JP2011108696A - 波面計測方法及び装置、並びに露光方法及び装置 - Google Patents

波面計測方法及び装置、並びに露光方法及び装置 Download PDF

Info

Publication number
JP2011108696A
JP2011108696A JP2009259368A JP2009259368A JP2011108696A JP 2011108696 A JP2011108696 A JP 2011108696A JP 2009259368 A JP2009259368 A JP 2009259368A JP 2009259368 A JP2009259368 A JP 2009259368A JP 2011108696 A JP2011108696 A JP 2011108696A
Authority
JP
Japan
Prior art keywords
wavefront
measurement
diffraction grating
optical system
interference fringes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009259368A
Other languages
English (en)
Inventor
Ikuso Ake
郁葱 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009259368A priority Critical patent/JP2011108696A/ja
Publication of JP2011108696A publication Critical patent/JP2011108696A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】回折格子を用いて得られる干渉縞に基づいて、被検光学系の波面情報を効率的に、かつ高精度に計測する。
【解決手段】計測用レチクル4及び投影光学系POを通過した光束を2次元の回折格子10に入射させ、回折格子10から発生する光束による干渉縞22に基づいて投影光学系POの波面情報を求める波面計測方法であって、回折格子10をX方向、Y方向に所定量移動させる毎にそれぞれ干渉縞22の強度分布を計測し、その強度分布の複数回の計測結果から投影光学系POを通過した光束のX方向へのシアリング波面及びY方向へのシアリング波面を求める。
【選択図】図2

Description

本発明は、例えばシアリング干渉で生成される干渉縞に基づいて被検光学系の波面情報を計測する波面計測技術、及びその波面計測技術を用いる露光技術に関する。
半導体デバイス等の微細化に応じて、露光装置においては解像度を高めるために露光光の短波長化が進み、最近では露光光として波長が100nm程度以下の軟X線を含む極端紫外光(Extreme Ultraviolet Light:以下、EUV光という)を用いる露光装置(EUV露光装置)も開発されている。EUV光が使用される反射光学部材よりなる投影光学系の波面収差は例えば0.5nmRMS程度以下であることが求められており、投影光学系の波面収差の計測精度は0.1nmRMS程度が要求されている。
このように高精度な波面収差の計測装置として、投影光学系の物体面に一つ若しくは複数のピンホール又は一つ若しくは複数のスリットパターンを配置し、そのピンホール等から発生する球面波等を投影光学系及び回折格子に通し、回折格子から発生する複数の回折光による横ずれした波面の干渉縞を撮像素子で受光するシアリング干渉方式の計測装置が知られている(例えば、特許文献1参照)。
このような計測装置における従来の干渉縞の解析方法として、干渉縞から発生する特定次数の回折光を用いて波面情報を抜き出すフーリエ変換法が知られている(例えば、非特許文献1、非特許文献2参照)。また、従来の別の干渉縞の解析方法として、直交する方向にそれぞれ周期性を持つ2つの1次元の回折格子を使用し、2つの回折格子をそれぞれ周期方向に走査して、干渉縞の明暗の時間変化からシアリング波面を求め、この2つのシアリング波面から元の波面を復元する位相シフト法が知られている。
特開2006−269578号公報
M. Takeda, H. Ina and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry": J. Opt. Soc. Am. /Vol.72, No. 1/ pp. 156-160 (1982) K. A. Goldberg and J. Bokor, "Fourier-transform method of phase-shift determination": APPLIED OPTICS /Vol.40, No. 17/ pp.2886-2894 (2001)
従来の干渉縞の解析方法のうちのフーリエ変換法では、干渉縞に輝度むらがあるとそれが計測誤差になるという問題がある。
また、従来の位相シフト法では、1次元の回折格子を用いて2方向に走査する必要があり、計測時間が長くなるとともに、2回の走査の間に回折格子の高さが僅かに変化することによって、非点収差の誤差が発生するという問題があった。また、単に2次元の回折格子を用いると、不要な回折光が多数発生して、波面の復元に必要な回折光に起因する光強度分布のみを抽出するのが困難であるという問題があった。
本発明は、このような事情に鑑み、回折格子を用いて得られる干渉縞に基づいて、被検
光学系の波面情報を効率的に、かつ高精度に計測することを目的とする。
本発明の第1の態様によれば、計測用マスク及び被検光学系を通過した光束を互いに直交する第1方向及び第2方向に周期性を持つ回折格子に入射させ、その回折格子から発生する複数の光束による干渉縞に基づいてその被検光学系の波面情報を求める波面計測方法が提供される。この波面計測方法は、その回折格子とその計測用マスクとを、その第1方向及びその第2方向へ相対移動させるとともに、その回折格子とその計測用マスクとの相対移動量が所定の一定又は異なる移動量になる毎にその干渉縞の強度分布を計測することによって、その干渉縞の強度分布を複数回計測する工程と、その干渉縞の強度分布の複数回の計測結果からその被検光学系を通過した光束のその第1方向へのシアリング波面及びその第2方向へのシアリング波面を求める工程と、を含むものである。
また、本発明の第2の態様によれば、露光光でパターンを照明し、その露光光でそのパターン及び投影光学系を介して基板を露光する露光方法において、その投影光学系の波面収差を計測するために、本発明の波面計測方法を用いる露光方法が提供される。
また、本発明の第3の態様によれば、計測用マスク及び被検光学系を通過した光束を互いに直交する第1方向及び第2方向に周期性を持つ回折格子に入射させ、その回折格子から発生する複数の光束による干渉縞に基づいてその被検光学系の波面情報を求める波面計測装置が提供される。この波面計測装置は、その干渉縞の強度分布を検出する検出器と、その回折格子とその計測用マスクとをその第1方向及びその第2方向に相対移動する移動機構と、その回折格子とその計測用マスクとを、その移動機構を介してその第1方向及びその第2方向へ相対移動させるとともに、その回折格子とその計測用マスクとの相対移動量が所定の一定又は異なる移動量になる毎に、それぞれその検出器によってその干渉縞の強度分布を計測させることによって、その干渉縞の強度分布を複数回計測させる制御装置と、その干渉縞の強度分布の複数回の計測結果からその被検光学系を通過した光束のその第1方向へのシアリング波面及びその第2方向へのシアリング波面を求める演算装置と、を備えるものである。
また、本発明の第4の態様によれば、露光光でパターンを照明し、その露光光でそのパターン及び投影光学系を介して基板を露光する露光装置において、その投影光学系の波面収差を計測するために、本発明の波面計測装置を備える露光装置が提供される。
本発明によれば、2次元の回折格子を計測用マスクに対して2次元的に相対移動する間に複数回、干渉縞の強度分布を計測し、この計測結果から第1方向及び第2方向へのシアリング波面を求めている。従って、被検光学系の波面情報を効率的に、かつ高精度に計測できる。
第1の実施形態の波面収差計測装置30を備えた露光装置を示す一部が切り欠かれた図である。 (A)は図1中の投影光学系PO及び計測本体部8を透過光学系として示す図、(B)は図2(A)のピンホールアレー6の一部を示す拡大図、(C)はピンホールアレーの別の例の一部を示す拡大図、(D)は図2(A)の回折格子10の一部を示す拡大図、(E)は図2(A)中の干渉縞22の一例を示す図である。 (A)は図2(A)の回折格子10から発生する複数の回折光のスペクトルの一例を示す図、(B)は回折格子10の移動方法の一例を示す図、(C)は第1実施例の回折格子10の移動経路を示す図である。 投影光学系POの波面収差の計測動作の一例を示すフローチャートである。 第2実施例の回折格子10の移動経路を示す図である。 第3実施例の回折格子10の移動経路を示す図である。 (A)は計測本体部の第1変形例を示す図、(B)は計測本体部の第2変形例を示す図である。 (A)は第2の実施形態の投影光学系PO及び計測本体部8Aを透過光学系として示す図、(B)は図8(A)のピンホールアレー6Aの一部を示す拡大図、(C)はピンホールアレーの別の例の一部を示す拡大図、(D)は図8(A)の回折格子10Aの一部を示す拡大図、(E)は図8(A)中の干渉縞22Aの一例を示す図である。 (A)は回折格子10Aから発生する複数の回折光のスペクトルの一例を示す図、(B)は回折格子10Aの移動経路の一例を示す図である。
[第1の実施形態]
本発明の第1の実施形態につき図1〜図7を参照して説明する。
図1は、本実施形態の露光装置100の全体構成を概略的に示す図である。露光装置100は、露光用の照明光EL(露光光)として、波長が100nm程度以下で例えば11〜15nm程度の範囲内のEUV光(Extreme Ultraviolet Light)を用いるEUV露光装置である。照明光ELの波長は一例として13.5nmである。図1において、露光装置100は、照明光ELを発生するレーザプラズマ光源と、その照明光ELでミラー2を介してレチクルR(マスク)のパターン面(ここでは下面)の照明領域を照明する照明光学系とを含む照明装置ILSと、レチクルRを保持して移動するレチクルステージRSTと、レチクルRの照明領域内のパターンの像をレジスト(感光材料)が塗布されたウエハW(感光基板)の上面に投影する投影光学系POとを備えている。さらに、露光装置100は、ウエハベースWBの上面でウエハWを保持して移動するウエハステージWSTと、装置全体の動作を統括的に制御するコンピュータを含む主制御系16と、投影光学系POの波面収差を計測する波面収差計測装置30と、その他の駆動系等とを備えている。ウエハステージWSTに、波面収差計測装置30(詳細後述)のうちの計測本体部8が装着されている。
本実施形態では、照明光ELとしてEUV光が使用されているため、照明光学系及び投影光学系POは、特定のフィルタ等(不図示)を除いて複数のミラー等の反射光学部材より構成され、レチクルRも反射型である。その反射光学部材は、例えば、石英(又は高耐熱性の金属等)よりなる部材の表面を所定の曲面又は平面に高精度に加工した後、その表面に例えばモリブデン(Mo)とシリコン(Si)との多層膜(EUV光の反射膜)を形成して反射面としたものである。また、レチクルRは例えば石英の基板の表面に多層膜を形成して反射面とした後、その反射面に、タンタル(Ta)、ニッケル(Ni)、又はクロム(Cr)等のEUV光を吸収する材料よりなる吸収層によって転写用のパターンを形成したものである。
また、EUV光の気体による吸収を防止するため、露光装置100はほぼ全体として箱状の真空チャンバ(不図示)内に収容されている。
以下、図1において、ウエハステージWSTが移動する面(本実施形態ではほぼ水平面)内で図1の紙面に垂直にX軸を、図1の紙面に平行にY軸を取り、その面に垂直にZ軸を取って説明する。本実施形態では、レチクルRのパターン面での照明光ELの照明領域は、X方向(非走査方向)に細長い円弧状であり、露光時にレチクルR及びウエハWは投影光学系POに対してY方向(走査方向)に同期して走査される。
先ず、照明装置ILS中の照明光学系は、オプティカルインテグレータ、可変開口絞り、レチクルブラインド、及びコンデンサ光学系等から構成されている。照明装置ILSからの照明光ELが、ミラー2を介してレチクルRのパターン面のX方向に細長い円弧状の照明領域を下方から斜めに均一な照度分布で照明する。
レチクルRは、レチクルステージRSTの底面に静電チャックRHを介して吸着保持されている。レチクルステージRSTは、レーザ干渉計(不図示)の計測値及び主制御系16の制御情報に基づいて、駆動系(不図示)によってY方向に所定ストロークで駆動されるとともに、X方向及びθz方向(Z軸に平行な軸の回りの回転方向)等にも微小量駆動される。
レチクルRで反射された照明光ELが、投影光学系POを介してウエハWの上面の露光領域(照明領域と共役な領域)に、レチクルRのパターンの一部の像を形成する。投影光学系POは、物体面(第1面)のパターンの縮小像を像面(第2面)に形成し、投影光学系POの投影倍率βは例えば1/4であり、その像側の開口数NAは例えば0.25である。
投影光学系POは、一例として、6枚の例えば非球面のミラーM1〜M6を不図示の鏡筒で保持することによって構成され、物体面(レチクルRのパターン面)側に非テレセントリックで、像面(ウエハWの表面)側にほぼテレセントリックの反射光学系である。投影光学系PO内の瞳面の近傍に開口絞り(不図示)が設けられている。また、投影光学系POには、所定のミラーの位置及び傾斜度を調整して波面収差を補正する結像特性補正機構(不図示)も設けられている。なお、投影光学系POの構成は任意である。
一方、ウエハWは、静電チャック(不図示)を介してウエハステージWSTの上部に吸着保持されている。ウエハステージWSTは、レーザ干渉計(不図示)の計測値及び主制御系16の制御情報に基づいて、ウエハステージ制御系17及び駆動機構(不図示)によってX方向及びY方向に所定ストロ−クで駆動され、必要に応じてθz方向等にも駆動される。また、レチクルR及びウエハWのアライメントを行うアライメント系(不図示)が備えられている。
ウエハWを露光するときには、照明光ELが照明装置ILSによりレチクルRの照明領域に照射され、レチクルRとウエハWとは投影光学系POに対して投影倍率β(縮小倍率)に従った所定の速度比でY方向に同期して移動する(同期走査される)。このようにして、レチクルRのパターンの像はウエハWの一つのショット領域(ダイ)に露光される。その後、ウエハステージWSTを駆動してウエハWをX方向、Y方向にステップ移動した後、ウエハWの次のショット領域に対してレチクルRのパターンが走査露光される。このようにステップ・アンド・スキャン方式でウエハWの複数のショット領域に対して順次レチクルRのパターンの像が露光される。
このような露光に際しては、投影光学系POの波面収差が所定の許容範囲内に収まっている必要がある。そのためには、まず投影光学系POの波面収差を高精度に計測する必要がある。
以下、本実施形態の波面収差計測装置30の構成及び投影光学系POの波面収差の計測方法につき説明する。波面収差計測装置30は、ウエハステージWSTのウエハWの近傍に設けられた計測本体部8と、計測本体部8からの検出信号を処理する演算装置12とを備えている。また、本実施形態では、計測本体部8を投影光学系POに対して移動するために使用されるウエハステージWST(移動機構)も、波面収差計測装置30の一部を構成している。
まず、計測本体部8は、XY平面にほぼ平行に配置されて、2次元の格子パターンが形成された回折格子10と、回折格子10からの複数の回折光によるシアリング干渉の干渉縞を検出するCCD型又はCMOS型等の2次元の撮像素子14と、回折格子10及び撮像素子14を保持する保持部材8aとを備えている。撮像素子14の検出信号は演算装置
12に供給される。
投影光学系POの波面収差計測時には、ウエハステージWSTを駆動して計測本体部8の回折格子10の上方に投影光学系POの露光領域が設定される。さらに、不図示のレチクルローダ系を介してレチクルステージRSTで保持されるレチクルRが計測用レチクル4と交換され、計測用レチクル4のパターン面が照明装置ILSの照明領域に設定される。計測用レチクル4のパターン面にはピンホールアレー6が形成されている。ピンホールアレー6は、一例として、EUV光の反射膜上にピンホールとなる部分を除いて吸収層を形成することによって製造できる。計測用レチクル4は、波面収差計測装置30の一部とみなすことも可能である。以下の説明では、便宜上、計測用レチクル4及び投影光学系POを1つの光軸上に配置された透過光学系で表現する。しかしながら、この計測原理は反射光学系でも同様に成立する。
図2(A)は、図1の計測本体部8で投影光学系POの波面収差を計測中の光学系を透過光学系で表現したものである。図2(A)の光学系は、シアリング干渉を行うタルボ(Talbot)干渉計である。図2(A)において、投影光学系POの物体面に計測用レチクル4のピンホールアレー6が設置され、ピンホールアレー6が照明光ELで照明される。
図2(B)に拡大図で示すように、ピンホールアレー6は、複数個のピンホール6a(実際には微小ミラーである)を含むピンホール群6SをX方向、Y方向に周期(ピッチ)Ps/βで配列したものである。この場合、βは投影光学系POの投影倍率であり、ピンホールアレー6を投影光学系POを介して投影した像(ピンホール群の像6SP)のX方向、Y方向の周期はPsである。個々のピンホール6aの直径は、次のように一例として回折限界以下程度である。照明光ELの波長λ、投影光学系POの物体側の開口数NAinを用いると、回折限界はλ/(2NAin)である。
ピンホール6aの直径≦λ/(2NAin) …(1)
ここで、波長λを13.5nm、開口数NAinを0.0625とすると、回折限界はほぼ108nmとなるため、ピンホール6aの直径は100nm程度又はこれより小さい。
また、ピンホール群6S内での複数のピンホール6aの間隔は、一例として照明光ELのコヒーレンス係数が0となる距離以上であればよい。波長λ及び照明光学系の開口数NAILを用いて、コヒーレンス係数が0となる最短距離は0.61λ/NAIL、即ちこの場合には132nm程度になる。このような多数のピンホールが周期的に形成されたピンホールアレー6を使用することで、撮像素子14上での干渉縞の光量が大きくなるため、高いSN比でシアリング干渉方式の波面計測を行うことができる。
また、ピンホールアレー6の周期Ps/βは、照明光ELの空間的コヒーレンス長以上である。本実施形態のように空間的コヒーレンシィが低いレーザプラズマ光源を使用する場合、照明光学系の射出側の開口数NAIL及び波長λを用いて、その空間的コヒーレンス長は高々、λ/NAILである。従って、周期Ps/βは次の条件を満たせばよい。
Ps/β≧λ/NAIL≒λ/NAin …(2)
この場合、波長λを13.5nm、開口数NAinを0.0625とすると、空間的コヒーレンス長はほぼ216nmとなるため、周期Ps/βは200nm程度より大きければよい。ただし、後述のようにピンホールアレー6の像の周期Psは、さらに所定の条件を満たす必要があるとともに、製造技術上の問題もあるため、周期Psは例えば1μm程度以上となる。この場合、投影倍率βを1/4とすると、ピンホールアレー6の周期Ps/βはほぼ4μm程度以上となり、式(2)の条件は十分に満たされる。
また、図2(A)において、ピンホールアレー6の投影光学系POによる像が像面18上に形成され、この像面18から−Z方向に距離Lgの位置に回折格子10が配置され、この下方で像面18から距離Lcの位置に撮像素子14の受光面が配置される。
回折格子10には、図2(D)に示すように、遮光膜(又は吸収層)を背景として照明光ELを通す多数の開口パターン10aがX方向、Y方向に周期Pgで形成されている。ピンホールアレー6を通過した照明光ELが投影光学系POを介して回折格子10に入射し、回折格子10から発生する0次光(0次回折光)20、+1次回折光20A、及び−1次回折光20B等によって撮像素子14の受光面に、図2(E)に示すようなシアリング干渉の干渉縞(フーリエ像)22が形成される。
回折格子10の周期Pgは、回折光の所望の横ずれ量(シア量)に応じて設定されるが、実際には製造上の限界もあるため、例えば数100nm〜数μm程度で、例えば1μm程度に設定される。
この場合、撮像素子14の受光面に干渉縞22が形成されるためには、回折格子10の像面18からの距離Lg、及び撮像素子14の受光面の像面18からの距離Lcは、露光波長λ、回折格子10の周期Pg、及びタルボ次数nを用いて、次の条件(タルボ条件)を満たす必要がある。なお、タルボ条件(Talbot条件)の詳細は、「応用光学1(鶴田)」(p.178-181,培風館,1990年)に記載されている。
Figure 2011108696
なお、n=0,0.5,1,1.5,2,…である。即ち、タルボ次数nは整数又は半整数である。
本実施形態では、Lc≫Lgが成立するため、式(3)の代わりに次の近似式を使用することができる。
Lg=2n×Pg2/λ …(4)
さらに、撮像素子14上に干渉縞が高いコントラストで形成されるためには、ピンホールアレー6の像の周期Psは、周期Pg、距離Lg、距離Lc、及び所定の整数m(例えば2又は4)を用いて次の条件を満たす必要がある。この条件については、例えば特開2006−269578号公報に開示されている。
Figure 2011108696
この条件は、図2(A)において、撮像素子14上の干渉縞22上の或る点22aに、ピンホールアレー6の一つのピンホール群の像6SPからの光束E1が到達する場合に、他のピンホール群の像6SPからの光束E2も達する条件である。言い換えると、この条件によって、高いコントラストの干渉縞22が形成される。
なお、Lg/Lcは1よりもかなり小さい値であるため、式(5)の代わりに次の近似式を使用してもよい。
Ps=Pg×m …(6)
この式において周期Pgを1μm、mを2とすると、ピンホールアレー6の像の周期Psは2μmとなる。この場合、投影倍率βを1/4として、ピンホールアレー6の周期は8μmとなる。
式(4)及び式(6)の条件のもとで、撮像素子14の受光面に形成される干渉縞22の強度分布の情報を図1の演算装置12に取り込み、その強度分布に後述の演算を施すことで、投影光学系POの波面とこれをX方向にずらした波面とのシアリング波面(以下、X方向のシア波面という)WX、及び投影光学系POの波面とこれをY方向にずらした波面とのシアリング波面(Y方向のシア波面)WYを求めることができる。さらに、演算装置12は、これらのシア波面WX及びWYから投影光学系POの波面、ひいてはその波面収差を求め、この波面収差の情報を主制御系16に供給する。
なお、図7(A)の第1変形例で示すように、回折格子10は、投影光学系POの像面18の上方に距離Lgの位置に配置することも可能である。この場合には、距離Lgを負の値として扱えばよい。
また、特に照明光ELとしてArFエキシマレーザ光(波長193nm)のような紫外光が使用される場合には、光学系を透過系として、図7(B)の第2変形例で示すように、回折格子10を投影光学系POの像面18に配置することも可能である。この場合には、上記のタルボ条件は満たす必要がない。
また、図2(A)の回折格子10から発生する複数の回折光のスペクトルは図3(A)に示すようになる。図3(A)において、回折格子10から発生する0次光L0、X方向の±1次回折光LX(1),LX(-1)、Y方向の±1次回折光LY(1),LY(-1)、及びX方向、Y方向の両方に±1次の回折光L(1,1),L(-1,1),L(1,-1),L(-1,-1)が表示されている。これらの回折光のうちで、シア波面WX,WYを求めるために有効な回折光は、0次光L0、±1次回折光LX(1),LX(-1)、及び±1次回折光LY(1),LY(-1)のみであるため、本実施形態では、以下のようにして実質的に必要な回折光のみを抽出する。
以下、本実施形態の露光装置100において、波面収差計測装置30を用いて投影光学系POの波面収差を計測する動作の一例につき図4のフローチャートを参照して説明する。この計測動作は主制御系16によって制御される。
先ず、ステップ102において、図1のレチクルステージRSTに計測用レチクル4をロードし、計測用レチクル4のピンホールアレー6を照明装置ILSの照明領域に移動する。次のステップ104おいて、ウエハステージ制御系17を介してウエハステージWSTを駆動し、図2(A)に示すように、計測本体部8の回折格子10の中心をピンホールアレー6の像の中心に移動する。
次のステップ106において、主制御系16は、制御用のパラメータkの値を1にセットする(初期化する)。次のステップ108において、照明装置ILSからピンホールアレー6に照明光ELを照射し、回折格子10から発生する0次光を含む複数の回折光によるk番目のシアリング干渉の干渉縞22の強度分布Ikを撮像素子14で検出する。検出結果は演算装置12内の記憶装置に記憶される(ステップ110)。
次のステップ112において、主制御系16は、パラメータkが予め定められた計測回数を示すN(Nは2以上の整数)に達したか否かを判断する。この段階では、パラメータkはNより小さく、パラメータkはNではないため、動作はステップ114に移行して、主制御系16はパラメータkの値に1を加算する。
次のステップ116において、主制御系16は、ウエハステージ制御系17を介してウエハステージWSTを駆動して、図3(B)に示すように、計測本体部8の回折格子10をX方向にΔXk及びY方向にΔYkだけ移動する。この場合、一例として、1回目の計
測時の移動量ΔX1及びΔY1は(0,0)とみなされる。ただし、1回目の計測時の移動量ΔX1及びΔY1を(0,0)以外の値に設定することも可能であり、このためには、パラメータkの初期値を0として、最初の計測値を無視すればよい。また、各計測時の移動量ΔXk及び移動量ΔYkは通常は異なっているが、同じ場合もあり得る。また、2回目以降の計測時の移動量ΔXk,ΔYkの一方が0の場合もあり得る。
この後、ステップ108に戻り、回折格子10から発生する回折光によるk番目のシアリング干渉の干渉縞22の強度分布Ikの検出、及びこの光強度分布の記憶(ステップ110)を繰り返す。このステップ108及び110は、N回繰り返される。
その後、ステップ112において、パラメータkがNに達しているときには、動作はステップ118に移行する。そして、演算装置12は、内部の記憶装置からN個の干渉縞の強度分布Ik(k=1〜N)の情報を読み出し、上記の各計測毎の回折格子10の移動量ΔXk,ΔYkの組み合わせ(移動経路)に応じて予め求められているk番目の係数の組であるAk,Bk,A’k,B’k(k=1〜N)と強度分布Ikとを用いて、次式よりX方向のシア波面ΔWX及びY方向のシア波面ΔWYを計算する。このシア波面は、撮像素子14の各画素の検出信号(光強度)毎に計算される位相分布である。
Figure 2011108696
次のステップ120において、演算装置12は、X方向及びY方向のシア波面より投影光学系POを通過する照明光の波面を求め、さらにこの波面から波面収差を求める。ここで求められた波面収差の情報は主制御系16に供給される。
次のステップ122において、主制御系16は、必要に応じて、図示しない結像特性補正機構を用いて投影光学系POの波面収差を補正する。この後、ステップ124においてレチクルステージRSTに実際の露光用のレチクル4をロードし、ステップ126においてウエハステージRSTに順次載置されるウエハの複数のショット領域にレチクル4のパターン像を走査露光する。
次に、上記の計測動作における回折格子10の移動量ΔXk,ΔYk(k=1〜N)の組み合わせ(移動経路)、及びこの移動経路に対する数の組(Ak,Bk,A’k,B’k)(k=1〜N)の複数の実施例につき説明する。
[第1実施例]
この第1実施例では、ステップ116における1回目の計測時の回折格子10のX方向、Y方向の移動量(ΔXk,ΔYk)は(0,0)である。また、2回目以降の計測時における回折格子10の移動量ΔXkと移動量ΔYkとの比は1:3と一定であり、干渉縞22の強度分布Ikの計測回数Nは9である(k=1〜9)。
また、k=2〜9の範囲では、回折格子10のX方向、Y方向の周期Pgに対して、移動量ΔXk=Pg/8、移動量ΔYk=3Pg/8である。この場合、干渉縞22のX方向の移動量Pg/8に対応する位相シフト量δXk(rad)及び移動量3Pg/8に対応する位相シフト量δYk(rad)は次のようになる。
δXk=π/4,δYk=3π/4 (k=2〜9) …(8S)
従って、1回目から9回目の計測時までの回折格子10の移動による位相シフト量(δXk,δYk)の積算値は、(0,0),(π/4,3π/4),(π/2,3π/2)
,(3π/4,9π/4),(π,3π),(5π/4,15π/4),(3π/2,9π/2),(7π/4,21π/4),(2π,6π)となる。この位相シフト量の積算値をdeg単位で表した図が図3(C)である。
また、この場合の式(7A)、(7B)に対応するX方向のシア波面ΔWX及びY方向のシア波面ΔWYは次のようになる。
Figure 2011108696
これは、上記の係数Ak,Bkを、A1=A5=A9=B3=B7=B9=0,A2=A4=B2=B4=1,A3=B1=21/2,A6=A8=B6=B8=−1,A7=B5=−21/2としたものである。他の係数A’k,B’kは式(8B)に対応している。
ここで、以下の関係があるものとする。
1=(I1+I9)/2 …(8T)
この実施例における2次元の干渉縞のコントラストの計算式は以下のようになる。ここで、パラメータa及び4個のパラメータXs,Xc,Ys,Ycを次のように定義する。
a=(11+13+15+I7)+(I2+I4+I6+I8) …(8C)
Xs=[(I2−I6)+(I4−I8)+21/2(I3−I7)]21/2 …(8D)
Xc=[(I2−I6)−(I4−I8)+21/2(I1−I5)]21/2 …(8E)
Ys=[(I2−I6)+(I4−I8)−21/2(I3−I7)]21/2 …(8F)
Yc=[(I2−I6)−(I4−I8)−21/2(I1−I5)]21/2 …(8G)
これらのパラメータを用いて、X方向のシア波面及びY方向のシア波面のコントラストCX,CYは次のようになる。
CX=(Xs2+Xc21/2/a …(8H)
CY=(Ys2+Yc21/2/a …(8I)
[第2実施例]
この第2実施例では、ステップ116における1回目以降の計測時における回折格子10のX方向の移動量ΔXkとY方向の移動量ΔYkとの比は一定ではなく、干渉縞22の強度分布Ikの計測回数Nは9である(k=1〜9)。
また、回折格子10のX方向、Y方向の移動量(ΔXk,ΔYk)を位相シフト量(δXk,δYk)に換算し、かつ1回目から9回目の計測時までの回折格子10の移動による位相シフト量(δXk,δYk)の積算値(rad)は、(π/4,π/2),(π/2,π),(π,π),(3π/2,3π/2),(π,2π),(2π,2π),(5π/4,5π/2),(5π/2,5π/2),(3π/2,3π)である。この位相シフト量の積算値をdeg単位で表した図が図5である。従って、回折格子10はX方向、Y方向にジグザグに移動している。
この位相シフト量に対応するk番目の計測時の干渉縞22のノイズ成分のX方向、Y方向の位相シフト量N1,N2は次のようになる。
(N1)=(π/4),(π/2),(0),(0),(π),(0),(5π/4),(0),(3π/2).
(N2)=(3π/4),(3π/2),(2π),(3π),(3π),(4π),
(15π/4),(5π),(9π/2).
また、9個の干渉縞22の強度分布Ik(k=1〜9)は、未知の係数a〜e及びX方向、Y方向のシア波面ΔWX,ΔWYを用いて次のようになる。
1=a+bcos(ΔWX+π/4)+ccos(ΔWY+π/2)+dcos(N1+π/4)+ecos(N2+3π/4) …(10A)
2=a+bcos(ΔWX+π/2)+ccos(ΔWY+π)+dcos(N1+π/2)+ecos(N2+3π/2)
…(10B)
3=a+bcos(ΔWX+π)+ccos(ΔWY+π)+dcos(N1)+ecos(N2+2π) …(10C)
4=a+bcos(ΔWX+3π/2)+ccos(ΔWY+3π/2)+dcos(N1)+ecos(N2+3π) …(10D)
5=a+bcos(ΔWX+π)+ccos(ΔWY+2π)+dcos(N1+π)+ecos(N2+3π) …(10E)
6=a+bcos(ΔWX+2π)+ccos(ΔWY+2π)+dcos(N1)+ecos(N2+4π) …(10F)
7=a+bcos(ΔWX+5π/4)+ccos(ΔWY+5π/2)+dcos(N1+5π/4)+ecos(N2+15π/4) …(10G)
8=a+bcos(ΔWX+5π/2)+ccos(ΔWY+5π/2)+dcos(N1)+ecos(N2+5π)
…(10H)
9=a+bcos(ΔWX+3π/2)+ccos(ΔWY+3π)+dcos(N1+3π/2)+ecos(N2+9π/2) …(10I)
これらの式(10A)〜(10I)を解くことによって、本実施例のX方向、Y方向のシア波面ΔWX及びΔWYは次のようになる。
Figure 2011108696
また、この実施例における2次元の干渉縞のコントラストCX,CYを式(8H),(8I)から計算するためのパラメータa及びXs,Xc,Ys,Ycは次のようになる。
a=(I2+I5+I6+I9)/4 …(12A)
Xs=(2I1−I2+2I4−I5−I6+2I7−2I8−I9)/4 …(12B)
Xc=(I2−2I3−I5+I6+I9)/4 …(12C)
Ys=(−2I1+I2+I5+I6−2I7+I9)/4 …(12D)
Yc=(−I2+I5+I6−I9)/4 …(12E)
[第3実施例]
この第3実施例では、ステップ116における回折格子10の1回目の計測時のX方向、Y方向の移動量(ΔXk,ΔYk)は(0,0)であり、2回目以降の計測時における移動量ΔXkと移動量ΔYkとの比は一定ではなく、干渉縞22の強度分布Ikの計測回数Nは7である(k=1〜7)。
また、回折格子10の移動量(ΔXk,ΔYk)を位相シフト量(δXk,δYk)に換算し、かつ1回目から7回目の計測時までの回折格子10の移動による位相シフト量(δXk,δYk)の積算値(rad)は、(0,0),(0,π),(π/2,π/2),(π/2,3π/2),(π,π),(π,0),(3π/2,π/2)である。この位相シフト量の積算値をdeg単位で表した図が図6である。従って、回折格子10はX方向、Y方向にジグザグに移動している。
本実施例のX方向、Y方向のシア波面ΔWX及びΔWYは、干渉縞22の強度分布Ikを用いて次のようになる。
Figure 2011108696
なお、式(14A)、式(14B)におけるDCは、以下の通りである。
DC=(I1+I2+I5+I6)/4 …(14C)
また、この実施例における2次元の干渉縞のコントラストCX,CYを式(8H),(8I)から計算するためのパラメータa及びXs,Xc,Ys,Ycは次のようになる。
a=(I1+I2+I5+I6)/4 …(14D)
Xs=(I3+I4−2a)/2 …(14E)
Xc=(I1+I2−2a)/2 …(14F)
Ys=(I3+I7−2a)/2 …(14G)
Yc=(I1+I6−2a)/2 …(14H)
本実施形態の効果等は以下の通りである。
(1)本実施形態の波面収差計測装置30による波面計測方法は、計測用レチクル4及び投影光学系PO(被検光学系)を通過した光束を互いに直交するX方向(第1方向)及びY方向(第2方向)に周期(ピッチ)Pgのパターンが形成された回折格子10に入射させ、回折格子10から発生する複数の光束による干渉縞22に基づいて投影光学系POの波面情報を求める波面計測方法である。この波面計測方法は、回折格子10を、X方向及びY方向へ移動させるとともに、回折格子10の移動量が所定の一定又は異なる移動量ΔXk,ΔYkになる毎に干渉縞22の強度分布を計測することによって、干渉縞22の強度分布を複数回計測するステップ108〜116と、干渉縞22の強度分布の複数回の計測結果から投影光学系POを通過した光束のX方向へのシア波面ΔWX及びY方向へのシア波面ΔWYを求めるステップ118とを含んでいる。
また、波面収差計測装置30は、計測用レチクル4及び投影光学系POを通過した光束を互いに直交するX方向及びY方向に周期性を持つ回折格子10に入射させ、回折格子10から発生する複数の光束による干渉縞22に基づいて投影光学系POの波面情報を求める波面計測装置である。波面収差計測装置30は、干渉縞22の強度分布を検出する撮像素子14(検出器)と、回折格子10をX方向及びY方向に移動するウエハステージWST(移動機構)と、回折格子10をウエハステージWSTを介してX方向及びY方向へ移動させるとともに、回折格子10の移動量が所定の一定又は異なる移動量ΔXk,ΔYkになる毎に、それぞれ撮像素子14によって干渉縞22の強度分布を計測させることによって、干渉縞22の強度分布を複数回計測させる主制御系16(制御装置)と、干渉縞22の強度分布の複数回の計測結果から投影光学系POを通過した光束のX方向へのシア波面及びY方向へのシア波面を求める演算装置12とを備えている。
本実施形態によれば、2次元の回折格子10を計測用レチクル4に対して2次元的に移動する間に複数回、干渉縞22の強度分布を計測し、この計測結果からX方向及びY方向へのシア波面を求めている。従って、投影光学系POの波面情報を効率的に、かつ高精度に計測できる。
また、本実施形態では、2次元の回折格子10の1回の走査データから上記の計測方法を用いて、位相シフト解析を行うことによって、波面計測を行うことができる。これにより、回折格子10等に付着する異物等による輝度むらに影響されない計測が可能となる。また、1種類の回折格子10を1回走査するのみでよいため、非点収差の誤差が発生しな
い状態で波面計測が可能となる。
また、計測用レチクル4(光源)と回折格子10との種類を増やすことで、位相シフトのステップ数を最適化し、計測時間の短縮と計測精度向上とが期待される。
(2)なお、本実施形態では、計測用レチクル4を静止させて回折格子10をX方向、Y方向に移動しているが、回折格子10を静止させて、計測用レチクル4をX方向、Y方向に移動させながら、干渉縞22の強度分布を計測し、この計測結果からX方向、Y方向のシア波面を求めても良い。
(3)また、本実施形態では、干渉縞22の強度分布の計測回数がN回の場合に、式(7A)、(7B)からX方向、Y方向のシア波面ΔWX,ΔWYを求めている。従って、計算が容易である。
(4)また、本実施形態の露光方法は、照明光EL(露光光)でレチクルRのパターンを照明し、照明光ELでそのパターン及び投影光学系POを介してウエハW(基板)を露光する露光方法において、投影光学系POの波面収差を計測するために、本実施形態の波面計測方法を用いている。
また、本実施形態の露光装置100は、投影光学系POの波面収差を計測するために波面収差計測装置30を備えている。
従って、露光装置の投影光学系POの波面収差を露光波長で高精度に評価できる。また、この計測結果を投影光学系POの各光学部材のアラインメントに使用することで、優れた性能の投影光学系を製造することもできる。さらに、オンボディで投影光学系POのフルフィールドでの干渉計データを取得し、投影光学系POの光学部材の波面収差を計測することで、露光装置の重要なパラメータをモニタするための最適化ソリューションを提供することができる。
なお、上記の実施形態では、計測用レチクル4にピンホールアレー6(光源)が形成されている場合の干渉計における波面解析を説明したが、本発明は、周期面光源を用いたインコヒーレント照明計測系にも適用できる。また、本発明は、単一ピンホールを用いたコヒーレント照明計測系にも適用できる。
[第2の実施形態]
次に、本発明の第2の実施形態につき図8及び図9を参照して説明する。本実施形態の波面収差計測装置の基本的な構成は図1の波面収差計測装置30と同様であるが、本実施形態では、計測用レチクルのパターン(光源)及び回折格子のパターンが市松格子である点が異なっている。以下、図8(A)〜図8(D)において、図2(A)〜図2(D)に対応する部分には同一符号を付してその詳細な説明を省略又は簡略化する。
図8(A)は、本実施形態の波面収差計測装置の計測本体部8A、計測用レチクル4、及び投影光学系POを透過光学系として示す図である。本実施形態では、計測用レチクル4には、図8(B)に示すように、ピンホール群6SをX方向、Y方向に周期(ピッチ)Ps/βで市松格子状に配列したピンホールアレー6Aが形成されている。この場合にも、ピンホールアレー6Aの代わりに、図8(C)の市松格子状のピンホールアレー6AHを使用可能である。
また、計測本体部8Aの回折格子10Aには、図8(D)に示すように、開口パターン10aがX方向、Y方向に周期Pgで市松格子状に形成されている。従って、計測本体部8Aの撮像素子14の受光面には、0次光20A、+1次回折光20AA、及び−1次回折光20AB等による干渉縞22A(図8(D)参照)が形成される。
回折格子10Aからの複数の回折光のスペクトルは、図9(A)に示すように、0次光L0、X軸上の2つの回折光LA,LB、及びY軸上の2つの回折光LC,LD等を含ん
でいる。
本実施形態においても、図4の計測動作と同様の動作によって、投影光学系POのX方向のシア波面ΔWX及びY方向のシア波面ΔWYを求める。一例として、図4のステップ116に対応する工程における1回目の計測時の回折格子10AのX方向、Y方向の移動量(ΔXk,ΔYk)は(0,0)である。また、2回目以降の計測時における回折格子10Aの移動量ΔXkと移動量ΔYkとの比は1:2と一定であり、干渉縞22Aの強度分布Ikの計測回数Nは9である(k=1〜9)。
また、k=2〜9の範囲では、回折格子10AのX方向、Y方向の周期Pgに対して、移動量ΔXk=Pg/8、移動量ΔYk=2Pg/8である。この場合、干渉縞22AのX方向の移動量Pg/8に対応する位相シフト量δXk(rad)及び移動量3Pg/8に対応する位相シフト量δYk(rad)は次のようになる。
δXk=π/4,δYk=2π/4=π/2 (k=2〜9) …(15A)
従って、1回目から9回目の計測時までの回折格子10Aの移動による位相シフト量(δXk,δYk)の積算値は、(0,0),(π/4,π/2),(π/2,π),(3π/4,3π/2),(π,2π),(5π/4,5π/2),(3π/2,3π),(7π/4,7π/2),(2π,4π)となる。この位相シフト量の積算値をdeg単位で表した図が図9(B)である。
また、9個の干渉縞22Aの強度分布Ik(k=1〜9)は、未知の係数a〜c及びX方向、Y方向のシア波面ΔWX,ΔWYを用いて次のようになる。
1=a+bcos(ΔWX)+ccos(ΔWY) …(15B)
2=a+bcos(ΔWX+π/4)+ccos(ΔWY+π/2) …(15C)
3=a+bcos(ΔWX+π/2)+ccos(ΔWY+π) …(15D)
4=a+bcos(ΔWX+3π/4)+ccos(ΔWY+3π/2) …(15E)
5=a+bcos(ΔWX+π)+ccos(ΔWY+2π) …(15F)
6=a+bcos(ΔWX+5π/4)+ccos(ΔWY+5π/2) …(15G)
7=a+bcos(ΔWX+3π/2)+ccos(ΔWY+3π) …(15H)
8=a+bcos(ΔWX+7π/4)+ccos(ΔWY+7π/2) …(15I)
9=a+bcos(ΔWX+2π)+ccos(ΔWY+4π) …(15J)
これらの式からX方向のシア波面に対して次の関係が得られる。
−2I3+2I7=4bsin(ΔWX) …(15K)
1−2I5+I9=4bcos(ΔWX) …(15L)
この式(15K),(15L)を解くことによって、X方向のシア波面ΔWXは次の式(16A)となる。
Figure 2011108696
同様に、上記の式(15B)〜(15J)からY方向のシア波面に対して次の関係が得られる。
−2I2+2I4−2I6+2I8=8csin(ΔWY) …(15M)
1−2I3+2I5−2I7+I9=8ccos(ΔWY) …(15N)
この式(15M),(15N)を解くことによって、Y方向のシア波面ΔWYは上記の式(16B)となる。
また、この実施形態における2次元の干渉縞のコントラストCX,CYを計算するためのパラメータa〜cは次のようになる。
a=(I1+2I3+2I5+2I7+I9)/8 …(17A)
b=[(I1−2I5+I92+(2I7−2I321/2/4 …(17B)
c= [(I1−2I3+2I5−2I7+I92+(−2I2+2I4−2I6+2I821/2/8 …(17C)
これらを用いてコントラストCX,CYは次のようになる。
CX=b/a, CY=c/a …(17D)
なお、本発明は、タルボ干渉計以外の任意の干渉計を用いてシアリング干渉等による干渉縞を検出して被検光学系の波面収差を計測する場合に適用可能である。
また、上述の実施形態では、EUV光源としてレーザプラズマ光源を用いるものとしたが、これに限らず、SOR(Synchrotron Orbital Radiation)リング、ベータトロン光源、ディスチャージド光源(放電励起プラズマ光源、回転型放電励起プラズマ光源など)、X線レーザなどのいずれを用いても良い。
また、図1の実施形態では、露光光としてEUV光を用い、複数枚のミラーから成るオール反射の投影光学系を用いる場合について説明したが、これは一例である。例えば露光光としてArFエキシマレーザ光(波長193nm)等を用いて反射屈折系又は屈折系からなる投影光学系を用いる場合にも、その波面収差を計測するために本発明を適用可能である。
さらに、本発明は、露光装置の投影光学系以外の光学系、例えば顕微鏡の対物レンズ、又はカメラの対物レンズ等の波面収差を計測する場合にも適用可能である。
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。
ILS…照明装置、R…レチクル、RST…レクチルステージ、PO…投影光学系、W…ウエハ、WST…ウエハステージ、WB…ウエハベース、4…計測用レチクル、6…ピンホールアレー、8…計測本体部、10…回折格子、12…演算装置、14…撮像素子、16…主制御系、17…ウエハステージ制御系、30…波面収差計測装置、100…露光装置

Claims (10)

  1. 計測用マスク及び被検光学系を通過した光束を互いに直交する第1方向及び第2方向に周期性を持つ回折格子に入射させ、前記回折格子から発生する複数の光束による干渉縞に基づいて前記被検光学系の波面情報を求める波面計測方法であって、
    前記回折格子と前記計測用マスクとを、前記第1方向及び前記第2方向へ相対移動させるとともに、前記回折格子と前記計測用マスクとの相対移動量が所定の一定又は異なる移動量になる毎に前記干渉縞の強度分布を計測することによって、前記干渉縞の強度分布を複数回計測する工程と、
    前記干渉縞の強度分布の複数回の計測結果から前記被検光学系を通過した光束の前記第1方向へのシアリング波面及び前記第2方向へのシアリング波面を求める工程と、
    を含むことを特徴とする波面計測方法。
  2. 前記干渉縞の強度分布の計測回数をN(Nは7以上の整数)、前記干渉縞の強度分布のk番目(k=1〜N)の計測結果をIk、前記相対移動の経路に応じて定まるk番目の係数をAk,Bk,A’k,B’kとして、前記第1方向へのシアリング波面ΔWX及び前記第2方向へのシアリング波面ΔWYを次式
    Figure 2011108696
    より個別に計算することを特徴とする請求項1に記載の波面計測方法。
  3. 前記回折格子と前記計測用マスクとを相対移動するときの、前記第1方向への相対移動量と前記第2方向への相対移動量との比はそれぞれ1:3であり、
    前記干渉縞の計測回数Nは9回であることを特徴とする請求項2に記載の波面計測方法。
  4. 前記回折格子と前記計測用マスクとを相対移動するときに、前記第1方向への相対移動量と前記第2方向への相対移動量との比が一定ではなく、
    前記干渉縞の計測回数Nは9回であることを特徴とする請求項2に記載の波面計測方法。
  5. 前記回折格子と前記計測用マスクとを相対移動するときに、前記第1方向への相対移動量と前記第2方向への相対移動量との比が一定ではなく、
    前記干渉縞の計測回数Nは7回であることを特徴とする請求項2に記載の波面計測方法。
  6. 前記回折格子の格子パターンは市松格子であり、
    前記回折格子と前記計測用マスクとを相対移動するときの、前記第1方向への相対移動量と前記第2方向への相対移動量との比はそれぞれ1:2であり、
    前記干渉縞の計測回数Nは9回であることを特徴とする請求項2に記載の波面計測方法。
  7. 露光光でパターンを照明し、前記露光光で前記パターン及び投影光学系を介して基板を
    露光する露光方法において、
    前記投影光学系の波面収差を計測するために、請求項1から請求項6のいずれか一項に記載の波面計測方法を用いることを特徴とする露光方法。
  8. 計測用マスク及び被検光学系を通過した光束を互いに直交する第1方向及び第2方向に周期性を持つ回折格子に入射させ、前記回折格子から発生する複数の光束による干渉縞に基づいて前記被検光学系の波面情報を求める波面計測装置であって、
    前記干渉縞の強度分布を検出する検出器と、
    前記回折格子と前記計測用マスクとを前記第1方向及び前記第2方向に相対移動する移動機構と、
    前記回折格子と前記計測用マスクとを、前記移動機構を介して前記第1方向及び前記第2方向へ相対移動させるとともに、前記回折格子と前記計測用マスクとの相対移動量が所定の一定又は異なる移動量になる毎に、それぞれ前記検出器によって前記干渉縞の強度分布を計測させることによって、前記干渉縞の強度分布を複数回計測させる制御装置と、
    前記干渉縞の強度分布の複数回の計測結果から前記被検光学系を通過した光束の前記第1方向へのシアリング波面及び前記第2方向へのシアリング波面を求める演算装置と、
    を備えることを特徴とする波面計測装置。
  9. 前記干渉縞の強度分布の計測回数をN(Nは7以上の整数)、前記干渉縞の強度分布のk番目(k=1〜N)の計測結果をIk、前記相対移動の経路に応じて定まるk番目の係数をAk,Bk,A’k,B’kとして、前記演算装置は、前記第1方向へのシアリング波面ΔWX及び前記第2方向へのシアリング波面ΔWYを次式
    Figure 2011108696
    より個別に計算することを特徴とする請求項8に記載の波面計測装置。
  10. 露光光でパターンを照明し、前記露光光で前記パターン及び投影光学系を介して基板を露光する露光装置において、
    前記投影光学系の波面収差を計測するために、請求項8又は請求項9に記載の波面計測装置を備えることを特徴とする露光装置。
JP2009259368A 2009-11-13 2009-11-13 波面計測方法及び装置、並びに露光方法及び装置 Withdrawn JP2011108696A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009259368A JP2011108696A (ja) 2009-11-13 2009-11-13 波面計測方法及び装置、並びに露光方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009259368A JP2011108696A (ja) 2009-11-13 2009-11-13 波面計測方法及び装置、並びに露光方法及び装置

Publications (1)

Publication Number Publication Date
JP2011108696A true JP2011108696A (ja) 2011-06-02

Family

ID=44231885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259368A Withdrawn JP2011108696A (ja) 2009-11-13 2009-11-13 波面計測方法及び装置、並びに露光方法及び装置

Country Status (1)

Country Link
JP (1) JP2011108696A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180187A1 (ja) 2012-05-30 2013-12-05 株式会社ニコン 波面計測方法及び装置、並びに露光方法及び装置
JP2014121614A (ja) * 2012-12-24 2014-07-03 Canon Inc 位相画像を再構成する方法、コンピュータ可読記憶媒体、及び装置
CN104165755A (zh) * 2014-08-18 2014-11-26 中国科学院上海光学精密机械研究所 光栅剪切波像差检测干涉仪及其检测方法
JP2015517095A (ja) * 2012-03-23 2015-06-18 カール・ツァイス・エスエムティー・ゲーエムベーハー Euvレンズの結像品質を測定するための測定システム
JP2021513096A (ja) * 2018-01-31 2021-05-20 エーエスエムエル ネザーランズ ビー.ブイ. 2次元回折格子

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517095A (ja) * 2012-03-23 2015-06-18 カール・ツァイス・エスエムティー・ゲーエムベーハー Euvレンズの結像品質を測定するための測定システム
WO2013180187A1 (ja) 2012-05-30 2013-12-05 株式会社ニコン 波面計測方法及び装置、並びに露光方法及び装置
US10288489B2 (en) 2012-05-30 2019-05-14 Nikon Corporation Method and device for measuring wavefront using light-exit section causing light amount distribution in at least one direction
CN110261067A (zh) * 2012-05-30 2019-09-20 株式会社尼康 波前测量方法及装置、以及曝光方法及装置
US10571340B2 (en) 2012-05-30 2020-02-25 Nikon Corporation Method and device for measuring wavefront using diffraction grating, and exposure method and device
JP2014121614A (ja) * 2012-12-24 2014-07-03 Canon Inc 位相画像を再構成する方法、コンピュータ可読記憶媒体、及び装置
CN104165755A (zh) * 2014-08-18 2014-11-26 中国科学院上海光学精密机械研究所 光栅剪切波像差检测干涉仪及其检测方法
JP2021513096A (ja) * 2018-01-31 2021-05-20 エーエスエムエル ネザーランズ ビー.ブイ. 2次元回折格子
JP7312755B2 (ja) 2018-01-31 2023-07-21 エーエスエムエル ネザーランズ ビー.ブイ. 2次元回折格子
US12007590B2 (en) 2018-01-31 2024-06-11 Asml Netherlands B.V. Two-dimensional diffraction grating

Similar Documents

Publication Publication Date Title
JP5522944B2 (ja) 測定装置、測定方法及び露光装置
KR100579616B1 (ko) 리소그래피 투영장치, 회절격자모듈, 센서모듈,파면수차를 측정하는 방법
US7952726B2 (en) Measurement apparatus, exposure apparatus having the same, and device manufacturing method
US8004691B2 (en) Measuring apparatus, exposure apparatus and method, and device manufacturing method
KR100817988B1 (ko) 파면수차를 측정하는 측정장치 및 그것을 가지는 노광장치,그리고 파면수차의 측정방법
US7911624B2 (en) Device and method for the interferometric measurement of phase masks
JP6271896B2 (ja) 干渉計測装置、リソグラフィ装置および物品の製造方法
JP4266673B2 (ja) 収差測定装置
JP4756341B2 (ja) 位置検出装置及び露光装置
US7352475B2 (en) Measuring method and apparatus using shearing interferometry, exposure method and apparatus using the same, and device manufacturing method
JP2011108974A (ja) 波面計測方法及び装置、並びに露光方法及び装置
JP2010206033A (ja) 波面収差計測装置、該装置の校正方法、及び露光装置
JP2011142279A (ja) 波面収差計測方法及び装置、並びに露光方法及び装置
JP2009200417A (ja) 波面収差測定方法、マスク、波面収差測定装置、露光装置及びデバイス製造方法
JP2011108696A (ja) 波面計測方法及び装置、並びに露光方法及び装置
JP5434147B2 (ja) 波面収差計測装置、該装置の校正方法、及び露光装置
JP2010109160A (ja) 測定装置、露光装置及びデバイス製造方法
JP2004146454A (ja) 光学特性の測定方法
JP2009253214A (ja) 露光装置及びデバイス製造方法
JP2013214637A (ja) 波面計測方法及び装置、並びに露光方法及び装置
JP2008198799A (ja) 波面収差測定装置、露光装置及び波面収差測定方法
JP2010034319A (ja) 波面収差の測定方法
JP2011040470A (ja) 波面収差計測装置、波面収差計測方法、光学系の調整方法、露光装置、およびデバイス製造方法
CN115698861A (zh) 光刻设备、多波长相位调制扫描量测系统及方法
JP2014036123A (ja) 光学特性計測方法及び装置、並びに露光方法及び装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130205