JP2009038231A - Substrate supporting mechanism, decompression drying apparatus, and substrate processor - Google Patents

Substrate supporting mechanism, decompression drying apparatus, and substrate processor Download PDF

Info

Publication number
JP2009038231A
JP2009038231A JP2007201777A JP2007201777A JP2009038231A JP 2009038231 A JP2009038231 A JP 2009038231A JP 2007201777 A JP2007201777 A JP 2007201777A JP 2007201777 A JP2007201777 A JP 2007201777A JP 2009038231 A JP2009038231 A JP 2009038231A
Authority
JP
Japan
Prior art keywords
substrate
pin
chamber
support
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007201777A
Other languages
Japanese (ja)
Other versions
JP4372182B2 (en
Inventor
Masaru Honda
勝 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007201777A priority Critical patent/JP4372182B2/en
Priority to KR1020080075660A priority patent/KR101299742B1/en
Publication of JP2009038231A publication Critical patent/JP2009038231A/en
Application granted granted Critical
Publication of JP4372182B2 publication Critical patent/JP4372182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Drying Of Solid Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent, as much as possible, unwanted thermal influence of a supporting pin on a substrate by reducing thermal influence from ambient temperature on the supporting pin to support the substrate to be processed. <P>SOLUTION: A substrate lifting mechanism 126 includes a lifting pin air-cooling section for cooling the lifting pin 128 to the desired constant temperature. In this lifting pin air-cooling section, an air-cooling gas CA supplied via an air-cooling gas supplying pipe 152 from an air-cooling gas supplying source 150 is introduced from an aperture of the lower end of pin into the lifting pin 128 (pin body 128a). The air-cooling gas CA introduced from the lower side into the lifting pin 128 flows to the upper side of the hollow space within the pin and is exhausted outside the pin form each ventilation hole 128c at the area near the end part of the pin. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被処理基板を支持ピンで支持する基板支持機構ならびにこの基板支持機構を用いて基板に減圧乾燥を施す減圧乾燥装置および雰囲気温度の変化する他の処理を施す基板処理装置に関する。   The present invention relates to a substrate support mechanism that supports a substrate to be processed with a support pin, a reduced-pressure drying apparatus that performs drying under reduced pressure on the substrate using the substrate support mechanism, and a substrate processing apparatus that performs other processing in which the ambient temperature changes.

たとえば、液晶ディスプレイ(LCD)等のフラットパネルディスプレイ(FPD)製造のフォトリソグラフィー工程においては、ガラス基板等の被処理基板上に塗布したレジスト液をプリベーキングに先立って適度に乾燥させるために減圧乾燥装置が用いられている。   For example, in a photolithography process for manufacturing a flat panel display (FPD) such as a liquid crystal display (LCD), a resist solution applied on a substrate to be processed such as a glass substrate is dried under reduced pressure in order to dry it appropriately prior to pre-baking. The device is used.

従来の減圧乾燥装置は、たとえば特許文献1に記載されるように、上面が開口しているトレーまたは底浅容器型の下部チャンバと、この下部チャンバの上面に気密に密着または嵌合可能に構成された蓋状の上部チャンバとを有している。下部チャンバの中にはステージが配設されており、このステージ上に基板を水平に載置してから、チャンバを閉じて(上部チャンバを下部チャンバに密着させて)減圧乾燥処理を行う。チャンバに基板を搬入出する際には、上部チャンバをクレーン等で上昇させてチャンバを開放し、さらには基板のローディング/アンローディングのためにステージをシリンダ等で適宜上昇させるようにしている。そして、基板の搬入出ないしローディング/アンローディングは、減圧乾燥装置回りで基板の搬送を行う外部の搬送ロボットのハンドリングにより行っている。   A conventional vacuum drying apparatus is configured, for example, as described in Patent Document 1, such that a lower chamber of a tray or a shallow container type having an open upper surface and an upper surface of the lower chamber can be tightly adhered or fitted. And a lid-like upper chamber. A stage is disposed in the lower chamber, and after the substrate is placed horizontally on the stage, the chamber is closed (the upper chamber is brought into close contact with the lower chamber), and a vacuum drying process is performed. When loading / unloading a substrate into / from the chamber, the upper chamber is lifted by a crane or the like to open the chamber, and the stage is appropriately lifted by a cylinder or the like for loading / unloading of the substrate. Then, loading / unloading of the substrate or loading / unloading is performed by handling an external transport robot that transports the substrate around the vacuum drying apparatus.

チャンバ内で基板を支持する機構は、より詳細には、ステージ上面の適宜の位置に離散的に立てて固定された複数本の支持ピンの先端に載せるようにして基板を水平に支持し、チャンバの底壁を貫通して延びる昇降シャフトを介してステージの高さ位置を変えられるようにしている。ここで、チャンバ内で基板をステージ上面との直接接触を避けて支持ピンで支持するのは、前工程のレジスト塗布処理でレジスト液を塗布されたばかりの基板が減圧乾燥に際して基板支持機構側から受ける熱的影響を極力少なくするため、つまり基板と基板支持部材との接触(面積)を極力小さくするためであり、また静電気対策にも有効に働くためである。
特開2000−181079
More specifically, the mechanism for supporting the substrate in the chamber horizontally supports the substrate so as to be placed on the tips of a plurality of support pins that are discretely set and fixed at appropriate positions on the upper surface of the stage. The height position of the stage can be changed via an elevating shaft extending through the bottom wall of the stage. Here, the substrate is supported in the chamber by the support pins while avoiding direct contact with the upper surface of the stage. The substrate that has just been coated with the resist solution by the resist coating process in the previous step is received from the substrate support mechanism side during drying under reduced pressure. This is to minimize the thermal influence, that is, to reduce the contact (area) between the substrate and the substrate supporting member as much as possible, and to effectively work against static electricity.
JP2000-181079

もっとも、基板を支持ピンで支持する場合であっても、基板と支持ピンとの間の熱交換は多少ともあり、その熱交換の程度が大きければ基板上の塗布膜(たとえばレジスト膜)にピンの跡が付くという、いわゆるピン転写の問題が生じる。従来は、ピン転写を防止するために、熱的特性(熱伝導率、熱変形温度、熱膨張係数、耐熱温度、比熱、対燃性等)を考慮して支持ピンの材質および形状を選定するという対策を採ってきた。しかしながら、そのような材質・形状依存の支持ピン構造は、雰囲気温度が変化するアプリケーションには対応できないことがわかってきた。   However, even when the substrate is supported by the support pins, there is some heat exchange between the substrate and the support pins. If the degree of heat exchange is large, the coating film (for example, resist film) on the substrate has a pin. There is a problem of so-called pin transfer that marks are left. Conventionally, in order to prevent pin transfer, the material and shape of the support pin are selected in consideration of thermal characteristics (thermal conductivity, thermal deformation temperature, thermal expansion coefficient, heat resistance temperature, specific heat, flame resistance, etc.) I have taken the measures. However, it has been found that such a material / shape-dependent support pin structure cannot cope with an application in which the ambient temperature changes.

たとえば、上述のような減圧乾燥装置においては、減圧乾燥(真空排気)中はチャンバ内の雰囲気温度が初期温度(通常は常温)から5℃〜10℃の下げ幅で急激に下がり、減圧乾燥(真空排気)を止めてチャンバ内を窒素ガス等でパージすると今度は雰囲気温度が初期温度よりも10℃を超える温度まで、つまり数10℃の上げ幅で急上昇し、パージを止めると雰囲気温度が常温に向かって徐々に低下する。このような雰囲気温度の変化に応じて支持ピンの温度も変化する。ここで、問題になるのは、処理済の基板がチャンバから搬出されるのと入れ代わりで後続の基板がチャンバ内に搬入された時に、その基板温度が常温であるのに、支持ピンの温度は常温に戻っていないことである。このため、基板と支持ピンとの間にたとえば10℃前後の温度差による熱交換が生じ、レジスト膜にピン跡の転写が発生しやすくなっている。   For example, in a vacuum drying apparatus such as that described above, during vacuum drying (vacuum evacuation), the atmospheric temperature in the chamber drops rapidly from the initial temperature (usually normal temperature) by a decrease of 5 ° C. to 10 ° C., and vacuum drying ( When the vacuum evacuation is stopped and the inside of the chamber is purged with nitrogen gas or the like, the ambient temperature rapidly rises to a temperature exceeding 10 ° C. from the initial temperature, that is, with an increase of several tens of degrees Celsius. Gradually decreases. The temperature of the support pin also changes in accordance with such a change in ambient temperature. Here, the problem is that when the processed substrate is unloaded from the chamber and the subsequent substrate is loaded into the chamber, the substrate temperature is normal, but the temperature of the support pins is It has not returned to room temperature. For this reason, heat exchange due to a temperature difference of, for example, about 10 ° C. occurs between the substrate and the support pins, and pin marks are easily transferred to the resist film.

本発明は、上述したような従来技術の問題点に鑑みてなされたものであって、支持ピンに対する周囲温度の影響を少なくし、特に支持ピン温度の初期または基準温度への迅速な復帰を可能とし、さらには支持ピンを所望の一定温度に保持することも容易かつ効率的に行える基板支持機構を提供することを目的とする。   The present invention has been made in view of the problems of the prior art as described above, and reduces the influence of the ambient temperature on the support pin, and in particular, enables quick return of the support pin temperature to the initial or reference temperature. Furthermore, an object of the present invention is to provide a substrate support mechanism that can easily and efficiently maintain the support pins at a desired constant temperature.

本発明の別の目的は、被処理基板が支持ピンから不所望な熱的影響を受けるのを防止して処理品質を向上させる減圧乾燥装置および基板処理装置を提供することを目的とする。   Another object of the present invention is to provide a reduced-pressure drying apparatus and a substrate processing apparatus that improve the processing quality by preventing the substrate to be processed from being undesirably affected by the support pins.

上記の目的を達成するために、本発明の基板支持機構は、被処理基板を支持ピンの先端に載せて支持する基板支持機構であって、前記支持ピンを先端部が閉塞し、かつ側壁に通気孔が設けられた中空の筒体で構成し、前記通気孔を通って前記筒体の中を温度調整のための所定のガスが流れるように、前記筒体の基端部にガス供給部またはバキューム源を接続してなる。   In order to achieve the above object, a substrate support mechanism according to the present invention is a substrate support mechanism that supports a substrate to be processed by placing it on the tip of a support pin, the tip of the support pin is closed, and the side wall is supported on a side wall. A gas supply unit is formed at a base end portion of the cylindrical body so that a predetermined gas for adjusting temperature flows through the ventilation hole in the cylindrical body, and the hollow cylindrical body is provided with a ventilation hole. Alternatively, a vacuum source is connected.

上記の構成においては、基板を支持する支持ピンの内部に温調用のガスを流すことで、支持ピンが周囲または雰囲気温度から受ける影響を少なくして、支持ピンの温度を所望の温度に制御し、ひいては基板が支持ピンから受ける熱的影響を少なくすることができる。   In the above configuration, the temperature of the support pin is controlled to a desired temperature by flowing a temperature adjusting gas inside the support pin that supports the substrate, thereby reducing the influence of the support pin from the ambient or ambient temperature. As a result, the thermal influence that the substrate receives from the support pins can be reduced.

本発明の基板支持機構においては、ピン温調効率を高めるために、好ましくは支持ピンの先端部に近い部位に通気孔が設けられ、さらに好ましくは、支持ピンの軸方向で異なる部位に複数の通気孔が設けられ、支持ピンの周回方向で異なる部位に複数の通気孔が設けられる。   In the substrate support mechanism of the present invention, in order to increase the pin temperature adjustment efficiency, a vent hole is preferably provided in a portion near the tip of the support pin, and more preferably, a plurality of portions are provided in different portions in the axial direction of the support pin. Ventilation holes are provided, and a plurality of ventilation holes are provided at different portions in the circumferential direction of the support pins.

また、好適な一態様として、支持ピンの筒体の先端部に取り付けられて基板と直接接触するピン先部は樹脂で構成されてよい。   As a preferred embodiment, the pin tip portion that is attached to the tip end portion of the cylindrical body of the support pin and directly contacts the substrate may be made of resin.

別の好適な一態様として、通気孔よりもピン先部側を塞いで筒体の外周面を隙間を空けて覆う筒状のカバー体を有し、このカバー体の基端部側に設けられた外気に通じる開口部と筒体の通気孔との間でカバー体の内側の隙間を介して温調ガスを流す構成が採られる。かかる構成によれば、支持ピン(筒体)の壁に沿って内と外の両側で温調ガスが流れるので、ピン温調効率を一層高めることができるとともに、支持ピンの周囲に発生する温調ガスの流れによって基板が受ける影響を一層確実に防止することができる。   As another preferred embodiment, the tube has a cylindrical cover body that covers the outer peripheral surface of the cylinder body with a gap therebetween, closing the pin tip side of the vent hole, and is provided on the base end side of the cover body. Further, a configuration is adopted in which the temperature adjusting gas is allowed to flow through the gap inside the cover body between the opening communicating with the outside air and the ventilation hole of the cylindrical body. According to such a configuration, the temperature adjusting gas flows along both the inner and outer sides along the wall of the support pin (cylindrical body), so that the pin temperature adjustment efficiency can be further improved and the temperature generated around the support pin. The influence which a board | substrate receives with the flow of conditioning gas can be prevented more reliably.

別の好適な一態様として、本発明の基板支持機構は、支持ピンを水平面内で所定の間隔を空けて複数本配置し、各々の支持ピンを略鉛直に立てて支持するピン支持部材を有する。この場合、このピン支持部材の中に、筒体の基端部と接続し、ガス供給部またはバキューム源に通じるガス流路を形成することができる。また、支持ピンを昇降移動させるためにピン支持部材を鉛直方向で移動させる昇降部を有してもよい。   As another preferred embodiment, the substrate support mechanism of the present invention has a pin support member in which a plurality of support pins are arranged at a predetermined interval in a horizontal plane and each support pin is supported substantially vertically. . In this case, in this pin support member, it is possible to form a gas flow path that connects to the base end portion of the cylinder and communicates with the gas supply unit or the vacuum source. Moreover, you may have a raising / lowering part which moves a pin support member in a perpendicular direction in order to raise / lower a support pin.

本発明の減圧乾燥装置は、基板上に塗布膜が形成された直後の被処理基板を出し入れ可能に収容する密閉可能なチャンバと、前記チャンバ内で前記基板を前記支持ピンの先端に載せて支持する本発明の基板支持機構と、前記基板上の塗布膜を減圧状態で乾燥させるために前記チャンバ内を真空排気する真空排気機構とを有する。   The reduced-pressure drying apparatus of the present invention supports a sealable chamber in which a substrate to be processed immediately after a coating film is formed on the substrate is detachably accommodated, and the substrate is placed on the tip of the support pin in the chamber. A substrate support mechanism of the present invention, and a vacuum exhaust mechanism for evacuating the chamber in order to dry the coating film on the substrate in a reduced pressure state.

上記の装置構成においては、減圧乾燥の処理中および/または処理の合間に基板支持機構が支持ピンの温度を所望の温度に制御することにより、基板が支持ピンから不所望な熱的影響を受けないようにして、基板上の塗布膜に支持ピンの跡が付くピン転写を防止し、塗布膜の特性を向上させることができる。   In the above apparatus configuration, the substrate support mechanism controls the temperature of the support pins to a desired temperature during the vacuum drying process and / or between the processes, so that the substrate is undesirably influenced by the support pins. In this way, it is possible to prevent pin transfer in which the marks of the support pins are attached to the coating film on the substrate, and to improve the characteristics of the coating film.

本発明の減圧乾燥装置においては、好適な一態様として、真空排気機構の真空排気動作を停止させている期間中に、支持ピンの内部を温度調整用のガスが流れるように基板支持機構のガス供給部またはバキューム源が作動する。また、パージガス供給部が備えられ、真空排気機構の真空排気動作を止めた直後にチャンバ内にパージガスを供給する。また、ガス供給部またはバキューム源がチャンバの外に配置され、チャンバの壁を通る真空封止された通気路を介してガス供給部またはバキューム源と支持ピンの筒体の基端部とが接続される。   In the reduced-pressure drying apparatus of the present invention, as a preferred embodiment, the gas of the substrate support mechanism is arranged so that the temperature adjusting gas flows through the support pins during the period when the vacuum exhaust operation of the vacuum exhaust mechanism is stopped. Supply or vacuum source is activated. In addition, a purge gas supply unit is provided, and purge gas is supplied into the chamber immediately after the evacuation operation of the evacuation mechanism is stopped. In addition, the gas supply or vacuum source is located outside the chamber, and the gas supply or vacuum source is connected to the base end of the cylinder of the support pin through a vacuum-sealed air passage through the chamber wall. Is done.

別の好適な一態様によれば、減圧乾燥の枚葉処理が一定のサイクルで繰り返し行われ、各回の処理が開始される直前には支持ピンのピン先部の温度が一定の基準温度(たとえばチャンバに新規に搬入された基板の初期温度)付近に戻るような制御が行われる。   According to another preferred embodiment, the single-wafer processing of drying under reduced pressure is repeatedly performed in a constant cycle, and the temperature of the pin tip portion of the support pin is constant reference temperature (for example, immediately before each processing is started) Control is performed so as to return to near the initial temperature of the substrate newly carried into the chamber.

本発明の基板処理装置は、被処理基板を出し入れ可能に収容するチャンバと、前記チャンバ内で前記基板を前記支持ピンの先端に載せて支持する本発明の基板支持機構と、前記チャンバ内で前記基板に雰囲気温度が変化する所定の処理を施す処理部とを有する。   The substrate processing apparatus of the present invention includes a chamber that accommodates a substrate to be processed in a removable manner, a substrate support mechanism of the present invention that supports the substrate mounted on a tip of the support pin in the chamber, and the chamber in the chamber. And a processing unit that performs a predetermined process for changing the ambient temperature on the substrate.

上記の装置構成においては、基板に対して所定の処理を行っている間あるいは処理の合間に基板支持機構が支持ピンの温度を所望の温度に制御することにより、基板が支持ピンから不所望な熱的影響を受けないようにして、処理品質を向上させることができる。   In the above apparatus configuration, the substrate support mechanism controls the temperature of the support pins to a desired temperature while performing a predetermined process on the substrate or between the processes, so that the substrate is undesired from the support pins. Processing quality can be improved without being affected by heat.

本発明の基板支持機構によれば、上記のような構成および作用により、支持ピンが周囲または雰囲気温度から受ける影響を低減し、支持ピン温度の初期または基準温度への迅速な復帰を可能とし、あるいは所望の一定温度に保持するような温度制御も可能とすることができる。   According to the substrate support mechanism of the present invention, due to the configuration and operation as described above, the influence of the support pin from the ambient or ambient temperature is reduced, and the support pin temperature can be quickly returned to the initial or reference temperature. Alternatively, temperature control that maintains a desired constant temperature can also be made possible.

本発明の減圧乾燥装置および基板処理装置によれば、上記のような構成および作用により、被処理基板が支持ピンから不所望な熱的影響を受けるのを防止して処理品質を向上させることができる。   According to the reduced pressure drying apparatus and the substrate processing apparatus of the present invention, the processing and quality can be improved by preventing the substrate to be processed from being undesirably affected by the support pins by the above-described configuration and operation. it can.

以下、添付図を参照して本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1に、本発明の減圧乾燥装置を適用できる一構成例としての塗布現像処理システムを示す。この塗布現像処理システム10は、クリーンルーム内に設置され、たとえばガラス基板を被処理基板とし、LCD製造プロセスにおいてフォトリソグラフィー工程の中の洗浄、レジスト塗布、プリベーク、現像およびポストベーク等の一連の処理を行うものである。露光処理は、このシステムに隣接して設置される外部の露光装置12で行われる。   FIG. 1 shows a coating and developing treatment system as one configuration example to which the reduced pressure drying apparatus of the present invention can be applied. This coating and developing processing system 10 is installed in a clean room, for example, using a glass substrate as a substrate to be processed, and performing a series of processing such as cleaning, resist coating, pre-baking, developing and post-baking in the photolithography process in the LCD manufacturing process. Is what you do. The exposure process is performed by an external exposure apparatus 12 installed adjacent to this system.

この塗布現像処理システム10は、中心部に横長のプロセスステーション(P/S)16を配置し、その長手方向(X方向)両端部にカセットステーション(C/S)14とインタフェースステーション(I/F)18とを配置している。   In the coating and developing system 10, a horizontally long process station (P / S) 16 is disposed at the center, and a cassette station (C / S) 14 and an interface station (I / F) are disposed at both ends in the longitudinal direction (X direction). ) 18.

カセットステーション(C/S)14は、システム10のカセット搬入出ポートであり、基板Gを多段に積み重ねるようにして複数枚収容可能なカセットCを水平な一方向(Y方向)に4個まで並べて載置できるカセットステージ20と、このステージ20上のカセットCに対して基板Gの出し入れを行う搬送機構22とを備えている。搬送機構22は、基板Gを1枚単位で保持できる搬送アーム22aを有し、X,Y,Z,θの4軸で動作可能であり、隣接するプロセスステーション(P/S)16側と基板Gの受け渡しを行えるようになっている。   The cassette station (C / S) 14 is a cassette loading / unloading port of the system 10, and arranges up to four cassettes C that can accommodate a plurality of substrates C in a horizontal direction (Y direction) by stacking substrates G in multiple stages. A cassette stage 20 that can be placed, and a transport mechanism 22 that takes in and out the substrate G to and from the cassette C on the stage 20 are provided. The transport mechanism 22 has a transport arm 22a that can hold the substrate G in units of one sheet, can be operated with four axes of X, Y, Z, and θ, and is adjacent to the adjacent process station (P / S) 16 side and the substrate. G can be delivered.

プロセスステーション(P/S)16は、水平なシステム長手方向(X方向)に延在する平行かつ逆向きの一対のラインA,Bに各処理部をプロセスフローまたは工程の順に配置している。   In the process station (P / S) 16, the processing units are arranged in the order of the process flow or the process on a pair of parallel and opposite lines A and B extending in the horizontal system longitudinal direction (X direction).

より詳細には、カセットステーション(C/S)14側からインタフェースステーション(I/F)18側へ向う上流部のプロセスラインAには、搬入ユニット(IN PASS)24、洗浄プロセス部26、第1の熱的処理部28、塗布プロセス部30および第2の熱的処理部32が第1の平流し搬送路34に沿って上流側からこの順序で一列に配置されている。   More specifically, the upstream process line A from the cassette station (C / S) 14 side to the interface station (I / F) 18 side includes a carry-in unit (IN PASS) 24, a cleaning process unit 26, a first The thermal processing section 28, the coating process section 30, and the second thermal processing section 32 are arranged in a line in this order from the upstream side along the first flat flow path 34.

より詳細には、搬入ユニット(IN PASS)24はカセットステーション(C/S)14の搬送機構22から未処理の基板Gを受け取り、所定のタクトで第1の平流し搬送路34に投入するように構成されている。洗浄プロセス部26は、第1の平流し搬送路34に沿って上流側から順にエキシマUV照射ユニット(E−UV)36およびスクラバ洗浄ユニット(SCR)38を設けている。第1の熱的処理部28は、上流側から順にアドヒージョンユニット(AD)40および冷却ユニット(COL)42を設けている。塗布プロセス部30は、上流側から順にレジスト塗布ユニット(COT)44および減圧乾燥ユニット(VD)46を設けている。第2の熱的処理部32は、上流側から順にプリベークユニット(PRE−BAKE)48および冷却ユニット(COL)50を設けている。第2の熱的処理部32の下流側隣に位置する第1の平流し搬送路34の終点にはパスユニット(PASS)52が設けられている。第1の平流し搬送路34上を平流しで搬送されてきた基板Gは、この終点のパスユニット(PASS)52からインタフェースステーション(I/F)18へ渡されるようになっている。   More specifically, the carry-in unit (IN PASS) 24 receives the unprocessed substrate G from the transfer mechanism 22 of the cassette station (C / S) 14 and inputs it into the first flat flow transfer path 34 at a predetermined tact. It is configured. The cleaning process unit 26 includes an excimer UV irradiation unit (E-UV) 36 and a scrubber cleaning unit (SCR) 38 in order from the upstream side along the first flat flow path 34. The first thermal processing unit 28 includes an adhesion unit (AD) 40 and a cooling unit (COL) 42 in order from the upstream side. The coating process unit 30 is provided with a resist coating unit (COT) 44 and a vacuum drying unit (VD) 46 in order from the upstream side. The second thermal processing unit 32 includes a pre-bake unit (PRE-BAKE) 48 and a cooling unit (COL) 50 in order from the upstream side. A pass unit (PASS) 52 is provided at the end point of the first flat flow conveyance path 34 located adjacent to the downstream side of the second thermal processing unit 32. The substrate G that has been transported in a flat flow on the first flat flow transport path 34 is transferred from the pass unit (PASS) 52 at the end point to the interface station (I / F) 18.

一方、インタフェースステーション(I/F)18側からカセットステーション(C/S)14側へ向う下流部のプロセスラインBには、現像ユニット(DEV)54、ポストベークユニット(POST−BAKE)56、冷却ユニット(COL)58、検査ユニット(AP)60および搬出ユニット(OUT−PASS)62が第2の平流し搬送路64に沿って上流側からこの順序で一列に配置されている。ここで、ポストベークユニット(POST−BAKE)56および冷却ユニット(COL)58は第3の熱的処理部66を構成する。搬出ユニット(OUT PASS)62は、第2の平流し搬送路64から処理済の基板Gを1枚ずつ受け取って、カセットステーション(C/S)14の搬送機構22に渡すように構成されている。   On the other hand, in the downstream process line B from the interface station (I / F) 18 side to the cassette station (C / S) 14 side, a development unit (DEV) 54, a post-bake unit (POST-BAKE) 56, a cooling unit are provided. A unit (COL) 58, an inspection unit (AP) 60 and a carry-out unit (OUT-PASS) 62 are arranged in a line in this order from the upstream side along the second flat flow path 64. Here, the post-bake unit (POST-BAKE) 56 and the cooling unit (COL) 58 constitute a third thermal processing unit 66. The carry-out unit (OUT PASS) 62 is configured to receive the processed substrates G one by one from the second flat flow transfer path 64 and pass them to the transfer mechanism 22 of the cassette station (C / S) 14. .

両プロセスラインA,Bの間には補助搬送空間68が設けられており、基板Gを1枚単位で水平に載置可能なシャトル70が図示しない駆動機構によってプロセスライン方向(X方向)で双方向に移動できるようになっている。   An auxiliary transfer space 68 is provided between the process lines A and B, and a shuttle 70 capable of placing the substrate G horizontally in units of one sheet is both in the process line direction (X direction) by a drive mechanism (not shown). You can move in the direction.

インタフェースステーション(I/F)18は、上記第1および第2の平流し搬送路34,64や隣接する露光装置12と基板Gのやりとりを行うための搬送装置72を有し、この搬送装置72の周囲にロータリステージ(R/S)74および周辺装置76を配置している。ロータリステージ(R/S)74は、基板Gを水平面内で回転させるステージであり、露光装置12との受け渡しに際して長方形の基板Gの向きを変換するために用いられる。周辺装置76は、たとえばタイトラー(TITLER)や周辺露光装置(EE)等を第2の平流し搬送路64に接続している。   The interface station (I / F) 18 includes a transfer device 72 for exchanging the substrate G with the first and second flat flow transfer paths 34 and 64 and the adjacent exposure device 12. A rotary stage (R / S) 74 and a peripheral device 76 are arranged around the periphery. The rotary stage (R / S) 74 is a stage that rotates the substrate G in a horizontal plane, and is used to change the orientation of the rectangular substrate G when it is transferred to the exposure apparatus 12. The peripheral device 76 connects, for example, a titler (TITLER), a peripheral exposure device (EE), and the like to the second flat flow path 64.

図2に、この塗布現像処理システムにおける1枚の基板Gに対する全工程の処理手順を示す。先ず、カセットステーション(C/S)14において、搬送機構22が、ステージ20上のいずれか1つのカセットCから基板Gを1枚取り出し、その取り出した基板Gをプロセスステーション(P/S)16のプロセスラインA側の搬入ユニット(IN PASS)24に搬入する(ステップS1)。搬入ユニット(IN PASS)24から基板Gは第1の平流し搬送路34上に移載または投入される。   FIG. 2 shows a processing procedure of all steps for one substrate G in this coating and developing processing system. First, in the cassette station (C / S) 14, the transport mechanism 22 takes out one substrate G from any one of the cassettes C on the stage 20, and removes the taken substrate G in the process station (P / S) 16. It is carried into the carry-in unit (IN PASS) 24 on the process line A side (step S1). The substrate G is transferred or loaded onto the first flat flow path 34 from the carry-in unit (IN PASS) 24.

第1の平流し搬送路34に投入された基板Gは、最初に洗浄プロセス部26においてエキシマUV照射ユニット(E−UV)36およびスクラバ洗浄ユニット(SCR)38により紫外線洗浄処理およびスクラビング洗浄処理を順次施される(ステップS2,S3)。スクラバ洗浄ユニット(SCR)38は、平流し搬送路34上を水平に移動する基板Gに対して、ブラッシング洗浄やブロー洗浄を施すことにより基板表面から粒子状の汚れを除去し、その後にリンス処理を施し、最後にエアーナイフ等を用いて基板Gを乾燥させる。スクラバ洗浄ユニット(SCR)38における一連の洗浄処理を終えると、基板Gはそのまま第1の平流し搬送路34を下って第1の熱的処理部28を通過する。   The substrate G put into the first flat transport path 34 is first subjected to an ultraviolet cleaning process and a scrubbing cleaning process by the excimer UV irradiation unit (E-UV) 36 and the scrubber cleaning unit (SCR) 38 in the cleaning process unit 26. Sequentially applied (steps S2, S3). The scrubber cleaning unit (SCR) 38 removes particulate dirt from the substrate surface by performing brushing cleaning and blow cleaning on the substrate G that moves horizontally on the flat flow path 34, and then rinses. Finally, the substrate G is dried using an air knife or the like. When a series of cleaning processes in the scrubber cleaning unit (SCR) 38 is completed, the substrate G passes through the first thermal processing section 28 as it is down the first flat flow path 34.

第1の熱的処理部28において、基板Gは、最初にアドヒージョンユニット(AD)40で蒸気状のHMDSを用いるアドヒージョン処理を施され、被処理面を疎水化される(ステップS4)。このアドヒージョン処理の終了後に、基板Gは冷却ユニット(COL)42で所定の基板温度まで冷却される(ステップS5)。この後も、基板Gは第1の平流し搬送路34を下って塗布プロセス部30へ搬入される。   In the first thermal processing unit 28, the substrate G is first subjected to an adhesion process using vapor HMDS in the adhesion unit (AD) 40, and the surface to be processed is hydrophobized (step S4). After the completion of this adhesion process, the substrate G is cooled to a predetermined substrate temperature by the cooling unit (COL) 42 (step S5). Thereafter, the substrate G is carried into the coating process unit 30 along the first flat flow path 34.

塗布プロセス部30において、基板Gは最初にレジスト塗布ユニット(COT)44で平流しのままスリットノズルを用いるスピンレス法により基板上面(被処理面)にレジスト液を塗布され、直後に下流側隣の減圧乾燥ユニット(VD)46で減圧による常温の乾燥処理を受ける(ステップS6)。   In the coating process section 30, the substrate G is first coated with a resist solution on the upper surface (surface to be processed) by a spinless method using a slit nozzle while being flown flat in a resist coating unit (COT) 44, and immediately after that, adjacent to the downstream side. A vacuum drying unit (VD) 46 receives a drying process at room temperature by a reduced pressure (step S6).

塗布プロセス部30を出た基板Gは、第1の平流し搬送路34を下って第2の熱的処理部32を通過する。第2の熱的処理部32において、基板Gは、最初にプリベークユニット(PRE−BAKE)48でレジスト塗布後の熱処理または露光前の熱処理としてプリベーキングを受ける(ステップS7)。このプリベーキングによって、基板G上のレジスト膜中に残留していた溶剤が蒸発して除去され、基板に対するレジスト膜の密着性が強化される。次に、基板Gは、冷却ユニット(COL)50で所定の基板温度まで冷却される(ステップS8)。しかる後、基板Gは、第1の平流し搬送路34の終点のパスユニット(PASS)からインタフェースステーション(I/F)18の搬送装置72に引き取られる。   The substrate G that has left the coating process unit 30 passes through the second thermal processing unit 32 through the first flat flow path 34. In the second thermal processing section 32, the substrate G is first pre-baked by the pre-bake unit (PRE-BAKE) 48 as a heat treatment after resist coating or a heat treatment before exposure (step S7). By this pre-baking, the solvent remaining in the resist film on the substrate G is evaporated and removed, and the adhesion of the resist film to the substrate is enhanced. Next, the substrate G is cooled to a predetermined substrate temperature by the cooling unit (COL) 50 (step S8). Thereafter, the substrate G is taken from the pass unit (PASS) at the end point of the first flat flow transfer path 34 to the transfer device 72 of the interface station (I / F) 18.

インタフェースステーション(I/F)18において、基板Gは、ロータリステージ74でたとえば90度の方向変換を受けてから周辺装置76の周辺露光装置(EE)に搬入され、そこで基板Gの周辺部に付着するレジストを現像時に除去するための露光を受けた後に、隣の露光装置12へ送られる(ステップS9)。   In the interface station (I / F) 18, the substrate G is subjected to, for example, a 90-degree direction change by the rotary stage 74 and then carried into the peripheral exposure device (EE) of the peripheral device 76, where it adheres to the peripheral portion of the substrate G. After receiving the exposure for removing the resist to be developed at the time of development, the resist is sent to the adjacent exposure apparatus 12 (step S9).

露光装置12では基板G上のレジストに所定の回路パターンが露光される。そして、パターン露光を終えた基板Gは、露光装置12からインタフェースステーション(I/F)18に戻されると(ステップS9)、先ず周辺装置76のタイトラー(TITLER)に搬入され、そこで基板上の所定の部位に所定の情報が記される(ステップS10)。しかる後、基板Gは、搬送装置72よりプロセスステーション(P/S)16のプロセスラインB側に敷設されている第2の平流し搬送路64の現像ユニット(DEV)54の始点に搬入される。   In the exposure apparatus 12, a predetermined circuit pattern is exposed to the resist on the substrate G. Then, when the substrate G that has undergone pattern exposure is returned from the exposure apparatus 12 to the interface station (I / F) 18 (step S9), it is first carried into a titler (TITLER) of the peripheral device 76, where there is a predetermined on the substrate. Predetermined information is written in the part (step S10). Thereafter, the substrate G is carried from the transfer device 72 to the starting point of the development unit (DEV) 54 of the second flat flow transfer path 64 laid on the process line B side of the process station (P / S) 16. .

こうして、基板Gは、今度は第2の平流し搬送路64上をプロセスラインBの下流側に向けて搬送される。最初の現像ユニット(DEV)54において、基板Gは、平流しで搬送される間に現像、リンス、乾燥の一連の現像処理を施される(ステップS11)。   In this way, the substrate G is transferred on the second flat flow transfer path 64 toward the downstream side of the process line B. In the first development unit (DEV) 54, the substrate G is subjected to a series of development processes of development, rinsing, and drying while being conveyed in a flat flow (step S11).

現像ユニット(DEV)54で一連の現像処理を終えた基板Gは、そのまま第2の平流し搬送路64に乗せられたまま第3の熱的処理部66および検査ユニット(AP)60を順次通過する。第3の熱的処理部66において、基板Gは、最初にポストベークユニット(POST−BAKE)56で現像処理後の熱処理としてポストベーキングを受ける(ステップS12)。このポストベーキングによって、基板G上のレジスト膜に残留していた現像液や洗浄液が蒸発して除去され、基板に対するレジストパターンの密着性が強化される。次に、基板Gは、冷却ユニット(COL)58で所定の基板温度に冷却される(ステップS13)。検査ユニット(AP)60では、基板G上のレジストパターンについて非接触の線幅検査や膜質・膜厚検査等が行われる(ステップS14)。   The substrate G that has undergone a series of development processes in the development unit (DEV) 54 is sequentially passed through the third thermal processing unit 66 and the inspection unit (AP) 60 while being put on the second flat flow path 64 as it is. To do. In the third thermal processing section 66, the substrate G is first subjected to post-baking as post-development heat treatment in the post-bake unit (POST-BAKE) 56 (step S12). By this post-baking, the developing solution and the cleaning solution remaining in the resist film on the substrate G are removed by evaporation, and the adhesion of the resist pattern to the substrate is enhanced. Next, the substrate G is cooled to a predetermined substrate temperature by the cooling unit (COL) 58 (step S13). In the inspection unit (AP) 60, non-contact line width inspection, film quality / film thickness inspection, and the like are performed on the resist pattern on the substrate G (step S14).

搬出ユニット(OUT PASS)62は、第2の平流し搬送路64から全工程の処理を終えてきた基板Gを受け取って、カセットステーション(C/S)14の搬送機構22へ渡す。カセットステーション(C/S)14側では、搬送機構22が、搬出ユニット(OUT PASS)62から受け取った処理済の基板Gをいずれか1つ(通常は元)のカセットCに収容する(ステップS1)。   The carry-out unit (OUT PASS) 62 receives the substrate G that has been processed in all steps from the second flat-carrying conveyance path 64 and transfers it to the conveyance mechanism 22 of the cassette station (C / S) 14. On the cassette station (C / S) 14 side, the transfer mechanism 22 stores the processed substrate G received from the carry-out unit (OUT PASS) 62 in any one (usually the original) cassette C (step S1). ).

この塗布現像処理システム10においては、塗布プロセス部30内の減圧乾燥ユニット(VD)46に本発明を適用することができる。以下、図3〜図10につき、本発明の好適な実施形態における塗布プロセス部内30の減圧乾燥ユニット(VD)46の構成および作用を詳細に説明する。   In this coating and developing treatment system 10, the present invention can be applied to a vacuum drying unit (VD) 46 in the coating process unit 30. Hereinafter, the configuration and operation of the vacuum drying unit (VD) 46 in the coating process section 30 in a preferred embodiment of the present invention will be described in detail with reference to FIGS.

図3は、この実施形態における塗布プロセス部30の全体構成を示す平面図である。図4〜図6は一実施例による減圧乾燥ユニット(VD)46の構成を示し、図4はその平面図、図5および図6はその断面図である。   FIG. 3 is a plan view showing the overall configuration of the coating process unit 30 in this embodiment. 4 to 6 show a configuration of a vacuum drying unit (VD) 46 according to one embodiment, FIG. 4 is a plan view thereof, and FIGS. 5 and 6 are sectional views thereof.

図3において、レジスト塗布ユニット(COT)44は、第1の平流し搬送路34(図1)の一部または一区間を構成する浮上式のステージ80と、このステージ80上で空中に浮いている基板Gをステージ長手方向(X方向)に搬送する基板搬送機構82と、ステージ80上を搬送される基板Gの上面にレジスト液を供給するレジストノズル84と、塗布処理の合間にレジストノズル84をリフレッシュするノズルリフレッシュ部86とを有している。   In FIG. 3, the resist coating unit (COT) 44 floats in the air on the floating stage 80 that constitutes a part or one section of the first flat flow path 34 (FIG. 1). A substrate transport mechanism 82 for transporting the substrate G in the longitudinal direction of the stage (X direction), a resist nozzle 84 for supplying a resist solution to the upper surface of the substrate G transported on the stage 80, and a resist nozzle 84 between the coating processes. And a nozzle refresh unit 86 for refreshing.

ステージ80の上面には所定のガス(たとえばエア)を上方に噴射する多数のガス噴射口88が設けられており、それらのガス噴射口88から噴射されるガスの圧力によって基板Gがステージ上面から一定の高さに浮上するように構成されている。   A large number of gas injection ports 88 for injecting a predetermined gas (for example, air) upward are provided on the upper surface of the stage 80, and the substrate G is moved from the upper surface of the stage by the pressure of the gas injected from the gas injection ports 88. It is configured to rise to a certain height.

基板搬送機構82は、ステージ80を挟んでX方向に延びる一対のガイドレール90A,90Bと、これらのガイドレール90A,90Bに沿って往復移動可能なスライダ92と、ステージ80上で基板Gの両側端部を着脱可能に保持するようにスライダ92に設けられた吸着パッド等の基板保持部材(図示せず)とを備えており、直進移動機構(図示せず)によりスライダ92を搬送方向(X方向)に移動させることによって、ステージ80上で基板Gの浮上搬送を行うように構成されている。   The substrate transport mechanism 82 includes a pair of guide rails 90A and 90B extending in the X direction across the stage 80, a slider 92 that can reciprocate along the guide rails 90A and 90B, and both sides of the substrate G on the stage 80. And a substrate holding member (not shown) such as a suction pad provided on the slider 92 so as to detachably hold the end, and the slider 92 is moved in the transport direction (X) by a linear movement mechanism (not shown). The substrate G is floated and conveyed on the stage 80 by being moved in the direction).

レジストノズル84は、ステージ80の上方を搬送方向(X方向)と直交する水平方向(Y方向)に横断して延びる長尺型ノズルであり、所定の塗布位置でその直下を通過する基板Gの上面に対してスリット状の吐出口よりレジスト液を帯状に吐出するようになっている。また、レジストノズル84は、このノズルを支持するノズル支持部材94と一体にX方向に移動可能、かつZ方向に昇降可能に構成されており、上記塗布位置とノズルリフレッシュ部86との間で移動できるようになっている。   The resist nozzle 84 is a long nozzle that extends above the stage 80 in a horizontal direction (Y direction) perpendicular to the transport direction (X direction), and passes through the substrate G that passes directly under the predetermined application position. The resist solution is discharged in a strip shape from the slit-shaped discharge port with respect to the upper surface. Further, the resist nozzle 84 is configured to be movable in the X direction integrally with the nozzle support member 94 that supports the nozzle, and is movable up and down in the Z direction, and moves between the application position and the nozzle refreshing portion 86. It can be done.

ノズルリフレッシュ部86は、ステージ80の上方の所定位置で支柱部材96に保持されており、塗布処理のための下準備としてレジストノズル84にレジスト液を吐出させるためのプライミング処理部98と、レジストノズル84のレジスト吐出口を乾燥防止の目的から溶剤蒸気の雰囲気中に保つためのノズルバス100と、レジストノズル84のレジスト吐出口近傍に付着したレジストを除去するためのノズル洗浄機構102とを備えている。   The nozzle refresh unit 86 is held by the support member 96 at a predetermined position above the stage 80, and as a preparation for the coating process, a priming processing unit 98 for causing the resist nozzle 84 to discharge a resist solution, and a resist nozzle A nozzle bath 100 for keeping the resist discharge port 84 in a solvent vapor atmosphere for the purpose of preventing drying and a nozzle cleaning mechanism 102 for removing the resist adhering to the vicinity of the resist discharge port of the resist nozzle 84 are provided. .

ここで、レジスト塗布ユニット(COT)44における主な作用を説明する。 先ず、前段の第1の熱的処理部28(図1)よりたとえばコロ搬送で送られてきた基板Gがステージ80上の前端側に設定された搬入部に搬入され、そこで待機していたスライダ92が基板Gを保持して受け取る。ステージ80上で基板Gはガス噴射口88より噴射されるガス(エア)の圧力を受けて略水平な姿勢で浮上状態を保つ。   Here, main actions in the resist coating unit (COT) 44 will be described. First, the substrate G sent by, for example, roller conveyance from the first thermal processing unit 28 (FIG. 1) in the previous stage is carried into a carry-in unit set on the front end side on the stage 80, and is in a standby state there. 92 holds and receives the substrate G. On the stage 80, the substrate G receives the pressure of the gas (air) injected from the gas injection port 88 and keeps the floating state in a substantially horizontal posture.

そして、スライダ92が基板を保持しながら減圧乾燥ユニット(VD)46側に向かって搬送方向(X方向)に移動し、基板Gがレジストノズル84の下を通過する際に、レジストノズル84が基板Gの上面に向けてレジスト液を帯状に吐出することにより、基板G上に基板前端から後端に向って絨毯が敷かれるようにしてレジスト液の液膜が一面に形成される。こうしてレジスト液を塗布された基板Gは、その後もスライダ92によってステージ80上を浮上搬送され、ステージ80の後端を越えて後述するコロ搬送路104に乗り移り、そこでスライダ92による保持が解除される。コロ搬送路104に乗り移った基板Gはそこから先は、後述するようにコロ搬送路104上をコロ搬送で移動して後段の減圧乾燥ユニット(VD)46へ搬入される。   The slider 92 moves in the transport direction (X direction) toward the reduced-pressure drying unit (VD) 46 while holding the substrate, and when the substrate G passes under the resist nozzle 84, the resist nozzle 84 is moved to the substrate. By discharging the resist solution in a strip shape toward the upper surface of G, a liquid film of the resist solution is formed on one surface so that a carpet is laid on the substrate G from the front end to the rear end of the substrate. The substrate G thus coated with the resist solution is then levitated and conveyed on the stage 80 by the slider 92, passes over the rear end of the stage 80, and transfers to the roller conveyance path 104 described later, where the holding by the slider 92 is released. . The substrate G transferred to the roller transport path 104 is then transported on the roller transport path 104 by roller transport, as will be described later, and is carried into the subsequent vacuum drying unit (VD) 46.

塗布処理の済んだ基板Gを上記のようにして減圧乾燥ユニット(VD)46側へ送り出した後、スライダ92は次の基板Gを受け取るためにステージ80の前端側の搬入部へ戻る。また、レジストノズル84は、1回または複数回の塗布処理を終えると、塗布位置(レジスト液吐出位置)からノズルリフレッシュ部86へ移動してそこでノズル洗浄やプライミング処理等のリフレッシュないし下準備をしてから、塗布位置に戻る。   After the coated substrate G is sent to the reduced pressure drying unit (VD) 46 side as described above, the slider 92 returns to the carry-in portion on the front end side of the stage 80 in order to receive the next substrate G. The resist nozzle 84 moves from the coating position (resist liquid discharge position) to the nozzle refresh unit 86 after completing one or a plurality of coating processes, and performs refreshing or preparatory processing such as nozzle cleaning and priming. Then return to the application position.

図3に示すように、レジスト塗布ユニット(COT)44のステージ80の延長上(下流側)には、第1の平流し搬送路34(図1)の一部または一区間を構成するコロ搬送路104(104a,104b,104c)が敷設されている。このコロ搬送路104は、減圧乾燥ユニット(VD)46のチャンバ106の中と外(前後)で連続して敷設されている。   As shown in FIG. 3, on the extension (downstream side) of the stage 80 of the resist coating unit (COT) 44, a roller transport that constitutes a part or one section of the first flat flow transport path 34 (FIG. 1). A path 104 (104a, 104b, 104c) is laid. The roller conveyance path 104 is continuously laid inside and outside (front and rear) of the chamber 106 of the vacuum drying unit (VD) 46.

より詳細には、この減圧乾燥ユニット(VD)46回りのコロ搬送路104は、チャンバ106の搬送上流側つまり搬入側に敷設されている搬入側コロ搬送路104aと、チャンバ106内に敷設されている内部コロ搬送路104bと、チャンバ106の搬送下流側つまり搬出側に敷設されている搬出側コロ搬送路104cとから構成されている。   More specifically, the roller conveyance path 104 around the reduced-pressure drying unit (VD) 46 is laid in the chamber 106 and a loading-side roller conveyance path 104a that is laid on the conveyance upstream side of the chamber 106, that is, on the loading side. The inner roller conveyance path 104b and the unloading side roller conveyance path 104c laid on the conveyance downstream side of the chamber 106, that is, the unloading side.

各部のコロ搬送路104a,104b,104cは、搬送方向(X方向)にそれぞれ適当な間隔で配置した複数本のコロ108a,108b,108cを各独立または共通の搬送駆動部により回転させて、基板Gをコロ搬送で搬送方向(X方向)に送るようになっている。ここで、搬入側コロ搬送路104aは、レジスト塗布ユニット(COT)44のステージ80から浮上搬送の延長で搬出された基板Gを受け取り、減圧乾燥ユニット(VD)46のチャンバ106内へコロ搬送で送り込むように機能する。内部コロ搬送路104bは、搬入側コロ搬送路104aからコロ搬送で送られてくる基板Gを同速度のコロ搬送でチャンバ106内に引き込むとともに、チャンバ106内で減圧乾燥処理の済んだ基板Gをチャンバ106の外(後段)へコロ搬送で送り出すように機能する。搬出側コロ搬送路104cは、チャンバ106内の内部コロ搬送路104b中から送り出されてくる処理済の基板Gを内部コロ搬送路104bの搬送速度と同速度のコロ搬送で引き出して後段の処理部(第2の熱的処理部32)へ送るように機能する。   The roller conveyance paths 104a, 104b, and 104c of each part are rotated by rotating a plurality of rollers 108a, 108b, and 108c arranged at appropriate intervals in the conveyance direction (X direction) by respective independent or common conveyance driving units. G is sent in the conveyance direction (X direction) by roller conveyance. Here, the carry-in side roller conveyance path 104 a receives the substrate G carried out from the stage 80 of the resist coating unit (COT) 44 as an extension of the floating conveyance, and rolls it into the chamber 106 of the vacuum drying unit (VD) 46. It functions to send in. The internal roller transport path 104b draws the substrate G sent by the roller transport from the carry-in side roller transport path 104a into the chamber 106 by roller transport at the same speed, and the substrate G that has been subjected to the vacuum drying process in the chamber 106. It functions so as to send it out of the chamber 106 (back stage) by roller conveyance. The carry-out side roller conveyance path 104c pulls out the processed substrate G sent out from the internal roller conveyance path 104b in the chamber 106 by roller conveyance at the same speed as the conveyance speed of the internal roller conveyance path 104b, and a subsequent processing unit. It functions to send to (second thermal processing unit 32).

図3〜図6に示すように、減圧乾燥ユニット(VD)46のチャンバ106は、比較的扁平な直方体に形成され、その中に基板Gを水平に収容できる空間を有している。このチャンバ106の搬送方向(X方向)において互いに向き合う一対(上流側および下流側)のチャンバ側壁には、基板Gが平流しでようやく通れる大きさに形成されたスリット状の搬入口110および搬出口112がそれぞれ設けられている。さらに、これらの搬入口110および搬出口112を開閉するためのゲート機構114,116がチャンバ106の外壁に取り付けられている。チャンバ106の上面部または上蓋118は、メンテナンス用に取り外し可能になっている。   As shown in FIGS. 3 to 6, the chamber 106 of the vacuum drying unit (VD) 46 is formed in a relatively flat rectangular parallelepiped, and has a space in which the substrate G can be accommodated horizontally. A pair of (upstream and downstream) chamber sidewalls facing each other in the transport direction (X direction) of the chamber 106 is formed with a slit-shaped transport inlet 110 and a transport outlet formed so as to allow the substrate G to pass through in a flat flow. 112 are provided. Further, gate mechanisms 114 and 116 for opening and closing the carry-in port 110 and the carry-out port 112 are attached to the outer wall of the chamber 106. The upper surface portion or upper lid 118 of the chamber 106 is removable for maintenance.

各ゲート機構114,116は、図示省略するが、スリット状の搬入出口(110,112)を気密に閉塞できる蓋体(弁体)と、この蓋体を搬入出口(110,112)と水平に対向する鉛直往動位置とそれより低い鉛直復動位置との間で昇降移動させる第1のシリンダと、蓋体を搬入出口(110,112)に対して気密に密着する水平往動位置と離間分離する水平復動位置との間で水平移動させる第2のシリンダとを備えている。   Although not shown, each gate mechanism 114, 116 has a lid (valve body) capable of airtightly closing the slit-shaped loading / unloading port (110, 112), and the lid body horizontally with the loading / unloading port (110, 112). A first cylinder that moves up and down between an opposed vertical forward movement position and a lower vertical backward movement position, and a horizontal forward movement position in which the lid is tightly adhered to the loading / unloading port (110, 112). And a second cylinder that moves horizontally between the horizontal return positions to be separated.

チャンバ106内において、内部コロ搬送路104bを構成するコロ108bは、搬入出口(110,112)に対応した高さ位置で搬送方向(X方向)に適当な間隔を置いて一列に配置されており、一部または全部のコロ108bがチャンバ106の外に設けられているモータ等の回転駆動源120に適当な伝動機構を介して接続されている。各コロ108bは、基板Gの裏面に外径の一様な円筒部または円柱部で接触する棒体として構成されており、その両端部がチャンバ106の左右両側壁またはその付近に設けられた軸受(図示せず)に回転可能に支持されている。伝動機構の回転軸122が貫通するチャンバ106の側壁部分はシール部材124で封止されている。   In the chamber 106, the rollers 108b constituting the inner roller conveyance path 104b are arranged in a row at an appropriate distance in the conveyance direction (X direction) at a height position corresponding to the carry-in / out port (110, 112). A part or all of the rollers 108b are connected to a rotational drive source 120 such as a motor provided outside the chamber 106 through an appropriate transmission mechanism. Each roller 108b is configured as a rod that contacts the back surface of the substrate G with a cylindrical portion or a column portion having a uniform outer diameter, and both end portions thereof are bearings provided on the left and right side walls of the chamber 106 or in the vicinity thereof. (Not shown) is rotatably supported. A side wall portion of the chamber 106 through which the rotation shaft 122 of the transmission mechanism passes is sealed with a seal member 124.

搬入側コロ搬送路104aを構成するコロ108aも、図示省略するが、その両端部がフレーム等に固定された軸受に回転可能に支持され、上記内部コロ搬送路104b用の回転駆動源120と共通または別個の回転駆動源により回転駆動されるようになっている。搬出側コロ搬送路104cを構成する108cも同様である。   Although not shown, the roller 108a constituting the carry-in side roller conveyance path 104a is also rotatably supported by bearings fixed to a frame or the like, and is common to the rotation drive source 120 for the inner roller conveyance path 104b. Or it is rotationally driven by a separate rotational drive source. The same applies to 108c constituting the carry-out side roller conveyance path 104c.

この減圧乾燥ユニット(VD)46は、チャンバ106内で基板Gを略水平に支えて上げ下げするための基板リフト機構(基板支持機構)126を備えている。この基板リフト機構126は、チャンバ106内に所定の配置パターンで(たとえばマトリクス状に)離散的に配置された多数本(好ましくは50本以上)のリフトピン128と、これらのリフトピン128を所定の組またはグループ毎に内部コロ搬送路104bの搬送面よりも低い位置にて支持する複数の水平棒または水平板のピンベース130と、各ピンベース130を昇降移動させるためにチャンバ106の外(下)に配置された昇降駆動源たとえばシリンダ132とを有している。   The vacuum drying unit (VD) 46 includes a substrate lift mechanism (substrate support mechanism) 126 for supporting the substrate G in the chamber 106 substantially horizontally and raising and lowering it. The substrate lift mechanism 126 includes a large number (preferably 50 or more) of lift pins 128 discretely arranged in a predetermined arrangement pattern (for example, in a matrix) in the chamber 106, and a predetermined set of these lift pins 128. Alternatively, a plurality of horizontal bar or horizontal plate pin bases 130 supported at positions lower than the transport surface of the inner roller transport path 104b for each group, and the outside (lower) of the chamber 106 for moving each pin base 130 up and down For example, a cylinder 132.

より詳細には、相隣接する2本のコロ108b,108bの隙間にコロ108bと平行に(Y方向に)一定間隔で複数本(好ましくは7本以上)のリフトピン128を鉛直に立てて一列に配置し、かかるリフトピン列を搬送方向(X方向)に適当な間隔を置いて複数列(好ましくは8列以上)設け、各ピンベース130に1組または複数組(図示の例は2組)のリフトピン列を支持させる。そして、チャンバ106の底壁をシール部材134を介して気密に貫通し、かつ昇降移動可能な昇降軸136によって、チャンバ内側の各ピンベース130をチャンバ外側の各対応するシリンダ132に接続している。   More specifically, a plurality of (preferably seven or more) lift pins 128 are vertically arranged in a row in a gap between two adjacent rollers 108b, 108b in parallel with the roller 108b (in the Y direction) at regular intervals. A plurality of (preferably 8 or more) lift pin rows are provided at appropriate intervals in the conveying direction (X direction), and one or a plurality of pairs (two in the illustrated example) are provided on each pin base 130. Support the lift pin row. The pin base 130 inside the chamber is connected to the corresponding cylinder 132 outside the chamber by a lifting shaft 136 that penetrates the bottom wall of the chamber 106 through a seal member 134 and is movable up and down. .

かかる構成の基板リフト機構126においては、全部のシリンダ132を同一タイミングで同一ストロークの前進(上昇)または後退(下降)駆動を一斉に行わせることにより、昇降軸136およびピンベース130を介して全リフトピン128をピン先端の高さを揃えて、図5に示すようにピン先端がコロ搬送路104bの搬送面よりも低くなる復動(下降)位置と、図6に示すようにピン先端がコロ搬送路104bの搬送面よりも高くなる往動(上昇)位置との間で、昇降移動させることができるようになっている。   In the substrate lift mechanism 126 configured as described above, all the cylinders 132 are all driven forward (upward) or backward (downward) at the same timing at the same time, so that all the cylinders 132 can be moved through the lifting shaft 136 and the pin base 130. The lift pin 128 is aligned with the height of the tip of the pin, and as shown in FIG. 5, the tip of the pin is lowered (lowered) below the conveying surface of the roller conveying path 104b, and the tip of the pin is in contact with the roller as shown in FIG. It can be moved up and down between the forward (upward) position that is higher than the transport surface of the transport path 104b.

チャンバ106の底壁には1箇所または複数個所に排気口138が形成されている。これらの排気口138には排気管140を介して真空排気装置142が接続されている。各真空排気装置142は、チャンバ106内を大気圧状態から真空引きして所定圧力または真空度の減圧状態を維持するための真空ポンプを有している。なお、それら複数の真空排気装置142の排気能力のばらつきを平均化するために、それぞれの排気管140同士を接続管(図示せず)で繋いでもよい。また、排気管140の途中に開閉弁(図示せず)が設けられてよい。   An exhaust port 138 is formed at one or a plurality of locations on the bottom wall of the chamber 106. A vacuum exhaust device 142 is connected to these exhaust ports 138 through an exhaust pipe 140. Each vacuum evacuation device 142 has a vacuum pump for evacuating the chamber 106 from the atmospheric pressure state to maintain a reduced pressure state of a predetermined pressure or a degree of vacuum. In addition, in order to average the dispersion | variation in the exhaust capability of these several vacuum exhaust apparatuses 142, you may connect each exhaust pipe 140 with a connection pipe (not shown). Further, an open / close valve (not shown) may be provided in the middle of the exhaust pipe 140.

チャンバ106内の両端部、つまり搬入口110および搬出口112の近くでコロ搬送路104bよりも低い位置に、Y方向に延びる円筒状の窒素ガス噴出部144が設けられている。これらの窒素ガス噴出部144は、たとえば金属粉末を焼結してなる多孔質の中空管からなり、配管146(図4)を介して窒素ガス供給源(図示せず)に接続されている。減圧乾燥処理の終了後にチャンバ106を密閉したまま減圧状態から大気圧状態に戻す際に、これらの窒素ガス噴出部144が管の全周面からパージ用の窒素ガスを噴き出すようになっている。   Cylindrical nitrogen gas ejection portions 144 extending in the Y direction are provided at both ends in the chamber 106, that is, near the carry-in port 110 and the carry-out port 112 and lower than the roller conveyance path 104b. These nitrogen gas ejection portions 144 are made of, for example, a porous hollow tube formed by sintering metal powder, and are connected to a nitrogen gas supply source (not shown) via a pipe 146 (FIG. 4). . When returning from the reduced pressure state to the atmospheric pressure state with the chamber 106 sealed after completion of the reduced pressure drying process, these nitrogen gas ejection portions 144 eject the purge nitrogen gas from the entire peripheral surface of the tube.

各リフトピン128は、基端部つまり下端部がピンベース130に固定されたピン本体128aと、このピン本体128aの上端から鉛直上方に突き出るピン先部128bとを有している(図5)。ピン本体128aは、剛体たとえばステンレス鋼(SUS)からなる中空の筒体または管で構成されている。ピン先部128bは、好ましくはPEEKまたはセラゾール(商品名)等の樹脂からなる円柱状の棒体で構成され、ピン本体128aの上端部にかしめて固着されている。   Each lift pin 128 has a pin main body 128a having a base end portion, that is, a lower end portion fixed to the pin base 130, and a pin tip portion 128b protruding vertically upward from the upper end of the pin main body 128a (FIG. 5). The pin main body 128a is configured by a hollow cylinder or tube made of a rigid body such as stainless steel (SUS). The pin tip portion 128b is preferably formed of a cylindrical rod body made of a resin such as PEEK or cerazole (trade name), and is fixed by caulking to the upper end portion of the pin body 128a.

この実施形態では、基板リフト機構126にリフトピン128を所望の一定温度に空冷する温度調節機能を持たせており、この温調機能のために、チャンバ106の外に空冷ガス供給源150を設置し、この空冷ガス供給源150の出力ポートを配管つまり空冷ガス供給管152を介して各リフトピン128に接続している。配管152の途中には開閉弁154が設けられてよい。   In this embodiment, the substrate lift mechanism 126 has a temperature adjustment function for air-cooling the lift pins 128 to a desired constant temperature. For this temperature adjustment function, an air-cooling gas supply source 150 is installed outside the chamber 106. The output port of the air cooling gas supply source 150 is connected to each lift pin 128 via a pipe, that is, an air cooling gas supply pipe 152. An on-off valve 154 may be provided in the middle of the pipe 152.

図7に、基板リフト機構126におけるリフトピン空冷部の具体的構成例を示す。ピンベース130のピン取付位置には貫通孔が設けられている。より詳細には、この貫通孔の上部にネジ孔(雌ネジ)156が形成され、下部に空冷ガス導入口158が形成されている。リフトピン128の下端部に固着された筒状のネジ部(雄ネジ)160がネジ孔156に嵌合することにより、リフトピン128はピンベース130に着脱可能に取付される。また、このピン取付構造においては、リフトピン128に固着されている筒状ブロック(鍔部)162の下面がピンベース130の上面に当接することで、リフトピン128がピン先の高さを揃えて鉛直姿勢で固定されるようになっている。空冷ガス導入口158には、たとえばT型継手164を介して空冷ガス供給管152が接続される。   FIG. 7 shows a specific configuration example of the lift pin air cooling unit in the substrate lift mechanism 126. A through hole is provided at a pin mounting position of the pin base 130. More specifically, a screw hole (female screw) 156 is formed in the upper portion of the through hole, and an air cooling gas inlet 158 is formed in the lower portion. When the cylindrical screw part (male screw) 160 fixed to the lower end part of the lift pin 128 is fitted into the screw hole 156, the lift pin 128 is detachably attached to the pin base 130. Further, in this pin mounting structure, the lower surface of the cylindrical block (saddle) 162 fixed to the lift pin 128 abuts on the upper surface of the pin base 130, so that the lift pin 128 is aligned with the height of the pin tip vertically. It is designed to be fixed in posture. For example, an air cooling gas supply pipe 152 is connected to the air cooling gas inlet 158 via a T-shaped joint 164.

リフトピン128において、ピン本体128aの内部は中空で、下端が開口し、先細りの上端部はピン先部128bで塞がっている。そして、ピン本体128aの側壁には、好ましくはピン先端部に近い部位に、1つまたは複数の通気孔128cが設けられている。図示の構成例は、リフトピン128の軸方向で複数個所たとえば2箇所、各箇所で周回方向に複数個たとえば4個(合計8個)の通気孔128cを設けている。   In the lift pin 128, the interior of the pin main body 128a is hollow, the lower end is opened, and the tapered upper end is closed by the pin tip 128b. The side wall of the pin main body 128a is provided with one or a plurality of vent holes 128c, preferably at a portion close to the tip of the pin. In the illustrated configuration example, a plurality of, for example, two vent holes 128c are provided in the axial direction of the lift pin 128, for example, and a plurality of, for example, four (for example, eight) vent holes 128c are provided in the circumferential direction.

空冷ガス供給源150(図5、図6)より空冷ガス供給管152の中を送られてくるたとえばエアあるいは窒素ガス等の空冷ガスCAは、T型継手164から空冷ガス導入口158を通ってリフトピン128(ピン本体128a)の中にピン下端の開口から導入される。そして、リフトピン128の中に下から導入された空冷ガスCAは、ピン内部の中空空間165を上方に流れ、ピン先端部の近くで各通気孔128cからピンの外へ流れ出るようになっている。このように、リフトピン128内の中空空間165を下から上まで空冷ガスCAが通り抜けることで、リフトピン128が空冷ガスCAを冷媒(媒体)として所定温度に空冷(温調)されるようになっている。   An air cooling gas CA such as air or nitrogen gas sent from the air cooling gas supply source 150 (FIGS. 5 and 6) through the air cooling gas supply pipe 152 passes through the air cooling gas inlet 158 from the T-shaped joint 164. It is introduced into the lift pin 128 (pin body 128a) from the opening at the lower end of the pin. The air-cooled gas CA introduced from below into the lift pin 128 flows upward through the hollow space 165 inside the pin, and flows out of the pin from each vent hole 128c near the tip of the pin. Thus, the air cooling gas CA passes through the hollow space 165 in the lift pin 128 from the bottom to the top, so that the lift pin 128 is air-cooled (temperature-controlled) to a predetermined temperature using the air-cooling gas CA as a refrigerant (medium). Yes.

この実施形態では、上記のようなリフトピン128自体の構造と空冷ガス供給源150、空冷ガス供給管152および開閉弁154とが組み合わさってリフトピン空冷部が構成されている。このリフトピン空冷部においては、空冷ガスCAの温度と流量が主要な温調条件である。空冷ガスCAの温度は、主としてピン空冷温度の飽和値を規定する。空冷ガスCAの流量は、主としてピン空冷速度を律速し、流量が大きいほど空冷速度も大きくなる。空冷ガスCAの流量を大きくする場合は、通気孔128cの個数を増やすか、その全開口面積を大きくして、コンダクタンスを高くするのが望ましい。   In this embodiment, the structure of the lift pin 128 itself and the air cooling gas supply source 150, the air cooling gas supply pipe 152, and the on-off valve 154 are combined to constitute the lift pin air cooling unit. In the lift pin air cooling section, the temperature and flow rate of the air cooling gas CA are the main temperature control conditions. The temperature of the air cooling gas CA mainly defines the saturation value of the pin air cooling temperature. The flow rate of the air cooling gas CA mainly determines the pin air cooling rate, and the air cooling rate increases as the flow rate increases. When increasing the flow rate of the air-cooled gas CA, it is desirable to increase the conductance by increasing the number of vent holes 128c or increasing the total opening area.

次に、図4〜図8につき、この実施形態における減圧乾燥ユニット(VD)46の作用を説明する。なお、図8は、減圧乾燥ユニット(VD)46内で減圧乾燥の枚葉処理を所定の周期またはタクトτで繰り返した場合のリフトピン128の温度変化の一例を示す。   Next, the operation of the vacuum drying unit (VD) 46 in this embodiment will be described with reference to FIGS. FIG. 8 shows an example of the temperature change of the lift pin 128 when the single-wafer processing for vacuum drying is repeated at a predetermined cycle or tact τ in the vacuum drying unit (VD) 46.

上記したように、上流側隣のレジスト塗布ユニット(COT)44でレジスト液を塗布された基板Gは、平流しでステージ80上の浮上搬送路から搬入側コロ搬送路104aに乗り移る。その後、図5に示すように、基板Gは搬入側コロ搬送路104a上をコロ搬送で移動し、やがて減圧乾燥ユニット(VD)46のチャンバ106の中にその搬入口110から進入する。この時、ゲート機構114は搬入口110を開けておく。   As described above, the substrate G to which the resist solution is applied by the resist application unit (COT) 44 adjacent to the upstream side moves from the floating conveyance path on the stage 80 to the carry-in side roller conveyance path 104a in a flat flow. Thereafter, as shown in FIG. 5, the substrate G moves on the carry-in side roller conveyance path 104 a by roller conveyance, and eventually enters the chamber 106 of the reduced pressure drying unit (VD) 46 from its carry-in port 110. At this time, the gate mechanism 114 keeps the carry-in entrance 110 open.

内部コロ搬送路104bも、回転駆動源120の回転駆動により、搬入側コロ搬送路104aのコロ搬送動作とタイミングの合った同一搬送速度のコロ搬送動作を行い、図5に示すように、搬入口110から入ってきた基板Gをコロ搬送でチャンバ106の奥に引き込む。この時、基板リフト機構126は、全てのリフトピン128を各ピン先端が内部コロ搬送路104bの搬送面よりも低くなる復動(下降)位置に待機させておく。そして、基板Gがチャンバ106内の略中心の所定位置に着くと、そこで内部コロ搬送路104bのコロ搬送動作が停止する。これと同時または直前に搬入側コロ搬送路104aのコロ搬送動作も停止してよい。   The inner roller conveyance path 104b also performs a roller conveyance operation at the same conveyance speed as the roller conveyance operation of the carry-in side roller conveyance path 104a by the rotational drive of the rotation drive source 120. As shown in FIG. The substrate G entering from 110 is drawn into the interior of the chamber 106 by roller conveyance. At this time, the substrate lift mechanism 126 waits for all the lift pins 128 at the backward movement (downward) position where the tip ends of the pins are lower than the conveyance surface of the internal roller conveyance path 104b. When the substrate G arrives at a predetermined position substantially in the center of the chamber 106, the roller transfer operation of the internal roller transfer path 104b stops there. At the same time or just before this, the roller conveyance operation of the carry-in side roller conveyance path 104a may be stopped.

なお、上記のように前段または上流側隣のレジスト塗布ユニット(COT)44から減圧乾燥処理を受けるべき基板Gがチャンバ106に搬入される時、これと同時または直前に、図5に示すように、チャンバ106内で減圧乾燥処理を受けたばかりの先行基板Gが内部コロ搬送路104bおよび搬出側コロ搬送路104c上の連続した等速度のコロ搬送によって搬出口112からチャンバ106の外に出てそのまま後段または下流側隣の第2の熱的処理部32(図1)へ平流しで送られる。   As described above, as shown in FIG. 5, when the substrate G to be subjected to the vacuum drying process is carried into the chamber 106 from the resist coating unit (COT) 44 on the upstream side or upstream side as described above, simultaneously or immediately before this. The preceding substrate G that has just undergone the vacuum drying process in the chamber 106 goes out of the chamber 106 from the carry-out port 112 by the continuous constant-speed roller conveyance on the inner roller conveyance path 104b and the carry-out side roller conveyance path 104c. It is sent to the second thermal processing section 32 (FIG. 1) adjacent to the downstream or downstream side in a flat flow.

上記のようにして、レジスト塗布ユニット(COT)44でレジスト液を塗布されてきた基板Gが、搬入側コロ搬送路104aおよび内部コロ搬送路104b上の連続的なコロ搬送によって減圧乾燥ユニット(VD)46のチャンバ106に搬入される。この直後に、ゲート機構114,116が作動して、それまで開けていた搬入口110および搬出口112をそれぞれ閉塞し、チャンバ106を密閉する。なお、基板Gは、常温(たとえば約25℃)でチャンバ106内に搬入される。   As described above, the substrate G, on which the resist solution has been applied by the resist coating unit (COT) 44, is continuously transported on the carry-in side roller transport path 104a and the inner roller transport path 104b by a reduced pressure drying unit (VD). ) It is carried into the chamber 106 of 46. Immediately after this, the gate mechanisms 114 and 116 are operated to close the carry-in port 110 and the carry-out port 112 that have been opened so far, thereby sealing the chamber 106. The substrate G is carried into the chamber 106 at room temperature (for example, about 25 ° C.).

次いで、基板リフト機構126が昇降シリンダ132を往動させて、チャンバ106内で全てのリフトピン128のピン先端が内部コロ搬送路104bの搬送面を越える所定の高さ位置まで全てのピンベース130を一斉に所定ストロークだけ上昇させる。この基板リフト機構126の往動(上昇)動作により、図6に示すように、基板Gは内部コロ搬送路104bから水平姿勢のままリフトピン128のピン先に載り移り、そのまま内部コロ搬送路104bの上方に持ち上げられる。   Next, the substrate lift mechanism 126 moves the elevating cylinder 132 forward so that all the pin bases 130 are moved to a predetermined height position in the chamber 106 where the tip ends of all the lift pins 128 exceed the transfer surface of the internal roller transfer path 104b. Raise it by a predetermined stroke all at once. As shown in FIG. 6, the substrate G is transferred from the inner roller transport path 104b to the pin tip of the lift pin 128 by the forward movement (upward) operation of the substrate lift mechanism 126, and the inner roller transport path 104b is moved as it is. Lifted up.

次いで、所定のタイミング(図8の時点ta)で、真空排気装置142が作動して、チャンバ106内の真空排気を開始する。この真空排気により、チャンバ106内の圧力が減圧状態になり、この減圧状態の下で基板G上のレジスト液膜から溶剤(シンナー)が蒸発し、この気化熱によって基板Gの温度および周囲の温度が急激に下がり、図8に示すようにリフトピン128の温度もたとえば常温(約25℃)の初期温度から単調に下がる。 Next, at a predetermined timing (time point t a in FIG. 8), the vacuum exhaust device 142 is operated to start the vacuum exhaust in the chamber 106. By this evacuation, the pressure in the chamber 106 becomes a reduced pressure state, and the solvent (thinner) evaporates from the resist liquid film on the substrate G under this reduced pressure state, and the temperature of the substrate G and the ambient temperature are caused by this heat of vaporization. As shown in FIG. 8, the temperature of the lift pin 128 also decreases monotonously from the initial temperature of room temperature (about 25 ° C.), for example.

なお、真空排気装置142が真空排気動作を行っている間、基板リフト機構126のリフトピン空冷部においては開閉弁154が閉じていて、リフトピン128に対する空冷は休止している。   While the evacuation device 142 is performing the evacuation operation, the on-off valve 154 is closed in the lift pin air cooling section of the substrate lift mechanism 126, and the air cooling with respect to the lift pin 128 is suspended.

減圧乾燥を開始してから一定時間経過後の図8の時点tbで、真空排気装置142が真空排気動作を止めて減圧乾燥の処理を終了すると、この時点でリフトピン128の温度は極小値TL(たとえば12℃〜8℃)に達する。そして、これと入れ代わりに、チャンバ106側壁の両ゲート機構114、116が開いて、チャンバ106内で窒素ガス噴出部144がパージ用の窒素ガスを所定の流量で拡散放出する。このパージングによってチャンバ106内の雰囲気温度が急上昇する。 When the vacuum evacuation device 142 stops the vacuum evacuation operation and finishes the vacuum drying process at a time point t b in FIG. 8 after a predetermined time has elapsed since the start of the vacuum drying, the temperature of the lift pin 128 at this time is the minimum value T. L (for example, 12 ° C. to 8 ° C.) is reached. In place of this, both gate mechanisms 114 and 116 on the side wall of the chamber 106 are opened, and the nitrogen gas ejection part 144 diffuses and discharges the purge nitrogen gas at a predetermined flow rate in the chamber 106. Due to this purging, the ambient temperature in the chamber 106 increases rapidly.

一方、減圧乾燥の終了直後から基板リフト機構126のリフトピン空冷部も空冷動作を開始し、開閉弁154が開いて、空冷ガス供給源150より空冷ガスが空冷ガス供給管152を介してチャンバ106内の各リフトピン128に所定の流量(たとえば15リットル/分以上)で供給される。上記のように、各リフトピン128においては、空冷ガス導入口158より導入された空冷ガスCAがピン本体128a内の中空空間165を下から上まで縦断して流れ、ピン上端部近傍の各通気孔128cから外へ抜け出る。こうして、基板リフト機構126においてリフトピン128の空冷が開始される。   On the other hand, the lift pin air cooling unit of the substrate lift mechanism 126 also starts the air cooling operation immediately after the completion of the vacuum drying, the on-off valve 154 opens, and the air cooling gas from the air cooling gas supply source 150 passes through the air cooling gas supply pipe 152 into the chamber 106. The lift pins 128 are supplied at a predetermined flow rate (for example, 15 liters / minute or more). As described above, in each lift pin 128, the air cooling gas CA introduced from the air cooling gas introduction port 158 flows vertically through the hollow space 165 in the pin main body 128a from the bottom to the top, and each air hole near the upper end of the pin. Exit from 128c. Thus, air cooling of the lift pins 128 is started in the substrate lift mechanism 126.

もっとも、パージング中は、チャンバ106内の雰囲気温度の上昇率がリフトピン空冷速度を上回るため、リフトピン128の温度は単調に上昇し、パージング終了時(時点tC)にはリフトピン128の温度が初期温度TS(約25℃)よりもはるかに高い極大温度TH(たとえば35℃〜40℃)に達する。 However, during purging, the rate of increase in the ambient temperature in the chamber 106 exceeds the lift pin air cooling rate, so the temperature of the lift pin 128 increases monotonously, and at the end of purging (time t C ), the temperature of the lift pin 128 becomes the initial temperature. A maximum temperature T H (eg, 35 ° C. to 40 ° C.) that is much higher than T S (about 25 ° C.) is reached.

しかし、窒素ガス噴出部144の動作が停止してパージングを終了した後は、リフトピン空冷部による空冷の効き目が直に顕われて、リフトピン128の温度は急速に下がり、短時間で空冷ガスCAの温度つまりピン空冷温度に達して飽和(安定)する。この実施例では、ピン空冷温度を常温(約25℃)に設定しているので、リフトピン128の温度は常温つまり初期温度(約25℃)近辺に戻る。   However, after the operation of the nitrogen gas ejection part 144 is stopped and the purging is finished, the effect of air cooling by the lift pin air cooling part is immediately manifested, the temperature of the lift pin 128 is rapidly lowered, and the air cooling gas CA is rapidly reduced. Saturates (stable) when the temperature reaches the pin air cooling temperature. In this embodiment, since the pin air cooling temperature is set to room temperature (about 25 ° C.), the temperature of the lift pin 128 returns to the room temperature, that is, the vicinity of the initial temperature (about 25 ° C.).

上記のようなパージング動作およびリフトピン空冷動作と並行して、またはこれらと前後して、リフトピン128から内部コロ搬送路104bへの基板Gの移載が行われる。より詳細には、基板リフト機構126が昇降シリンダ132を復動させて、全てのリフトピン128のピン先端が内部コロ搬送路104bの搬送面よりも低くなる所定の高さ位置まで全てのピンベース130を一斉に所定ストロークだけ下降させる。この基板リフト機構126の復動(下降)動作により、基板Gは水平姿勢でリフトピン128のピン先から内部コロ搬送路104bに載り移る。   In parallel with or before and after the purging operation and the lift pin air cooling operation as described above, the substrate G is transferred from the lift pins 128 to the inner roller transport path 104b. More specifically, the substrate lift mechanism 126 moves the elevating cylinder 132 backward so that all the pin bases 130 reach a predetermined height position at which the tip ends of all the lift pins 128 are lower than the transfer surface of the internal roller transfer path 104b. Are simultaneously lowered by a predetermined stroke. By the backward movement (downward movement) of the substrate lift mechanism 126, the substrate G is transferred from the tip of the lift pin 128 to the internal roller transport path 104b in a horizontal posture.

そして、この基板移載動作の直後に、内部コロ搬送路104bおよび搬出側コロ搬送路104c上でコロ搬送動作が開始され、減圧乾燥処理を受けたばかりの当該基板Gは搬出口112からコロ搬送によって搬出され、そのまま後段の第2の熱的処理部32(図1)へ平流しで送られる。この処理済基板Gの搬出動作と同時に、図5に示すように、レジスト塗布ユニット(COT)44からの後続の基板Gが、搬入側コロ搬送路104aおよび内部コロ搬送路104b上の連続的なコロ搬送によって搬入口110からチャンバ106内に搬入される。この後続または新規の基板Gも常温で搬入され、この基板Gに対して上記と同じ減圧乾燥の枚葉処理が一定のタクトτで行われる。   Immediately after the substrate transfer operation, the roller transfer operation is started on the inner roller transfer path 104b and the unload-side roller transfer path 104c, and the substrate G just subjected to the decompression drying process is transferred from the transfer port 112 by roller transfer. It is carried out and sent as it is to the second thermal processing section 32 (FIG. 1) at the subsequent stage as it is. Simultaneously with the carry-out operation of the processed substrate G, as shown in FIG. 5, the subsequent substrate G from the resist coating unit (COT) 44 is continuously transferred on the carry-in side roller conveyance path 104a and the inner roller conveyance path 104b. It is carried into the chamber 106 from the carry-in port 110 by roller conveyance. This succeeding or new substrate G is also carried in at room temperature, and the single-wafer processing of the same vacuum drying as described above is performed on this substrate G with a constant tact τ.

この場合、新規に搬入された常温の基板Gは初期温度つまり常温付近に戻っているリフトピン128と接触するので、基板Gとリフトピン128との間に実質的な温度差ないし熱交換は殆どなく、両者(G,128)のいずれも常温の状態から減圧乾燥(真空排気)が開始される。これによって、基板G上のレジスト膜にリフトピン128の跡が付くピン転写を防止できる。   In this case, the newly introduced room temperature substrate G contacts the lift pins 128 that have returned to the initial temperature, that is, near room temperature, so there is almost no substantial temperature difference or heat exchange between the substrate G and the lift pins 128. In both cases (G, 128), vacuum drying (evacuation) is started from the room temperature. As a result, it is possible to prevent pin transfer in which the lift pins 128 are left on the resist film on the substrate G.

この点に関して、従来の減圧乾燥装置においては、つまり基板リフト機構が上記実施形態のリフトピン空冷部を備えない場合は、図8の仮想線(一点鎖線)で示すように、パージングによるリフトピン温度上昇の度合い(上昇幅)が大きいうえ、パージング終了後のリフトピン温度降下の度合い(レート)が小さく、次の減圧乾燥(真空排気)が開始される時点td(ta)でリフトピンの温度は初期温度または常温(約25℃)よりもまだ相当高い温度TS'(たとえば32℃〜36℃)にある。この結果、搬入直後の基板がそれよりも高温のリフトピンに支持(接触)されることになって、基板上のレジスト液膜がリフトピン接触位置付近で局所的な熱影響を受け(局所的に溶媒の蒸発が促進され)、ピン跡の転写が発生しやすくなる。 In this regard, in the conventional vacuum drying apparatus, that is, when the substrate lift mechanism does not include the lift pin air cooling unit of the above embodiment, as shown by the phantom line (dashed line) in FIG. after the degree (rise) is large, the degree of lift pins temperature drop after purging ends (rate) is small, the temperature of the lift pins in the next vacuum drying time (evacuation) is started t d (t a) the initial temperature Alternatively, the temperature T S ′ (for example, 32 ° C. to 36 ° C.) is still considerably higher than room temperature (about 25 ° C.). As a result, the substrate immediately after being loaded is supported (contacted) by the higher-temperature lift pins, and the resist liquid film on the substrate is affected by local heat in the vicinity of the lift pin contact position (locally the solvent). Evaporation of the pin is promoted), and pin marks are easily transferred.

上記のように、この実施形態の減圧乾燥装置においては、減圧乾燥処理の全期間およびその前後を通じてチャンバ106内で基板Gを支持するリフトピン128を所定のタイミングで、および所定の期間に亘り所望のピン冷却温度で冷却(温調)するので、基板G上のレジスト膜にリフトピン128の跡が付くピン転写を効果的に防止することができる。   As described above, in the vacuum drying apparatus of this embodiment, the lift pins 128 that support the substrate G in the chamber 106 throughout the vacuum drying process and throughout the vacuum drying process at a predetermined timing and over a predetermined period. Since cooling (temperature adjustment) is performed at the pin cooling temperature, pin transfer in which the lift pins 128 are marked on the resist film on the substrate G can be effectively prevented.

他にも、この実施形態の減圧乾燥装置には、従来装置にはない利点がある。すなわち、減圧乾燥処理を受けるべき基板Gをコロ搬送でチャンバ106の中に搬入し、チャンバ106内で減圧乾燥処理の済んだ基板Gをコロ搬送によってチャンバ106の外へ搬出するようにしたので、チャンバ106に対する基板Gの搬入出において、搬送アームを用いる搬送ロボットは不要であり、基板をうちわのようにたわませてしまってローディング/アンローディングの際に位置ずれや衝突・破損等のエラーを起こさなくて済む。また、チャンバ106の側壁に設けたスリット状の搬入口110および搬出口112を通らせて基板Gの搬入出を行うので、1〜2トン以上はあるチャンバ106の上蓋118を開閉(上げ下げ)する操作も不要であり、大きな振動による発塵の問題はなく、作業員に対する安全性も確保されている。   In addition, the reduced-pressure drying apparatus of this embodiment has an advantage that the conventional apparatus does not have. That is, the substrate G to be subjected to the vacuum drying process is carried into the chamber 106 by roller conveyance, and the substrate G that has been subjected to the vacuum drying process in the chamber 106 is carried out of the chamber 106 by roller conveyance. When loading / unloading the substrate G into / from the chamber 106, a transfer robot using a transfer arm is not required, and the substrate is bent like a fan, causing errors such as misalignment, collision and breakage during loading / unloading. You don't have to wake up. In addition, since the substrate G is loaded and unloaded through the slit-shaped loading / unloading port 110 and the loading / unloading port 112 provided on the side wall of the chamber 106, the upper lid 118 of the certain chamber 106 is opened / closed (lifted / lowered) by 1 to 2 tons or more. No operation is required, there is no problem of dust generation due to large vibrations, and safety for workers is ensured.

図9および図10に、この実施形態の基板リフト機構126におけるリフトピン空冷部の変形例を示す。   9 and 10 show a modification of the lift pin air cooling unit in the substrate lift mechanism 126 of this embodiment.

図9に示すリフトピン空冷部は、リフトピン128のピン本体128aにピン先端部側を気密に塞いでピン下端部側を外気に開放する筒状カバー170を被せるものである。より詳細には、筒状カバー170は剛体たとえばSUSまたはアルミニウムからなり、そのカバー上端部は先細りになってピン先部128bの半径方向外側でピン本体128aの上端部に気密に接合し、カバー中間部はピン本体128aの外周と筒状の隙間172を形成して平行に延び、カバー下端部は筒状ブロック体162の少し上方の位置で終端し、環状の開口174を形成している。   The lift pin air cooling unit shown in FIG. 9 covers a pin body 128a of a lift pin 128 with a cylindrical cover 170 that hermetically closes the tip end of the pin and opens the lower end of the pin to the outside. More specifically, the cylindrical cover 170 is made of a rigid body such as SUS or aluminum, and the upper end portion of the cover is tapered to be airtightly joined to the upper end portion of the pin body 128a on the radially outer side of the pin tip portion 128b. The portion extends in parallel with the outer periphery of the pin main body 128 a to form a cylindrical gap 172, and the lower end of the cover terminates at a position slightly above the cylindrical block body 162 to form an annular opening 174.

かかる構成によれば、空冷ガス供給源150(図5、図6)より空冷ガス供給管152の中を流れてきた空冷ガスCAは、ピン下端の開口からリフトピン128の中に導入され、ピン内部の中空空間165を下から上に流れ、ピン先端部の近くで各通気孔128cからピンの外へ流出する。そして、各通気孔128cからリフトピン128の外に出た空冷ガスCAは、筒状カバー170内側の隙間つまりガス流路172の中を下方に向かって案内され、カバー170下端の開口174から放射状に外部または周囲空間へ出る。これにより、次のような特有の作用効果が奏される。   According to such a configuration, the air cooling gas CA that has flowed through the air cooling gas supply pipe 152 from the air cooling gas supply source 150 (FIGS. 5 and 6) is introduced into the lift pin 128 from the opening at the lower end of the pin, and the inside of the pin The hollow space 165 flows from the bottom to the top and flows out of the pins through the respective vent holes 128c near the tip of the pin. Then, the air-cooled gas CA that has flowed out of the lift pins 128 from the respective vent holes 128c is guided downward in the gap inside the cylindrical cover 170, that is, in the gas flow path 172, and radially from the opening 174 at the lower end of the cover 170. Go to the outside or surrounding space. Thereby, the following specific effects are exhibited.

一つは、ピン空冷効果の向上である。すなわち、空冷ガスCAは、リフトピン128(ピン本体128a)の内壁に沿ってピン内部のガス流路165を下から上に流れ、各通気孔128cの外に出ると今度はリフトピン128(ピン本体128a)の外壁に沿ってピン周囲の隙間またはガス流路172を上から下に流れることで、リフトピン128(ピン本体128a)の壁を内と外の両側で二重に空冷し、これによりピン空冷効果を一層高めることができる。   One is to improve the pin air cooling effect. That is, the air-cooled gas CA flows along the inner wall of the lift pin 128 (pin body 128a) through the gas flow path 165 inside the pin from the bottom to the top, and when it comes out of each vent hole 128c, the lift pin 128 (pin body 128a). ) Along the outer wall of the pin, the gap around the pin or the gas flow path 172 flows from the top to the bottom, so that the wall of the lift pin 128 (pin body 128a) is double-air cooled on both the inner and outer sides, thereby pin air cooling. The effect can be further enhanced.

また、リフトピン空冷部の基板Gに及ぼす熱的な影響を一層確実に防止する効果も得られる。すなわち、リフトピン128から空冷ガスCAが周囲に噴き出る高さ位置を通気孔128cの位置ではなく、それより相当下方のカバー170下端の開口174の位置に下げることで、空冷ガスCAの噴出流が基板Gに及ぼす熱的な影響を十全に防止することができる。   Moreover, the effect which prevents more reliably the thermal influence which it has on the board | substrate G of a lift pin air cooling part is also acquired. That is, by lowering the height position at which the air-cooling gas CA is ejected from the lift pin 128 to the position of the opening 174 at the lower end of the cover 170 rather than the position of the vent hole 128c, the air-cooling gas CA is ejected. The thermal influence on the substrate G can be sufficiently prevented.

図10のリフトピン空冷部は、チャンバ106内の圧力に左右されずに、つまりチャンバ106内が減圧状態にあっても、リフトピン128の空冷を行える構成を特徴としている。この構成例では、カバー170の下端をピンベース130の中まで延ばして(埋めて)、カバー開口部174をピンベース130内部のガス流路(復路)180に気密に接続している。このガス流路(復路)180は、ピンベース130および昇降軸136の中を通り、チャンバ106の外で大気に通じている。一方、リフトピン128の下端開口と接続するガス流路182は、ピンベース130および昇降軸136の中を通り、チャンバ106の外でガス供給管152に接続している。   The lift pin air cooling unit of FIG. 10 is characterized in that the lift pin 128 can be air cooled regardless of the pressure in the chamber 106, that is, even when the chamber 106 is in a reduced pressure state. In this configuration example, the lower end of the cover 170 is extended (filled) into the pin base 130, and the cover opening 174 is hermetically connected to the gas flow path (return path) 180 inside the pin base 130. The gas flow path (return path) 180 passes through the pin base 130 and the elevating shaft 136 and communicates with the atmosphere outside the chamber 106. On the other hand, the gas flow path 182 connected to the lower end opening of the lift pin 128 passes through the pin base 130 and the elevating shaft 136 and is connected to the gas supply pipe 152 outside the chamber 106.

かかる構成においては、チャンバ106内でリフトピン128の中に空冷ガスCAを流通させるためのガス流路(182,165、128c,172,174,180)を全区間にわたってシール(真空封止)しているので、チャンバ106内の圧力から独立してリフトピン128の空冷を持続的にも断続的にも行うことができる。特に、リフトピン128の空冷を持続的または連続的に行う場合は、これによってリフトピン128の温度を一定に保持することも可能である。   In such a configuration, gas passages (182, 165, 128c, 172, 174, 180) for circulating the air-cooled gas CA into the lift pins 128 in the chamber 106 are sealed (vacuum sealed) over the entire section. Therefore, the air cooling of the lift pin 128 can be performed continuously or intermittently independently of the pressure in the chamber 106. In particular, when the air cooling of the lift pins 128 is performed continuously or continuously, the temperature of the lift pins 128 can be kept constant.

以上本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の変形が可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea.

たとえば、基板リフト機構126のリフトピン空冷部において、空冷ガス供給源150をたとえば真空ポンプまたはエジェクタからなるバキューム源に置き換えることも可能である。この場合、空冷ガスはリフトピン128の周囲の雰囲気ガス(たとえば空気または窒素ガス)であり、ガス供給管152はガス吸引管となり、リフトピン128の中で空冷ガスの流れる向きが上記実施形態とは反対になる。すなわち、ピン周囲のガス(空冷ガス)が通気孔128cからピンの中に流入し、流入した空冷ガスはピン内部の中空空間165を上から下に流れ、下端開口からガス吸引管152を通ってバキューム源に吸い込まれる。   For example, in the lift pin air cooling section of the substrate lift mechanism 126, the air cooling gas supply source 150 can be replaced with a vacuum source such as a vacuum pump or an ejector. In this case, the air-cooled gas is an ambient gas (for example, air or nitrogen gas) around the lift pin 128, the gas supply pipe 152 is a gas suction pipe, and the direction in which the air-cooled gas flows in the lift pin 128 is opposite to that in the above embodiment. become. That is, the gas around the pin (air-cooled gas) flows into the pin from the vent hole 128c, and the air-cooled gas that has flowed in flows from the top to the bottom in the hollow space 165 inside the pin and passes through the gas suction pipe 152 from the lower end opening. Inhaled into the vacuum source.

上記実施形態は本発明をコロ搬送方式の減圧乾燥ユニット(VD)46に適用したものであったが、本発明は任意の方式の減圧乾燥装置に広く適用可能であり、さらには減圧無しで所望の処理(たとえば熱処理)を行う他の基板処理装置にも適用可能である。基板支持機構の全体または各部の構成は種々の変形が可能であり、たとえば支持ピンを昇降させずに一定の位置に固定する構成や、支持ピンがチャンバの底壁を貫通して昇降移動できる構成等も可能である。   In the above embodiment, the present invention is applied to the roller-conveying vacuum drying unit (VD) 46. However, the present invention can be widely applied to any type of vacuum drying apparatus, and further desired without vacuum. The present invention can also be applied to other substrate processing apparatuses that perform the above processing (for example, heat treatment). Various modifications can be made to the overall structure of the substrate support mechanism or each part. For example, a structure in which the support pin is fixed at a certain position without being raised or lowered, or a structure in which the support pin can move up and down through the bottom wall of the chamber. Etc. are also possible.

本発明における被処理基板はLCD用のガラス基板に限るものではなく、他のフラットパネルディスプレイ用基板や、半導体ウエハ、CD基板、フォトマスク、プリント基板等も可能である。減圧乾燥処理対象の塗布液もレジスト液に限らず、たとえば層間絶縁材料、誘電体材料、配線材料等の処理液も可能である。   The substrate to be processed in the present invention is not limited to a glass substrate for LCD, and other flat panel display substrates, semiconductor wafers, CD substrates, photomasks, printed substrates and the like are also possible. The coating liquid to be dried under reduced pressure is not limited to a resist liquid, and for example, a processing liquid such as an interlayer insulating material, a dielectric material, or a wiring material is also possible.

本発明の適用可能な塗布現像処理システムの構成を示す平面図である。It is a top view which shows the structure of the application | coating development processing system which can apply this invention. 上記塗布現像処理システムにおける処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in the said application | coating development processing system. 実施形態における塗布プロセス部の全体構成を示す平面図である。It is a top view which shows the whole structure of the application | coating process part in embodiment. 実施形態における減圧乾燥ユニットの構成を示す平面図である。It is a top view which shows the structure of the reduced pressure drying unit in embodiment. 実施形態における減圧乾燥ユニットの搬入出の各部の状態を示す断面図である。It is sectional drawing which shows the state of each part of carrying in / out of the reduced pressure drying unit in embodiment. 実施形態における減圧乾燥ユニットの減圧乾燥処理中の各部の状態を示す断面図である。It is sectional drawing which shows the state of each part in the vacuum drying process of the vacuum drying unit in embodiment. 実施形態における基板リフト機構の要部を示す断面図である。It is sectional drawing which shows the principal part of the board | substrate lift mechanism in embodiment. 実施形態による減圧乾燥の枚葉処理においてリフトピンの温度が変化する特性の一例を示す図である。It is a figure which shows an example of the characteristic which the temperature of a lift pin changes in the single wafer process of the reduced pressure drying by embodiment. 実施形態の一変形例による基板リフト機構の要部を示す断面図である。It is sectional drawing which shows the principal part of the board | substrate lift mechanism by one modification of embodiment. 実施形態の別の変形例による基板リフト機構の要部を示す断面図である。基板リフト機構の要部を示す断面図である。It is sectional drawing which shows the principal part of the board | substrate lift mechanism by another modification of embodiment. It is sectional drawing which shows the principal part of a board | substrate lift mechanism.

符号の説明Explanation of symbols

10 塗布現像処理システム
46 減圧乾燥ユニット(VD)
106 チャンバ
108b 内部コロ搬送路のコロ
110 搬入口
112 搬出口
114,116 ゲート機構
120 搬送駆動源
126 基板リフト機構
128 リフトピン
128a ピン本体
128b ピン先部
128c 通気孔
130 ピンベース
132 シリンダ(昇降駆動源)
136 昇降軸
138 排気口
140 排気管
142 真空排気装置
152 冷却ガス供給管
170 筒状カバー
10 Coating and Development Processing System 46 Vacuum Drying Unit (VD)
106 Chamber 108b Roller of internal roller transport path 110 Carrying-in port 112 Carrying-out port 114, 116 Gate mechanism 120 Transport drive source 126 Substrate lift mechanism 128 Lift pin 128a Pin body 128b Pin tip portion 128c Vent hole 130 Pin base 132 Cylinder
136 Elevating shaft 138 Exhaust port 140 Exhaust pipe 142 Vacuum exhaust device 152 Cooling gas supply pipe 170 Cylindrical cover

Claims (15)

被処理基板を支持ピンの先端に載せて支持する基板支持機構であって、
前記支持ピンを先端部が閉塞し、かつ側壁に通気孔が設けられた中空の筒体で構成し、
前記通気孔を通って前記筒体の中を温度調整のための所定のガスが流れるように、前記筒体の基端部にガス供給部またはバキューム源を接続してなる基板支持機構。
A substrate support mechanism for supporting a substrate to be processed on the tip of a support pin,
The support pin is constituted by a hollow cylinder whose front end is closed and a side wall is provided with a vent hole,
A substrate support mechanism in which a gas supply unit or a vacuum source is connected to a base end portion of the cylinder so that a predetermined gas for temperature adjustment flows through the cylinder through the vent.
前記通気孔が、前記支持ピンの先端部に近い部位に設けられる請求項1に記載の基板支持機構。   The substrate support mechanism according to claim 1, wherein the vent hole is provided in a portion close to a tip portion of the support pin. 前記通気孔が、前記支持ピンの軸方向で異なる部位に複数設けられる請求項1または請求項2に記載の基板支持機構。   The substrate support mechanism according to claim 1, wherein a plurality of the air holes are provided at different portions in the axial direction of the support pins. 前記通気孔が、前記支持ピンの周回方向で異なる部位に複数設けられる請求項1〜3のいずれか一項に記載の基板支持機構。   The board | substrate support mechanism as described in any one of Claims 1-3 in which the said ventilation hole is provided with two or more in a site | part which differs in the surrounding direction of the said support pin. 前記支持ピンが、前記筒体の先端部に取り付けられた樹脂製のピン先部を有する請求項1〜4のいずれか一項に記載の基板支持機構。   The board | substrate support mechanism as described in any one of Claims 1-4 in which the said support pin has a resin-made pin tip part attached to the front-end | tip part of the said cylinder. 前記通気孔よりもピン先部側を塞いで前記筒体の外周面を隙間を空けて覆う筒状のカバー体を有し、
前記カバー体の基端部側に設けられた外気に通じる開口部と前記筒体の通気孔との間で前記カバー体の内側の隙間を介して前記ガスを流す請求項1〜5のいずれか一項に記載の基板支持機構。
It has a cylindrical cover body that covers the outer peripheral surface of the cylindrical body with a gap therebetween by closing the pin tip side from the vent hole,
The gas according to any one of claims 1 to 5, wherein the gas is allowed to flow through an inner gap of the cover body between an opening portion provided on a base end portion side of the cover body and communicating with outside air and a vent hole of the cylindrical body. The substrate support mechanism according to one item.
前記支持ピンを水平面内で所定の間隔を空けて複数本配置し、各々の前記支持ピンを略鉛直に立てて支持するピン支持部材を有する請求項1〜6のいずれか一項に記載の基板支持機構。   The substrate according to any one of claims 1 to 6, further comprising a pin support member, wherein a plurality of the support pins are arranged at predetermined intervals in a horizontal plane, and each of the support pins is supported substantially vertically. Support mechanism. 前記ピン支持部材の中に、前記筒体の基端部と接続し、前記ガス供給部またはバキューム源に通じるガス流路が形成されている請求項7に記載の基板支持機構。   The substrate support mechanism according to claim 7, wherein a gas flow path is formed in the pin support member so as to be connected to a proximal end portion of the cylindrical body and communicate with the gas supply unit or the vacuum source. 前記支持ピンを昇降移動させるために前記ピン支持部材を鉛直方向で移動させる昇降部を有する請求項7または請求項8に記載の基板支持機構。   The substrate support mechanism according to claim 7, further comprising an elevating part that moves the pin support member in a vertical direction in order to move the support pin up and down. 基板上に塗布膜が形成された直後の被処理基板を出し入れ可能に収容する密閉可能なチャンバと、
前記チャンバ内で前記基板を前記支持ピンの先端に載せて支持する請求項1〜9のいずれか一項に記載の基板支持機構と、
前記基板上の塗布膜を減圧状態で乾燥させるために前記チャンバ内を真空排気する真空排気機構と
を有する減圧乾燥装置。
A hermetically sealable chamber that accommodates the substrate to be processed immediately after the coating film is formed on the substrate in a removable manner;
The substrate support mechanism according to any one of claims 1 to 9, wherein the substrate is supported on the tip of the support pin in the chamber.
A vacuum drying apparatus comprising: a vacuum evacuation mechanism that evacuates the chamber in order to dry the coating film on the substrate in a reduced pressure state.
前記真空排気機構の真空排気動作を停止させている期間中に、前記支持ピンの内部を前記温度調整用のガスが流れるように前記基板支持機構の前記ガス供給部またはバキューム源を作動させる請求項10に記載の減圧乾燥装置。   The gas supply unit or vacuum source of the substrate support mechanism is operated so that the temperature adjusting gas flows through the support pin during a period in which the vacuum exhaust operation of the vacuum exhaust mechanism is stopped. The vacuum drying apparatus according to 10. 前記真空排気機構の真空排気動作を止めた直後に前記チャンバ内にパージ用のガスを供給するパージガス供給部を有する請求項11に記載の減圧乾燥装置。   The reduced-pressure drying apparatus according to claim 11, further comprising a purge gas supply unit configured to supply a purge gas into the chamber immediately after the vacuum exhaust operation of the vacuum exhaust mechanism is stopped. 前記減圧乾燥の枚葉処理が一定のサイクルで繰り返し行われ、各回の処理が開始される直前には前記支持ピンのピン先部の温度が一定の基準温度付近まで戻る請求項11または請求項12に記載の減圧乾燥装置。   The single-wafer processing of the reduced-pressure drying is repeatedly performed in a constant cycle, and the temperature of the pin tip portion of the support pin returns to a vicinity of a constant reference temperature immediately before each processing is started. The reduced-pressure drying apparatus described in 1. 前記ガス供給部またはバキューム源を前記チャンバの外に配置し、前記チャンバの壁を通る真空封止された通気路を介して前記ガス供給部またはバキューム源と前記支持ピンの筒体の基端部とを接続する請求項10〜13のいずれか一項に記載の減圧乾燥装置。   The gas supply part or vacuum source is arranged outside the chamber, and the base end part of the cylinder of the gas supply part or vacuum source and the support pin through a vacuum-sealed air passage through the wall of the chamber The reduced-pressure drying apparatus according to any one of claims 10 to 13, wherein 被処理基板を出し入れ可能に収容するチャンバと、
前記チャンバ内で前記基板を前記支持ピンの先端に載せて支持する請求項1〜9のいずれか一項に記載の基板支持機構と、
前記チャンバ内で前記基板に雰囲気温度が変化する所定の処理を施す処理部と
を有する基板処理装置。
A chamber for accommodating a substrate to be processed in a removable manner;
The substrate support mechanism according to any one of claims 1 to 9, wherein the substrate is supported on the tip of the support pin in the chamber.
A substrate processing apparatus comprising: a processing unit configured to perform a predetermined process in which an atmospheric temperature changes on the substrate in the chamber.
JP2007201777A 2007-08-02 2007-08-02 Substrate support mechanism, reduced-pressure drying apparatus, and substrate processing apparatus Expired - Fee Related JP4372182B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007201777A JP4372182B2 (en) 2007-08-02 2007-08-02 Substrate support mechanism, reduced-pressure drying apparatus, and substrate processing apparatus
KR1020080075660A KR101299742B1 (en) 2007-08-02 2008-08-01 Substrate support mechanism, reduced-pressure drying unit and substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201777A JP4372182B2 (en) 2007-08-02 2007-08-02 Substrate support mechanism, reduced-pressure drying apparatus, and substrate processing apparatus

Publications (2)

Publication Number Publication Date
JP2009038231A true JP2009038231A (en) 2009-02-19
JP4372182B2 JP4372182B2 (en) 2009-11-25

Family

ID=40439868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201777A Expired - Fee Related JP4372182B2 (en) 2007-08-02 2007-08-02 Substrate support mechanism, reduced-pressure drying apparatus, and substrate processing apparatus

Country Status (2)

Country Link
JP (1) JP4372182B2 (en)
KR (1) KR101299742B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030607A1 (en) * 2009-09-10 2011-03-17 シャープ株式会社 Drying device
JP2011096711A (en) * 2009-10-27 2011-05-12 Tokyo Electron Ltd Reduced pressure drying apparatus
CN102656681A (en) * 2009-12-18 2012-09-05 朗姆研究公司 High temperature chuck and method of using same
CN103388971A (en) * 2012-05-11 2013-11-13 四川汇利实业有限公司 Drying system adopting air for cooling
WO2014173089A1 (en) * 2013-04-22 2014-10-30 合肥京东方光电科技有限公司 Alignment film procuring device
US20150024594A1 (en) * 2013-07-17 2015-01-22 Lam Research Corporation Cooled pin lifter paddle for semiconductor substrate processing apparatus
JP2015023041A (en) * 2013-07-16 2015-02-02 株式会社日立ハイテクノロジーズ Plasma processing apparatus
KR101494924B1 (en) 2009-10-16 2015-02-23 도쿄엘렉트론가부시키가이샤 Decompression Drying Apparatus and Decompression Drying Method
KR101547458B1 (en) * 2012-12-18 2015-08-26 주식회사 나래나노텍 Improved Heat Treatment Chamber and Method of Substrate, and Heat Treatment Apparatus of Substrate Having the Same
JP2016188735A (en) * 2015-03-30 2016-11-04 株式会社Screenホールディングス Decompression drying device and decompression drying method
KR20180003678A (en) * 2016-06-30 2018-01-10 세메스 주식회사 Substrate treating apparatus
KR20180076072A (en) * 2016-12-27 2018-07-05 세메스 주식회사 Substrate treating apparatus
KR20190060741A (en) * 2019-05-24 2019-06-03 세메스 주식회사 Substrate treating apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311062B1 (en) * 2011-08-29 2013-09-24 현대제철 주식회사 Slab air-cooled apparatus
KR101418301B1 (en) * 2012-10-05 2014-07-10 위아코퍼레이션 주식회사 Porous ceramic table
CN106516741B (en) * 2016-11-04 2018-01-02 深圳市龙锋泰自动化有限公司 Feed system for the online laminating machine of full-automatic glass

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3934246B2 (en) * 1997-10-27 2007-06-20 大日本スクリーン製造株式会社 Substrate cooling device and substrate cooling method
JP3456890B2 (en) * 1998-01-16 2003-10-14 東京エレクトロン株式会社 Substrate processing equipment
JP2006302980A (en) * 2005-04-18 2006-11-02 Dainippon Screen Mfg Co Ltd Reduced pressure drier
JP2006324559A (en) * 2005-05-20 2006-11-30 Dainippon Screen Mfg Co Ltd Substrate dryer and substrate drying method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030607A1 (en) * 2009-09-10 2011-03-17 シャープ株式会社 Drying device
KR101494924B1 (en) 2009-10-16 2015-02-23 도쿄엘렉트론가부시키가이샤 Decompression Drying Apparatus and Decompression Drying Method
JP2011096711A (en) * 2009-10-27 2011-05-12 Tokyo Electron Ltd Reduced pressure drying apparatus
CN102656681A (en) * 2009-12-18 2012-09-05 朗姆研究公司 High temperature chuck and method of using same
JP2013514654A (en) * 2009-12-18 2013-04-25 ラム・リサーチ・アーゲー High temperature chuck and method of using the same
CN103388971A (en) * 2012-05-11 2013-11-13 四川汇利实业有限公司 Drying system adopting air for cooling
KR101547458B1 (en) * 2012-12-18 2015-08-26 주식회사 나래나노텍 Improved Heat Treatment Chamber and Method of Substrate, and Heat Treatment Apparatus of Substrate Having the Same
WO2014173089A1 (en) * 2013-04-22 2014-10-30 合肥京东方光电科技有限公司 Alignment film procuring device
JP2015023041A (en) * 2013-07-16 2015-02-02 株式会社日立ハイテクノロジーズ Plasma processing apparatus
US20150024594A1 (en) * 2013-07-17 2015-01-22 Lam Research Corporation Cooled pin lifter paddle for semiconductor substrate processing apparatus
US9859145B2 (en) * 2013-07-17 2018-01-02 Lam Research Corporation Cooled pin lifter paddle for semiconductor substrate processing apparatus
JP2016188735A (en) * 2015-03-30 2016-11-04 株式会社Screenホールディングス Decompression drying device and decompression drying method
KR20180003678A (en) * 2016-06-30 2018-01-10 세메스 주식회사 Substrate treating apparatus
KR101895933B1 (en) * 2016-06-30 2018-09-10 세메스 주식회사 Substrate treating apparatus
KR20180076072A (en) * 2016-12-27 2018-07-05 세메스 주식회사 Substrate treating apparatus
KR101994423B1 (en) * 2016-12-27 2019-07-01 세메스 주식회사 Substrate treating apparatus
KR20190060741A (en) * 2019-05-24 2019-06-03 세메스 주식회사 Substrate treating apparatus
KR102099883B1 (en) * 2019-05-24 2020-04-13 세메스 주식회사 Substrate treating apparatus

Also Published As

Publication number Publication date
JP4372182B2 (en) 2009-11-25
KR101299742B1 (en) 2013-08-23
KR20090013732A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP4372182B2 (en) Substrate support mechanism, reduced-pressure drying apparatus, and substrate processing apparatus
JP4312787B2 (en) Vacuum dryer
JP4272230B2 (en) Vacuum dryer
JP5008147B2 (en) Vacuum dryer
JP4341978B2 (en) Substrate processing equipment
JP4384685B2 (en) Normal pressure drying apparatus, substrate processing apparatus, and substrate processing method
JP4384686B2 (en) Normal pressure drying apparatus, substrate processing apparatus, and substrate processing method
JP5503057B2 (en) Vacuum drying apparatus and vacuum drying method
KR101558596B1 (en) Reduced-pressure drying device and reduced-pressure drying method
JP5208093B2 (en) Substrate processing apparatus, substrate processing method, and reduced pressure drying apparatus
KR101568050B1 (en) Substrate processing apparatus
JP4450825B2 (en) Substrate processing method, resist surface processing apparatus, and substrate processing apparatus
JP4967013B2 (en) SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND RECORDING MEDIUM RECORDING PROGRAM FOR EXECUTING THE SUBSTRATE PROCESSING METHOD
JP2011086807A (en) Vacuum drying apparatus
JP2004179513A (en) Substrate holding apparatus and substrate treatment apparatus
JP3966884B2 (en) Substrate processing apparatus, substrate processing method, and substrate manufacturing method
JP2008109158A (en) Substrate treatment apparatus, substrate treatment method, substrate producing method and electronic device
JP2008166820A (en) Apparatus and method for processing substrate, method for manufacturing substrate, and electronic instrument
JP4897035B2 (en) SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND RECORDING MEDIUM RECORDING PROGRAM FOR EXECUTING THE SUBSTRATE PROCESSING METHOD
JP2008124502A (en) Substrate treatment equipment, method for treating substrate, method for manufacturing substrate, and electronic instrument
JP2008053738A (en) Substrate processing device, method for processing substrate, and method for manufacturing substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees