JP2011096711A - Reduced pressure drying apparatus - Google Patents

Reduced pressure drying apparatus Download PDF

Info

Publication number
JP2011096711A
JP2011096711A JP2009246356A JP2009246356A JP2011096711A JP 2011096711 A JP2011096711 A JP 2011096711A JP 2009246356 A JP2009246356 A JP 2009246356A JP 2009246356 A JP2009246356 A JP 2009246356A JP 2011096711 A JP2011096711 A JP 2011096711A
Authority
JP
Japan
Prior art keywords
substrate
chamber
roller
drying process
vacuum drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009246356A
Other languages
Japanese (ja)
Other versions
JP4975080B2 (en
Inventor
Fumihiko Ikeda
文彦 池田
Hiroshi Nagata
広 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2009246356A priority Critical patent/JP4975080B2/en
Priority to KR20100084761A priority patent/KR101494924B1/en
Priority to TW099135270A priority patent/TW201139961A/en
Priority to CN201010516316.8A priority patent/CN102074456B/en
Publication of JP2011096711A publication Critical patent/JP2011096711A/en
Application granted granted Critical
Publication of JP4975080B2 publication Critical patent/JP4975080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the fluctuation in atmospheric temperature inside a chamber over the entire processing step period, from starting of reduced-pressure drying process to the completion of purging. <P>SOLUTION: In a reduced-pressure drying unit 12, a roller transport path 38B for flat flowing of a processed substrate G is pulled into a chamber 40, and a substrate lift mechanism 60 raises/lowers the substrate G by using a lift pin 62 inside the chamber 40. In order to reduce the fluctuations in the atmospheric temperature inside the chamber 40, a shielding plate 100 is arranged so as to cover the lower part of the substrate G near the roller transport path. The shielding plate 100 includes a round opening 100a, which allows the lift pin 62 to penetrate for raising/lowering, and a square opening 100b for avoiding the internal roller transport path 38B from interfering with a roller 42B. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被処理基板上に形成された塗布液の膜(塗布膜)に減圧状態で乾燥処理を施す減圧乾燥装置に関する。   The present invention relates to a reduced pressure drying apparatus that performs a drying process in a reduced pressure state on a coating liquid film (coated film) formed on a substrate to be processed.

たとえばフラットパネルディスプレイ(FPD)製造のフォトリソグラフィー工程においては、ガラス基板等の被処理基板上に塗布したレジスト液の塗布膜をプリベーキングに先立って適度に乾燥させるために減圧乾燥装置が用いられている。   For example, in a photolithography process for manufacturing a flat panel display (FPD), a vacuum drying apparatus is used to appropriately dry a coating film of a resist solution coated on a substrate to be processed such as a glass substrate prior to pre-baking. Yes.

従来の代表的な減圧乾燥装置は、たとえば特許文献1に記載されるように、上面が開口しているトレーまたは底浅容器型の下部チャンバと、この下部チャンバの上面に気密に密着または嵌合可能に構成された蓋状の上部チャンバとを有している。下部チャンバの中にはステージが配設されており、このステージの上に基板を水平に載置してから、チャンバを閉じて(上部チャンバを下部チャンバに密着させて)減圧乾燥処理を行うようにしている。   A conventional typical vacuum drying apparatus is, for example, as described in Patent Document 1, a tray or shallow container-type lower chamber having an open upper surface, and an upper surface of the lower chamber that is hermetically adhered or fitted. And a lid-like upper chamber configured to be possible. A stage is disposed in the lower chamber, and a substrate is placed horizontally on the stage, and then the chamber is closed (the upper chamber is in close contact with the lower chamber) to perform a vacuum drying process. I have to.

しかしながら、このようなステージ型の減圧乾燥装置は、基板の搬入出を行うために搬送ロボットや大掛かりな上部チャンバ開閉機構を必要とすることの不利点が基板の大型化に伴って顕在化している。   However, such a stage-type vacuum drying apparatus has the disadvantage that it requires a transfer robot and a large upper chamber opening / closing mechanism to carry in and out the substrate as the substrate becomes larger. .

また、減圧乾燥装置においては、減圧乾燥(真空排気)中はチャンバ内の雰囲気温度が初期温度(通常は常温)から急激に下がり、減圧乾燥(真空排気)を止めてチャンバ内を窒素ガス等でパージングすると今度は雰囲気温度が初期温度よりも優に超える温度まで大幅に上昇し、パージングを止めると雰囲気温度が常温に向かって低下する。このようなチャンバ内の雰囲気温度の変動に応じて、基板を支持するピンの温度も変化し、これによってレジスト膜に支持ピンの転写跡(膜厚変動の一種)が付くことが問題となっている。   In a vacuum drying apparatus, during vacuum drying (vacuum evacuation), the atmospheric temperature in the chamber suddenly drops from the initial temperature (normally normal temperature), and the vacuum drying (vacuum evacuation) is stopped and the chamber is filled with nitrogen gas or the like. When purging, the ambient temperature rises significantly to a temperature well above the initial temperature, and when purging is stopped, the ambient temperature decreases toward room temperature. The temperature of the pin that supports the substrate also changes in accordance with the change in the atmospheric temperature in the chamber, and this causes a problem that the transfer pin (a kind of film thickness variation) of the support pin is attached to the resist film. Yes.

上記の問題点に鑑みて、本出願人は、コロ搬送により基板の搬入出を効率よく安全かつスムースに行うとともに、支持ピンを先端部が閉塞し、かつ側壁に通気孔が設けられた中空の筒体で構成し、支持ピンの内部に温調用のガスを流すことで、支持ピンが周囲または雰囲気温度から受ける熱的影響を温度補償し、ひいては基板が支持ピンから受ける熱的影響を少なくするようにした減圧乾燥装置を開発し、これを特許文献2で開示している。   In view of the above-mentioned problems, the present applicant has carried out the loading and unloading of the substrate efficiently and smoothly by roller transport, and the support pin has a hollow portion in which the tip end portion is closed and the side wall is provided with a vent hole. Comprised of a cylindrical body, by flowing a temperature adjusting gas inside the support pins, the thermal influence of the support pins from the ambient or ambient temperature is compensated for temperature, and the thermal influence of the board from the support pins is reduced. A reduced-pressure drying apparatus as described above was developed and disclosed in Patent Document 2.

特開2000−181079JP2000-181079 特開2009−38231JP2009-38231A

本出願人は、上記特許文献2で開示した減圧乾燥装置とは別に、温調機構付きでない普通の安価な支持ピンを用いても、基板上の塗布膜が支持ピンを通じて受ける熱的影響(特にピン転写跡)を可及的に抑えられる減圧乾燥装置の開発を行った結果、その成果の一つとして本発明が生まれた。   In addition to the reduced-pressure drying apparatus disclosed in Patent Document 2, the applicant of the present application uses a normal inexpensive support pin that does not have a temperature control mechanism, and the thermal effect that the coating film on the substrate receives through the support pin (particularly, As a result of the development of a vacuum drying apparatus capable of suppressing pin transfer marks as much as possible, the present invention was born as one of the results.

すなわち、本発明は、コロ搬送により基板の搬入出を効率よく安全かつスムースに行うとともに、減圧乾燥処理の開始からパージング終了までの全処理工程時間を通してチャンバ内の雰囲気温度の変動を小さくして、基板が支持ピンを通じて受ける熱的影響を低減し、塗布膜の品質を向上させるようにした減圧乾燥装置を提供する。   That is, the present invention efficiently and safely carries in and out the substrate by roller conveyance, and reduces the variation in the atmospheric temperature in the chamber throughout the entire process time from the start of the vacuum drying process to the end of purging, Provided is a vacuum drying apparatus that reduces the thermal influence that a substrate receives through support pins and improves the quality of a coating film.

本発明の第1の観点における減圧乾燥装置は、被処理基板上に形成された塗布液の膜に減圧乾燥処理を施す減圧乾燥装置であって、前記基板を水平状態で収容するための空間を有する減圧可能なチャンバと、前記減圧乾燥処理のために前記チャンバ内を密閉状態で真空排気する排気機構と、前記チャンバの外と中で連続するコロ搬送路を有し、前記コロ搬送路上のコロ搬送で前記基板を前記チャンバに搬入し、または前記チャンバから搬出する搬送機構と、前記基板をピン先端で水平に支えて上げ下げするために前記チャンバの中に離散的に配置された多数の支持ピンを有し、前記乾燥処理を行う時は前記支持ピンの先端を前記コロ搬送路よりも高くして前記基板を支持し、前記基板の搬入出を行う時は前記支持ピンのピン先端を前記コロ搬送路よりも低くして前記搬送機構による前記基板のコロ搬送を可能とする基板リフト機構と、前記減圧乾燥処理を終了させるために前記チャンバ内にパージングガスを供給するバージング機構と、前記チャンバ内の雰囲気温度の変動を低減させるために、前記コロ搬送路の近くで前記基板の下を覆う位置に設けられる遮蔽板とを有する。   A reduced-pressure drying apparatus according to a first aspect of the present invention is a reduced-pressure drying apparatus that performs a reduced-pressure drying process on a coating liquid film formed on a substrate to be processed, and has a space for accommodating the substrate in a horizontal state. A decompressable chamber, an exhaust mechanism for evacuating the inside of the chamber in a sealed state for the decompression drying process, and a roller transport path continuous in the outside of the chamber. A transport mechanism for transporting the substrate into or out of the chamber by transport, and a number of support pins arranged discretely in the chamber to support the substrate horizontally at the tip of the pin to raise and lower it When the drying process is performed, the tip of the support pin is made higher than the roller conveyance path to support the substrate, and when the substrate is loaded / unloaded, the tip of the support pin is moved to the roller Carrying A substrate lift mechanism that allows the substrate to be transported by the transport mechanism lower than the path, a buzzing mechanism that supplies a purging gas into the chamber to finish the reduced-pressure drying process, In order to reduce fluctuations in the atmospheric temperature, the light source has a shielding plate provided at a position covering the bottom of the substrate near the roller conveyance path.

上記の装置構成においては、搬送機構が基板の搬入出をコロ搬送で行い、基板リフト機構がチャンバ内で基板をコロ搬送路の搬送面とそれよりも高い減圧乾燥処理用の高さ位置との間で上げ下げする。減圧乾燥処理中は、排気機構の真空排気によりチャンバ内で気流が発生し、基板上の塗布膜から液体(溶剤)が揮発し、チャンバ内雰囲気温度が初期温度(たとえば常温)よりも低くなる。そして、減圧乾燥処理を終了させるために、パージング機構よりパージングガスがチャンバ内に供給されると、チャンバ内でパージングガスが流れ、チャンバ内雰囲気温度が初期温度を超える高さまで上昇する。本発明では、コロ搬送路の近くで基板の下を覆うように遮蔽板を配置しているので、遮蔽板によりチャンバ内の気流が制御されて、チャンバ内雰囲気温度の変動が減少する。このことにより、基板が支持ピンを通じて受ける熱的影響が低減され、基板上の塗布膜の膜質が向上する。   In the above apparatus configuration, the transport mechanism carries the substrate in and out by roller transport, and the substrate lift mechanism moves the substrate in the chamber between the transport surface of the roller transport path and a height position for vacuum drying treatment higher than that. Raise and lower between. During the vacuum drying process, an air flow is generated in the chamber by the vacuum exhaust of the exhaust mechanism, the liquid (solvent) is volatilized from the coating film on the substrate, and the atmospheric temperature in the chamber becomes lower than the initial temperature (for example, normal temperature). Then, when purging gas is supplied into the chamber from the purging mechanism in order to end the reduced-pressure drying process, the purging gas flows in the chamber, and the atmospheric temperature in the chamber rises to a height exceeding the initial temperature. In the present invention, since the shielding plate is disposed so as to cover the bottom of the substrate near the roller conveyance path, the airflow in the chamber is controlled by the shielding plate, and the variation in the atmospheric temperature in the chamber is reduced. This reduces the thermal effect that the substrate receives through the support pins, and improves the quality of the coating film on the substrate.

本発明の第2の観点における減圧乾燥装置は、被処理基板上に形成された塗布液の膜に減圧乾燥処理を施す減圧乾燥装置であって、前記基板を水平状態で収容するための空間を有する減圧可能なチャンバと、前記チャンバの外と中で連続するコロ搬送路を有し、前記コロ搬送路上のコロ搬送で前記基板を前記チャンバに搬入し、または前記チャンバから搬出する搬送機構と、前記減圧乾燥処理のために前記チャンバ内を密閉状態で真空排気する排気機構と、前記減圧乾燥処理を終了させるために前記チャンバ内にパージング用のガスを供給するバージング機構と、前記減圧乾燥処理および前記パージング中の前記チャンバ内の雰囲気温度を小さくするために、前記基板の下を覆うように設けられる遮蔽板と、前記減圧乾燥処理中に前記基板をピン先端で水平に支えるために前記遮蔽板の上に離散的に設けられる多数の支持ピンと、前記遮蔽板に結合され、前記乾燥処理を行う時は前記支持ピンの先端を前記コロ搬送路よりも高くして前記支持ピンによる前記基板の支持を可能とし、前記基板の搬入出を行う時は前記支持ピンのピン先端を前記コロ搬送路よりも低くして前記搬送機構による前記基板のコロ搬送を可能とするように、前記遮蔽板を昇降移動させる遮蔽板昇降機構とを有する。   A reduced-pressure drying apparatus according to a second aspect of the present invention is a reduced-pressure drying apparatus that performs a reduced-pressure drying process on a coating liquid film formed on a substrate to be processed, and includes a space for storing the substrate in a horizontal state. A depressurizable chamber, and a roller conveyance path that is continuous inside and outside the chamber, and a conveyance mechanism that carries the substrate into the chamber by roller conveyance on the roller conveyance path, or unloads the substrate from the chamber, An exhaust mechanism for evacuating the chamber in a sealed state for the vacuum drying process; a buzzing mechanism for supplying a purging gas into the chamber to end the vacuum drying process; and the vacuum drying process and In order to reduce the atmospheric temperature in the chamber during the purging, a shielding plate provided to cover the bottom of the substrate, and the substrate during the vacuum drying process A plurality of support pins discretely provided on the shielding plate for supporting horizontally at the tip of the screen, and coupled to the shielding plate, and when performing the drying process, the tip of the support pin is positioned more than the roller conveyance path. The substrate can be supported by the support pins, and when the substrate is carried in / out, the tip of the support pin is lowered from the roller conveyance path so that the substrate can be conveyed by the conveyance mechanism. In order to make it possible, a shielding plate lifting mechanism for moving the shielding plate up and down is provided.

上記の装置構成においては、搬送機構が基板の搬入出をコロ搬送で行い、遮蔽板昇降機構が気流遮蔽板と支持ピンを通じて基板をコロ搬送路の搬送面とそれよりも高い減圧乾燥処理用の高さ位置との間で上げ下げする。減圧乾燥処理中は、排気機構の真空排気によりチャンバ内で気流が発生し、基板上の塗布膜から液体(溶剤)が揮発し、チャンバ内雰囲気温度が初期温度(たとえば常温)よりも低くなる。そして、減圧乾燥処理を終了させるために、パージング機構よりパージングガスがチャンバ内に供給されると、チャンバ内でパージングガスが流れ、チャンバ内雰囲気温度が初期温度を超える高さまで上昇する。本発明では、コロ搬送路の近くで基板の下を覆うように遮蔽板を配置しているので、遮蔽板によりチャンバ内の気流が制御されて、チャンバ内雰囲気温度の変動が減少する。このことより、基板が支持ピンを通じて受ける熱的影響が低減され、基板上の塗布膜の膜質が向上する。   In the above apparatus configuration, the transport mechanism carries the substrate in and out by roller transport, and the shielding plate lifting mechanism moves the substrate through the airflow shielding plate and the support pin for the transport surface of the roller transport path and a vacuum drying process higher than that. Raise and lower the height position. During the vacuum drying process, an air flow is generated in the chamber by the vacuum exhaust of the exhaust mechanism, the liquid (solvent) is volatilized from the coating film on the substrate, and the atmospheric temperature in the chamber becomes lower than the initial temperature (for example, normal temperature). Then, when purging gas is supplied into the chamber from the purging mechanism in order to end the reduced-pressure drying process, the purging gas flows in the chamber, and the atmospheric temperature in the chamber rises to a height exceeding the initial temperature. In the present invention, since the shielding plate is disposed so as to cover the bottom of the substrate near the roller conveyance path, the airflow in the chamber is controlled by the shielding plate, and the variation in the atmospheric temperature in the chamber is reduced. This reduces the thermal effect that the substrate receives through the support pins, and improves the quality of the coating film on the substrate.

本発明の第3の観点における減圧乾燥装置は、被処理基板上に形成された塗布液の膜に減圧乾燥処理を施す減圧乾燥装置であって、前記基板を水平状態で収容するための空間を有する減圧可能なチャンバと、前記減圧乾燥処理のために前記チャンバ内を密閉状態で真空排気する排気機構と、前記チャンバの外と中で連続するコロ搬送路を有し、前記コロ搬送路上のコロ搬送で前記基板を前記チャンバに搬入し、または前記チャンバから搬出する搬送機構と、前記基板をピン先端で水平に支えて上げ下げするために前記チャンバの中に離散的に配置された多数のリフトピンを有し、前記乾燥処理を行う時は前記リフトピンの先端を前記コロ搬送路よりも高くして前記基板を支持し、前記基板の搬入出を行う時は前記リフトピンのピン先端を前記コロ搬送路よりも低くして前記搬送機構による前記基板のコロ搬送を可能とする基板リフト機構と、前記減圧乾燥処理を終了させるために前記チャンバ内にパージングガスを供給するバージング機構とを具備し、前記パージング機構が、前記コロ搬送路よりも高い位置で前記パージングガスを噴出するガス噴出部を有する。   A reduced-pressure drying apparatus according to a third aspect of the present invention is a reduced-pressure drying apparatus that performs a reduced-pressure drying process on a coating solution film formed on a substrate to be processed, and has a space for accommodating the substrate in a horizontal state. A decompressable chamber, an exhaust mechanism for evacuating the inside of the chamber in a sealed state for the decompression drying process, and a roller transport path continuous in the outside of the chamber. A transport mechanism for transporting the substrate into or out of the chamber by transport, and a number of lift pins discretely arranged in the chamber for horizontally supporting the substrate up and down at the tip of the pin When the drying process is performed, the tip of the lift pin is made higher than the roller conveyance path to support the substrate, and when the substrate is carried in / out, the tip of the lift pin is A substrate lift mechanism that enables the substrate to be transported by the transport mechanism at a lower position than the transport path, and a buzzing mechanism that supplies a purging gas into the chamber to finish the reduced-pressure drying process. The purging mechanism has a gas ejection portion that ejects the purging gas at a position higher than the roller conveyance path.

上記の装置構成においては、搬送機構が基板の搬入出をコロ搬送で行い、基板リフト機構がチャンバ内で基板をコロ搬送路の搬送面とそれよりも高い減圧乾燥処理用の高さ位置との間で上げ下げする。減圧乾燥処理中は、排気機構の真空排気によりチャンバ内で気流が発生し、基板上の塗布膜から液体(溶剤)が揮発し、チャンバ内雰囲気温度が初期温度(たとえば常温)よりも低くなる。そして、減圧乾燥処理を終了させるために、パージング機構よりパージングガスがチャンバ内に供給されると、チャンバ内でパージングガスが流れ、チャンバ内雰囲気温度が初期温度を超える高さまで上昇する。本発明では、前記パージング機構のガス噴出部が、コロ搬送路よりも高い位置でパージングガスを噴出することにより、チャンバ内雰囲気温度の変動が減少する。このことにより、基板が支持ピンを通じて受ける熱的影響が低減され、基板上の塗布膜の膜質が向上する。   In the above apparatus configuration, the transport mechanism carries the substrate in and out by roller transport, and the substrate lift mechanism moves the substrate in the chamber between the transport surface of the roller transport path and a height position for vacuum drying treatment higher than that. Raise and lower between. During the vacuum drying process, an air flow is generated in the chamber by the vacuum exhaust of the exhaust mechanism, the liquid (solvent) is volatilized from the coating film on the substrate, and the atmospheric temperature in the chamber becomes lower than the initial temperature (for example, normal temperature). Then, when purging gas is supplied into the chamber from the purging mechanism in order to end the reduced-pressure drying process, the purging gas flows in the chamber, and the atmospheric temperature in the chamber rises to a height exceeding the initial temperature. In the present invention, the gas ejection portion of the purging mechanism ejects the purging gas at a position higher than the roller conveyance path, thereby reducing the variation in the atmospheric temperature in the chamber. This reduces the thermal effect that the substrate receives through the support pins, and improves the quality of the coating film on the substrate.

本発明の減圧乾燥装置によれば、上記のような構成および作用により、コロ搬送により基板の搬入出を効率よく安全かつスムースに行えるとともに、減圧乾燥処理の開始からパージング終了までの全処理工程時間を通してチャンバ内の雰囲気温度の変動を小さくして、支持ピンないし基板に与える熱的影響を低減し、処理品質を向上させることができる。   According to the reduced-pressure drying apparatus of the present invention, with the above-described configuration and operation, it is possible to efficiently and safely carry in and out the substrate by roller conveyance, and the entire processing process time from the start of the reduced-pressure drying process to the end of purging. Thus, the variation in the ambient temperature in the chamber can be reduced, the thermal influence on the support pins or the substrate can be reduced, and the processing quality can be improved.

本発明の一実施形態における減圧乾燥ユニット(減圧乾燥装置)を組み込んだレジスト塗布装置の構成を示す平面図である。It is a top view which shows the structure of the resist coating apparatus incorporating the reduced pressure drying unit (reduced pressure drying apparatus) in one Embodiment of this invention. 上記減圧乾燥ユニット内の構成を示す平面図である。It is a top view which shows the structure in the said reduced pressure drying unit. 上記減圧乾燥ユニットにおける基板搬入出時の各部の状態を示す正面縦断面図である。It is a front longitudinal cross-sectional view which shows the state of each part at the time of board | substrate carrying in / out in the said reduced pressure drying unit. 上記減圧乾燥ユニットにおける基板搬入出時の各部の状態を示す正面縦断面図である。It is a front longitudinal cross-sectional view which shows the state of each part at the time of board | substrate carrying in / out in the said reduced pressure drying unit. 実施形態における遮蔽板の構成を示す部分拡大斜視図である。It is a partial expansion perspective view which shows the structure of the shielding board in embodiment. 上記減圧乾燥ユニットにおける減圧乾燥処理中の各部の状態を示す部分側面縦断面図である。It is a partial side surface longitudinal cross-sectional view which shows the state of each part in the said decompression drying unit during the decompression drying process. 上記減圧乾燥ユニットにおけるパージング中の各部の状態を示す部分側面縦断面図である。It is a partial side surface longitudinal cross-sectional view which shows the state of each part in purging in the said reduced pressure drying unit. 実施形態および比較例においてチャンバ内雰囲気温度の測定のために選ばれた代表測定点の位置を示す略平面図である。It is a schematic plan view showing the position of a representative measurement point selected for measuring the atmospheric temperature in the chamber in the embodiment and the comparative example. 実施形態の構成において、減圧乾燥処理およびパーシング中にチャンバ内雰囲気温度および圧力が変化する特性を示すプロット図である。In the structure of embodiment, it is a plot figure which shows the characteristic that the atmospheric temperature in a chamber and a pressure change during a reduced pressure drying process and parsing. 第1変形例の構成において、減圧乾燥処理およびパーシング中にチャンバ内雰囲気温度および圧力が変化する特性を示すプロット図である。In the structure of the 1st modification, it is a plot figure which shows the characteristic that the atmospheric temperature in a chamber and a pressure change during a reduced pressure drying process and parsing. 第2変形例の構成において、減圧乾燥処理およびパーシング中にチャンバ内雰囲気温度および圧力が変化する特性を示すプロット図である。In the structure of the 2nd modification, it is a plot figure which shows the characteristic that the atmospheric temperature in a chamber and a pressure change during a reduced pressure drying process and parsing. 比較例(従来技術)の構成において、減圧乾燥処理およびパーシング中にチャンバ内雰囲気温度および圧力が変化する特性を示す図である。In the structure of a comparative example (prior art), it is a figure which shows the characteristic that the atmospheric temperature in a chamber and a pressure change during a reduced pressure drying process and parsing. 減圧乾燥処理/パーシング工程を多数回繰り返したときの減圧乾燥処理直前のリフトピン温度の変化を示す部である。It is a part which shows the change of the lift pin temperature just before the reduced pressure drying process when a reduced pressure drying process / parsing process is repeated many times. 第2の実施形態の減圧乾燥ユニットにおける基板搬入出時の各部の状態を示す正面縦断面図である。It is a front longitudinal cross-sectional view which shows the state of each part at the time of board | substrate carrying in / out in the reduced pressure drying unit of 2nd Embodiment. 上記減圧乾燥ユニットにおける減圧乾燥処理中の各部の状態を示す部分側面縦断面図である。It is a partial side surface longitudinal cross-sectional view which shows the state of each part in the said decompression drying unit during the decompression drying process.

以下、添付図を参照して本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1に、本発明の減圧乾燥装置の適用可能なFPD製造用のレジスト塗布装置の一構成例を示す。   FIG. 1 shows a configuration example of a resist coating apparatus for manufacturing an FPD to which the reduced pressure drying apparatus of the present invention can be applied.

このレジスト塗布装置は、平流し方式のレジスト塗布ユニット10および減圧乾燥ユニット12を同一の基板搬送方向(X方向)に並べて併設している。先に、レジスト塗布ユニット10の構成および作用について説明する。   In this resist coating apparatus, a flat-flow resist coating unit 10 and a vacuum drying unit 12 are arranged side by side in the same substrate transport direction (X direction). First, the configuration and operation of the resist coating unit 10 will be described.

レジスト塗布ユニット10は、被処理基板たとえばガラス基板Gを空気の圧力で浮上させて水平に支持する浮上式のステージ14と、この浮上ステージ14上で水平に浮いている基板Gをステージ長手方向(X方向)に搬送する基板搬送機構16と、浮上ステージ14上で搬送される基板Gの上面にレジスト液を供給するレジストノズル18と、塗布処理の合間にレジストノズル18をリフレッシュするノズルリフレッシュ部20とを有している。   The resist coating unit 10 floats a substrate to be processed such as a glass substrate G by air pressure and supports it horizontally, and a substrate G floating horizontally on the floating stage 14 in the longitudinal direction of the stage ( A substrate transport mechanism 16 for transporting in the X direction), a resist nozzle 18 for supplying a resist solution to the upper surface of the substrate G transported on the floating stage 14, and a nozzle refresh unit 20 for refreshing the resist nozzle 18 between coating processes. And have.

浮上ステージ14の上面には所定のガス(たとえばエア)を上方に噴射する多数のガス噴射口22が設けられており、それらのガス噴射口22から噴射されるガスの圧力によって基板Gがステージ上面から一定の高さに浮上するように構成されている。   A number of gas injection ports 22 for injecting a predetermined gas (for example, air) upward are provided on the upper surface of the levitation stage 14, and the substrate G is placed on the upper surface of the stage by the pressure of the gas injected from the gas injection ports 22. It is configured to rise to a certain height.

基板搬送機構16は、浮上ステージ14を挟んでX方向に延びる一対のガイドレール24A,24Bと、これらのガイドレール24A,24Bに沿って往復移動可能なスライダ26と、浮上ステージ14上で基板Gの両側端部を着脱可能に保持するようにスライダ26に設けられた吸着パッド等の基板保持部材(図示せず)とを備えており、直進移動機構(図示せず)によりスライダ26を搬送方向(X方向)に移動させることによって、浮上ステージ14上で基板Gの浮上搬送を行うように構成されている。   The substrate transport mechanism 16 includes a pair of guide rails 24A and 24B extending in the X direction across the levitation stage 14, a slider 26 that can reciprocate along the guide rails 24A and 24B, and the substrate G on the levitation stage 14. And a substrate holding member (not shown) such as a suction pad provided on the slider 26 so as to detachably hold both side ends of the slider 26, and the slider 26 is moved in the transport direction by a linear movement mechanism (not shown). By moving in the (X direction), the substrate G is floated and conveyed on the floating stage 14.

レジストノズル18は、浮上ステージ14の上方を搬送方向(X方向)と直交する水平方向(Y方向)に横断して延びる長尺型ノズルであり、所定の塗布位置でその直下を通過する基板Gの上面に対してスリット状の吐出口よりレジスト液を帯状に吐出するようになっている。また、レジストノズル18は、このノズルを支持するノズル支持部材28と一体にX方向に移動可能、かつ鉛直方向(Z方向)で昇降可能に構成されており、上記塗布位置とノズルリフレッシュ部20との間で移動できるようになっている。   The resist nozzle 18 is a long nozzle that extends across the floating stage 14 in a horizontal direction (Y direction) perpendicular to the transport direction (X direction), and passes through the substrate G at a predetermined coating position. The resist liquid is discharged in a strip shape from the slit-shaped discharge port to the upper surface of the substrate. The resist nozzle 18 is configured to be movable in the X direction integrally with a nozzle support member 28 that supports the nozzle, and can be moved up and down in the vertical direction (Z direction). Can be moved between.

ノズルリフレッシュ部20は、浮上ステージ14の上方の所定位置で支柱部材30に保持されており、塗布処理のための下準備としてレジストノズル18にレジスト液を吐出させるためのプライミング処理部32と、レジストノズル18のレジスト吐出口を乾燥防止の目的から溶剤蒸気の雰囲気中に保つためのノズルバス34と、レジストノズル18のレジスト吐出口近傍に付着したレジストを除去するためのノズル洗浄機構36とを備えている。   The nozzle refresh unit 20 is held by the column member 30 at a predetermined position above the levitation stage 14, and as a preparation for coating processing, a priming processing unit 32 for causing the resist nozzle 18 to discharge a resist solution, A nozzle bath 34 for keeping the resist discharge port of the nozzle 18 in an atmosphere of solvent vapor for the purpose of preventing drying, and a nozzle cleaning mechanism 36 for removing the resist adhering to the vicinity of the resist discharge port of the resist nozzle 18 are provided. Yes.

次に、レジスト塗布ユニット10における主な動作を説明する。先ず、前段の処理部(図示せず)よりたとえばコロ搬送で送られてきた基板Gがステージ14上の前端側に設定された搬入部に搬入され、そこで待機していたスライダ26が基板Gを保持して受け取る。浮上ステージ14上で基板Gはガス噴射口22より噴射されるガス(エア)の圧力を受けて略水平な姿勢で浮上状態を保つ。   Next, main operations in the resist coating unit 10 will be described. First, the substrate G sent from, for example, roller conveyance from a previous processing unit (not shown) is loaded into a loading portion set on the front end side on the stage 14, and the slider 26 waiting there moves the substrate G. Hold and receive. On the levitation stage 14, the substrate G receives the pressure of the gas (air) ejected from the gas ejection port 22 and keeps the levitation state in a substantially horizontal posture.

そして、スライダ26が基板を保持しながら減圧乾燥ユニット12側に向かって搬送方向(X方向)に移動し、基板Gがレジストノズル18の下を通過する際に、レジストノズル18が基板Gの上面に向けてレジスト液を帯状に吐出することにより、基板G上に基板前端から後端に向って絨毯が敷かれるようにしてレジスト液の液膜が一面に形成される。こうしてレジスト液を塗布された基板Gは、その後もスライダ26によって浮上ステージ14上を浮上搬送され、浮上ステージ14の後端を越えて後述するコロ搬送路38に乗り移り、そこでスライダ26による保持が解除される。コロ搬送路38に乗り移った基板Gはそこから先は、後述するようにコロ搬送路38上をコロ搬送で移動して後段の減圧乾燥ユニット12へ搬入される。   The slider 26 moves in the transport direction (X direction) toward the reduced pressure drying unit 12 while holding the substrate, and when the substrate G passes under the resist nozzle 18, the resist nozzle 18 moves to the upper surface of the substrate G. By discharging the resist solution in a strip shape toward the substrate, a liquid film of the resist solution is formed on one surface so that a carpet is laid on the substrate G from the front end to the rear end of the substrate. The substrate G thus coated with the resist solution is then floated and conveyed on the floating stage 14 by the slider 26, passes over the rear end of the floating stage 14 and transfers to a roller conveyance path 38 to be described later, where the holding by the slider 26 is released. Is done. The substrate G that has transferred to the roller transport path 38 is then transported on the roller transport path 38 by roller transport, as will be described later, and is carried into the subsequent vacuum drying unit 12.

塗布処理の済んだ基板Gを上記のようにして減圧乾燥ユニット12側へ送り出した後、スライダ26は次の基板Gを受け取るために浮上ステージ14の前端側の搬入部へ戻る。また、レジストノズル18は、1回または複数回の塗布処理を終えると、塗布位置(レジスト液吐出位置)からノズルリフレッシュ部20へ移動してそこでノズル洗浄やプライミング処理等のリフレッシュないし下準備をしてから、塗布位置に戻る。   After the coated substrate G is sent out to the reduced-pressure drying unit 12 side as described above, the slider 26 returns to the carry-in portion on the front end side of the floating stage 14 in order to receive the next substrate G. The resist nozzle 18 moves from the application position (resist liquid discharge position) to the nozzle refresh unit 20 after completing one or a plurality of application processes, and refreshes or prepares for nozzle cleaning, priming processes, and the like. Then return to the application position.

レジスト塗布ユニット10の浮上ステージ14の延長上(搬送方向の下流側)には、コロ搬送路38が敷設されている。このコロ搬送路38は、減圧乾燥ユニット12のチャンバ40の中と外(前後)で連続して敷設されている。   A roller conveyance path 38 is laid on the extension of the floating stage 14 of the resist coating unit 10 (downstream in the conveyance direction). The roller conveyance path 38 is continuously laid inside and outside (front and rear) of the chamber 40 of the vacuum drying unit 12.

以下に、この実施形態における減圧乾燥ユニット12の構成および作用を説明する。   Below, the structure and effect | action of the reduced pressure drying unit 12 in this embodiment are demonstrated.

図1に示すように、減圧乾燥ユニット12回りのコロ搬送路38は、チャンバ40の搬送上流側つまり搬入側に敷設されている搬入側コロ搬送路38Aと、チャンバ40内に敷設されている内部コロ搬送路38Bと、チャンバ40の搬送下流側つまり搬出側に敷設されている搬出側コロ搬送路38Cとから構成されている。   As shown in FIG. 1, the roller conveyance path 38 around the vacuum drying unit 12 includes a conveyance-side roller conveyance path 38 </ b> A laid on the conveyance upstream side of the chamber 40, i.e., the carry-in side, and an interior laid in the chamber 40. The roller conveyance path 38 </ b> B and a carry-out side roller conveyance path 38 </ b> C laid on the conveyance downstream side of the chamber 40, that is, on the carry-out side.

各部のコロ搬送路38A,38B,38Cは、搬送方向(X方向)にそれぞれ適当な間隔で配置した複数本のコロ42A,42B,42Cを各独立または共通の搬送駆動部により回転させて、基板Gをコロ搬送で搬送方向(X方向)に送るようになっている。ここで、搬入側コロ搬送路38Aは、レジスト塗布ユニット10の浮上ステージ14から浮上搬送の延長で搬出された基板Gを受け取り、減圧乾燥ユニット12のチャンバ40内へコロ搬送で送り込むように機能する。内部コロ搬送路38Bは、搬入側コロ搬送路38Aからコロ搬送で送られてくる基板Gを同速度のコロ搬送でチャンバ40内に引き込むとともに、チャンバ40内で減圧乾燥処理の済んだ基板Gをチャンバ40の外(後段)へコロ搬送で送り出すように機能する。搬出側コロ搬送路38Cは、チャンバ40内の内部コロ搬送路38Bから送り出されてくる処理済の基板Gを同速度のコロ搬送で引き出して後段の処理部(図示せず)へ送るように機能する。   The roller conveyance paths 38A, 38B, and 38C of each part are rotated by rotating a plurality of rollers 42A, 42B, and 42C arranged at appropriate intervals in the conveyance direction (X direction) by respective independent or common conveyance driving units. G is sent in the conveyance direction (X direction) by roller conveyance. Here, the carry-in side roller conveyance path 38A functions to receive the substrate G unloaded from the floating stage 14 of the resist coating unit 10 as an extension of the floating conveyance, and send it into the chamber 40 of the vacuum drying unit 12 by roller conveyance. . The internal roller transport path 38B draws the substrate G sent by roller transport from the carry-in side roller transport path 38A into the chamber 40 by roller transport at the same speed, and the substrate G that has been subjected to the vacuum drying process in the chamber 40. It functions so as to be sent out to the outside of the chamber 40 (back stage) by roller conveyance. The carry-out side roller conveyance path 38C functions to pull out the processed substrate G sent out from the internal roller conveyance path 38B in the chamber 40 by roller conveyance at the same speed and send it to a subsequent processing section (not shown). To do.

図1〜図4に示すように、減圧乾燥ユニット12のチャンバ40は、比較的扁平な直方体に形成され、その中に基板Gを水平に収容できる空間を有している。このチャンバ40の搬送方向(X方向)において互いに向き合う一対(上流側および下流側)のチャンバ側壁には、基板Gが平流しでようやく通れる大きさに形成されたスリット状の搬入口44および搬出口46がそれぞれ設けられている。さらに、これらの搬入口44および搬出口46をそれぞれ開閉するためのゲート機構48,50がチャンバ40の外壁に取り付けられている。チャンバ40の上壁部または上蓋52は、メンテナンス用に取り外し可能になっている。   As shown in FIGS. 1 to 4, the chamber 40 of the vacuum drying unit 12 is formed in a relatively flat rectangular parallelepiped, and has a space in which the substrate G can be accommodated horizontally. A pair of (upstream and downstream) chamber sidewalls facing each other in the transport direction (X direction) of the chamber 40 is formed with a slit-shaped carry-in port 44 and a carry-out port that are formed in such a size that the substrate G can finally pass through in a flat flow. 46 are provided. Further, gate mechanisms 48 and 50 for opening and closing the carry-in port 44 and the carry-out port 46 are attached to the outer wall of the chamber 40. The upper wall portion or the upper lid 52 of the chamber 40 is removable for maintenance.

この実施形態のコロ搬送路は、図2〜図4に示すように、搬入口44、搬出口46の通路下面(またはその近傍)に、内部コロ搬送路38Bと外部(搬入側・搬出側)コロ搬送路38A,38Cとを密に繋ぐためのローラ式コロ47,49をそれぞれ設けている。   As shown in FIGS. 2 to 4, the roller conveyance path of this embodiment has an inner roller conveyance path 38 </ b> B and the outside (the carry-in side / the carry-out side) on the lower surface (or the vicinity thereof) of the carry-in port 44 and the carry-out port 46. Roller type rollers 47 and 49 are provided for tightly connecting the roller conveyance paths 38A and 38C, respectively.

各ゲート機構48,50は、図示省略するが、スリット状の搬入出口(44,46)を気密に閉塞できる蓋体または弁体と、この蓋体を搬入出口(44,46)と水平に対向する鉛直往動位置とそれより低い鉛直復動位置との間で昇降移動させる第1のシリンダ(図示せず)と、蓋体を搬入出口(44,46)に対して気密に密着する水平往動位置と離間分離する水平復動位置との間で水平移動させる第2のシリンダ(図示せず)とを備えている。   Although not shown in the drawings, each gate mechanism 48 and 50 has a lid or a valve body capable of airtightly closing the slit-shaped loading / unloading port (44, 46), and the lid body is horizontally opposed to the loading / unloading port (44, 46). A first cylinder (not shown) that moves up and down between a vertical forward movement position and a lower vertical backward movement position, and a horizontal movement that tightly and tightly attaches the lid to the loading / unloading port (44, 46). A second cylinder (not shown) is provided for horizontal movement between the moving position and a horizontal return position separated and separated.

チャンバ40内において、内部コロ搬送路38Bを構成するコロ42Bは、搬入出口(44,46)に対応した高さ位置で搬送方向(X方向)に適当な間隔を置いて一列に配置されており、一部または全部のコロ42Bがチャンバ40の外に設けられているモータ等の回転駆動源54に適当な伝動機構56を介して接続されている。各コロ42Bは、比較的細いシャフト43に所定の間隔を置いて複数の太径リングまたはローラ45を固着しており、シャフト43の両端部がチャンバ40の左右両側壁またはその付近に設けられた軸受58に回転可能に支持されている。   In the chamber 40, the rollers 42B constituting the inner roller conveyance path 38B are arranged in a row at an appropriate distance in the conveyance direction (X direction) at a height position corresponding to the carry-in / out port (44, 46). A part or all of the rollers 42B are connected to a rotational drive source 54 such as a motor provided outside the chamber 40 via a suitable transmission mechanism 56. Each roller 42B has a plurality of large-diameter rings or rollers 45 fixed to a relatively thin shaft 43 at predetermined intervals, and both ends of the shaft 43 are provided on the left and right side walls of the chamber 40 or in the vicinity thereof. The bearing 58 is rotatably supported.

搬入側コロ搬送路38Aのコロ42Aも、内部コロ搬送路38Bのコロ42Bと同様の構成を有しており、図示省略するが、その両端部がフレーム等に固定された軸受に回転可能に支持され、上記内部コロ搬送路38B用の回転駆動源54と共通または別個の回転駆動源により回転駆動されるようになっている。搬出側コロ搬送路38Cのコロ42Cも同様である。   The roller 42A of the carry-in side roller conveyance path 38A has the same configuration as the roller 42B of the inner roller conveyance path 38B, and although not shown, both ends thereof are rotatably supported by bearings fixed to a frame or the like. The rotary drive source 54 for the inner roller conveyance path 38B is rotated by a common or separate rotary drive source. The same applies to the roller 42C of the carry-out side roller conveyance path 38C.

この減圧乾燥ユニット12は、図3および図4に示すように、チャンバ40内で基板Gを水平に支えて上げ下げするための基板リフト機構60を備えている。この基板リフト機構60は、チャンバ40内に所定の配置パターンで(たとえばマトリクス状に)離散的に配置された多数本(好ましくは20本以上)のリフトピン(支持ピン)62と、これらのリフトピン62を所定の組またはグループ毎に内部コロ搬送路38Bよりも低い位置にて支持する複数の水平棒または水平板のピンベース64と、各ピンベース64を昇降移動させるためにチャンバ40の外(下)に配置された1台または複数台の昇降駆動源たとえばシリンダ66とを有している。   As shown in FIGS. 3 and 4, the vacuum drying unit 12 includes a substrate lift mechanism 60 for supporting the substrate G horizontally in the chamber 40 and raising and lowering it. The substrate lift mechanism 60 includes a large number (preferably 20 or more) of lift pins (support pins) 62 that are discretely arranged in a predetermined arrangement pattern (for example, in a matrix) in the chamber 40, and these lift pins 62. A plurality of horizontal rods or horizontal plate pin bases 64 that support the predetermined base or group at a position lower than the inner roller transport path 38B, and the outside (lower) of the chamber 40 for moving each pin base 64 up and down. 1) or a plurality of lifting drive sources such as a cylinder 66.

より詳細には、相隣接する2本のコロ42B,42Bの隙間にコロ42Bと平行に(Y方向に)一定間隔で複数本(好ましくは3本以上)のリフトピン62を鉛直に立てて一列に配置し、かかるリフトピン列を搬送方向(X方向)に適当な間隔を置いて複数列(好ましくは6列以上)設け、各ピンベース64に1組または複数組(図示の例は2組)のリフトピン列を支持させる。そして、シール部材68を介してチャンバ40の底壁を気密に貫通する昇降支持軸70の上端を各ピンベース64の下面に結合し、チャンバ40の外(下)で各ピンベース64の下端を共通の水平支持板72を介して昇降駆動源66に接続している。   More specifically, a plurality of (preferably three or more) lift pins 62 are vertically arranged in a row in a gap between two rollers 42B and 42B adjacent to each other in parallel to the roller 42B (in the Y direction) at regular intervals. A plurality of (preferably six or more) lift pin rows are provided at appropriate intervals in the transport direction (X direction), and one or a plurality of pairs (two in the illustrated example) are provided on each pin base 64. Support the lift pin row. Then, the upper end of the elevating support shaft 70 penetrating the bottom wall of the chamber 40 through the seal member 68 is coupled to the lower surface of each pin base 64, and the lower end of each pin base 64 is connected to the outside (lower) of the chamber 40. The lift drive source 66 is connected via a common horizontal support plate 72.

かかる構成の基板リフト機構60においては、昇降駆動源66に一定ストロークの前進(上昇)または後退(下降)駆動を行わせることにより、昇降支持軸70およびピンベース64を介して全リフトピン62をピン先端の高さを揃えて、図3および図7に示すようにピン先端がコロ搬送路38Bよりも低くなる復動(下降)位置と、図4および図6に示すようにピン先端がコロ搬送路38Bよりも高くなる往動(上昇)位置との間で、昇降移動させることができるようになっている。   In the substrate lift mechanism 60 having such a configuration, the lift drive source 66 is driven forward (up) or backward (down) by a fixed stroke, so that all the lift pins 62 are pinned via the lift support shaft 70 and the pin base 64. 3 and FIG. 7, the pin tip is lowered (lowered) as shown in FIGS. 3 and 7, and the pin tip is roller-conveyed as shown in FIGS. It can be moved up and down between the forward (upward) positions that are higher than the path 38B.

好適な一実施例として、リフトピン62は、空冷ガスを通り抜けさせるような温調機構付きタイプもなければ、特殊な極細タイプでもなく、たとえばステンレス鋼(SUS)からなる剛体の中空管でピン先部の直径がたとえば2mm程度の普通の安価なピン構造を有している。このように、リフトピン62が比較的太くて剛性であるため、基板リフト機構60が基板Gの上げ下げを安定かつスムースに行う上で必要なリフトピン62の本数は特殊極細タイプのものよりも格段に少なくて済む。もっとも、リフトピン62に上記温調機構付きタイプあるいは上記特殊極細タイプの支持ピンを使用することも可能である。   As a preferred embodiment, the lift pin 62 is neither a type with a temperature control mechanism that allows air-cooled gas to pass therethrough or a special ultra-fine type, but a pin tip of a rigid hollow tube made of, for example, stainless steel (SUS). It has a normal and inexpensive pin structure with a diameter of about 2 mm, for example. As described above, since the lift pins 62 are relatively thick and rigid, the number of lift pins 62 necessary for the substrate lift mechanism 60 to raise and lower the substrate G stably and smoothly is much smaller than that of the special ultrafine type. I'll do it. However, it is also possible to use the above-mentioned type with a temperature control mechanism or the above-mentioned special ultra-fine type support pin for the lift pin 62.

チャンバ40の底壁には1箇所または複数個所に排気口74が形成されている。これらの排気口74には排気管76を介して真空排気装置78が接続されている。各真空排気装置78は、チャンバ40内を大気圧状態から真空引きして所定真空度の減圧状態を維持するための真空ポンプを有している。なお、それら複数の真空排気装置78の排気能力のばらつきを平均化するために、それぞれの排気管76同士を接続管(図示せず)で繋いでもよい。   Exhaust ports 74 are formed at one or a plurality of locations on the bottom wall of the chamber 40. A vacuum exhaust device 78 is connected to these exhaust ports 74 via an exhaust pipe 76. Each vacuum evacuation device 78 has a vacuum pump for evacuating the chamber 40 from the atmospheric pressure state to maintain a reduced pressure state of a predetermined degree of vacuum. In addition, in order to average the dispersion | variation in the exhaust capability of these several vacuum exhaust apparatuses 78, you may connect each exhaust pipe 76 with a connection pipe (not shown).

チャンバ40内で内部コロ搬送路38Bの左右両側には、チャンバ側壁に沿って搬送方向(X方向)に延びる一対のパージングガス噴出部80が設けられている。これらのパージングガス噴出部80は、たとえばスリット状または多孔型のガス噴出口を有する中空管(または金属粉末を焼結してなる多孔質の中空管)からなり、配管82(図2)を介してパージングガス供給源(図示せず)に接続されている。減圧乾燥処理の終了時にチャンバ40を密閉したまま減圧状態から大気圧状態に戻す際に、パージング機構が作動して、パージングガス噴出部80のスリット状(または多孔型)のガス噴出口からパージング用のガス(たとえば窒素ガス、清浄空気等)を噴き出すようになっている。   A pair of purging gas ejection portions 80 extending in the transport direction (X direction) along the chamber side wall are provided on the left and right sides of the inner roller transport path 38B in the chamber 40. These purging gas ejection portions 80 are formed of, for example, a hollow tube (or a porous hollow tube formed by sintering metal powder) having a slit-shaped or porous gas ejection port, and a pipe 82 (FIG. 2). Through a purging gas supply source (not shown). When returning from the depressurized state to the atmospheric pressure state with the chamber 40 sealed at the end of the vacuum drying process, the purging mechanism is activated to perform purging from the slit-shaped (or perforated) gas outlet of the purging gas ejection portion 80. The gas (for example, nitrogen gas, clean air, etc.) is ejected.

この実施形態における特徴の1つとして、パージングガス噴出部80は、内部コロ搬送路38Bよりも高い位置に設けられ(図1)、コロ搬送面よりも高い位置でパージングガスを水平(または上方)に噴き出すようになっている。好ましくは、パージングガス噴出部80のガス噴出口がコロ搬送路の搬送面よりも10mm以上(より好ましくは20mm〜30mm)高い位置に設けられる。   As one of the features in this embodiment, the purging gas ejection part 80 is provided at a position higher than the inner roller conveyance path 38B (FIG. 1), and the purging gas is horizontally (or above) at a position higher than the roller conveyance surface. It comes to spout. Preferably, the gas ejection port of the purging gas ejection part 80 is provided at a position higher by 10 mm or more (more preferably 20 mm to 30 mm) than the conveyance surface of the roller conveyance path.

この減圧乾燥ユニット12は、上記のように基板Gの平流し搬送を行うコロ搬送路38をチャンバ40内に引き込み、チャンバ40内で基板Gをリフトピン62で上げ下げする基板リフト機構60を備える装置構成において、チャンバ40内の雰囲気温度の変動を低減させるために、コロ搬送路の近くで基板Gの下を覆うように配置される遮蔽板100を設けている。   The vacuum drying unit 12 includes a substrate lift mechanism 60 that draws the roller transport path 38 that performs the flat flow of the substrate G into the chamber 40 as described above, and lifts and lowers the substrate G with the lift pins 62 in the chamber 40. In order to reduce the fluctuation of the ambient temperature in the chamber 40, a shielding plate 100 is provided so as to cover the bottom of the substrate G near the roller conveyance path.

この遮蔽板100は、たとえば樹脂またはアルミ板からなり、基板Gよりも一回り大きな面積を有しており(図1、図2)、リフトピン62を昇降可能に貫通させるための円形の開口100aと、内部コロ搬送路38Bのコロ42Bとの干渉を避けるための矩形の開口100bとを有している(図5、図6、図7)。   The shielding plate 100 is made of, for example, a resin or an aluminum plate, has an area slightly larger than that of the substrate G (FIGS. 1 and 2), and has a circular opening 100a for allowing the lift pins 62 to pass up and down. And a rectangular opening 100b for avoiding interference with the roller 42B of the inner roller conveyance path 38B (FIGS. 5, 6, and 7).

好適な一実施例として、遮蔽板100は、たとえばチャンバ40の底面から垂直上方に延びる多数の支持棒102によって一定の高さ位置、つまりコロ42Bのシャフト43よりは高くてローラ45の頂面(コロ搬送面)よりは低い位置で、水平に支持される。   As a preferred embodiment, the shielding plate 100 is fixed at a certain height, that is, higher than the shaft 43 of the roller 42B, for example, by a number of support rods 102 extending vertically upward from the bottom surface of the chamber 40 (the top surface of the roller 45). It is supported horizontally at a position lower than the roller conveyance surface.

次に、この実施形態における減圧乾燥ユニット12の作用を説明する。   Next, the operation of the reduced pressure drying unit 12 in this embodiment will be described.

上記したように、上流側隣のレジスト塗布ユニット10でレジスト液を塗布された基板Gは、平流しで浮上ステージ14上の浮上搬送路から搬入側コロ搬送路38Aに乗り移る。その後、図3に示すように、基板Gは搬入側コロ搬送路38A上をコロ搬送で移動し、やがて減圧乾燥ユニット12のチャンバ40の中にその搬入口44から進入する。この時、ゲート機構48は搬入口44を開けておく。   As described above, the substrate G on which the resist solution is applied by the resist coating unit 10 adjacent to the upstream side is transferred to the carry-side roller conveyance path 38A from the floating conveyance path on the floating stage 14 in a flat flow. After that, as shown in FIG. 3, the substrate G moves by roller conveyance on the carry-in side roller conveyance path 38 </ b> A, and eventually enters the chamber 40 of the vacuum drying unit 12 from its carry-in port 44. At this time, the gate mechanism 48 keeps the carry-in entrance 44 open.

内部コロ搬送路38Bも、回転駆動源54の回転駆動により、搬入側コロ搬送路38Aのコロ搬送動作とタイミングの合った同一搬送速度のコロ搬送動作を行い、図3に示すように、搬入口44から入ってきた基板Gをコロ搬送でチャンバ40の奥に引き込む。この時、基板リフト機構60は、全てのリフトピン62を各ピン先端が内部コロ搬送路38Bの搬送面よりも低くなる復動(下降)位置に待機させておく。そして、基板Gがチャンバ40内の略中心の所定位置に着くと、そこで内部コロ搬送路38Bのコロ搬送動作が停止する。これと同時または直前に搬入側コロ搬送路38Aのコロ搬送動作も停止してよい。   The inner roller conveyance path 38B also performs a roller conveyance operation at the same conveyance speed as the roller conveyance operation of the carry-in side roller conveyance path 38A by the rotational drive of the rotation drive source 54, and as shown in FIG. The substrate G entered from 44 is drawn into the interior of the chamber 40 by roller conveyance. At this time, the substrate lift mechanism 60 waits for all the lift pins 62 in a backward movement (downward) position where the tip ends of the pins are lower than the conveyance surface of the internal roller conveyance path 38B. When the substrate G arrives at a predetermined position substantially in the center of the chamber 40, the roller transfer operation of the internal roller transfer path 38B stops. At the same time or just before this, the roller conveyance operation of the carry-in side roller conveyance path 38A may be stopped.

なお、上記のように前段または上流側隣のレジスト塗布ユニット10から減圧乾燥処理を受けるべき基板Gがチャンバ40に搬入される時、これと同時(または直前)に、図3に示すように、チャンバ40内で減圧乾燥処理を受けたばかりの先行基板Gが内部コロ搬送38Bおよび搬出側コロ搬送路38C上の連続した等速度のコロ搬送で搬出口46からチャンバ40の外に出てそのまま後段または下流側隣の処理部へ平流しで送られる。   As shown in FIG. 3, when the substrate G to be subjected to the vacuum drying process is carried into the chamber 40 from the resist coating unit 10 on the upstream side or the upstream side as described above, as shown in FIG. The preceding substrate G that has just undergone the vacuum drying treatment in the chamber 40 is moved out of the chamber 40 from the carry-out port 46 by continuous roller conveyance at a constant speed on the inner roller conveyance 38B and the unloading-side roller conveyance path 38C. It is sent to the processing section next to the downstream side in a flat stream.

上記のようにして、レジスト塗布ユニット10でレジスト液を塗布されてきた基板Gが、搬入側コロ搬送路38Aおよび内部コロ搬送路38B上の連続的なコロ搬送によって減圧乾燥ユニット12のチャンバ40に搬入される。この直後に、ゲート機構48,50が作動して、それまで開けていた搬入口44および搬出口46をそれぞれ閉塞し、チャンバ40を密閉する。   As described above, the substrate G on which the resist solution has been applied by the resist coating unit 10 is transferred to the chamber 40 of the vacuum drying unit 12 by continuous roller conveyance on the carry-in side roller conveyance path 38A and the internal roller conveyance path 38B. It is brought in. Immediately after this, the gate mechanisms 48 and 50 are operated to close the carry-in port 44 and the carry-out port 46 that have been opened so far, thereby sealing the chamber 40.

次いで、基板リフト機構60が昇降シリンダ66を往動させて、チャンバ40内で全てのリフトピン62のピン先端が内部コロ搬送路38Bの搬送面を越える所定の高さ位置まで全てのピンベース64を一斉に所定ストロークだけ上昇させる。この基板リフト機構60の往動(上昇)動作により、図6に示すように、基板Gは内部コロ搬送路38Bから水平姿勢のままリフトピン62のピン先に載り移り、そのまま内部コロ搬送路38Bの上方に持ち上げられる。   Next, the substrate lift mechanism 60 moves the elevating cylinder 66 forward so that all the pin bases 64 are moved to a predetermined height position in the chamber 40 where the tip ends of all the lift pins 62 exceed the transfer surface of the internal roller transfer path 38B. Raise it by a predetermined stroke all at once. As shown in FIG. 6, the substrate G is transferred from the inner roller transport path 38 </ b> B to the pin tip of the lift pin 62 by the forward movement (upward) operation of the substrate lift mechanism 60, and is directly moved to the inner roller transport path 38 </ b> B. Lifted up.

こうして、往動位置に上昇したリフトピン62のピン先に載っている基板Gの上面とチャンバ40の天井52との間に所望(たとえば4〜15mm)のクリアランスHが形成される(図6)。   In this way, a desired clearance H (for example, 4 to 15 mm) is formed between the upper surface of the substrate G placed on the tip of the lift pin 62 that has moved up to the forward movement position and the ceiling 52 of the chamber 40 (FIG. 6).

一方、チャンバ40が密閉された直後に真空排気装置78が作動して、チャンバ40内の真空排気が開始される。この真空排気により、チャンバ40内の圧力がそれまでの大気圧(101325Pa)から真空圧力になり、この減圧状態の雰囲気の下で基板G上のレジスト液膜から溶剤(シンナー)が蒸発し、この気化熱によってチャンバ40内の雰囲気温度がそれまでの常温(約25℃)から急激に下がる。   On the other hand, immediately after the chamber 40 is sealed, the evacuation device 78 is operated, and the evacuation of the chamber 40 is started. By this evacuation, the pressure in the chamber 40 is changed from the atmospheric pressure (101325 Pa) up to that time to a vacuum pressure, and the solvent (thinner) evaporates from the resist liquid film on the substrate G in an atmosphere of this reduced pressure state. Due to the heat of vaporization, the atmospheric temperature in the chamber 40 is rapidly lowered from the normal temperature (about 25 ° C.).

この真空排気中(特に減圧乾燥開始直後)のチャンバ内雰囲気温度の下降変動幅は、場所によって異なり、相当のばらつきがある。後述するように、真空排気中のチャンバ内雰囲気温度が、従来は約−15℃まで下がることもあったが(図12)、この実施形態では最も低くて零℃位までしか下がらないようになっている(図9)。   The fluctuation range of the atmospheric temperature in the chamber during the vacuum evacuation (especially immediately after the start of the vacuum drying) varies depending on the location and has a considerable variation. As will be described later, the atmospheric temperature in the chamber during evacuation has conventionally been lowered to about −15 ° C. (FIG. 12), but in this embodiment, it is lowered to only about 0 ° C. at the lowest. (FIG. 9).

真空排気中は、チャンバ40内に残留しているガス(殆どが空気)がチャンバ40の底部の排気口74へ向かって流れ、チャンバ40内の各部で気流が発生する(図6)。この実施形態では、コロ42Bのシャフト43よりも高い位置に遮蔽板100が設けられているため、シャフト43やピンベース64等の周りで気流が巻き上がっても遮蔽板100によってその乱気流が遮断され、基板Gの下面に当たることはない。   During evacuation, gas (mostly air) remaining in the chamber 40 flows toward the exhaust port 74 at the bottom of the chamber 40, and airflow is generated in each part of the chamber 40 (FIG. 6). In this embodiment, since the shielding plate 100 is provided at a position higher than the shaft 43 of the roller 42B, the turbulence is blocked by the shielding plate 100 even if the airflow rises around the shaft 43, the pin base 64, and the like. , It does not hit the lower surface of the substrate G.

減圧乾燥(真空排気)を開始してから一定時間経過後に、あるいはチャンバ40内の真空圧力が設定値(たとえば約30Pa)に到達した時点で、タイマまたは圧力センサ(図示せず)の出力信号に応動して減圧乾燥処理を終了させる。このために、基板リフト機構60が昇降シリンダ66を復動させて、全てのリフトピン62のピン先端が内部コロ搬送路38Bの搬送面よりも低くなる所定の高さ位置まで全てのピンベース64を一斉に所定ストロークだけ下降させる。この基板リフト機構60の復動(下降)動作により、基板Gは水平姿勢でリフトピン62のピン先から内部コロ搬送路38Bに載り移る。そして、パージング機構が作動し、パージングガス噴出部80よりチャンバ40内にパージングガスを所定の流量で供給する。この実施形態では、パージングガス噴出部80が、コロ搬送路38Bの搬送面よりも20〜30mm高い位置でパージングガスを略水平に噴き出す。真空排気装置78の排気動作は、パージングの開始と同時に止めてもよいが、所定時間の経過後に止めてもよい。   After a certain time has elapsed since the start of vacuum drying (evacuation), or when the vacuum pressure in the chamber 40 reaches a set value (for example, about 30 Pa), the output signal of a timer or pressure sensor (not shown) is output. Respond to finish the vacuum drying process. For this purpose, the substrate lift mechanism 60 moves the lifting cylinder 66 backward so that all the pin bases 64 are moved to a predetermined height position where the tip ends of all the lift pins 62 are lower than the transport surface of the internal roller transport path 38B. Move down a predetermined stroke all at once. By the backward movement (downward movement) of the substrate lift mechanism 60, the substrate G is transferred from the tip of the lift pin 62 to the internal roller transport path 38B in a horizontal posture. Then, the purging mechanism is activated, and the purging gas is supplied into the chamber 40 from the purging gas ejection part 80 at a predetermined flow rate. In this embodiment, the purging gas ejection unit 80 ejects the purging gas substantially horizontally at a position 20 to 30 mm higher than the conveyance surface of the roller conveyance path 38B. The evacuation operation of the vacuum evacuation device 78 may be stopped simultaneously with the start of purging, or may be stopped after a predetermined time has elapsed.

パージングガス噴出部80より略水平に噴出されたパージングガスは、図7に示すように、チャンバ40の天井52と基板Gとの間の最上部空間SP1、基板Gと遮蔽板100との間の中間空間SP2、および遮蔽板100とチャンバ40の底面との間の最下部空間SP3に分かれて送り込まれる。 As shown in FIG. 7, the purging gas ejected substantially horizontally from the purging gas ejection portion 80 is the uppermost space SP 1 between the ceiling 52 of the chamber 40 and the substrate G, and between the substrate G and the shielding plate 100. The intermediate space SP 2 and the lowermost space SP 3 between the shielding plate 100 and the bottom surface of the chamber 40.

最上部空間SP1に送り込まれたパージングガスは、この空間SP1に速やかに行き渡ってから基板Gの前後の隙間を下方に抜けて、チャンバ40底部の排気口74に向かって流れる。 Purging gas sent into the top space SP 1 is missing from the prevailing rapidly in this space SP 1 before and after the gap of the substrate G downward, it flows toward the outlet 74 of the chamber 40 the bottom.

中間空間SP2に送り込まれたパージングガスは、この空間SP2内に拡散しながら、あちこちの遮蔽板100の開口100a,100bを通り抜け、あるいは基板Gの前後の隙間を下方に抜けて、最下部空間SP3に流下する。 The purging gas sent into the intermediate space SP 2 passes through the openings 100a and 100b of the shielding plates 100 in various places while diffusing into the space SP 2 or passes downward through the gaps before and after the substrate G to the lowermost part. and it flows down to the space SP 3.

最下部空間SP3に送り込まれたパージングガス、および中間空間SP2から遮蔽板100の開口100a,100bを通り抜けて最下部空間SP3に降りてきたパージングガスは、最下部空間SP3内でコロ42Bのシャフト43やピンベース64等の部材に衝突しながらチャンバ40底部の排気口74に向かって流れる。 Purging gas fed into the bottom space SP 3, and the opening 100a of the shield plate 100 from the intermediate space SP 2, a purging gas which has descended through the 100b bottom space SP 3 is the roller in the bottom space SP 3 It flows toward the exhaust port 74 at the bottom of the chamber 40 while colliding with members such as the shaft 43 and the pin base 64 of 42B.

このパージングによって、チャンバ106内の圧力は設定値または最低値(約30Pa)から大気圧に向かって一気に上昇し、それに伴ってチャンバ内雰囲気温度も減圧乾燥処理前の温度(室温)を優に超える温度まで急上昇する。   Due to this purging, the pressure in the chamber 106 increases rapidly from the set value or the lowest value (about 30 Pa) toward the atmospheric pressure, and accordingly, the atmospheric temperature in the chamber well exceeds the temperature (room temperature) before the vacuum drying treatment. Rapid rise to temperature.

このパージングによるチャンバ内雰囲気温度の上昇変動幅は、場所によって異なり、相当のばらつきがある。後述するように、パージング中のチャンバ内雰囲気温度が、従来は約50℃を超えることもあったが(図12)、この実施形態では最も高くて約32℃までしか上がらないようになっている(図9)。   The fluctuation range of the increase of the atmospheric temperature in the chamber due to this purging varies depending on the location and has considerable variations. As will be described later, the atmospheric temperature in the chamber during purging has conventionally exceeded about 50 ° C. (FIG. 12), but in this embodiment, it is the highest and only rises to about 32 ° C. (FIG. 9).

こうして、パージングによってチャンバ40内の圧力が上昇し、やがて大気圧に達すると、圧力センサに応動して、このタイミング(時点Te)でパージングガス噴出部80がパージングガスの供給を停止する。チャンバ40内でパージングガスが流れなくなると、チャンバ内雰囲気温度がチャンバ内に充満しているパージングガスの温度(通常室温と略同じ温度)と等しくなるように低下する。 Thus, when the pressure in the chamber 40 rises due to purging and eventually reaches atmospheric pressure, the purging gas ejection unit 80 stops supplying the purging gas at this timing (time point T e ) in response to the pressure sensor. When the purging gas does not flow in the chamber 40, the atmospheric temperature in the chamber is lowered to be equal to the temperature of the purging gas filling the chamber (usually substantially the same temperature as room temperature).

そして、パージングガスの供給を停止してから所定時間の経過後にゲート機構48,50が作動して搬入口44および搬出口46を開ける。次いで、内部コロ搬送路38Bおよび搬出側コロ搬送路38C上でコロ搬送動作が開始され、減圧乾燥処理を受けたばかりの当該基板Gは搬出口46からコロ搬送によって搬出され、そのまま後段の処理部へ平流しで送られる。この処理済基板Gの搬出動作と同時に、図3に示すように、レジスト塗布ユニット10からの後続の基板Gが、搬入側コロ搬送路38Aおよび内部コロ搬送路38B上の連続的なコロ搬送によって搬入口44からチャンバ40内に搬入される。   Then, after a predetermined time has elapsed since the supply of the purging gas was stopped, the gate mechanisms 48 and 50 are operated to open the carry-in port 44 and the carry-out port 46. Next, a roller transport operation is started on the inner roller transport path 38B and the unload-side roller transport path 38C, and the substrate G that has just undergone the decompression drying process is transported by roller transport from the transport outlet 46 and is directly sent to the subsequent processing section. Sent in a flat stream. Simultaneously with the carry-out operation of the processed substrate G, as shown in FIG. 3, the subsequent substrate G from the resist coating unit 10 is transferred by continuous roller conveyance on the carry-in side roller conveyance path 38A and the internal roller conveyance path 38B. It is carried into the chamber 40 from the carry-in entrance 44.

上記したように、この実施形態の減圧乾燥ユニット12は、コロ搬送路の近くで基板Gの下を覆う位置に、好ましくはコロ42Bのシャフト43よりは高くてローラ45の頂面(コロ搬送面)よりは低い位置に、遮蔽板100を水平に設けている。この遮蔽板100は、チャンバ40内に基板Gが滞在している期間中はもちろん、チャンバ40内に基板Gが存在していない期間中も、コロ搬送路38Bの搬送面より少しだけ低い一定の高さ位置でチャンバ40内の空間を上下に分離している。ここで、上下に分離された中間空間SP2と下部空間SP3は、遮蔽板100の開口100a,100bおよび遮蔽板100の周囲の隙間を介して連通している。 As described above, the reduced-pressure drying unit 12 of this embodiment is located at a position covering the bottom of the substrate G near the roller conveyance path, preferably higher than the shaft 43 of the roller 42B and the top surface of the roller 45 (roller conveyance surface). The shielding plate 100 is horizontally provided at a lower position. The shielding plate 100 is a constant lower than the transport surface of the roller transport path 38B not only during the period when the substrate G stays in the chamber 40 but also during the period when the substrate G does not exist in the chamber 40. The space in the chamber 40 is vertically separated at the height position. Here, the intermediate space SP 2 and the lower space SP 3 separated in the vertical direction communicate with each other through the openings 100 a and 100 b of the shielding plate 100 and a gap around the shielding plate 100.

さらに、この実施形態の減圧乾燥ユニット12は、チャンバ40の側壁付近に配置されるパージングガス噴出部80のガス噴出口をコロ搬送路38よりも高い位置(最も好ましくはコロ搬送面よりも20〜30mm高い位置)に設けている。これによって、パージングガス噴出部80より噴出されたパージングガスは、チャンバ40の天井52と基板Gとの間の上部空間SP1、基板Gと遮蔽板100との間の中間空間SP2、および遮蔽板100とチャンバ40の底面との間の下部空間SP3に分かれて流れるようになっている。 Furthermore, the reduced-pressure drying unit 12 of this embodiment is configured such that the gas outlet of the purging gas jet part 80 disposed near the side wall of the chamber 40 is located at a position higher than the roller transport path 38 (most preferably 20 to 20 from the roller transport surface). 30 mm higher position). Thereby, the purging gas ejected from the purging gas ejection unit 80 is the upper space SP 1 between the ceiling 52 of the chamber 40 and the substrate G, the intermediate space SP 2 between the substrate G and the shielding plate 100, and the shielding. The lower space SP 3 between the plate 100 and the bottom surface of the chamber 40 flows separately.

かかる構成によれば、真空排気中およびパージング中にチャンバ40内を流れる気流が基板Gと遮蔽板100とによって隔離された最上部空間SP1,中間空間SP2,最下部空間SP3の各々で個別に制御され、チャンバ内雰囲気温度の変動が著しく低減される。 According to such a configuration, the airflow flowing in the chamber 40 during evacuation and purging is in each of the uppermost space SP 1 , the intermediate space SP 2 , and the lowermost space SP 3 separated by the substrate G and the shielding plate 100. Controlled individually, the variation of the atmospheric temperature in the chamber is significantly reduced.

本発明者は、この実施形態の減圧乾燥ユニット12において、図8に示すようにチャンバ40内の中心部、中間部および周辺部にわたって分布する13箇所の代表測定点ch1〜ch13を選び、同一の条件で下記4通りの構成A,B,C,D別に減圧乾燥処理およびパーシングを実験した。この実験の中で、各代表点における減圧乾燥処理およびパーシング中のチャンバ内雰囲気温度と圧力を測定し、13箇所(ch1〜ch13)分の雰囲気温度特性J1〜J13の中で最大温度Maxを記録した特性(Ji)と最低温度Minを記録した特性(Jj)の2つを抽出してプロットしたところ、図9〜図12に示すような結果が得られた。なお、この実験では、各代表測定点ch1〜ch13の測定高さ位置をチャンバ40の底面から120mmの位置に選び、熱電対の温度センサを用いた。   The inventor selects 13 representative measurement points ch1 to ch13 distributed over the central portion, the intermediate portion, and the peripheral portion in the chamber 40 as shown in FIG. Under the conditions, the following four types of configurations A, B, C, and D were tested for the drying under reduced pressure and the parsing. During this experiment, the atmospheric temperature and pressure in the chamber during vacuum drying treatment and parsing at each representative point were measured, and the maximum temperature Max among the atmospheric temperature characteristics J1 to J13 for 13 locations (ch1 to ch13) was recorded. When the extracted characteristic (Ji) and the characteristic (Jj) recording the minimum temperature Min were extracted and plotted, the results shown in FIGS. 9 to 12 were obtained. In this experiment, the measurement height position of each representative measurement point ch1 to ch13 was selected to be 120 mm from the bottom surface of the chamber 40, and a thermocouple temperature sensor was used.

A:[遮蔽板あり、搬送路上パージ]・・・図9
上記実施形態のように、遮蔽板100を設け、パージングガス噴出部80のガス噴出口をコロ搬送路38Bよりも高い位置に設ける構成である。
A: [With shielding plate, purge on transport path] FIG.
Like the said embodiment, it is the structure which provides the shielding board 100 and provides the gas jet nozzle of the purging gas jet part 80 in the position higher than the roller conveyance path 38B.

B:[遮蔽板あり、搬送路下パージ]・・・図10
上記実施形態と同様に遮蔽板100を設けるが、パージングガス噴出部80のガス噴出口をコロ搬送路38Bよりも低い位置(搬送面より約100mm低い位置)に設ける構成である。上記実施形態の一変形例(第1変形例)である。
B: [With shield plate, purge under conveyance path] FIG.
Although the shielding plate 100 is provided as in the above embodiment, the gas jet port of the purging gas jet part 80 is provided at a position lower than the roller transport path 38B (position approximately 100 mm lower than the transport surface). It is a modification (1st modification) of the said embodiment.

C:[遮蔽板なし、搬送路上パージ]・・・図11
上記遮蔽板100を設けないが、パージングガス噴出部80のガス噴出口をコロ搬送路38Bよりも高い位置に設ける構成である。これも、上記実施形態の一変形例(第2変形例)である。
C: [No shielding plate, purge on transport path] FIG.
Although the said shielding board 100 is not provided, it is the structure which provides the gas ejection port of the purging gas ejection part 80 in the position higher than the roller conveyance path 38B. This is also a modification (second modification) of the above embodiment.

D:[遮蔽板なし、搬送路下パージ]・・・図12
上記遮蔽板100を設けず、しかもパージングガス噴出部80のガス噴出口をコロ搬送路38Bよりも低い位置(搬送面より約100mm低い位置)に設ける構成である。これは、従来技術の構成に相当する。
D: [No shielding plate, purge under conveyance path] FIG.
The shielding plate 100 is not provided, and the gas ejection port of the purging gas ejection part 80 is provided at a position lower than the roller conveyance path 38B (position approximately 100 mm lower than the conveyance surface). This corresponds to the configuration of the prior art.

図9に示すように、上記Aの構成(実施形態)においては、真空排気中のチャンバ内雰囲気温度の最低値は−0.2℃で、パージング中のチャンバ内雰囲気温度の最高値は32℃であり、最大変動幅は32.2℃であった。   As shown in FIG. 9, in the configuration (embodiment) of A above, the minimum value of the atmospheric temperature in the chamber during evacuation is −0.2 ° C., and the maximum value of the atmospheric temperature in the chamber during purging is 32 ° C. The maximum fluctuation range was 32.2 ° C.

図10に示すように、上記Bの構成においては、真空排気中のチャンバ内雰囲気温度の最低値は−2.0℃で、パージング中のチャンバ内雰囲気温度の最高値は39.0℃であり、最大変動幅は41.0℃であった。   As shown in FIG. 10, in the configuration B, the minimum value of the atmospheric temperature in the chamber during evacuation is −2.0 ° C., and the maximum value of the atmospheric temperature in the chamber during purging is 39.0 ° C. The maximum fluctuation range was 41.0 ° C.

図11に示すように、上記Cの構成においては、真空排気中のチャンバ内雰囲気温度の最低値は−15.0℃で、パージング中のチャンバ内雰囲気温度の最高値は36.7℃であり、最大変動幅は51.7℃であった。   As shown in FIG. 11, in the above configuration C, the minimum value of the atmospheric temperature in the chamber during evacuation is -15.0 ° C., and the maximum value of the atmospheric temperature in the chamber during purging is 36.7 ° C. The maximum fluctuation range was 51.7 ° C.

図12に示すように、上記Dの構成においては、真空排気中のチャンバ内雰囲気温度の最低値は−16.0℃で、パージング中のチャンバ内雰囲気温度の最高値は49.3℃であり、最大変動幅は65.3℃であった。   As shown in FIG. 12, in the above configuration D, the minimum value of the atmospheric temperature in the chamber during evacuation is −16.0 ° C., and the maximum value of the atmospheric temperature in the chamber during purging is 49.3 ° C. The maximum fluctuation range was 65.3 ° C.

このように、上記A(実施形態)の構成によれば、上記D(従来技術)の構成に比して、チャンバ内雰囲気温度の最大変動幅を半減することが可能である。上記B(第1変形例)の構成においても、上記D(従来技術)の構成に比して、チャンバ内雰囲気温度の最大変動幅を約60%に低減することができる。また、上記C(第2変形例)の構成においても、上記D(従来技術)の構成に比して、チャンバ内雰囲気温度の最大変動幅を約78%に低減することができる。   Thus, according to the configuration of the above A (embodiment), the maximum fluctuation range of the atmospheric temperature in the chamber can be halved as compared with the configuration of the above D (prior art). Also in the configuration of B (first modification), the maximum fluctuation range of the atmospheric temperature in the chamber can be reduced to about 60% compared to the configuration of D (prior art). Also in the configuration of C (second modification), the maximum fluctuation range of the atmospheric temperature in the chamber can be reduced to about 78% compared to the configuration of D (prior art).

本発明者は、上記実験の延長として、上記構成A,B,C,D別に、同一条件での減圧乾燥処理/パージングの工程を一定の周期で複数回(9回)繰り返し、各回の減圧乾燥処理を開始する直前のリフトピン62の温度を測定してプロットしたところ、図13に示すような特性が得られた。   As an extension of the experiment, the present inventor repeats the vacuum drying treatment / purging process under the same conditions a plurality of times (9 times) at a constant cycle for each of the configurations A, B, C, and D, and each vacuum drying is performed. When the temperature of the lift pin 62 immediately before the start of processing was measured and plotted, the characteristics shown in FIG. 13 were obtained.

図示のように、上記A(実施形態)の構成によれば、初回は常温(約25℃)のリフトピン温度を2回目からは常温よりも僅かだけ高い26℃〜27℃の範囲に安定化させることができる。   As shown in the figure, according to the configuration of the above A (embodiment), the lift pin temperature at normal temperature (about 25 ° C.) is stabilized for the first time in the range of 26 ° C. to 27 ° C. slightly higher than normal temperature from the second time. be able to.

また、上記B(第1変形例)の構成においては、リフトピン温度を2回目で26℃〜27℃の範囲に止め、3回目以降は27℃〜28℃の範囲に安定化させることができる。   Moreover, in the structure of said B (1st modification), lift pin temperature can be stopped in the range of 26 to 27 degreeC at the 2nd time, and can be stabilized in the range of 27 to 28 degreeC after the 3rd time.

また、上記C(第2変形例)の構成においては、リフトピン温度を2回目から27℃〜28℃の範囲に安定化させることができる。   Moreover, in the structure of said C (2nd modification), lift pin temperature can be stabilized in the range of 27 to 28 degreeC from the 2nd time.

一方、上記D(従来技術)の構成においては、減圧乾燥処理/パージング工程を繰り返す度毎にリフトピン温度がだんだんと高くなり、安定化するまでしばらく掛かる。もちろん、安定化(飽和)する頃の温度は相当高くなり、30℃近くになる。   On the other hand, in the configuration of D (prior art), the lift pin temperature gradually increases every time the reduced-pressure drying process / purging process is repeated, and it takes a while for stabilization. Of course, the temperature at the time of stabilization (saturation) becomes considerably high and is close to 30 ° C.

このように、上記実施形態およびその変形例によれば、減圧乾燥処理およびパーシング中のチャンバ内雰囲気温度の変動幅を低減できるので、リフト機構60の各リフトピン62が雰囲気温度から受ける熱的影響を少なくし、ひいては基板Gがリフトピン62から受ける熱的影響を少なくし、基板G上のレジスト塗布膜にピン転写跡が付くのを抑えることができる。これによって、基板G上のレジスト塗布膜の膜質を向上させることができる。   As described above, according to the embodiment and the modification thereof, the fluctuation range of the atmospheric temperature in the chamber during the reduced-pressure drying process and the parsing can be reduced, and therefore, the thermal influence that each lift pin 62 of the lift mechanism 60 receives from the ambient temperature. As a result, the thermal influence of the substrate G from the lift pins 62 can be reduced, and the transfer of the pin transfer to the resist coating film on the substrate G can be suppressed. Thereby, the film quality of the resist coating film on the substrate G can be improved.

図14および図15に、第2の実施形態における減圧乾燥ユニット12の構成を示す。この第2の実施形態は、基板リフト機構(60)を備えてはおらず、代わりに遮蔽板100の上面に固定の支持ピン104を離散的(たとえばマトリクス状に)に多数本取り付けている。遮蔽板昇降機構106は、減圧乾燥処理を行う時は支持ピン104の先端をコロ搬送路38Bよりも高くして支持ピン104による基板Gの支持を可能とし(図15)、基板Gの搬入出を行う時は支持ピン104のピン先端をコロ搬送路38Bよりも低くしてコロ搬送機構による基板のコロ搬送を可能とするように(図14)、遮蔽板100の昇降移動(上げ下げ)を行う。この場合、上記クリアランスHは、支持ピン104の高さ(長さ)によって決まる。遮蔽板100の復動(下限)高さ位置は、コロ42Bのシャフト43よりは高くてローラ45の頂面(コロ搬送面)よりは低い位置に設定される。   14 and 15 show the configuration of the reduced pressure drying unit 12 in the second embodiment. In the second embodiment, the substrate lift mechanism (60) is not provided, and instead, a large number of support pins 104 fixed to the upper surface of the shielding plate 100 are discretely attached (for example, in a matrix). The shielding plate elevating mechanism 106 enables the substrate G to be supported by the support pins 104 by raising the tips of the support pins 104 higher than the roller conveyance path 38B when performing the decompression drying process (FIG. 15). When performing the above, the shielding plate 100 is moved up and down (raised and lowered) so that the roller tip of the support pin 104 is lower than the roller conveyance path 38B and the roller conveyance mechanism can convey the substrate (FIG. 14). . In this case, the clearance H is determined by the height (length) of the support pin 104. The backward (lower limit) height position of the shielding plate 100 is set to a position higher than the shaft 43 of the roller 42B and lower than the top surface (roller conveying surface) of the roller 45.

遮蔽板昇降機構106は、チャンバ40の外(下)に配置された1台または複数台の昇降駆動源たとえばシリンダ108を水平支持板110および昇降支持軸112を介して遮蔽板100に接続している。昇降支持軸112は、チャンバ40の底壁をシール部材114を介して気密に貫通し、その上端が遮蔽板100の下面に結合されている。   The shielding plate elevating mechanism 106 connects one or more elevating drive sources, for example, cylinders 108 disposed outside (below) the chamber 40 to the shielding plate 100 via the horizontal support plate 110 and the elevating support shaft 112. Yes. The elevating support shaft 112 passes through the bottom wall of the chamber 40 in an airtight manner via the seal member 114, and the upper end thereof is coupled to the lower surface of the shielding plate 100.

この第2の実施形態においても、上記実施形態と同様に、減圧乾燥処理およびパーシング中のチャンバ内雰囲気温度の変動幅を低減することが可能であり、遮蔽板100上の各支持ピン104が雰囲気温度から受ける熱的影響を少なくし、ひいては基板Gが支持ピン104から受ける熱的影響を少なくし、基板G上のレジスト塗布膜にピン転写跡が付くのを抑えることができる。   Also in the second embodiment, similarly to the above-described embodiment, it is possible to reduce the fluctuation range of the atmospheric temperature in the chamber during the vacuum drying process and the parsing, and each support pin 104 on the shielding plate 100 has an atmosphere. It is possible to reduce the thermal influence from the temperature, and thereby reduce the thermal influence that the substrate G receives from the support pins 104, and to prevent the pin transfer trace from being applied to the resist coating film on the substrate G.

上記した実施形態では、遮蔽板100の固定(または下限)高さ位置をコロ42Bのシャフト43より高い位置に設定した。しかし、遮蔽板100の作用効果がある程度減少することになるが、コロ42Bのシャフト43より少し低い位置に遮蔽板100の固定(または下限)高さ位置を設定することも可能である。   In the above-described embodiment, the fixed (or lower limit) height position of the shielding plate 100 is set to a position higher than the shaft 43 of the roller 42B. However, although the effect of the shielding plate 100 is reduced to some extent, the fixed (or lower limit) height position of the shielding plate 100 can be set at a position slightly lower than the shaft 43 of the roller 42B.

上記した実施形態における減圧乾燥ユニット12のチャンバ40は、搬送方向(X方向)で向かい合う一対のチャンバ側壁に搬入口44および搬出口46をそれぞれ設けて、基板Gがチャンバ40を通り抜けする構成となっていた。しかし、チャンバ40一側壁に設けた1つの搬入出口で搬入口と搬出口とを兼用させる構成も可能であり、その場合は搬入側コロ搬送路38Aと搬出側コロ搬送路38Cとの共用化もはかれる。   The chamber 40 of the reduced-pressure drying unit 12 in the above-described embodiment has a configuration in which the substrate G passes through the chamber 40 by providing the carry-in port 44 and the carry-out port 46 on the pair of chamber side walls facing each other in the transport direction (X direction). It was. However, it is also possible to use a structure in which one loading / unloading port provided on one side wall of the chamber 40 serves as both a loading / unloading port. In this case, the loading-side roller conveyance path 38A and the unloading-side roller conveyance path 38C can be shared. It is peeled off.

本発明における被処理基板はLCD用のガラス基板に限るものではなく、他のフラットパネルディスプレイ用基板や、半導体ウエハ、CD基板、フォトマスク、プリント基板等も可能である。減圧乾燥処理対象の塗布液もレジスト液に限らず、たとえば層間絶縁材料、誘電体材料、配線材料等の処理液も可能である。   The substrate to be processed in the present invention is not limited to a glass substrate for LCD, and other flat panel display substrates, semiconductor wafers, CD substrates, photomasks, printed substrates and the like are also possible. The coating liquid to be dried under reduced pressure is not limited to a resist liquid, and for example, a processing liquid such as an interlayer insulating material, a dielectric material, or a wiring material is also possible.

Claims (8)

被処理基板上に形成された塗布液の膜に減圧乾燥処理を施す減圧乾燥装置であって、
前記基板を水平状態で収容するための空間を有する減圧可能なチャンバと、
前記チャンバの外と中で連続するコロ搬送路を有し、前記コロ搬送路上のコロ搬送で前記基板を前記チャンバに搬入し、または前記チャンバから搬出する搬送機構と、
前記減圧乾燥処理のために前記チャンバ内を密閉状態で真空排気する排気機構と、
前記減圧乾燥処理を終了させるために前記チャンバ内にパージング用のガスを供給するバージング機構と、
前記基板をピン先端で水平に支えて上げ下げするために前記チャンバの中に離散的に配置された多数の支持ピンを有し、前記減圧乾燥処理を行う時は前記支持ピンの先端を前記コロ搬送路よりも高くして前記基板を支持し、前記基板の搬入出を行う時は前記支持ピンのピン先端を前記コロ搬送路よりも低くして前記搬送機構による前記基板のコロ搬送を可能とする基板リフト機構と、
前記チャンバ内の雰囲気温度の変動を低減させるために、前記コロ搬送路の近くで前記基板の下を覆うように設けられる遮蔽板と
を有する減圧乾燥装置。
A vacuum drying apparatus that performs a vacuum drying process on a film of a coating solution formed on a substrate to be processed,
A depressurizable chamber having a space for accommodating the substrate in a horizontal state;
A roller transport path continuous in and out of the chamber, and a transport mechanism for transporting the substrate into the chamber or transporting the substrate out of the chamber by roller transport on the roller transport path;
An exhaust mechanism for evacuating the chamber in a sealed state for the reduced-pressure drying process;
A buzzing mechanism for supplying a purging gas into the chamber to finish the vacuum drying process;
In order to support the substrate horizontally at the tip of the pin, it has a large number of support pins discretely arranged in the chamber, and when carrying out the vacuum drying process, the tip of the support pin is transported to the roller When the substrate is supported higher than the path, and the substrate is carried in and out, the tip of the support pin is made lower than the roller conveyance path so that the substrate can be conveyed by the conveyance mechanism. A substrate lift mechanism;
A reduced-pressure drying apparatus comprising: a shielding plate provided so as to cover the bottom of the substrate near the roller conveyance path in order to reduce the variation in the atmospheric temperature in the chamber.
前記遮蔽板が一定の高さ位置に固定して設けられる、請求項1に記載の減圧乾燥装置。   The reduced-pressure drying apparatus according to claim 1, wherein the shielding plate is fixedly provided at a certain height position. 被処理基板上に形成された塗布液の膜に減圧乾燥処理を施す減圧乾燥装置であって、
前記基板を水平状態で収容するための空間を有する減圧可能なチャンバと、
前記チャンバの外と中で連続するコロ搬送路を有し、前記コロ搬送路上のコロ搬送で前記基板を前記チャンバに搬入し、または前記チャンバから搬出する搬送機構と、
前記減圧乾燥処理のために前記チャンバ内を密閉状態で真空排気する排気機構と、
前記減圧乾燥処理を終了させるために前記チャンバ内にパージング用のガスを供給するバージング機構と、
前記減圧乾燥処理および前記パージング中の前記チャンバ内の雰囲気温度を小さくするために、前記基板の下を覆うように設けられる遮蔽板と、
前記減圧乾燥処理中に前記基板をピン先端で水平に支えるために前記遮蔽板の上に離散的に設けられる多数の支持ピンと、
前記遮蔽板に結合され、前記乾燥処理を行う時は前記支持ピンの先端を前記コロ搬送路よりも高くして前記支持ピンによる前記基板の支持を可能とし、前記基板の搬入出を行う時は前記支持ピンのピン先端を前記コロ搬送路よりも低くして前記搬送機構による前記基板のコロ搬送を可能とするように、前記遮蔽板を昇降移動させる遮蔽板昇降機構と
を有する減圧乾燥装置。
A vacuum drying apparatus that performs a vacuum drying process on a film of a coating solution formed on a substrate to be processed,
A depressurizable chamber having a space for accommodating the substrate in a horizontal state;
A roller transport path continuous in and out of the chamber, and a transport mechanism for transporting the substrate into the chamber or transporting the substrate out of the chamber by roller transport on the roller transport path;
An exhaust mechanism for evacuating the chamber in a sealed state for the reduced-pressure drying process;
A buzzing mechanism for supplying a purging gas into the chamber to finish the vacuum drying process;
In order to reduce the atmospheric temperature in the chamber during the vacuum drying process and the purging, a shielding plate provided to cover the bottom of the substrate;
A number of support pins discretely provided on the shielding plate to horizontally support the substrate at the tip of the pin during the vacuum drying process;
When coupled with the shielding plate and performing the drying process, the tip of the support pin is made higher than the roller conveyance path so that the substrate can be supported by the support pin, and when the substrate is carried in and out. A reduced-pressure drying apparatus comprising: a shielding plate lifting mechanism that moves the shielding plate up and down so that the tip of the support pin is lower than the roller transportation path so that the substrate can be transported by the transportation mechanism.
前記遮蔽板が、前記支持ピンを昇降可能に貫通させるための第1の開口と、前記コロ搬送路との干渉を避けるための第2の開口とを有する、請求項1〜3のいずれか一項に記載の減圧乾燥装置。   The said shielding board has a 1st opening for penetrating the said support pin so that raising / lowering is possible, and a 2nd opening for avoiding interference with the said roller conveyance path. The vacuum drying apparatus according to item. 前記パージング機構は、前記コロ搬送路の搬送面よりも高い位置で前記パージングガスを噴出するパージングガス噴出部を有する、請求項1〜4のいずれか一項に記載の減圧乾燥装置。   The reduced-pressure drying apparatus according to any one of claims 1 to 4, wherein the purging mechanism includes a purging gas ejection unit that ejects the purging gas at a position higher than a conveyance surface of the roller conveyance path. 前記パージングガス噴出部のガス噴出口が、前記コロ搬送路の搬送面よりも20mm〜30mm高い位置に設けられる、請求項5に記載の減圧乾燥装置。   The reduced-pressure drying apparatus according to claim 5, wherein a gas outlet of the purging gas outlet is provided at a position 20 to 30 mm higher than a transfer surface of the roller transfer path. 被処理基板上に形成された塗布液の膜に減圧乾燥処理を施す減圧乾燥装置であって、
前記基板を水平状態で収容するための空間を有する減圧可能なチャンバと、
前記減圧乾燥処理のために前記チャンバ内を密閉状態で真空排気する排気機構と、
前記チャンバの外と中で連続するコロ搬送路を有し、前記コロ搬送路上のコロ搬送で前記基板を前記チャンバに搬入し、または前記チャンバから搬出する搬送機構と、
前記基板をピン先端で水平に支えて上げ下げするために前記チャンバの中に離散的に配置された多数の支持ピンを有し、前記減圧乾燥処理を行う時は前記支持ピンの先端を前記コロ搬送路よりも高くして前記基板を支持し、前記基板の搬入出を行う時は前記支持ピンのピン先端を前記コロ搬送路よりも低くして前記搬送機構による前記基板のコロ搬送を可能とする基板リフト機構と、
前記減圧乾燥処理を終了させるために前記チャンバ内にパージング用のガスを供給するバージング機構と
を具備し、
前記パージング機構が、前記コロ搬送路よりも高い位置で前記パージングガスを噴出するガス噴出部を有する、減圧乾燥装置。
A vacuum drying apparatus that performs a vacuum drying process on a film of a coating solution formed on a substrate to be processed,
A depressurizable chamber having a space for accommodating the substrate in a horizontal state;
An exhaust mechanism for evacuating the chamber in a sealed state for the reduced-pressure drying process;
A roller transport path continuous in and out of the chamber, and a transport mechanism for transporting the substrate into the chamber or transporting the substrate out of the chamber by roller transport on the roller transport path;
In order to support the substrate horizontally at the tip of the pin, it has a large number of support pins discretely arranged in the chamber, and when carrying out the vacuum drying process, the tip of the support pin is transported to the roller When the substrate is supported higher than the path, and the substrate is carried in and out, the tip of the support pin is made lower than the roller conveyance path so that the substrate can be conveyed by the conveyance mechanism. A substrate lift mechanism;
A buzzing mechanism for supplying a purging gas into the chamber to finish the vacuum drying process,
The reduced pressure drying apparatus, wherein the purging mechanism includes a gas ejection unit that ejects the purging gas at a position higher than the roller conveyance path.
前記パージングガス噴出部のガス噴出口が、前記コロ搬送路の搬送面よりも20mm〜30mm高い位置に設けられる、請求項7に記載の減圧乾燥装置。   The reduced-pressure drying apparatus according to claim 7, wherein a gas outlet of the purging gas outlet is provided at a position 20 mm to 30 mm higher than a transfer surface of the roller transfer path.
JP2009246356A 2009-10-16 2009-10-27 Vacuum drying apparatus and vacuum drying method Expired - Fee Related JP4975080B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009246356A JP4975080B2 (en) 2009-10-27 2009-10-27 Vacuum drying apparatus and vacuum drying method
KR20100084761A KR101494924B1 (en) 2009-10-16 2010-08-31 Decompression Drying Apparatus and Decompression Drying Method
TW099135270A TW201139961A (en) 2009-10-16 2010-10-15 Vacuum drying apparatus
CN201010516316.8A CN102074456B (en) 2009-10-16 2010-10-18 Decompression drying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246356A JP4975080B2 (en) 2009-10-27 2009-10-27 Vacuum drying apparatus and vacuum drying method

Publications (2)

Publication Number Publication Date
JP2011096711A true JP2011096711A (en) 2011-05-12
JP4975080B2 JP4975080B2 (en) 2012-07-11

Family

ID=44113348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246356A Expired - Fee Related JP4975080B2 (en) 2009-10-16 2009-10-27 Vacuum drying apparatus and vacuum drying method

Country Status (1)

Country Link
JP (1) JP4975080B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105775A (en) * 2011-11-10 2013-05-30 Ihi Corp Thin plate-like workpiece transfer device and thin plate-like workpiece transfer method
KR101291417B1 (en) 2011-05-31 2013-07-30 한국수력원자력 주식회사 Drying apparatus for salt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047582A (en) * 2002-07-09 2004-02-12 Hirata Corp Substrate treatment equipment
JP2006114524A (en) * 2004-10-12 2006-04-27 Dainippon Screen Mfg Co Ltd Reduced pressure drying device
JP2008124366A (en) * 2006-11-15 2008-05-29 Tokyo Electron Ltd Reduced pressure drying apparatus
JP2009038231A (en) * 2007-08-02 2009-02-19 Tokyo Electron Ltd Substrate supporting mechanism, decompression drying apparatus, and substrate processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047582A (en) * 2002-07-09 2004-02-12 Hirata Corp Substrate treatment equipment
JP2006114524A (en) * 2004-10-12 2006-04-27 Dainippon Screen Mfg Co Ltd Reduced pressure drying device
JP2008124366A (en) * 2006-11-15 2008-05-29 Tokyo Electron Ltd Reduced pressure drying apparatus
JP2009038231A (en) * 2007-08-02 2009-02-19 Tokyo Electron Ltd Substrate supporting mechanism, decompression drying apparatus, and substrate processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291417B1 (en) 2011-05-31 2013-07-30 한국수력원자력 주식회사 Drying apparatus for salt
JP2013105775A (en) * 2011-11-10 2013-05-30 Ihi Corp Thin plate-like workpiece transfer device and thin plate-like workpiece transfer method

Also Published As

Publication number Publication date
JP4975080B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4372182B2 (en) Substrate support mechanism, reduced-pressure drying apparatus, and substrate processing apparatus
JP4272230B2 (en) Vacuum dryer
KR20110041984A (en) Decompression drying apparatus
JP5008147B2 (en) Vacuum dryer
JP4312787B2 (en) Vacuum dryer
KR101871006B1 (en) Method and apparatus for drying under reduced pressure
JP4676359B2 (en) Priming processing method and priming processing apparatus
JP3960332B2 (en) Vacuum dryer
JP2006261394A (en) Substrate processing apparatus, substrate processing method and substrate processing program
WO2010044310A1 (en) Drying method and drying device
JP4975080B2 (en) Vacuum drying apparatus and vacuum drying method
JP2008311250A (en) Reflow system and reflow method
KR101568050B1 (en) Substrate processing apparatus
JP4341686B2 (en) Film forming apparatus and film forming method
JP2006059844A (en) Reduced pressure drying apparatus
TWI461646B (en) Device and method for reduced-pressure drying
JP2011086807A (en) Vacuum drying apparatus
JP4967013B2 (en) SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND RECORDING MEDIUM RECORDING PROGRAM FOR EXECUTING THE SUBSTRATE PROCESSING METHOD
WO2011030607A1 (en) Drying device
JP2006071185A (en) Vacuum dryer
JP3170799U (en) Vacuum dryer
JP2006153315A (en) Depressurizing dryer
JP4957288B2 (en) Film forming apparatus, heating apparatus, and film forming method
KR20230028151A (en) Reduced pressure drying apparatus, reduced pressure drying method, and computer program stored in computer-readable storage medium
JP2023042320A (en) Vacuum dryer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees