバすなわち、外側クラッドで取り巻かれた光学コアの一部を模式的に表している。DMDのグラフは、所与の波長λを持つ光パルスを、連続する各パルス間に半径方向オフセットを持たせて、マルチモード光ファイバ中に連続的に入射させることにより得られる。その後、光ファイバの所与の長さLの後で、各パルスの遅延が測定される。マルチモード光ファイバのコアの中心に対して異なる半径方向オフセットを持たせて、複数の同一光パルス(同一の振幅、波長、および周波数を持つ光パルス)を入射させる。図1には、入射した光パルスが、光ファイバの光学コア上に黒い点として描かれている。50μmの直径を持つ光ファイバを特徴付けるために、FOTP−220規格は、少なくとも24の個別の測定を行うこと(すなわち、24の異なる半径方向オフセット値で測定すること)を推奨している。これらの測定から、モード分散と計算実効伝送帯域(EMBc)を得ることが可能である。
TIA−492AAAC−A規格は、イーサネット(登録商標)高帯域伝送ネットワークアプリケーションにおいて長距離に渡り用いられる、50μmの直径を持つマルチモード光ファイバの性能要件を規定している。OM3規格は、波長850nmでは、少なくとも2,000MHz・kmのEMBを要求している。OM3規格は、300mの距離まで10Gb/s(10GbE)のデータレートに対してエラーフリー伝送を保証している。OM4規格は、550mの距離まで10Gb/s(10GbE)のデータレートに対して、エラーフリー伝送を得るために、波長850nmでは、少なくとも4,700MHz・kmのEMBを要求している。
マルチモード光ファイバでは、光ファイバに沿ったいくつかのモードの、伝搬時間の差、すなわち群遅延時間により、光ファイバの帯域が決定する。特に、同一の伝搬媒質(すなわち、ステップインデックス形マルチモード光ファイバ)に対し、異なるモードは、異なる群遅延時間を持つ。この群遅延時間における差によって、光ファイバの異なる半径方向オフセットに沿って伝搬する各パルス間にタイムラグが生じるに至る。
例えば、図1の右側のグラフに示されたように、各パルス間にはタイムラグがみられる。図1のグラフは、x軸をパルスが光ファイバの所与の長さに沿って通過するのに要する時間(ナノ秒)、y軸を半径方向オフセット(μm)とした、各パルスを表している。
図1に示されたように、x軸に沿ったピークの場所は、それぞれ異なっており、これが各パルス間のタイムラグ(すなわち、遅延)を表している。この遅延により、得られる光パルスに広がりが出てくる。光パルスの広がりは、 (i)パルスが後に続くパルスと重なるリスクを高め、(ii) 光ファイバによってサポートされる帯域を減少させる。このように、帯域は、光ファイバのマルチモード・コア中を伝搬する光学モードの群遅延時間に直接関係する。従って、広帯域を保証するためには、全てのモードの群遅延時間が同一であることが望ましい。別の言い方をすれば、所与の波長に対して、モード分散はゼロにすべきであり、もしくは少なくとも最小限にすべきである。
モード分散を減少させるために、通信に用いられるマルチモード光ファイバは一般に、屈折率が光ファイバの中心からクラッドとの境界面にかけて徐々に減少するコア(すなわち、「アルファ」形のコア屈折率分布)を有する。そのような光ファイバが長年使用されてきており、その特徴は、非特許文献1に記載され、かつ、非特許文献2に要約されている。
グレーデッドインデックス形屈折率分布(すなわち、アルファ形屈折率分布)は、以下の等式により、屈折率値nと光ファイバの中心からの距離rとの関係によって表すことができる。
式中、
α≧1であり、αは、屈折率分布の形を示す無次元パラメータであり、
は、光ファイバのコアの最大屈折率であり、
aは、光ファイバのコアの半径であり、
Δは、以下の等式である。
式中、nは、マルチモード・コアの最小屈折率であり、これは外側クラッド(殆どの場合、ケイ素製)の屈折率に相当していてよい。
従って、グレーデッドインデックス形(すなわち、アルファ形分布)のマルチモード光ファイバは、光ファイバの任意の半径方向に沿って、屈折率値が光ファイバの中心からその周縁にかけて減少し続けるような、回転対称のコア屈折率分布を持つ。このようなグレーデッドインデックス形のコア中にマルチモード光信号が伝搬する場合、異なる光学モードが異なる伝搬媒質を通り(すなわち、異なる屈折率のため)、これにより各光学モード間の伝搬速度が異なるものとなる。従って、パラメータαの値を調整することにより、全てのモードが事実上等しい群遅延時間を得ることが可能となる。別の言い方をすれば、屈折率分布を調整することにより、モード分散を減少させるか、あるいは取り除くことすら可能となる。
しかしながら、実際は、製造されたマルチモード光ファイバは、一定屈折率の外側クラッドで取り巻かれた、グレーデッドインデックス形の中心コアを有する。従って、マルチモード光ファイバのコアは決して、理論上完璧なアルファ形分布に相当しない。これは、コア(アルファ形分布を有する)と外側クラッド(一定屈折率を有する)との境界面が、アルファ形分布を遮断するからである。外側クラッドは、低次モードに対して、高次モードを加速させる。この現象は、「クラッド効果」として知られている。DMD測定では、半径方向の最も高い位置(すなわち、外側クラッドに最も近い位置)に対して得られる応答は、多重パルスを示し、これにより応答信号に時間的広がりが生じるに至る。従って、このクラッド効果により帯域が減少させられる。
マルチモード光ファイバは通常、ローカルエリアネットワーク(LAN)のような広帯域を必要とする短距離アプリケーションに使用される。このようなアプリケーションにおいて、光ファイバが、偶発的な予期せぬ曲げを受ける可能性があり、これにより光ファイバのモードパワー分布および帯域が変更されてしまう可能性がある。
従って、10mm未満の曲率半径を有する曲げに影響されないマルチモード光ファイバを実現することが望ましい。これに対する解決案の1つは、コアとクラッドの間にディプレスト・トレンチを加えるというものであるが、この解決案においても、トレンチの位置および深さが光ファイバの帯域に著しい影響を与えてしまう可能性がある。
特許文献1は、クラッドにディプレスト・トレンチを有するグレーデッドインデックス形光ファイバを開示している。しかしながら、開示された光ファイバは、所望の曲げ損失より高い曲げ損失と、比較的低帯域を示している。さらに、光ファイバのクラッド効果については記載されていない。
特許文献2は、クラッドにディプレスト・トレンチを有するグレーデッドインデックス形光ファイバを開示している。しかしながら、開示された光ファイバは比較的低帯域を示し、クラッド効果については記載されていない。
特許文献3は、クラッドにディプレスト・トレンチを有するグレーデッドインデックス形光ファイバを開示している。しかしながら、開示された光ファイバは比較的低帯域を示し、クラッド効果については記載されていない。
特許文献4は、クラッドにディプレスト・トレンチを有するグレーデッドインデックス形光ファイバを開示している。この文献によると、高帯域を実現するためには、グレーデッドインデックス形のコアの終わり部分とディプレスト・トレンチの始まり部分との距離は、0.5〜2μmとすべきである。しかしながら、開示された光ファイバは所望の曲げ損失より高い曲げ損失を示している。さらに、開示された光ファイバのクラッド効果については記載されていない。
従って、グレーデッドインデックス形のマルチモード光ファイバとして、低減した曲げ損失と、クラッド効果が低減した高データレートアプリケーション用高帯域を有するものが求められている。
特開2006−47719号公報 国際公開第2008/085851号パンフレット 米国特許出願公開第2009/0154888号明細書 欧州特許出願公開第0131729号明細書
D.Gloge氏らによる「Multimode theory of graded−core fibers」(Bell system Technical Journal 1973、pp1563−1578) G.Yabre氏による「Comprehensive theory of dispersion in graded−index optical fibers」(Journal of Lightwave Technology,February 2000,Vol.18,No.2,pp 166−177)
従って、1つの態様において、本発明は、中心コアと、第1ディプレスト・トレンチと、内側クラッドと、第2ディプレスト・トレンチと、外側クラッド(例えば、外側光学クラッド)とを含む光ファイバを提供する。一般に、中心コアは、アルファ形屈折率分布(すなわち、グレーデッドインデックス形屈折率分布)と半径rとを有する、ガラスをベースとする中心コアである。第1ディプレスト・トレンチは、中心コアと内側クラッドとの間に位置し(例えば、中心コアを直接取り巻いている)、幅wと外側クラッドに対する屈折率差Δnとを有する。内側クラッドは、第1ディプレスト・トレンチと第2ディプレスト・トレンチとの間に位置し(例えば、第1ディプレスト・トレンチを直接取り巻いている)、幅wと外側クラッドに対する屈折率差Δnとを有する。第2ディプレスト・トレンチは、内側クラッドと外側クラッドとの間に位置し (例えば、内側クラッドを直接取り巻いている)、幅wと外側クラッドに対する屈折率差Δnとを有する。
一実施形態では、内側クラッドの屈折率差Δnは、第1ディプレスト・トレンチの屈折率差Δnより大きい。
別の実施形態では、内側クラッドの屈折率差Δnは、第2ディプレスト・トレンチの屈折率差Δnより大きい。
更に他の実施形態では、第2ディプレスト・トレンチの体積は、第1ディプレスト・トレンチの体積より大きい。
更に他の実施形態では、内側クラッドの幅wは、約4μm未満である。
換言すれば、一実施形態における本発明は、マルチモード光ファイバに関し、この光ファイバは、その中心から周縁までに、半径rおよび外側クラッドに対するアルファ形屈折率分布を有する中心コアと、幅wと外側クラッドに対する屈折率差Δnと体積vとを有する第1ディプレスト・トレンチと、約4μm未満の幅wと外側クラッドに対する屈折率差Δnとを有する内側クラッドと、幅wと外側クラッドに対する屈折率差Δnと体積vとを有する第2ディプレスト・トレンチと、外側クラッドとを含み、ここで、内側クラッドの屈折率差Δnは、第1ディプレスト・トレンチの屈折率差Δnより大きく、内側クラッドの屈折率差Δnは、第2ディプレスト・トレンチの屈折率差Δnより大きく、第2ディプレスト・トレンチの体積vは、第1ディプレスト・トレンチの体積vより大きい。体積vについては、本明細書において後で定義する。
更に他の実施形態では、内側クラッドの屈折率差Δnは、約−0.05×10−3〜0.05×10−3である。
更に他の実施形態では、内側クラッドの幅wと第1ディプレスト・トレンチの屈折率差Δnは、以下の不等式を満たす。
更に他の実施形態では、第1ディプレスト・トレンチの幅wは、約0.5〜1.5μmである。
更に他の実施形態では、第1ディプレスト・トレンチの屈折率差Δnは、約−4×10−3〜−0.5×10−3である。
更に他の実施形態では、第2ディプレスト・トレンチの幅wは、約3〜5μmである。
更に他の実施形態では、第2ディプレスト・トレンチの差屈折率差Δnは、約−15×10−3〜−3×10−3である。
更に他の実施形態では、第2ディプレスト・トレンチの体積は、約200〜1,200%・μm(例えば、250〜750%・μm)である。
更に他の実施形態では、波長850nmで、光ファイバは、15mmの曲げ半径(曲率半径)に対し、2巻当たり0.1dB未満(例えば、0.05dB未満)の曲げ損失を有する。
更に他の実施形態では、波長850nmで、光ファイバは、10mmの曲げ半径に対し、2巻当たり0.3dB未満(例えば、0.1dB未満)の曲げ損失を有する。
更に他の実施形態では、波長850nmで、光ファイバは、7.5mmの曲げ半径に対し、2巻当たり0.4dB未満(例えば、0.2dB未満)の曲げ損失を有する。
更に他の実施形態では、波長850nmで、光ファイバは、5mmの曲げ半径に対し、2巻当たり1dB未満(例えば、0.3dB未満)の曲げ損失を有する。
更に他の実施形態では、波長850nmで、光ファイバは、半径方向オフセットが24μmである帯域(ROB24)として、約4,000MHz・kmを超える帯域を有する。
更に他の実施形態では、波長850nmで、光ファイバは、半径方向オフセットが24μmである帯域(ROB24)として、少なくとも約10,000MHz・kmである帯域を有する。
更に他の実施形態では、波長850nmで、光ファイバは、半径方向オフセットが24μmである帯域(ROB24)として、少なくとも約15,000MHz・kmである帯域を有する。
更に他の実施形態では、波長850nmで、光ファイバは、半径方向オフセットが24μmである帯域(ROB24)として、少なくとも約20,000MHz・kmである帯域を有する。
更に他の実施形態では、波長850nmで、光ファイバは、少なくとも約1,500MHz・kmの、全モード励振(OFL)帯域を有する。
更に他の実施形態では、波長850nmで、光ファイバは、少なくとも約3,500MHz・kmの、全モード励振(OFL)帯域を有する。
更に他の実施形態では、光ファイバの開口数は、0.200±0.015(すなわち、0.185〜0.215)である。
更に他の実施形態では、中心コアのアルファ形屈折率分布は、約1.9〜2.1のパラメータαを有する。
更に他の実施形態では、外側クラッドに対する中心コアの屈折率差は、最大値Δnが約11×10−3〜18×10−3(例えば、約11×10−3〜16×10−3、一般に、13×10−3〜16×10−3)である。
更に他の実施形態では、波長850nmで、光ファイバは、外側マスク(半径方向オフセット0〜23μmにおける)DMD値(外側DMD)が0.33ps/m未満である。
更に他の実施形態では、波長850nmで、光ファイバは、外側マスク(半径方向オフセット0〜23μmにおける)DMD値(外側DMD)が0.25ps/m未満である。
更に他の実施形態では、波長850nmで、光ファイバは、外側マスク(半径方向オフセット0〜23μmにおける)DMD値(外側DMD)が0.14ps/m未満である。
他の態様において、本発明は、上記光ファイバの一部を含む光伝送システムを提供する。
一実施形態では、光システムは、少なくとも100m(例えば、300m)に渡り少なくとも10Gb/sのデータレートを有する。
更に他の実施形態では、本発明はマルチモード光ファイバに関し、この光ファイバは、半径r および外側クラッドに対するアルファ形屈折率分布を有する中心コアと、中心コアを直接取り巻きかつ(i)幅wと(ii)外側クラッドに対する屈折率差Δnと(iii)体積vとを有する第1ディプレスト・トレンチと、第1ディプレスト・トレンチを直接取り巻きかつ幅wと外側クラッドに対する屈折率差Δnとを有する内側クラッドと、内側クラッドを直接取り巻きかつ(i)幅wと(ii)外側クラッドに対する屈折率差Δnと(iii)体積vとを有する第2ディプレスト・トレンチとを含み、ここで、内側クラッドの屈折率差Δnは、(i)第1ディプレスト・トレンチの屈折率差Δnより大きく、(ii)第2ディプレスト・トレンチの屈折率差Δnより大きく、第2ディプレスト・トレンチの体積vは、第1ディプレスト・トレンチの体積vより大きく、内側クラッドの幅wと第1ディプレスト・トレンチの屈折率差Δnは以下の不等式を満たす。
上記の概要説明と、他の課題および/または本発明の利点、並びに本発明が実施される方法は、以下本明細書と添付図面において更に詳しく説明される。
図1は、DMD測定方法とグラフの一例を模式的に示す。 図2は、本発明による光ファイバの一実施形態の屈折率分布をグラフで示す。 図3は、内側クラッドの幅と外側クラッドに対するディプレスト・トレンチの屈折率差の関数として、半径方向オフセットが24μmである帯域(ROB24)をグラフで示す。 図4は、中心コアのアルファ形屈折率分布のパラメータαの関数として、半径方向オフセットが24μmである帯域(ROB24)をグラフで示す。 図5は、中心コアのアルファ形屈折率分布のパラメータαの関数として、波長850nmでの、外側マスク(半径方向オフセット0〜23μm)のDMD値(外側DMD)をグラフで示す。
本発明は、低減した曲げ損失と、高データレートアプリケーション用に低減したクラッド効果を有する高帯域とを実現したマルチモード光ファイバを提供する。
図2は、本発明による光ファイバの一実施形態の屈折率分布(所与の半径部分における屈折率nと外側クラッドの屈折率nclとの差)をグラフで示す。光ファイバは、半径rと外側クラッドに対するアルファ形屈折率分布を有する中心コアを含む。中心コアの半径rは、約25μmである。外側クラッドに対する中心コアの屈折率差は、最大値Δnが約11×10−3〜18×10−3であってよく、一般に約11×10−3〜16×10−3(例えば、13×10−3〜16×10−3)である。中心コアのアルファ形屈折率分布のパラメータαは一般に、約1.9〜2.1である。
光ファイバは、中心コアと外側クラッドの間に位置する(例えば、中心コアを直接取り巻いている)第1ディプレスト・トレンチを含む。第1ディプレスト・トレンチは、幅wと外側クラッドに対する屈折率差Δnを有する。一般に、用語「ディプレスト・トレンチ」は、外側クラッドの屈折率よりも実質上小さい屈折率を有する光ファイバの半径方向部分を述べるのに用いられる。第1ディプレスト・トレンチの屈折率差Δnは、約−4×10−3〜−0.5×10−3であってよい(例えば、約−2×10−3〜−0.5×10−3)。第1ディプレスト・トレンチの幅wは、約0.5〜1.5μmであってよい。一般的に言って、第1ディプレスト・トレンチの特徴は、高帯域の実現を促進することである。
一般に、光ファイバは、第1ディプレスト・トレンチと外側クラッドの間に位置する(例えば、第1ディプレスト・トレンチを直接取り巻いている)内側クラッドを含む。 内側クラッドは、幅wを有する。内側クラッドは、外側クラッドに対する屈折率差Δnを有する。内側クラッドの屈折率差Δnは、約−0.05×10−3〜0.05×10−3であってよい。図2に示すように、内側クラッドの屈折率差Δnは、ゼロであってもよい(すなわち、内側クラッドと外側クラッドは、同一の屈折率であってもよい)。
第2ディプレスト・トレンチは一般に、光ファイバの内側クラッドと外側クラッドの間に位置する(例えば、内側クラッドを直接取り巻いている)。第2ディプレスト・トレンチは、幅wと外側クラッドに対する屈折率差Δnを有する。第2ディプレスト・トレンチの屈折率差Δnは、内側クラッドの屈折率差Δnよりも小さくてもよい。第2ディプレスト・トレンチの屈折率差Δnは、約−15×10−3〜−3×10−3であってよい(例えば、約−10×10−3〜−5×10−3)。第2ディプレスト・トレンチの幅wは、約3〜5μmであってよい。
一実施形態では、内側クラッドの屈折率差Δnは、(i)第1ディプレスト・トレンチの屈折率差Δnと(ii)第2ディプレスト・トレンチの屈折率Δnの両方より大きい(Δn>Δn)(Δn>Δn)。この点に関し、内側クラッドの屈折率差Δnの実際の値(すなわち、絶対値ではない)は、ディプレスト・トレンチの屈折率差のそれぞれ(すなわち、ΔnおよびΔn)より大きい。別の言い方をすれば、内側クラッドの屈折率値はディプレスト・トレンチのそれぞれの屈折率より大きい。
一般的に言って、屈折率差は、以下の等式を用いた百分率として表すこともできる。
式中、n(r)は、半径方向位置の関数としての、相対屈折率値(例えば、ディプレスト・トレンチの屈折率n)であり、ncladdingは、外側クラッドの屈折率値である。当業者であれば、屈折率が光ファイバの所与のセクションにわたり変化する(すなわち、屈折率が半径方向位置の関数として変化する)場合であっても、あるいは屈折率が所与のセクションにわたり一定である場合であっても、この等式が用いられ得ることが分かるであろう。
当業者であれば、外側クラッドの屈折率は一般に一定であることが分かるであろう。とは言うものの、外側クラッドの屈折率が一定でない場合、屈折率差は一般に、外側クラッドの最も内側の部分(すなわち、中心コアに一番近く、光ファイバ内の光信号の伝播に影響を与え得る、外側クラッドの部分)に対して測定される。
外側クラッドに対する一定の屈折率差は、以下の等式を用いて、百分率で表され得る。
式中、nは相対屈折率値(例えば、ディプレスト・トレンチの屈折率n)であり、ncladdingは、外側クラッドの屈折率値である。
本明細書で使われているように、ディプレスト・トレンチの体積vは、以下の等式で定義される。
式中、rextおよびrintは、それぞれディプレスト・トレンチの外側の半径および内側の半径であり、Δ%(r)は、外側クラッドに対するディプレスト・トレンチの屈折率差を百分率で表したものである。当業者であれば、この等式が非矩形および矩形の両方のトレンチで用いられ得ることが分かるであろう。
ディプレスト・トレンチが矩形(すなわち、ステップインデックス形分布)である場合、上記等式は以下の等式に単純化され得る。
式中、rextおよびrintは、それぞれディプレスト・トレンチの外側の半径および内側の半径であり、Δ%は、外側クラッドに対するディプレスト・トレンチの屈折率差を百分率で表したものである。
一般に、第2ディプレスト・トレンチの体積vは、約200〜1,200%・μm (例えば、250〜750%・μm)である。一般的に言って、第2ディプレスト・トレンチの特徴は、低曲げ損失の実現を促進することである。第2ディプレスト・トレンチの屈折率差Δnおよびwは、光ファイバの曲げ損失を向上させるのに十分高いものであるべきである。
費用面での理由から、外側クラッドは一般に、天然のケイ素製であるが、ドープしたケイ素製であってもよい。
中心コアのグレーデッドインデックスの終わり部分に対する(すなわち、半径rにおける)第1ディプレスト・トレンチの位置および外側クラッドに対する第1ディプレスト・トレンチの屈折率差Δnは、高帯域の実現を促進する。
一実施形態では、第2ディプレスト・トレンチの体積vは、第1ディプレスト・トレンチの体積vより大きく、内側クラッドの幅wは、4μm未満である。コアの周縁近くに位置する(例えば、コアに隣接している)小ディプレスト・トレンチと、大ディプレスト・トレンチの組み合わせが、4μm未満の幅の内側クラッドによって分離されているが、これは、低曲げ損失と、低減した クラッド効果を有する高帯域の実現を促進する。
いくつかの実施形態では、内側クラッドの幅wおよび第1ディプレスト・トレンチの屈折率差Δnは、低減した クラッド効果を有する高帯域の実現を促進する一方、低曲げ損失も同時に実現することを促進する。内側クラッドの幅wおよび第1ディプレスト・トレンチの屈折率差Δnは、以下の不等式を満たし得る。
内側クラッドの幅wと第1ディプレスト・トレンチの屈折率差Δnの関係により、低減した 曲げ損失と高帯域の実現が可能となる。
いくつかの実施例では、波長850nmで、光ファイバは、15mmの曲げ半径に対し、2巻当たり0.1dB未満(例えば、0.05dB未満)の曲げ損失を有し、10mmの曲げ半径に対し、2巻当たり0.3dB未満(例えば、0.1dB未満)の曲げ損失を有し、7.5mmの曲げ半径に対し、2巻当たり0.4dB未満(例えば、0.2dB未満)の曲げ損失を有し、5mmの曲げ半径に対し、2巻当たり1dB未満(例えば、0.3dB未満)の曲げ損失を有する。
光ファイバのクラッド効果は、光ファイバの半径方向オフセット帯域(ROB)を求めることにより決定する。ROBは一般に、DMD測定を用いて決定される。DMD測定は、(i)850nmの波長と(ii)5+/−0.5μmの空間的幅を有する入力パルスを入射させることにより得られる。一般に、入力パルスは、光源(例えば、半導体またはチタンサファイアレーザ)を、マルチモードファイバの入口面から10μm以下に位置する出口面を有するシングルモード光ファイバに結合させることにより得られる。出力パルス(すなわち、マルチモード光ファイバの出口端から発せられる光パルス)の時間的分布は、各半径方向オフセットに対して測定され得る。半径方向オフセットがX(単位はμm)であるROBは、ROBXと表されるが、所与の周波数fに相当する、所与の波長λ(例えば、850nm)に対する半径方向オフセットXにおける入射に対して得られた出力パルスの時間的分布の広がりおよび歪みにおいて含まれる情報を用いて計算される。伝達関数H(f)は、フーリエ変換と各半径方向オフセットに相当するパルス解析を用いて得られ得る。
この点に関し、S(f)は、TIA−455−220−A 5.1規格によって測定された入力パルスのフーリエ変換を表す。同様にS(f,X)は、TIA−455−220−A 5.1規格によって測定された半径方向オフセットXに相当する入力パルスのフーリエ変換を表す。当業者であれば、出力パルスのフーリエ変換が周波数fと半径方向オフセットXの両方の関数であることが分かるであろう。
各半径方向オフセットXに対し、伝達関数H(f)は、以下のように定義することができる。
ROBXは、DMD測定において、半径方向オフセットX(μm)における入射に対する光ファイバの応答に相当する、伝達関数H(f)の−3dB帯域である。
実際には、帯域は−1.5dBの減衰に対して計算され、その後ガウス応答を仮定して−3dBの減衰に対して外挿され、係数√2で乗じて求められる(実効帯域の計算の場合と同じように)。
DMDの測定および実効伝送帯域の計算の方法の実施形態は、FOTP−220規格に見ることができる。この技法についての更なる詳細は、以下の刊行物に記載されている。P.F.Kolesar and D.J.Mazzarese、“Understanding multimode bandwidth and differential mode delay measurements and their applications” Proceedings of the 51st International Wire and Cable Symposium、pp.453−460、およびD.Coleman and Philp Bell、“Calculated EMB enhances 10GbE performance reliability for laser−optimized 50/125μm multimode fiber” Corning Cable Systems Whitepaper。
光ファイバの中心コアの中心からの半径方向距離が24μmである半径方向オフセット帯域(すなわち、ROB24値)は、クラッド効果の特徴をよく表している。高いROB24は、低減したクラッド効果を表している。
一般に、本発明の光ファイバは、低減したクラッド効果を示している。例えば、光ファイバは、少なくとも4,000MHz・kmの、例えば5,000MHz・km以上のような、ROB24を示す場合がある。より一般に、光ファイバは、少なくとも10,000MHz・kmのROB24を示す。一実施形態では、光ファイバは、少なくとも15,000MHz・kmのROB24(例えば、少なくとも20,000MHz・km)を示す。
図3は、内側クラッドの幅wと第1ディプレスト・トレンチの屈折率差Δnの関数として、光ファイバの実施形態のシュミレートしたROB24測定をグラフで示す。左手側y軸は、内側クラッドの幅wを表す。x軸は、ディプレスト・トレンチの屈折率差Δnを表す。(w,Δn)のペアに対応するROB24の値は、灰色の影で示される。最も暗い影は、ROB24値2GHz・km(すなわち、2,000MHz・km)に相当し、最も明るい影の値は、ROB24値20GHz・km(すなわち、20,000MHz・km)に相当する。
最も高いROB24値は、曲線aより上かつ曲線bより下に位置する。曲線aおよび曲線bは、以下の関数により定義される。
対応する点が曲線aと曲線bの間に存在する(w,Δn)のペアの値を持つ光ファイバは、少なくとも4,000MHz・km(例えば、10,000MHz・km以上のような、少なくとも5,000MHz・km)のROB24を示すであろう。従って、 この光ファイバは、相当低減したクラッド効果を示し、高データレートアプリケーションで用いられ得る。
光ファイバのクラッド効果はまた、外側マスクで得られるDMD測定を用いて評価することができる。例えば、半径方向オフセット0〜23μmの外側マスクにおけるDMD値(すなわち外側DMD(0〜23μm)またはDMDext)は、FOTP−220規格を用いて求めることができる。この点に関し、外側DMD値は、中心コアの中心(すなわち0μm)から23μmの範囲の半径方向オフセットにわたりDMD法を用いて測定される。換言すれば、外側DMD値を計算する場合、23μmを超える半径方向オフセットに対する信号は考慮されない。外側DMDは、光ファイバを750mにわたり測定したDMDのグラフから求められる。用いられる光源は、850nmの波長を有する、パルスチタンサファイアレーザであった。光源は、1/4の高さで40ps未満のパルスを発し、分光幅のRMS(二乗平方根)は、0.1nmであった。
本発明による光ファイバの一実施形態は、改良された外側DMD遅延を示す。特に、光ファイバの一実施形態は一般に、波長850nmで、約0.33ps/m未満(例えば、0.14ps/m以下のような、0.25ps/m未満)の外側DMD遅延値を示す。
本発明の利点は、本発明による光ファイバの一実施形態と従来の光ファイバとを比較することにより、より明らかになるであろう。表1(下)は、光ファイバの一実施形態と光ファイバの2つの比較例の、光ファイバの屈折率分布パラメータを示す。No.1とNo.3は、光ファイバの比較例である。No.2は、本発明による光ファイバの一実施形態である。

表1は、内側クラッドの幅wと外側クラッドに対する第1ディプレスト・トレンチの屈折率差Δnの値が異なる光ファイバを示す。No.2の光ファイバは、以下に示す前述の不等式を満たす内側クラッドの幅wとディプレスト・トレンチの屈折率差Δnを示す。
こうして、以下に示すように、No.2の光ファイバにより、低い曲げ損失と高帯域の実現が可能となる。
本発明の態様が、図4および図5を参照して説明される。図4は、表1に示された(すなわち、No.1〜No.3の)光ファイバの中心コアのアルファ形屈折率分布のパラメータαの関数として、半径方向オフセットが24μmである帯域(ROB24)をグラフで示す。同様に、図5は、表1の光ファイバの中心コアのアルファ形屈折率分布のパラメータαの関数として、波長850nmでの、外側マスク0〜23μmのDMD値(外側DMD)をグラフで示す。
図4は、本発明による光ファイバの実施形態(すなわち、No.2)が、2.068未満のα値に対して4,000MHz・km以上のROB24を有するのに対し、No.1およびNo.3の光ファイバは、すべてのα値に対して4,000MHz・km未満のROB24を有することを示す。光ファイバの実施形態(すなわち、No.2)は、コアのパラメータαの値の関数として、5,000MHz・kmさえも超える、あるいは10,000MHz・kmさえも超える(例えば、15,000MHz・km以上)のROB24を示し得る。本発明の光ファイバはその結果、低減したクラッド効果を示す。
図5は、本発明による光ファイバの実施形態(すなわち、No.2)が、比較例の光ファイバ(すなわち、No.1およびNo.3)の外側DMDより小さい外側DMDを示し得ることを示す。更に、No.1およびNo.3の光ファイバに比べて、No.2の光ファイバは、グレーデッドインデックス形コアのパラメータαの値の関数として、より一様な外側DMDを有する。従って、本発明の光ファイバは、0.33ps/m未満(例えば、0.14ps/m以下のような、0.25ps/m以下)の外側DMD値を示すことができる。一実施形態では、本発明による光ファイバは、中心コアのパラメータαの値の関数として、0.08ps/m以下の外側DMDを示す。
いくつかの実施形態では、光ファイバのグレーデッドインデックス形中心コアは、約2.071未満(例えば、約2.054〜2.071)のパラメータαを有する。他の 実施形態では、光ファイバのグレーデッドインデックス形中心コアは、約2.068未満のパラメータαを有する。
一実施形態によると、本発明の光ファイバは、ITU−T勧告G.651.1.に準拠している。従って、本発明の光ファイバは、50μmの中心コア径(すなわち、25μmの中心コアの半径r)および/または0.2±0.015(すなわち、0.185〜0.215)の開口数を有する。
他の実施形態によると、本発明による光ファイバは、OM3規格に準拠している。特に、光ファイバは、(i)波長850nmでは、2,000MHz・kmを超える実効伝送帯域(EMB)を有し、(ii)波長850nmでは、0.3ps/m未満のモード分散外側DMDを有し、(iii)波長850nmでは、1,500MHz・kmを超えるOFL帯域を有する。
更に他の実施形態によると、本発明による光ファイバは、OM4規格に準拠している。特に、光ファイバは、(i)4,700MHz・kmを超える実効伝送帯域(EMB)を有し、(ii)波長850nmでは、0.14ps/m未満のモード分散外側DMDを有し、(iii)波長850nmでは、3,500MHz・kmを超えるOFL帯域を有する。
他の態様において、本発明は、本明細書に記載されかつ本発明による光ファイバの少なくとも一部を含むマルチモード光システムを提供する。特に、光システムは、少なくとも100m(例えば、300m)にわたり少なくとも10Gb/sのデータレートを示すことができる。
本発明による光ファイバは、それ自体公知のやり方で、最終プリフォームから線引きして製造されることがある。
最終プリフォームは、それ自体公知のやり方で製造された一次プリフォームに外側オーバークラッド層を施して(すなわち、いわゆるオーバークラッド処理)、製造されることがある。この外側オーバークラッド層は、ドープしたか、またはドープしていない天然石英ガラスまたは合成石英ガラスから成っている。外側オーバークラッド層を施すのに、いくつかの方法が利用できる。
例えば第1の方法では、外側オーバークラッド層は、熱の影響下で、一次プリフォームの外周に天然石英ガラスまたは合成石英ガラスの粉粒を蒸着させ、ガラス化して施されることがある。このような処理は、例えば、米国特許第5,522,007号、米国特許第5,194,714号、米国特許第6,269,663号、および米国特許第6,202,447号から知られている。
一方法の他の例では、ドープすることも、ドープしないこともある石英ガラスのスリーブ管を使用して、一次プリフォームにオーバークラッドを施す場合がある。その場合、このスリーブ管を、一次プリフォーム上にコラプスさせる(collapse)。
さらに他の別法では、オーバークラッド層は、OVD(外部蒸着)法を用いて、施されることがある。OVD法では、まず最初に、一次プリフォームの外周に、スート(すす)層を蒸着させ、その後で、このスート層をガラス化して、ガラスを生成する。
これらの一次プリフォームは、OVDやVAD(アキシアル蒸着)などの外部蒸着技法、および、ドープしたか、またはドープしてない石英ガラスでできている基体管(サブストレート・チューブ)の内面上にガラス層を蒸着させるMCVD(修正化学蒸着)、FCVD(ファーネス化学蒸着)、PCVD(プラズマ化学蒸着)などの内部蒸着技法を含む(ただし、それらの技法には限定されない)公知の技法を利用して製造されることがある。
好ましい実施形態では、これらの一次プリフォームは、PCVD処理を用いて製造される。これは、このPCVD処理により、中心コアの傾斜屈折率分布の形状を極めて正確に制御できるからである。
上記化学蒸着処理の一部として、上記ディプレスト・トレンチを、基体管の内面に蒸着させることがある。しかしながら、好ましい実施形態では、このディプレスト・トレンチは、傾斜屈折率の中心コアを蒸着させる内部蒸着処理の出発点として、フッ素をドープさせた基体管を用いて製造されるか、あるいは、このディプレスト・トレンチは、傾斜屈折率の中心コアにスリーブをかぶせて製造され、フッ素をドープさせた石英ガラス管で、外部蒸着処理を用いて生み出される。このように、得られたプリフォームから製造される、構成材であるガラス繊維は、その中心コアの周囲に位置するディプレスト・トレンチを有する。
さらに他の実施形態では、一次プリフォームは、フッ素をドープさせた基体管が用いられる内部蒸着処理で製造され、その結果得られた蒸着層を含む管に、追加の1本以上のドープした石英ガラス管をかぶせて、このディプレスト・トレンチの厚さを増すようにするか、あるいは、幅にわたって屈折率が変化するディプレスト・トレンチを作り出すようにする場合がある。必要でないとは言え、これらの追加の1本以上のスリーブ管(例えば、フッ素をドープした基体管)を一次プリフォーム上にコラプスさせた後で、さらなるオーバークラッド工程を実行することが好ましい。このようにスリーブ管をかぶせ、コラプスさせる処理は、ときにはジャケッティングとも呼ばれることがある。この処理は、その必要があれば繰り返されて、一次プリフォームの外側に、いくつかのガラス層を構築する場合がある。
本明細書および/または図面では、本発明の代表的な実施形態が開示されている。本発明は、このような実施形態に限定されない。「および/または」という用語を使用している場合、1以上の列挙された関連アイテムのあらゆる全ての組み合わせを含むものとする。図面は、模式的に表したものであり、従って、必ずしも正確な尺度で描かれたものではない。特に記載がない場合、特定の用語は一般的かつ説明的に用いられており、限定の目的で用いられていない。

Claims (18)

  1. マルチモード光ファイバであって、その中心から周縁までに、
    半径rと外側クラッドに対するアルファ形屈折率分布とを有する中心コアと、
    幅wと前記外側クラッドに対する屈折率差Δnと体積vとを有する第1ディプレスト・トレンチと、
    約4μm未満である幅wと前記外側クラッドに対する屈折率差Δnとを有する内側クラッドと、
    幅wと前記外側クラッドに対する屈折率差Δnと体積vとを有する第2ディプレスト・トレンチと、
    外側クラッドと、
    を含み、
    前記内側クラッドの屈折率差Δnは、前記第1ディプレスト・トレンチの屈折率差Δnより大きく、
    前記内側クラッドの屈折率差Δnは、前記第2ディプレスト・トレンチの屈折率差Δnより大きく、
    前記第2ディプレスト・トレンチの体積vは、前記第1ディプレスト・トレンチの体積vより大きい、
    マルチモード光ファイバ。
  2. 前記内側クラッドの屈折率差Δnが約−0.05×10−3〜0.05×10−3である、請求項1に記載のマルチモード光ファイバ。
  3. 前記内側クラッドの幅wと前記第1ディプレスト・トレンチの屈折率差Δnが、以下の不等式を満たす、請求項1に記載のマルチモード光ファイバ。
  4. 前記第1ディプレスト・トレンチの幅wが、約0.5〜1.5μmであり、前記第1ディプレスト・トレンチの屈折率差Δnが、約−4×10−3〜−0.5×10−3である、請求項1に記載のマルチモード光ファイバ。
  5. 前記第2ディプレスト・トレンチの幅wが、約3〜5μmであり、前記第2ディプレスト・トレンチの屈折率差Δnが、約−15×10−3〜−3×10−3である、請求項1に記載のマルチモード光ファイバ。
  6. 前記第2ディプレスト・トレンチの体積vが、約200〜1,200%・μmであり、好ましくは250〜750%・μmである、請求項1に記載のマルチモード光ファイバ。
  7. 波長850nmで、15mmの曲げ半径に対して2巻当たり、光ファイバの曲げ損失が0.1dB未満であり、好ましくは0.05dB未満である、請求項1に記載のマルチモード光ファイバ。
  8. 波長850nmで、10mmの曲げ半径に対して2巻当たり、光ファイバの曲げ損失が0.3dB未満であり、好ましくは0.1dB未満である、請求項1に記載のマルチモード光ファイバ。
  9. 波長850nmで、7.5mmの曲げ半径に対して2巻当たり、光ファイバの曲げ損失が0.4dB未満であり、好ましくは0.2dB未満である、請求項1に記載のマルチモード光ファイバ。
  10. 波長850nmで、5mmの曲げ半径に対して2巻当たり、光ファイバの曲げ損失が1dB未満であり、好ましくは0.3dB未満である、請求項1に記載のマルチモード光ファイバ。
  11. 波長850nmで、半径方向オフセットが24μmで、少なくとも4,000MHz・kmであり、好ましくは10,000MHz・kmである、帯域(ROB24)を有する、請求項1に記載のマルチモード光ファイバ。
  12. 波長850nmで、少なくとも1,500MHz・kmであり、好ましくは3,500MHz・kmである、全モード励振(OFL)帯域を有する、請求項1に記載のマルチモード光ファイバ。
  13. 光ファイバの開口数(NA)が、0.200±0.015である、請求項1に記載のマルチモード光ファイバ。
  14. 前記中心コアのアルファ形屈折率分布が、1.9〜2.1のパラメータαを有する、請求項1に記載のマルチモード光ファイバ。
  15. 前記外側クラッドに対する前記中心コアの屈折率差は、最大値Δnが約11×10−3〜18×10−3である、請求項1に記載のマルチモード光ファイバ。
  16. 波長850nmで、外側DMD値(半径方向オフセット0〜23μmにおけるDMD値)が、0.33ps/m未満であり、好ましくは0.25ps/m未満であり、より好ましくは0.14ps/m未満である、請求項1に記載のマルチモード光ファイバ。
  17. 請求項1に記載のマルチモード光ファイバの少なくとも一部を含むマルチモード光システム。
  18. 約100mの距離にわたり、好ましくは約300mの距離にわたり、少なくとも10Gb/sのデータレートを有する、請求項17に記載のマルチモード光システム。
JP2010261867A 2009-11-25 2010-11-25 高帯域マルチモード光ファイバ Active JP5732234B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0958382 2009-11-25
FR0958382A FR2953030B1 (fr) 2009-11-25 2009-11-25 Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
US26511509P 2009-11-30 2009-11-30
US61/265,115 2009-11-30

Publications (2)

Publication Number Publication Date
JP2011113095A true JP2011113095A (ja) 2011-06-09
JP5732234B2 JP5732234B2 (ja) 2015-06-10

Family

ID=42226650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261867A Active JP5732234B2 (ja) 2009-11-25 2010-11-25 高帯域マルチモード光ファイバ

Country Status (6)

Country Link
US (1) US8483535B2 (ja)
EP (1) EP2333594B1 (ja)
JP (1) JP5732234B2 (ja)
CN (1) CN102073099B (ja)
DK (1) DK2333594T3 (ja)
FR (1) FR2953030B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170047217A (ko) * 2015-04-29 2017-05-04 우한 리서치 인스티튜트 오브 포스츠 앤드 텔레커뮤니케이션즈 저소모 소량 모드 광섬유

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2932932B1 (fr) 2008-06-23 2010-08-13 Draka Comteq France Sa Systeme optique multiplexe en longueur d'ondes avec fibres optiques multimodes
FR2933779B1 (fr) 2008-07-08 2010-08-27 Draka Comteq France Fibres optiques multimodes
US8314408B2 (en) 2008-12-31 2012-11-20 Draka Comteq, B.V. UVLED apparatus for curing glass-fiber coatings
FR2946436B1 (fr) 2009-06-05 2011-12-09 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
US9014525B2 (en) 2009-09-09 2015-04-21 Draka Comteq, B.V. Trench-assisted multimode optical fiber
FR2953029B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2957153B1 (fr) 2010-03-02 2012-08-10 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953606B1 (fr) 2009-12-03 2012-04-27 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953030B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2953605B1 (fr) 2009-12-03 2011-12-16 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2950156B1 (fr) 2009-09-17 2011-11-18 Draka Comteq France Fibre optique multimode
DK2352047T3 (da) 2010-02-01 2019-11-11 Draka Comteq Bv Ikke-nul dispersionsskiftet optisk fiber med et stort effektivt areal
ES2684474T3 (es) 2010-02-01 2018-10-03 Draka Comteq B.V. Fibra óptica con dispersión desplazada no nula que tiene una longitud de onda pequeña
EP2534511A4 (en) * 2010-02-09 2017-12-27 OFS Fitel, LLC Improvement of dmd performance in bend optimized multimode fiber
ES2539824T3 (es) 2010-03-17 2015-07-06 Draka Comteq B.V. Fibra óptica de modo único con reducidas pérdidas por curvatura
US8693830B2 (en) 2010-04-28 2014-04-08 Draka Comteq, B.V. Data-center cable
US8855454B2 (en) 2010-05-03 2014-10-07 Draka Comteq, B.V. Bundled fiber optic cables
DK2388239T3 (da) 2010-05-20 2017-04-24 Draka Comteq Bv Hærdningsapparat, der anvender vinklede UV-LED'er
US8871311B2 (en) 2010-06-03 2014-10-28 Draka Comteq, B.V. Curing method employing UV sources that emit differing ranges of UV radiation
FR2962230B1 (fr) 2010-07-02 2012-07-27 Draka Comteq France Fibre optique monomode
US8682123B2 (en) 2010-07-15 2014-03-25 Draka Comteq, B.V. Adhesively coupled optical fibers and enclosing tape
EP2418183B1 (en) 2010-08-10 2018-07-25 Draka Comteq B.V. Method for curing coated glass fibres providing increased UVLED intensitiy
US8571369B2 (en) 2010-09-03 2013-10-29 Draka Comteq B.V. Optical-fiber module having improved accessibility
FR2966256B1 (fr) 2010-10-18 2012-11-16 Draka Comteq France Fibre optique multimode insensible aux pertes par
DE102011009242B4 (de) * 2010-11-04 2020-09-03 J-Plasma Gmbh Lichtwellenleiter und Halbzeug zur Herstellung eines Lichtwellenleiters mit biegeoptimierten Eigenschaften
US8824845B1 (en) 2010-12-03 2014-09-02 Draka Comteq, B.V. Buffer tubes having reduced stress whitening
FR2971061B1 (fr) 2011-01-31 2013-02-08 Draka Comteq France Fibre optique a large bande passante et a faibles pertes par courbure
ES2494640T3 (es) 2011-01-31 2014-09-15 Draka Comteq B.V. Fibra multimodo
CN103492922B (zh) 2011-02-21 2016-09-21 德拉克通信科技公司 光纤互连线缆
EP2495589A1 (en) 2011-03-04 2012-09-05 Draka Comteq B.V. Rare earth doped amplifying optical fiber for compact devices and method of manufacturing thereof
EP2503368A1 (en) 2011-03-24 2012-09-26 Draka Comteq B.V. Multimode optical fiber with improved bend resistance
EP2506044A1 (en) 2011-03-29 2012-10-03 Draka Comteq B.V. Multimode optical fiber
EP2518546B1 (en) 2011-04-27 2018-06-20 Draka Comteq B.V. High-bandwidth, radiation-resistant multimode optical fiber
EP2527893B1 (en) 2011-05-27 2013-09-04 Draka Comteq BV Single mode optical fiber
ES2451369T3 (es) 2011-06-09 2014-03-26 Draka Comteq Bv Fibra óptica de modo único
US8842957B2 (en) * 2011-06-30 2014-09-23 Corning Incorporated Multimode optical fiber and system incorporating such
EP2541292B1 (en) 2011-07-01 2014-10-01 Draka Comteq BV Multimode optical fibre
US8768129B2 (en) * 2011-09-21 2014-07-01 Ofs Fitel, Llc Optimized ultra large area optical fibers
US8687932B2 (en) * 2011-09-21 2014-04-01 Ofs Fitel, Llc Optimized ultra large area optical fibers
US8718431B2 (en) * 2011-09-21 2014-05-06 Ofs Fitel, Llc Optimized ultra large area optical fibers
EP2584340A1 (en) 2011-10-20 2013-04-24 Draka Comteq BV Hydrogen sensing fiber and hydrogen sensor
NL2007831C2 (en) 2011-11-21 2013-05-23 Draka Comteq Bv Apparatus and method for carrying out a pcvd deposition process.
US8929701B2 (en) 2012-02-15 2015-01-06 Draka Comteq, B.V. Loose-tube optical-fiber cable
WO2013160714A1 (en) 2012-04-27 2013-10-31 Draka Comteq Bv Hybrid single and multimode optical fiber for a home network
US8977092B2 (en) * 2012-05-31 2015-03-10 Corning Incorporated Multimode optical fiber and system comprising such fiber
US9671552B2 (en) * 2012-09-05 2017-06-06 Ofs Fitel, Llc 9 LP-mode fiber designs for mode-division multiplexing
US9709731B2 (en) * 2012-09-05 2017-07-18 Ofs Fitel, Llc Multiple LP-mode fiber designs for mode-division multiplexing
CN103217736B (zh) * 2013-03-12 2017-02-08 国网江西省电力公司信息通信分公司 一种多层光纤
US9188754B1 (en) 2013-03-15 2015-11-17 Draka Comteq, B.V. Method for manufacturing an optical-fiber buffer tube
NL2011075C2 (en) 2013-07-01 2015-01-05 Draka Comteq Bv Pcvd process with removal of substrate tube.
CN105899982B (zh) * 2013-12-20 2019-11-22 德拉克通信科技公司 表现出损耗降低的具有梯形纤芯的单模光纤
DK3111260T3 (en) * 2014-02-28 2018-03-19 Draka Comteq Bv Multimode optical fiber with high bandwidth over an extended wavelength range and corresponding multimode optical system
ES2909898T3 (es) * 2014-11-07 2022-05-10 Prysmian Spa Fibra óptica multimodo para aplicaciones de potencia en fibra
EP3377681B1 (en) * 2015-11-20 2020-12-30 Ecole Polytechnique Federale de Lausanne (EPFL) Fabrication method of functional micro/nano structures over large-area, flexible and high curvature surfaces, by drawing a fiber from a preform
CN108370267B (zh) * 2015-12-07 2022-06-07 德拉克通信科技公司 根据单波长表征选择宽带多模光纤的方法
EP3391008B1 (en) * 2015-12-17 2020-08-19 Draka Comteq BV Method of qualifying wide-band multimode fiber from single wavelength characterization using emb extrapolation, corresponding system and computer program.
EP3414370A1 (en) 2016-02-10 2018-12-19 Ecole Polytechnique Federale de Lausanne (EPFL) Multi-material stretchable optical, electronic and optoelectronic fibers and ribbons composites via thermal drawing
US10962708B2 (en) 2017-12-21 2021-03-30 Draka Comteq France Bending-loss insensitive single mode fibre, with a shallow trench, and corresponding optical system
US11584041B2 (en) 2018-04-20 2023-02-21 Pella Corporation Reinforced pultrusion member and method of making
US11371280B2 (en) 2018-04-27 2022-06-28 Pella Corporation Modular frame design
CN108947233B (zh) * 2018-06-28 2021-09-21 华南理工大学 一种掺钛蓝宝石非晶光纤及其制备方法和应用
US11579523B2 (en) 2019-02-08 2023-02-14 Ecole Polytechnique Federale De Lausanne (Epfl) Method and system for fabricating glass-based nanostructures on large-area planar substrates, fibers, and textiles
EP3913412A3 (en) 2020-05-21 2022-02-23 Corning Incorporated Optical fiber with dual trench design
CN117348148B (zh) * 2023-12-05 2024-03-22 中天科技精密材料有限公司 高带宽多模光纤

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172844A (ja) * 2001-12-06 2003-06-20 Fitel Usa Corp 負の分散、負の分散スロープを持つ光ファイバ
JP2003302549A (ja) * 2002-04-05 2003-10-24 Alcatel 高次モードを使用する分散補償ファイバ
JP2007086776A (ja) * 2005-09-20 2007-04-05 Draka Comteq Bv 累積波長分散および累積波長分散勾配のための補償ファイバ

Family Cites Families (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258547A (en) * 1975-11-10 1977-05-14 Hitachi Ltd Light transmission fiber
US4111525A (en) * 1976-10-12 1978-09-05 Bell Telephone Laboratories, Incorporated Silica based optical fiber waveguide using phosphorus pentoxide and germanium dioxide
US4222631A (en) * 1978-03-03 1980-09-16 Corning Glass Works Multicomponent optical waveguide having index gradient
US4229070A (en) * 1978-07-31 1980-10-21 Corning Glass Works High bandwidth optical waveguide having B2 O3 free core and method of fabrication
US4230396A (en) * 1978-07-31 1980-10-28 Corning Glass Works High bandwidth optical waveguides and method of fabrication
US4406517A (en) * 1979-01-02 1983-09-27 Corning Glass Works Optical waveguide having optimal index profile for multicomponent nonlinear glass
US4339174A (en) * 1980-02-01 1982-07-13 Corning Glass Works High bandwidth optical waveguide
US4465335A (en) * 1982-10-12 1984-08-14 The United States Of America As Represented By The Secretary Of The Army Concentric core optical fiber coupler
JPS59232302A (ja) 1983-06-15 1984-12-27 Sumitomo Electric Ind Ltd 光伝送用フアイバ
FR2553951B1 (fr) * 1983-10-25 1985-12-27 Thomson Csf Dispositif de memorisation d'informations dans un systeme de transmission par fibre optique
DE3447082A1 (de) * 1984-05-26 1985-12-19 AEG-Telefunken Kabelwerke AG, Rheydt, 4050 Mönchengladbach Verfahren zum herstellen einer vorform zum ziehen von lichtleitfasern
DE3447081A1 (de) * 1984-05-26 1985-12-19 AEG-Telefunken Kabelwerke AG, Rheydt, 4050 Mönchengladbach Verfahren zum herstellen einer vorform zum ziehen von lichtleitfasern
US4723828A (en) * 1984-11-09 1988-02-09 Northern Telecom Limited Bandwidth enhancement of multimode optical transmisson lines
US4838643A (en) * 1988-03-23 1989-06-13 Alcatel Na, Inc. Single mode bend insensitive fiber for use in fiber optic guidance applications
GB8810286D0 (en) * 1988-04-29 1988-06-02 British Telecomm Connecting optical waveguides
FR2647778B1 (fr) 1989-06-05 1992-11-20 Comp Generale Electricite Procede et dispositif de depot externe par plasma de silice exempte d'ions hydroxyles
US5245404A (en) * 1990-10-18 1993-09-14 Physical Optics Corportion Raman sensor
CA2096182C (en) * 1992-08-19 2000-12-05 Hiroo Kanamori Mode field diameter conversion fiber
FR2713621B1 (fr) 1993-12-14 1996-01-05 Alcatel Fibres Optiques Procédé de recharge par plasma d'une préforme pour fibre optique et fibre optique issue de la préforme rechargée selon ce procédé.
KR0162604B1 (ko) * 1994-10-07 1999-04-15 김광호 광 섬유 모재 제조 방법
US5574816A (en) * 1995-01-24 1996-11-12 Alcatel Na Cable Sytems, Inc. Polypropylene-polyethylene copolymer buffer tubes for optical fiber cables and method for making the same
US5717805A (en) * 1996-06-12 1998-02-10 Alcatel Na Cable Systems, Inc. Stress concentrations in an optical fiber ribbon to facilitate separation of ribbon matrix material
US5841933A (en) * 1996-07-09 1998-11-24 Hoaglin; Christine L. Optical waveguide fiber containing titania and germania
US7322122B2 (en) * 1997-01-15 2008-01-29 Draka Comteq B.V. Method and apparatus for curing a fiber having at least two fiber coating curing stages
FR2762836B1 (fr) 1997-05-02 1999-07-23 Alsthom Cge Alcatel Procede et appareil de fabrication de preformes de fibre de verre
FR2760540B1 (fr) * 1997-03-10 1999-04-16 Alsthom Cge Alcatel Cable a fibres optiques serrees dans une gaine
US5911023A (en) * 1997-07-10 1999-06-08 Alcatel Alsthom Compagnie Generale D'electricite Polyolefin materials suitable for optical fiber cable components
US6002818A (en) * 1997-12-05 1999-12-14 Lucent Technologies Inc Free-space optical signal switch arrangement
US6269663B1 (en) 1998-03-05 2001-08-07 Alcatel Method of purifying silica and depositing on an optical fiber preform
US6066397A (en) * 1998-03-31 2000-05-23 Alcatel Polypropylene filler rods for optical fiber communications cables
US6175677B1 (en) * 1998-04-17 2001-01-16 Alcatel Optical fiber multi-ribbon and method for making the same
US6085009A (en) * 1998-05-12 2000-07-04 Alcatel Water blocking gels compatible with polyolefin optical fiber cable buffer tubes and cables made therewith
JP3492524B2 (ja) * 1998-05-29 2004-02-03 三菱電機株式会社 分散補償装置
CA2316181A1 (en) * 1998-10-23 2000-05-04 The Furukawa Electric Co. Ltd. Dispersion compensation optical fiber and wavelength multiplex optical transmission line comprising dispersion compensation optical fiber
DE19852704A1 (de) * 1998-11-16 2000-05-18 Heraeus Quarzglas Verfahren zur Herstellung einer Vorform für eine optische Faser und für die Durchführung des Verfahrens geeignetes Substratrohr
US6185346B1 (en) * 1998-12-04 2001-02-06 Charles K. Asawa Propagation in lowest order modes of multimode graded index fiber, resulting in: very low transmission loss, low modal noise, high data security, and high data rate capabilities
CA2355124C (en) * 1998-12-18 2011-07-19 Pirelli & C. S.P.A. Optical fiber for metropolitan and access network systems
US6215931B1 (en) * 1999-01-26 2001-04-10 Alcatel Flexible thermoplastic polyolefin elastomers for buffering transmission elements in a telecommunications cable
US6134363A (en) * 1999-02-18 2000-10-17 Alcatel Method for accessing optical fibers in the midspan region of an optical fiber cable
CA2326131A1 (en) * 1999-02-22 2000-08-31 The Furukawa Electric Co., Ltd. Optical transmission line, negative dispersion optical fiber used for the optical transmission line, and optical transmission system comprising optical transmission line
US6434309B1 (en) * 1999-02-22 2002-08-13 Corning Incorporated Laser optimized multimode fiber and method for use with laser and LED sources and system employing same
JP4101429B2 (ja) 1999-03-31 2008-06-18 株式会社フジクラ 高次モード除去機能を有する多モード光ファイバ
US6381390B1 (en) * 1999-04-06 2002-04-30 Alcatel Color-coded optical fiber ribbon and die for making the same
US6181857B1 (en) * 1999-05-12 2001-01-30 Alcatel Method for accessing optical fibers contained in a sheath
US6292612B1 (en) * 1999-06-07 2001-09-18 Lucent Technologies Inc. Multi-mode optical fiber having improved refractive index profile and devices comprising same
US6314224B1 (en) * 1999-06-18 2001-11-06 Alcatel Thick-walled cable jacket with non-circular cavity cross section
CA2340947A1 (en) * 1999-06-28 2001-01-04 The Furukawa Electric Co., Ltd. Optical transmission line
US6334016B1 (en) * 1999-06-30 2001-12-25 Alcatel Optical fiber ribbon matrix material having optimal handling characteristics
US6321012B1 (en) * 1999-08-30 2001-11-20 Alcatel Optical fiber having water swellable material for identifying grouping of fiber groups
US6493491B1 (en) * 1999-09-28 2002-12-10 Alcatel Optical drop cable for aerial installation
US6321014B1 (en) * 1999-11-01 2001-11-20 Alcatel Method for manufacturing optical fiber ribbon
JP2001235648A (ja) 2000-02-23 2001-08-31 Shin Etsu Chem Co Ltd マルチモードファイバ用プリフォーム及びマルチモードファイバ
FR2809499B1 (fr) * 2000-05-29 2003-10-03 Cit Alcatel Peau de protection pour fibres optiques
TW552435B (en) 2000-06-12 2003-09-11 Asahi Glass Co Ltd Plastic optical fiber
US6603908B2 (en) * 2000-08-04 2003-08-05 Alcatel Buffer tube that results in easy access to and low attenuation of fibers disposed within buffer tube
US6618538B2 (en) * 2000-12-20 2003-09-09 Alcatel Method and apparatus to reduce variation of excess fiber length in buffer tubes of fiber optic cables
US6922515B2 (en) * 2000-12-20 2005-07-26 Alcatel Method and apparatus to reduce variation of excess fiber length in buffer tubes of fiber optic cables
US6490398B2 (en) * 2001-02-21 2002-12-03 Fitel Usa Corp. Dispersion-compensating fiber having a high figure of merit
CA2371285A1 (en) * 2001-03-16 2002-09-16 The Furukawa Electric Co., Ltd Optical fiber and wavelength division multiplex transmission line
US7346244B2 (en) * 2001-03-23 2008-03-18 Draka Comteq B.V. Coated central strength member for fiber optic cables with reduced shrinkage
JP3653724B2 (ja) 2001-04-23 2005-06-02 住友電気工業株式会社 光ファイバ、及びその製造方法
US20030024276A1 (en) * 2001-05-30 2003-02-06 3M Innovative Properties Company Method of manufacture of an optical waveguide article including a fluorine-containing zone
US7045010B2 (en) * 2001-09-06 2006-05-16 Alcatel Applicator for high-speed gel buffering of flextube optical fiber bundles
US6749446B2 (en) * 2001-10-10 2004-06-15 Alcatel Optical fiber cable with cushion members protecting optical fiber ribbon stack
US6580863B2 (en) * 2001-10-31 2003-06-17 Intel Corporation System and method for providing integrated optical waveguide device
US6735985B2 (en) * 2001-12-20 2004-05-18 Furukawa Electric North America Inc Method of impressing a twist on a multimode fiber during drawing
US6771865B2 (en) 2002-03-20 2004-08-03 Corning Incorporated Low bend loss optical fiber and components made therefrom
WO2003086997A1 (fr) * 2002-04-16 2003-10-23 Sumitomo Electric Industries, Ltd. Procede de production d'une preforme de fibre optique, procede de production d'une fibre optique et fibre optique elle-meme
US7400835B2 (en) * 2002-08-30 2008-07-15 Ciena Corporation WDM system having chromatic dispersion precompensation
US6912347B2 (en) * 2002-11-15 2005-06-28 Alcatel Optimized fiber optic cable suitable for microduct blown installation
US6952517B2 (en) * 2003-01-29 2005-10-04 Furukawa Electric North America Method for the manufacture of optical fibers, improved optical fibers, and improved raman fiber amplifier communication systems
US6904218B2 (en) * 2003-05-12 2005-06-07 Fitel U.S.A. Corporation Super-large-effective-area (SLA) optical fiber and communication system incorporating the same
FR2855619B1 (fr) * 2003-05-27 2005-07-22 Cit Alcatel Fibre optique pour amplification ou pour emission laser
US6959137B2 (en) * 2003-06-11 2005-10-25 Fitel U.S.A. Corporation Large-effective-area inverse dispersion compensating fiber, and a transmission line incorporating the same
US6941049B2 (en) * 2003-06-18 2005-09-06 Alcatel Fiber optic cable having no rigid strength members and a reduced coefficient of thermal expansion
KR100526516B1 (ko) * 2003-07-11 2005-11-08 삼성전자주식회사 고속, 근거리 통신망을 위한 언덕형 광섬유
DE602004016706D1 (de) * 2003-07-18 2008-11-06 Fujikura Ltd Multimode-Gradientenindex-Faser und Herstellungsmethode
NL1024015C2 (nl) * 2003-07-28 2005-02-01 Draka Fibre Technology Bv Multimode optische vezel voorzien van een brekingsindexprofiel, optisch communicatiesysteem onder toepassing daarvan en werkwijze ter vervaardiging van een dergelijke vezel.
US7406235B2 (en) * 2003-09-09 2008-07-29 Fujikura Ltd. Graded-index multimode fiber and manufacturing method therefor
DE602005003596D1 (de) * 2004-01-26 2008-01-17 Draka Comteq Bv Hüllrohrwindung zur Ankopplung eines faseroptischen Kabels und Methode zur Installation eines faseroptischen Kabels
US7817257B2 (en) 2004-01-27 2010-10-19 Fujikura Ltd. Method for measuring a differential mode delay of a multimode optical fiber
WO2005106544A1 (en) 2004-04-28 2005-11-10 Ls Cable Ltd. Optical fiber with improved bending behavior
KR100624247B1 (ko) * 2004-07-02 2006-09-19 엘에스전선 주식회사 고속 근거리 전송망을 위한 다중모드 광섬유
US7646955B2 (en) 2004-07-26 2010-01-12 Corning Incorporated Multimode optical fiber with low differential mode delay
JP4684593B2 (ja) * 2004-08-05 2011-05-18 株式会社フジクラ 低曲げ損失マルチモードファイバ
JP4358073B2 (ja) 2004-09-07 2009-11-04 株式会社フジクラ 低曲げ損失トレンチ型マルチモードファイバ
JP2006227173A (ja) 2005-02-16 2006-08-31 Fujikura Ltd マルチモード分散補償ファイバ、モード分散の補償方法、光導波路、光伝送路及び光通信システム
NL1028978C2 (nl) 2005-05-04 2006-11-07 Draka Comteq Bv Optisch communicatiesysteem alsmede aansluitnetwerk voorzien daarvan.
US7599589B2 (en) 2005-07-20 2009-10-06 Draka Comteq B.V. Gel-free buffer tube with adhesively coupled optical element
US7515795B2 (en) * 2005-07-20 2009-04-07 Draka Comteq B.V. Water-swellable tape, adhesive-backed for coupling when used inside a buffer tube
US7567739B2 (en) * 2007-01-31 2009-07-28 Draka Comteq B.V. Fiber optic cable having a water-swellable element
US8135252B2 (en) * 2005-07-20 2012-03-13 Draka Comteq B.V. Grease-free buffer optical fiber buffer tube construction utilizing a water-swellable, texturized yarn
FR2893149B1 (fr) 2005-11-10 2008-01-11 Draka Comteq France Fibre optique monomode.
US7783149B2 (en) * 2005-12-27 2010-08-24 Furukawa Electric North America, Inc. Large-mode-area optical fibers with reduced bend distortion
FR2896795B1 (fr) 2006-01-27 2008-04-18 Draka Compteq France Procede de fabrication d'une preforme de fibre optique
WO2007091879A1 (en) 2006-02-08 2007-08-16 Draka Comteq B.V. Optical fiber cable suited for blown installation or pushing installation in microducts of small diameter
FR2899693B1 (fr) 2006-04-10 2008-08-22 Draka Comteq France Fibre optique monomode.
FR2900739B1 (fr) * 2006-05-03 2008-07-04 Draka Comteq France Fibre de compensation de la dispersion chromatique
US7665902B2 (en) 2006-05-11 2010-02-23 Draka Comteq, B.V. Modified pre-ferrulized communication cable assembly and installation method
NL1031792C2 (nl) 2006-05-11 2007-11-13 Draka Comteq Bv Kabelsamenstel alsmede werkwijze voor het installeren van een dergelijk kabelsamenstel.
FR2903501B1 (fr) * 2006-07-04 2008-08-22 Draka Comteq France Sa Fibre optique dopee au fluor
FR2904876B1 (fr) 2006-08-08 2008-11-21 Draka Comteq France Cable de telecommunication a fibres optiques
US7421174B2 (en) * 2006-08-28 2008-09-02 Furakawa Electric North America; Inc. Multi-wavelength, multimode optical fibers
CN101523259B (zh) * 2006-08-31 2013-01-23 康宁股份有限公司 低弯曲损耗单模光纤
US7315677B1 (en) * 2006-09-14 2008-01-01 Corning Incorporated Dual dopant dual alpha multimode optical fiber
FR2908250B1 (fr) * 2006-11-03 2009-01-09 Draka Comteq France Sa Sa Fibre de compensation de la dispersion chromatique
FR2908525B1 (fr) 2006-11-10 2009-06-26 Draka Comteq France Sa Sa Cable de telecommunication a fibres optiques
DK1930753T3 (en) * 2006-12-04 2015-03-30 Draka Comteq Bv Optical fiber having a high Brillouin threshold strength and low bending
US7787731B2 (en) * 2007-01-08 2010-08-31 Corning Incorporated Bend resistant multimode optical fiber
FR2914751B1 (fr) 2007-04-06 2009-07-03 Draka Comteq France Fibre optique monomode
FR2915002B1 (fr) 2007-04-11 2009-11-06 Draka Comteq France Procede d'acces a une ou plusieurs fibres optiques d'un cable de telecommunication
JP4142723B2 (ja) 2007-05-02 2008-09-03 古河電気工業株式会社 マルチモード光ファイバの製造方法
US7539381B2 (en) * 2007-05-11 2009-05-26 Corning Incorporated Low bend loss coated optical fiber
US7639915B2 (en) 2007-06-28 2009-12-29 Draka Comteq B.V. Optical fiber cable having a deformable coupling element
US7724998B2 (en) 2007-06-28 2010-05-25 Draka Comteq B.V. Coupling composition for optical fiber cables
US7646952B2 (en) 2007-06-28 2010-01-12 Draka Comteq B.V. Optical fiber cable having raised coupling supports
EP2056138A4 (en) 2007-08-13 2012-02-22 Furukawa Electric Co Ltd GLASS FIBER, GLASS FIBER BELT AND OPTICAL CONNECTION SYSTEM
US9042695B2 (en) * 2007-10-05 2015-05-26 Optacore D.O.O. Optical Fibers Low bending loss multimode fiber transmission system
FR2922657B1 (fr) 2007-10-23 2010-02-12 Draka Comteq France Fibre multimode.
US8041168B2 (en) 2007-11-09 2011-10-18 Draka Comteq, B.V. Reduced-diameter ribbon cables with high-performance optical fiber
BRPI0819166B1 (pt) * 2007-11-09 2019-03-06 Draka Comteq, B.V. Fibra óptica, e caixa óptica
US8081853B2 (en) 2007-11-09 2011-12-20 Draka Comteq, B.V. Single-fiber drop cables for MDU deployments
US8145026B2 (en) 2007-11-09 2012-03-27 Draka Comteq, B.V. Reduced-size flat drop cable
US8041167B2 (en) 2007-11-09 2011-10-18 Draka Comteq, B.V. Optical-fiber loose tube cables
US8467650B2 (en) 2007-11-09 2013-06-18 Draka Comteq, B.V. High-fiber-density optical-fiber cable
US8165439B2 (en) 2007-11-09 2012-04-24 Draka Comteq, B.V. ADSS cables with high-performance optical fiber
US8031997B2 (en) 2007-11-09 2011-10-04 Draka Comteq, B.V. Reduced-diameter, easy-access loose tube cable
US20090169163A1 (en) * 2007-12-13 2009-07-02 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
US20090214167A1 (en) 2008-02-25 2009-08-27 Draka Comteq B.V. Optical Cable Buffer Tube with Integrated Hollow Channels
FR2929716B1 (fr) 2008-04-04 2011-09-16 Draka Comteq France Sa Fibre optique a dispersion decalee.
JP5330729B2 (ja) 2008-04-16 2013-10-30 三菱電線工業株式会社 グレーデッドインデックス形マルチモード光ファイバ
FR2930997B1 (fr) 2008-05-06 2010-08-13 Draka Comteq France Sa Fibre optique monomode
FR2931253B1 (fr) 2008-05-16 2010-08-20 Draka Comteq France Sa Cable de telecommunication a fibres optiques
FR2932932B1 (fr) 2008-06-23 2010-08-13 Draka Comteq France Sa Systeme optique multiplexe en longueur d'ondes avec fibres optiques multimodes
FR2933779B1 (fr) 2008-07-08 2010-08-27 Draka Comteq France Fibres optiques multimodes
US8768131B2 (en) 2008-08-13 2014-07-01 Corning Incorporated Multimode fiber with at least dual cladding
US8401353B2 (en) 2008-09-12 2013-03-19 Draka Comteq B.V. Optical fiber cable assembly
US7974507B2 (en) 2008-09-12 2011-07-05 Draka Comteq, B.V. High-fiber-density optical fiber cable
US7970247B2 (en) 2008-09-12 2011-06-28 Draka Comteq B.V. Buffer tubes for mid-span storage
US8520994B2 (en) 2008-09-17 2013-08-27 Ofs Fitel, Llc Bandwidth-maintaining multimode optical fibers
EP2340451A2 (en) 2008-09-26 2011-07-06 Corning Incorporated High numerical aperture multimode optical fiber
FR2938389B1 (fr) 2008-11-07 2011-04-15 Draka Comteq France Systeme optique multimode
CN102272635B (zh) 2008-11-07 2017-04-12 德拉克通信科技公司 直径缩小的光纤
DK2187486T3 (da) 2008-11-12 2014-07-07 Draka Comteq Bv Forstærkende optisk fiber og fremgangsmåde til fremstilling
FR2939246B1 (fr) 2008-12-02 2010-12-24 Draka Comteq France Fibre optique amplificatrice et procede de fabrication
FR2939522B1 (fr) 2008-12-08 2011-02-11 Draka Comteq France Fibre optique amplificatrice resistante aux radiations ionisantes
FR2939911B1 (fr) 2008-12-12 2011-04-08 Draka Comteq France Fibre optique gainee, cable de telecommunication comportant plusieurs fibres optiques et procede de fabrication d'une telle fibre
NL1036343C2 (nl) 2008-12-19 2010-06-22 Draka Comteq Bv Werkwijze en inrichting voor het vervaardigen van een optische voorvorm.
DK2204681T3 (en) 2008-12-30 2016-05-09 Draka Comteq Bv An optical fiber cable, comprising a perforated water-blocking element
US8314408B2 (en) 2008-12-31 2012-11-20 Draka Comteq, B.V. UVLED apparatus for curing glass-fiber coatings
FR2940839B1 (fr) 2009-01-08 2012-09-14 Draka Comteq France Fibre optique multimodale a gradient d'indice, procedes de caracterisation et de fabrication d'une telle fibre
FR2941539B1 (fr) 2009-01-23 2011-02-25 Draka Comteq France Fibre optique monomode
FR2941540B1 (fr) 2009-01-27 2011-05-06 Draka Comteq France Fibre optique monomode presentant une surface effective elargie
FR2941541B1 (fr) 2009-01-27 2011-02-25 Draka Comteq France Fibre optique monomode
US9360647B2 (en) 2009-02-06 2016-06-07 Draka Comteq, B.V. Central-tube cable with high-conductivity conductors encapsulated with high-dielectric-strength insulation
FR2942571B1 (fr) 2009-02-20 2011-02-25 Draka Comteq France Fibre optique amplificatrice comprenant des nanostructures
FR2942551B1 (fr) 2009-02-23 2011-07-15 Draka Comteq France Cable comportant des elements a extraire, procede d'extraction desdits elements et procede de fabrication associe
US20100220966A1 (en) 2009-02-27 2010-09-02 Kevin Wallace Bennett Reliability Multimode Optical Fiber
FR2946436B1 (fr) 2009-06-05 2011-12-09 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
US20110026889A1 (en) 2009-07-31 2011-02-03 Draka Comteq B.V. Tight-Buffered Optical Fiber Unit Having Improved Accessibility
CN102483486B (zh) 2009-08-17 2015-05-27 泛达公司 自补偿多模光纤
US8184936B2 (en) 2009-08-18 2012-05-22 Yangtze Optical Fibre And Cable Company, Ltd. Multi-mode bending-resistant fiber and production method thereof
EP2467745A1 (en) 2009-08-19 2012-06-27 Panduit Corp. Modified refractive index profile for low-dispersion multi-mode fiber
US8489369B2 (en) 2009-08-28 2013-07-16 Panduit Corp. Methods for calculating multimode fiber system bandwidth and manufacturing improved multimode fiber
US20110054862A1 (en) 2009-09-02 2011-03-03 Panduit Corp. Multimode Fiber Having Improved Reach
FR2953606B1 (fr) 2009-12-03 2012-04-27 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2949870B1 (fr) 2009-09-09 2011-12-16 Draka Compteq France Fibre optique multimode presentant des pertes en courbure ameliorees
FR2957153B1 (fr) 2010-03-02 2012-08-10 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953605B1 (fr) 2009-12-03 2011-12-16 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953030B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2953029B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
US8306380B2 (en) 2009-09-14 2012-11-06 Draka Comteq, B.V. Methods and devices for cable insertion into latched-duct conduit
FR2950156B1 (fr) 2009-09-17 2011-11-18 Draka Comteq France Fibre optique multimode
FR2950443B1 (fr) 2009-09-22 2011-11-18 Draka Comteq France Fibre optique pour la generation de frequence somme et son procede de fabrication
EP2484030B1 (en) 2009-09-30 2018-04-18 Corning Incorporated Optical fiber end structures for improved multi-mode bandwidth, and related systems and methods
FR2951282B1 (fr) 2009-10-13 2012-06-15 Draka Comteq France Fibre optique monomode a tranchee enterree
FR2952634B1 (fr) 2009-11-13 2011-12-16 Draka Comteq France Fibre en silice dopee en terre rare a faible ouverture numerique
US9042693B2 (en) 2010-01-20 2015-05-26 Draka Comteq, B.V. Water-soluble water-blocking element
DK2352047T3 (da) 2010-02-01 2019-11-11 Draka Comteq Bv Ikke-nul dispersionsskiftet optisk fiber med et stort effektivt areal
ES2684474T3 (es) 2010-02-01 2018-10-03 Draka Comteq B.V. Fibra óptica con dispersión desplazada no nula que tiene una longitud de onda pequeña
US7865050B1 (en) 2010-02-16 2011-01-04 Ofs Fitel, Llc Equalizing modal delay of high order modes in bend insensitive multimode fiber
US7903918B1 (en) 2010-02-22 2011-03-08 Corning Incorporated Large numerical aperture bend resistant multimode optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172844A (ja) * 2001-12-06 2003-06-20 Fitel Usa Corp 負の分散、負の分散スロープを持つ光ファイバ
JP2003302549A (ja) * 2002-04-05 2003-10-24 Alcatel 高次モードを使用する分散補償ファイバ
JP2007086776A (ja) * 2005-09-20 2007-04-05 Draka Comteq Bv 累積波長分散および累積波長分散勾配のための補償ファイバ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170047217A (ko) * 2015-04-29 2017-05-04 우한 리서치 인스티튜트 오브 포스츠 앤드 텔레커뮤니케이션즈 저소모 소량 모드 광섬유
JP2017526960A (ja) * 2015-04-29 2017-09-14 武漢郵電科学研究院 低損失フューモードファイバ(fmf)
KR101957612B1 (ko) * 2015-04-29 2019-03-12 우한 리서치 인스티튜트 오브 포스츠 앤드 텔레커뮤니케이션즈 저소모 소량 모드 광섬유

Also Published As

Publication number Publication date
EP2333594A1 (en) 2011-06-15
EP2333594B1 (en) 2013-01-02
FR2953030B1 (fr) 2011-11-18
US20110123162A1 (en) 2011-05-26
FR2953030A1 (fr) 2011-05-27
JP5732234B2 (ja) 2015-06-10
CN102073099B (zh) 2014-07-30
US8483535B2 (en) 2013-07-09
DK2333594T3 (da) 2013-02-25
CN102073099A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
JP5732234B2 (ja) 高帯域マルチモード光ファイバ
JP5802383B2 (ja) 高帯域マルチモード光ファイバおよび光ファイバシステム
JP5830228B2 (ja) マルチモード光ファイバおよびマルチモード光システム
JP5663281B2 (ja) 曲げ損失が低減された高帯域幅マルチモード光ファイバ
JP5670164B2 (ja) 低曲げ損失及び低減されたクラッド効果を有するマルチモード光ファイバ
CN102073097B (zh) 多模光纤
CN102621627B (zh) 具有低弯曲损耗的宽带宽光纤
KR101554373B1 (ko) 다중모드 섬유
JP5685028B2 (ja) 改善した曲げ損失を有するマルチモード光ファイバ
JP6031276B2 (ja) 多モード光ファイバ
JP5945447B2 (ja) 高帯域幅で放射線耐性のマルチモード光ファイバ
JP2004510175A (ja) プロセス変動に対して感度が低い分散管理ファイバ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5732234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250