JP3966884B2 - Substrate processing apparatus, substrate processing method, and substrate manufacturing method - Google Patents

Substrate processing apparatus, substrate processing method, and substrate manufacturing method Download PDF

Info

Publication number
JP3966884B2
JP3966884B2 JP2005177100A JP2005177100A JP3966884B2 JP 3966884 B2 JP3966884 B2 JP 3966884B2 JP 2005177100 A JP2005177100 A JP 2005177100A JP 2005177100 A JP2005177100 A JP 2005177100A JP 3966884 B2 JP3966884 B2 JP 3966884B2
Authority
JP
Japan
Prior art keywords
processing unit
processing
substrate
unit
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005177100A
Other languages
Japanese (ja)
Other versions
JP2005303328A (en
Inventor
美岳 伊藤
Original Assignee
美岳 伊藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35334390&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3966884(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 美岳 伊藤 filed Critical 美岳 伊藤
Priority to JP2005177100A priority Critical patent/JP3966884B2/en
Publication of JP2005303328A publication Critical patent/JP2005303328A/en
Application granted granted Critical
Publication of JP3966884B2 publication Critical patent/JP3966884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、被処理基板、例えば半導体ウエハまたは液晶表示装置(LCD)に用いられるガラス基板等の処理される基板に対して処理、例えば処理液による処理、例えばレジスト液等の有機溶剤或いはSOG等の無機剤を塗布する処理または露光後の現像液による処理、または洗浄液を供給して処理等の処理を施す処理または被処理基板に対して加熱処理を施す処理等を施す基板処理装置および基板処理方法に関する。   The present invention processes a substrate to be processed, such as a semiconductor wafer or a substrate to be processed such as a glass substrate used in a liquid crystal display (LCD), for example, processing with a processing solution, for example, an organic solvent such as a resist solution, SOG, or the like. Substrate processing apparatus and substrate processing for applying an inorganic agent, processing with a developer after exposure, processing for supplying a cleaning solution to perform processing such as processing, or processing for heating a substrate to be processed Regarding the method.

被処理基板、例えば液晶表示装置(LCD)に用いられるガラス基板或いは半導体ウエハ等の基板の製造を行う主たる工程においては、初段の工程として例えば基板に対して、洗浄液、例えば薬液または純水等を供給しつつブラシ等の洗浄処理部材を基板に接触させて洗浄する工程(洗浄工程)をし、基板を移動、例えば回転移動させて一旦振り切り乾燥し、所定の温度にて加熱処理を施し脱水工程(乾燥工程)を行い、この後、基板に対して、疎水化を行うため等に所定のガス処理、例えばHMDS処理を所定の温度にて施したり基板に対して紫外線照射(UV照射)等の処理を施したりする工程(疎水化工程)、その後に疎水化された基板に基板を所定の雰囲気下で回転移動等の移動運動をさせて所定の膜、例えばフォトレジスト膜を塗布し(塗布工程)、所定の温度にて基板に塗布されたフォトレジスト膜に対して所定のエネルギー、例えば所定の温度に加熱エネルギーまたは/及びEB照射等のエネルギー等のエネルギーを作用させることにより所定の硬度まで硬化せしめ(硬化工程)、所定の回路パターンに対応してフォトレジスト膜を露光し(露光工程)、この後に基板に対して現像液を供給し現像処理する(現像工程)という、いわゆるフォトリソグラフィー技術により回路パターンを形成するという手法にて基板の製造が行われている。   In a main process for manufacturing a substrate to be processed, for example, a glass substrate or a semiconductor wafer used for a liquid crystal display (LCD), as a first step, for example, a cleaning liquid such as a chemical solution or pure water is applied to the substrate. A cleaning process such as a brush is brought into contact with the substrate while being supplied (cleaning process), and the substrate is moved, for example, rotated and shaken to dry once, and subjected to a heat treatment at a predetermined temperature to perform a dehydration process. (Drying process) is performed, and thereafter, the substrate is subjected to predetermined gas treatment, for example, HMDS treatment at a predetermined temperature in order to make the substrate hydrophobic, or the substrate is irradiated with ultraviolet rays (UV irradiation), etc. Process (hydrophobization process), and then apply a predetermined film, for example, a photoresist film, to the hydrophobicized substrate by moving the substrate in a predetermined atmosphere, such as rotational movement. (Application step), a predetermined energy is applied to the photoresist film applied to the substrate at a predetermined temperature by applying energy such as heating energy and / or energy such as EB irradiation to the predetermined temperature. It is so-called curing (curing process), exposing a photoresist film corresponding to a predetermined circuit pattern (exposure process), and then supplying a developing solution to the substrate for development (development process). Substrates are manufactured by a method of forming a circuit pattern by photolithography.

従来、このような基板の製造を行うシステムとしては、例えば特開平2−144333号公報にて開示しているように、共通の直線状の搬送路に備えられた搬送機構により、直線状の搬送路の両側に基板を処理を行う処理ユニットを複数配置し、それら複数の処理ユニットに対して直線状の搬送路に備えられた搬送機構により基板が搬送されるよう構成した処理システムにより行われている。
特開平2−144333号公報
Conventionally, as a system for manufacturing such a substrate, for example, as disclosed in Japanese Patent Application Laid-Open No. 2-144333, a linear transport is provided by a transport mechanism provided in a common linear transport path. It is carried out by a processing system in which a plurality of processing units for processing a substrate are arranged on both sides of the path, and the substrate is transported to the plurality of processing units by a transport mechanism provided in a linear transport path. Yes.
Japanese Patent Laid-Open No. 2-144333

しかしながら、近年の産業の発達においては、被処理基板、例えば半導体ウエハにおいては300mmと大型の基板が今後の主流となりつつあり将来において大型化の一途をたどっている。また、LCD基板においては大型ディスプレーのニーズが加速しており、益々大型化の方向で進んでいる。このようなLCD基板は現在では、一辺が1mにも及ぶような巨大なものまで出現するに至り、それらの基板を処理する処理システムも当然大型化の一途をたどりつつある。このような処理システムの大型化は、処理システムを配置しているクリーンルーム等の施設への投資に深刻な影響を与える。すなわち、処理システムのフットプリントが極めて大きなものとなってしまうことに起因する。   However, in recent industrial development, a large substrate of 300 mm is becoming the mainstream in the future for substrates to be processed, for example, semiconductor wafers, and the size of the substrate is steadily increasing in the future. In addition, the demand for large-sized displays on LCD substrates is accelerating, and the size of the substrates is increasing. At present, such LCD substrates have come up to enormous ones with a side as long as 1 m, and processing systems for processing these substrates are naturally becoming ever larger. Such an increase in the size of the processing system seriously affects the investment in facilities such as a clean room in which the processing system is arranged. That is, the footprint of the processing system becomes extremely large.

また、処理システムの大型化は、その処理システム内において被処理基板を搬送する搬送機構がチッピング等の問題等から所定の搬送速度以上に上げられないことから処理部間等の搬送時間の低下を招き、基板の処理のスループットに重大な影響を与えてしまう。さらに、処理部間等の搬送時間の低下或いは所定時間以上かかってしまうことから、所定の処理部で処理した後、次工程の処理を行う処理部までを所定の時間で搬送する必要がある場合、その時間が達成できずに処理プロセスが目標のスペックを達成できなくなったり歩留まりの低下を促進してしまうという問題点が発生してしまうこととなる。   In addition, an increase in the size of the processing system reduces the transfer time between processing units because the transfer mechanism for transferring the substrate to be processed in the processing system cannot be increased beyond a predetermined transfer speed due to problems such as chipping. This will have a significant impact on the throughput of substrate processing. In addition, since it may take a predetermined time or more to reduce the transfer time between processing units, etc., it is necessary to transfer to a processing unit that performs processing in the next process after a predetermined processing unit. If the time cannot be achieved, the processing process will not be able to achieve the target specifications, or the yield will be reduced.

また、被処理基板を処理する処理部を一つのユニットとし、そのユニットを複数組み合わせてシステムを構成するのは、ある程度の基板の大きさまでは自由度がありフレキシブルにシステムを構築することが出来たが、基板の大きさが所定値以上となると一つの処理部ユニット間の物質的な距離も増大することから処理部間等の搬送時間の低下を招き、基板の処理のスループットに重大な影響を与えてしまう。   In addition, it was possible to construct a system flexibly with a certain amount of substrate size by configuring the processing unit that processes the substrate to be processed as one unit and combining multiple units to configure the system. However, if the size of the substrate exceeds a predetermined value, the material distance between the processing unit units also increases, leading to a decrease in transport time between processing units, which has a significant effect on substrate processing throughput. I will give it.

このような処理システムの大型化に対する解決策の一つとしては、例えば、フットプリントを小さくするために複数の処理ユニットを上下方向に積層することが考えられる。しかしながら、被処理基板の大型化は処理システムのフットプリントの増大にととまらず、被処理基板の処理の均一性を達成するためには高さ方向の大きさをも増大させてしまう。処理システムを配置しているクリーンルーム等の施設においては、例えばダウンフローの雰囲気を形成するようしており施設の高さには制約があり、複数の処理ユニットを上下方向に積層するとしても限界があることから、数においても従来ほど複数の処理ユニットを上下方向に積層することが極めて困難である。   As one of the solutions to such an increase in the size of the processing system, for example, it is conceivable to stack a plurality of processing units in the vertical direction in order to reduce the footprint. However, the increase in the size of the substrate to be processed not only increases the footprint of the processing system, but also increases the size in the height direction in order to achieve processing uniformity of the substrate to be processed. In facilities such as clean rooms where processing systems are installed, for example, an atmosphere of downflow is formed, and there are restrictions on the height of the facility, and there is a limit even if multiple processing units are stacked in the vertical direction. For this reason, in terms of number, it is extremely difficult to stack a plurality of processing units in the vertical direction as in the past.

本発明はかかる事情に鑑みてなされたものであって、基板の処理おける歩留まり率の向上、基板の処理のスループットの向上或いは現状のスループットの低下の抑制、かつ最小単位の装置の構成化を図ることにより装置の配置構成に自由度を向上させ、装置構成上の問題を伴うことなく装置全体の小型化が向上し装置全体のフットプリントを小さくすることができる基板処理装置及び基板処理方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is intended to improve the yield rate in substrate processing, improve the throughput of substrate processing, suppress the decrease in the current throughput, and configure the apparatus of the minimum unit. Accordingly, a substrate processing apparatus and a substrate processing method that can improve the degree of freedom in the arrangement configuration of the apparatus, improve the downsizing of the entire apparatus without causing problems in the apparatus configuration, and reduce the footprint of the entire apparatus are provided. The purpose is to do.

本発明の基板処理装置は、被処理基板をローラにて搬送自在に構成されたローラ搬送機構を有するとともに被処理基板を搬入出する搬入出口を有するローラ搬送部、前記ローラ搬送部の上部に配置され被処理基板に対して温調処理する温調処理部、及び前記温調処理部の上部に配置され前記温調処理部より高い温度にて前記被処理基板に熱処理を施す熱処理部を具備した第一の被処理基板処理部と、被処理基板を搬送自在に構成された搬送機構を有するとともに被処理基板を搬入出する搬入出口を有する搬送部、前記搬送部の上部に配置され被処理基板に対して温調処理する温調処理部、及び前記温調処理部の上部に配置され前記温調処理部より高い温度にて前記被処理基板に熱処理を施す熱処理部を具備した第二の被処理基板処理部と、を具備し、前記第一の被処理基板処理部と前記第二の被処理基板処理部との間であって各被処理基板処理部外に配置され、前記第一の被処理基板処理部のローラ搬送部のローラ搬送機構または/及び前記第二の被処理基板処理部の搬送部の搬送機構に対して前記被処理基板を搬送自在に構成された自走不可である第一の搬送機構を具備したことを特徴とする。   The substrate processing apparatus of the present invention has a roller transport mechanism configured to be able to transport a substrate to be processed by a roller, and has a roller transport unit having a loading / unloading port for loading and unloading the substrate to be processed, and disposed above the roller transport unit. A temperature adjustment processing unit that performs temperature adjustment processing on the substrate to be processed, and a heat treatment unit that is disposed above the temperature adjustment processing unit and that heat-treats the substrate to be processed at a temperature higher than the temperature adjustment processing unit. A first processing target substrate processing unit; a transporting unit configured to transport the processing target substrate and having a loading / unloading port for loading and unloading the processing target substrate; and a processing target substrate disposed above the transporting unit. A temperature control processing unit that performs a temperature control process on the substrate, and a second heat processing unit that is disposed above the temperature control processing unit and that heat-treats the substrate to be processed at a temperature higher than the temperature control processing unit. A processing substrate processing section; And a roller disposed between each of the first processed substrate processing units and the second processed substrate processing unit and outside each processed substrate processing unit. A roller transport mechanism of the transport unit and / or a first transport mechanism configured to be capable of transporting the substrate to be processed with respect to the transport mechanism of the transport unit of the second substrate processing unit to be processed is configured to be free-running. It is characterized by that.

本発明の基板処理装置においては、前記第一の搬送機構から被処理基板を受け渡し自在に構成され、前記被処理基板を自走して搬送する第二の搬送機構を具備したことが好ましい。   In the substrate processing apparatus of the present invention, it is preferable that the substrate transport apparatus includes a second transport mechanism that is configured to be able to deliver the substrate to be processed from the first transport mechanism and that transports the substrate to be processed by itself.

本発明の基板処理装置においては、前記ローラ搬送部において、被処理基板に対して処理液を供給する処理液供給機構を具備したことが好ましい。   In the substrate processing apparatus of the present invention, it is preferable that the roller transport unit includes a processing liquid supply mechanism for supplying a processing liquid to the substrate to be processed.

本発明の基板処理装置においては、前記被処理基板に対して気体を供給する気体供給機構と、この気体供給機構からの気体を排気する排気機構と、を具備したことが好ましい。   The substrate processing apparatus of the present invention preferably includes a gas supply mechanism that supplies a gas to the substrate to be processed and an exhaust mechanism that exhausts the gas from the gas supply mechanism.

本発明の基板の製造方法は、上記基板処理方法を使用して、被処理基板を製造することを特徴とする。   The substrate manufacturing method of the present invention is characterized in that a substrate to be processed is manufactured using the substrate processing method.

本発明の基板の製造方法は、上記基板処理装置を使用して、被処理基板を製造することを特徴とする。   The substrate manufacturing method of the present invention is characterized in that a substrate to be processed is manufactured using the substrate processing apparatus.

本発明によれば、基板の処理おける歩留まり率の向上、基板の処理のスループットの向上或いは現状のスループットの低下の抑制、かつ最小単位の装置のブロック構成化を図ることにより装置の配置構成に自由度を向上させ、装置構成上の問題を伴うことなく装置全体の小型化が向上し装置全体のフットプリントを小さくすることができる。したがって、基板の搬送距離の低減或いは搬送の工程の削減等により基板の処理のスループット等を向上することができ、最小単位の装置のブロック構成化等を図ることで基板の雰囲気管理もより基板に対する影響を抑制することができ、基板の処理の歩留りを向上することができる。もって産業の発達に寄与することができる。   According to the present invention, it is possible to increase the yield rate in substrate processing, increase the throughput of substrate processing, suppress the decrease in the current throughput, and configure the block configuration of the device in the smallest unit, so that the arrangement of the devices is free. The size of the entire apparatus can be improved and the footprint of the entire apparatus can be reduced without causing problems in the apparatus configuration. Therefore, it is possible to improve the throughput of the substrate processing by reducing the substrate transport distance or the transport process, etc., and by making the block configuration of the smallest unit, the atmosphere management of the substrate can be further controlled with respect to the substrate. The influence can be suppressed, and the yield of substrate processing can be improved. It can contribute to industrial development.

以下、本発明の実施の形態を添付図面を参照して詳細に説明する。図1は本発明の第1の実施の形態に係る基板処理装置、例えばLCD用のガラス基板に対してレジスト処理を施すレジスト塗布現像処理装置を示す平面図、図2、図3及び図6は各々その装置内の要部の内部を示す側面図、図4はその装置内の要部を示す平面図、図5は各々その装置内の要部を示す側面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a plan view showing a substrate processing apparatus according to a first embodiment of the present invention, for example, a resist coating and developing apparatus for performing resist processing on a glass substrate for LCD, and FIGS. 4 is a side view showing the inside of the main part in the apparatus, FIG. 4 is a plan view showing the main part in the apparatus, and FIG. 5 is a side view showing the main part in the apparatus.

このレジスト塗布現像処理装置1は、被処理基板、例えばLCD用のガラス基板Gを複数枚収容自在に構成された基板収納体、例えばカセットCを少なくとも一つ載置すると共に複数の場合は所定の一方向に沿って載置自在に構成されたカセット配置部2と、このカセット配置部2のカセットCに対してガラス基板Gを搬入或いは搬出すると共に複数のカセットCの載置方向と平行する所定方向Y1を自走自在に構成された搬送機構11を配置する搬送機構配置部5と、で少なくとも構成されたカセットステーション部90と、ガラス基板Gに所定の処理、例えばガラス基板Gに対して洗浄処理を施す洗浄処理部21、ガラス基板Gに対して所定の処理液、例えばレジスト液を塗布して処理を施すレジスト塗布処理部22、レジスト膜が形成されたガラス基板Gに対して所定の処理液、例えば現像液を供給して処理を施す現像処理部23、等の少なくとも一つの処理配置部とおよび、それぞれの処理部の間に各々配置されガラス基板Gを搬送自在に構成され、かつ自走不可に構成された搬送機構12,13,14と、これら搬送機構12,13,14の内の少なくとも一つの搬送機構或いはカセットステーション部90の搬送機構11からガラス基板Gを受渡し自在に構成されカセットステーション部90の搬送機構11の自走方向Y1とほぼ直交する所定方向Y2を自走自在に構成された搬送機構としての基板搬送機構16を配置する搬送機構配置部6と、で構成された処理ステーション部91と、この処理ステーション部91の搬送機構13と直接或いは間接的にガラス基板Gを受渡し自在に構成され処理ステーション部91の搬送機構15の自走方向Y2とほぼ直交する所定方向Y3を自走自在に構成された搬送機構15を配置すると共にガラス基板Gを搬送機構15から直接或いは間接的に他の装置、例えばガラス基板Gに形成されたレジスト膜に対して所定の回路パターンを露光する露光装置10と受渡し自在に構成された搬送機構配置部7としてのインターフェイスステーション部92とでその主要部が構成されている。   This resist coating and developing processing apparatus 1 mounts at least one substrate container, for example, a cassette C, which is configured to be capable of accommodating a plurality of substrates to be processed, for example, glass substrates G for LCDs. A cassette placement portion 2 configured to be freely placed along one direction, and a glass substrate G that is carried in or out of the cassette C of the cassette placement portion 2 and a predetermined parallel to the placement direction of the plurality of cassettes C A cassette station unit 90 configured at least with a transfer mechanism arrangement unit 5 that arranges a transfer mechanism 11 configured to be capable of self-propelling in the direction Y1, and a predetermined process on the glass substrate G, for example, cleaning the glass substrate G A cleaning processing unit 21 that performs processing, a resist coating processing unit 22 that performs processing by applying a predetermined processing liquid, such as a resist solution, to the glass substrate G, and a resist film are formed. A glass substrate G is disposed between each processing unit and at least one processing arrangement unit such as a development processing unit 23 for supplying a predetermined processing solution, for example, a developing solution to the glass substrate G for processing. A transport mechanism 12, 13, 14 configured to be capable of transporting the substrate G and not self-propelled, and at least one of these transport mechanisms 12, 13, 14 or a transport mechanism of the cassette station unit 90 A substrate transport mechanism 16 serving as a transport mechanism configured to be capable of self-running in a predetermined direction Y2 that is configured so as to be able to deliver the glass substrate G from 11 and that is substantially orthogonal to the self-running direction Y1 of the transport mechanism 11 of the cassette station unit 90 is disposed. A processing station unit 91 composed of a transport mechanism placement unit 6 and a glass substrate G directly or indirectly with the transport mechanism 13 of the processing station unit 91. A transfer mechanism 15 that is configured to be freely transferred and configured to be free-running in a predetermined direction Y3 that is substantially orthogonal to the self-running direction Y2 of the transfer mechanism 15 of the processing station unit 91 is disposed and the glass substrate G is directly or directly from the transfer mechanism 15. An exposure apparatus 10 that indirectly exposes a predetermined circuit pattern to another apparatus, for example, a resist film formed on the glass substrate G, and an interface station section 92 as a transfer mechanism arrangement section 7 that is configured to be delivered. Its main part is composed.

次に、処理ステーション部91内の処理配置部の一つである洗浄処理部21の構成について図2を参照して説明を行う。洗浄処理部21は、所定の処理、例えば液系の処理を施す処理部を含む複数の処理部によって構成されている。すなわち、その処理部の一つは、ガラス基板Gに対して所定の液処理としてガラス基板Gに対して洗浄液を供給する洗浄液供給機構としての洗浄液ノズル31から洗浄液をガラス基板Gに対して供給すると共にガラス基板Gに対して回転自在に構成された洗浄ブラシ32を接触させることによりガラス基板Gに付着した不要物としてのゴミ等を除去するよう構成された洗浄部30と、他の処理部の一つとして、ガラス基板Gを真空吸着して保持すると共に回転動且つ上下動自在に構成された保持機構としてのチャック36にて回転の遠心力でガラス基板Gの表面に付着した洗浄液を振切り乾燥自在に構成され、さらにチャック36上のガラス基板Gに対して乾燥気体を複数の穴から供給し乾燥を促進するための気体供給機構としてのシャワーヘッド37とでその主要部が構成された乾燥促進部35と、この乾燥促進部35と洗浄部30との間でガラス基板Gを搬送自在(一方向、つまり洗浄部30から次処理工程を行う乾燥促進部35方向で、搬送機構15の自走方向Y2とほぼ平行な方向に略水平に搬送)に構成されると共にカセットステーション部90の搬送機構11及び搬送機構12から般入出口39を介してガラス基板Gを直接若しくは間接的に受渡し自在に構成されると共にガラス基板Gを点或いは面接触にて搬送自在に構成された搬送機構としてのローラ搬送機構38と、でその主要部が構成されている。   Next, the configuration of the cleaning processing unit 21 which is one of the processing arrangement units in the processing station unit 91 will be described with reference to FIG. The cleaning processing unit 21 includes a plurality of processing units including a processing unit that performs predetermined processing, for example, liquid processing. That is, one of the processing units supplies the cleaning liquid to the glass substrate G from a cleaning liquid nozzle 31 as a cleaning liquid supply mechanism that supplies the glass substrate G with a cleaning liquid as a predetermined liquid processing. In addition, the cleaning unit 30 configured to remove dust or the like as an unnecessary object attached to the glass substrate G by contacting the cleaning brush 32 configured to be rotatable with respect to the glass substrate G, and other processing units As one example, the glass substrate G is vacuum-sucked and held, and the cleaning liquid adhering to the surface of the glass substrate G by a rotating centrifugal force is shaken off by a chuck 36 as a holding mechanism configured to be rotatable and vertically movable. Shower as a gas supply mechanism configured to be freely dried and further supplying dry gas to the glass substrate G on the chuck 36 through a plurality of holes to promote drying. The glass substrate G can be transported between the drying promoting unit 35 and the drying promoting unit 35 and the cleaning unit 30 (one direction, that is, the next processing step is performed from the cleaning unit 30). In the direction of the drying accelerating portion 35 to be carried out (conveyed substantially horizontally in a direction substantially parallel to the self-running direction Y2 of the conveying mechanism 15) The glass substrate G can be delivered directly or indirectly through the roller substrate and the roller conveyance mechanism 38 serving as a conveyance mechanism configured to convey the glass substrate G by point or surface contact. Has been.

なお、保持機構としてのチャック36についてガラス基板Gを真空吸着して保持するものを述べたが、ガラス基板Gの裏面または側面等を支持するメカチャックを用いてもよい。また、ローラ搬送機構38に対して搬送機構11及び搬送機構12から直接受渡ししてもよいが間接的に受渡しを行う一つの方法として、一旦ローラ搬送機構38の上方位置にてガラス基板Gの裏面または側面等を支持する支持機構(図示せず)として複数の支持ピンによって支持した後、それら複数のピンを同時に下降させてガラス基板Gをローラ搬送機構38のローラ部に移し替える方法等が考えられる。なぜならば、例えばローラ搬送機構38の複数のローラ部が独立して回転されるのではない場合、洗浄処理部21内に複数のガラス基板Gが存在していると複数のローラ部が回転して際に同時に処理の途中でも移動したり、そのような移動中に搬送機構11及び搬送機構12から直接受渡しする際に搬送ミスを起こす可能性があったり、また、複数のローラ部の回転が停止するのを待っていると搬送時間が処理のスループットに影響する恐れがあるためである。したがって、支持機構はガラス基板Gを一旦待機させる待機機構として存在させても良く,ローラ搬送機構38の途中の区間において存在させてもよい。ローラ搬送機構38の複数のローラ部が独立して回転される場合は、特に上述の問題は大きな影響となる可能性は低い。   Although the chuck 36 as the holding mechanism holds the glass substrate G by vacuum suction, a mechanical chuck that supports the back surface or the side surface of the glass substrate G may be used. Moreover, although it may deliver directly from the conveyance mechanism 11 and the conveyance mechanism 12 with respect to the roller conveyance mechanism 38, as one method of performing delivery indirectly, the back surface of the glass substrate G once in the position above the roller conveyance mechanism 38 is used. Alternatively, as a support mechanism (not shown) for supporting the side surface or the like, a method of supporting the glass substrate G by a plurality of support pins and then simultaneously lowering the plurality of pins to transfer the glass substrate G to the roller portion of the roller transport mechanism 38 is considered. It is done. This is because, for example, when the plurality of roller portions of the roller transport mechanism 38 are not rotated independently, if a plurality of glass substrates G exist in the cleaning processing unit 21, the plurality of roller portions rotate. At the same time, it may move during the process, or may cause a transport error when directly transferring from the transport mechanism 11 and the transport mechanism 12 during such movement, or the rotation of the plurality of roller units may stop. This is because the waiting time for the transfer may affect the processing throughput. Therefore, the support mechanism may exist as a standby mechanism that temporarily waits for the glass substrate G, or may exist in a section in the middle of the roller transport mechanism 38. When the plurality of roller portions of the roller transport mechanism 38 are independently rotated, the above problem is unlikely to have a significant influence.

次に、カセットステーション部90の搬送機構11の構成について説明すると搬送機構11は、前述にも説明したようにその基台40自体が複数のカセットCの載置方向と平行する所定方向Y1を自走自在に構成されており、搬送機構11には、ガラス基板Gを保持或いは支持する保持機構としてのアーム41を積層して複数備えている。これらのアーム41は各々独立して伸縮(X1方向)自在に構成されており、また、これらのアーム41の基台40は複数のアーム41を一括して上下方向(Z1方向)及び回転方向(θ1方向)に移動自在に構成されている。   Next, the configuration of the transport mechanism 11 of the cassette station unit 90 will be described. As described above, the transport mechanism 11 itself has a predetermined direction Y1 parallel to the mounting direction of the plurality of cassettes C. The transport mechanism 11 is provided with a plurality of stacked arms 41 as a holding mechanism for holding or supporting the glass substrate G. Each of these arms 41 is configured to be independently extendable and contractible (X1 direction), and the base 40 of these arms 41 collectively includes a plurality of arms 41 in the vertical direction (Z1 direction) and the rotation direction ( It is configured to be movable in the (θ1 direction).

次に、洗浄処理部21の上方、つまり上部の一方側には、ガラス基板Gの表面に付着した不要物、例えば有機物を除去するために紫外線、例えばエキシマUV等を照射して処理する紫外線処理部24が配置されており、洗浄処理部21の上方の他方側には、ガラス基板Gに対して所定の熱にて処理する第1の熱系の処理部25が配置されている。熱系の処理部25は、ガラス基板Gに対して疎水化処理を施すアドヒージョン処理ユニット26、ガラス基板Gに対して脱水ベークを行う脱水ベークユニット27等で構成される加熱処理部28と、この加熱処理部28の所定の処理ユニットで処理されたガラス基板Gを次工程の処理における処理時の温度に略設定するための温調処理部29が積層して配置されている。   Next, an ultraviolet treatment for irradiating ultraviolet rays, for example, excimer UV, etc., is performed on the upper side of the cleaning processing unit 21, that is, on one side of the upper portion, in order to remove unnecessary substances attached to the surface of the glass substrate G, such as organic substances. The first heat system processing unit 25 for processing the glass substrate G with a predetermined heat is disposed on the other side above the cleaning processing unit 21. The thermal processing unit 25 includes a heat processing unit 28 including an adhesion processing unit 26 that performs a hydrophobic treatment on the glass substrate G, a dehydration bake unit 27 that performs dehydration baking on the glass substrate G, and the like. A temperature adjustment processing unit 29 is disposed so as to substantially set the glass substrate G processed by a predetermined processing unit of the heat processing unit 28 to a temperature at the time of processing in the next process.

なお、熱系の処理部25において洗浄処理部21に最も近い部分に温調処理部29を配置しその上方に加熱処理部28を配置したが、通常、温調処理部29にて設定するガラス基板Gを次工程の処理における処理時の温度は、加熱処理部28における処理ユニットでの温度より低い温度のため、例えば略室温のため加熱処理部28の熱が洗浄処理部21に影響を及ぼさないように温調処理部29は熱影響を抑制するバッファ的機能としてもその配置位置が配慮されている。さらに、洗浄処理部21への熱影響を抑制するために加熱処理部28においてもより高い温度での処理を行う処理ユニットほど高い位置、つまり洗浄処理部21から遠い位置に配置するようにしたほうが好ましい。また、本実施例において温調処理部29は一つ設けてあるが複数有った方がより洗浄処理部21への熱影響が抑制されることになる。   In addition, although the temperature control processing part 29 is arrange | positioned in the part nearest to the washing | cleaning process part 21 in the thermal processing part 25, and the heat processing part 28 is arrange | positioned thereabove, the glass normally set in the temperature control processing part 29 is arranged. Since the temperature at the time of processing the substrate G in the next process is lower than the temperature in the processing unit in the heat processing unit 28, for example, approximately room temperature, the heat of the heat processing unit 28 affects the cleaning processing unit 21. In order to prevent the temperature adjustment processing unit 29 from being arranged, the arrangement position is also taken into consideration as a buffer function for suppressing the influence of heat. Furthermore, in order to suppress the thermal effect on the cleaning processing unit 21, the processing unit that performs processing at a higher temperature also in the heat processing unit 28 should be arranged at a higher position, that is, at a position farther from the cleaning processing unit 21. preferable. Further, in the present embodiment, one temperature adjustment processing unit 29 is provided, but if there are a plurality of temperature control processing units 29, the thermal influence on the cleaning processing unit 21 is further suppressed.

次に,洗浄処理部21の前述したカセットステーション部90の搬送機構11と対向する側には、搬送機構12が配置されている。この搬送機構12は、前述にも説明した搬送機構11と同様にガラス基板Gを保持或いは支持する保持機構としてのアーム41を積層して複数備えている。これらのアーム41は各々独立して伸縮(X1方向)自在に構成されており、また、これらのアーム41の基台40は複数のアーム41を一括して上下方向(Z1方向)及び回転方向(θ1方向)に移動自在に構成され、洗浄処理部21,アドヒージョン処理ユニット26及び脱水ベークユニット27の加熱処理部28,温調処理部29の各々の般入出口39を介してそれぞれの処理部に対してガラス基板Gを搬入出自在に構成されている。   Next, the transport mechanism 12 is arranged on the side of the cleaning processing unit 21 facing the transport mechanism 11 of the cassette station section 90 described above. Similar to the transport mechanism 11 described above, the transport mechanism 12 includes a plurality of stacked arms 41 as a holding mechanism that holds or supports the glass substrate G. These arms 41 are each configured to be independently extendable and contractible (X1 direction), and the base 40 of these arms 41 collectively includes a plurality of arms 41 in a vertical direction (Z1 direction) and a rotational direction ( (θ1 direction) is configured to be movable, and the cleaning processing unit 21, the adhesion processing unit 26, the heating processing unit 28 of the dehydration baking unit 27, and the temperature control processing unit 29 are connected to the respective processing units via the general inlet / outlet ports 39. On the other hand, the glass substrate G is configured to be freely loaded and unloaded.

次に、処理ステーション部91内の処理配置部の他の一つであるレジスト塗布処理部22の構成について図3を参照して説明を行う。レジスト塗布処理部22は、所定の処理、例えば液系の処理を施す処理部を含む複数の処理部によって構成されている。それらの処理部は、例えばガラス基板Gに対して所定の液処理としてガラス基板Gに対してレジスト液を供給するレジスト液供給機構としてのレジスト液供給ノズル61からレジスト液をガラス基板Gに対して供給すると共にガラス基板Gを保持し回転自在に構成された回転機構62の回転による遠心力にてガラス基板G上のレジスト液をガラス基板Gの処理面の全面にわたってレジスト膜を形成するように構成されており、このレジスト膜形成工程時には図示しない機構により上カップ63と下カップ64のいずれか一方が移動し他方に接触しカップ内をある程度の気密状態を維持するよう構成されたレジスト塗布部51と、図示しない機構により上カップ65と下カップ66のいずれか一方が移動し他方に接触し上カップ65と下カップ66により構成されたカップ内を排気機構、例えば真空ポンプ67により、ある程度の減圧状態に設定するよう構成され、レジスト塗布部51により処理されたガラス基板G上のレジスト液の形成膜に対してある程度まで減圧状態で乾燥させる減圧乾燥部52と、この減圧乾燥部52で処理されたガラス基板Gの周縁部のレジスト膜に対して溶剤液、例えばシンナー等を溶剤供給機構としての溶剤液供給ノズル68から供給し、ガラス基板Gの周縁部のレジスト膜を除去する不要レジスト膜除去部53と、でその主要部が構成されている。   Next, the configuration of the resist coating processing unit 22 which is another one of the processing arrangement units in the processing station unit 91 will be described with reference to FIG. The resist coating processing unit 22 includes a plurality of processing units including a processing unit that performs predetermined processing, for example, liquid processing. These processing units, for example, apply a resist solution to the glass substrate G from a resist solution supply nozzle 61 as a resist solution supply mechanism that supplies the resist solution to the glass substrate G as a predetermined liquid treatment on the glass substrate G. The resist solution on the glass substrate G is formed over the entire processing surface of the glass substrate G by the centrifugal force generated by the rotation of the rotating mechanism 62 that is configured to be able to hold and rotate the glass substrate G. In this resist film forming process, either one of the upper cup 63 and the lower cup 64 is moved by a mechanism (not shown) and is in contact with the other to maintain a certain degree of airtightness in the cup. And either one of the upper cup 65 and the lower cup 66 is moved by a mechanism (not shown) and comes into contact with the other to contact the upper cup 65 and the lower cup. 6 is configured to be set to a certain degree of reduced pressure by an exhaust mechanism, for example, a vacuum pump 67, and to some extent with respect to the resist solution forming film on the glass substrate G processed by the resist coating unit 51. A vacuum drying unit 52 for drying in a reduced pressure state, and a solvent liquid supply nozzle 68 as a solvent supply mechanism using a solvent solution, such as thinner, for the resist film on the periphery of the glass substrate G processed by the vacuum drying unit 52. And an unnecessary resist film removing section 53 that removes the resist film at the peripheral edge of the glass substrate G.

さらに、ガラス基板Gを順にレジスト塗布部51、減圧乾燥部52、不要レジスト膜除去部53の処理部に(一方向、つまり次処理工程を行う方向で、搬送機構15の自走方向Y2とほぼ平行な方向に略水平に搬送(Y5方向))搬送自在に構成された搬送機構79としては図4を参照して説明を行う。この搬送機構79は、ガラス基板Gの裏面または側面等を支持或いは保持する保持機構としてのアーム69,70をガラス基板Gに対して対向する位置に配置しており、これらのアーム69,70は互いに近接離間移動(図中Y5方向)するよう構成されると共に上下動して各処理部及び搬送機構12とガラス基板Gを受渡し自在に構成されアーム69,70にてガラス基板Gを保持したまま略水平移動自在に構成されている。   Further, the glass substrate G is sequentially applied to the processing units of the resist coating unit 51, the reduced pressure drying unit 52, and the unnecessary resist film removing unit 53 (in one direction, that is, in the direction in which the next processing step is performed, substantially the same as the self-running direction Y2 of the transport mechanism 15). The transport mechanism 79 configured to be transported substantially horizontally in the parallel direction (Y5 direction) will be described with reference to FIG. In the transport mechanism 79, arms 69 and 70 as holding mechanisms for supporting or holding the back surface or side surface of the glass substrate G are arranged at positions facing the glass substrate G. It is configured to move close to and away from each other (in the direction Y5 in the figure) and move up and down so that each processing unit and the transport mechanism 12 and the glass substrate G can be delivered freely, and the glass substrate G is held by the arms 69 and 70. It is configured to move substantially horizontally.

次に、図3に示すようにレジスト塗布処理部22の上方、つまり上部の一方側には、ガラス基板Gに対して所定の熱にて処理する第2の熱系の処理部71が配置されている。この熱系の処理部71は、前述した第1の熱系の処理部25にても配置されたガラス基板Gに対して脱水ベークを行う脱水ベークユニット27で構成される加熱処理部28と、この加熱処理部28の所定の処理ユニットで処理されたガラス基板Gを次工程の処理であるレジスト塗布処理部22内の処理における処理時の温度に略設定するための温調処理部29が積層して配置されている。つまり、レジスト塗布処理部22における処理の前段処理を第1の熱系の処理部25及び第2の熱系の処理部71にてガラス基板Gに対して処理を施すものである。   Next, as shown in FIG. 3, a second heat processing unit 71 for processing the glass substrate G with a predetermined heat is disposed above the resist coating processing unit 22, that is, on one side of the upper part. ing. The thermal processing unit 71 includes a heat processing unit 28 including a dehydration baking unit 27 that performs dehydration baking on the glass substrate G disposed in the first thermal processing unit 25 described above, A temperature adjustment processing unit 29 for setting the glass substrate G processed in a predetermined processing unit of the heat processing unit 28 to a temperature at the time of processing in the processing in the resist coating processing unit 22 which is processing of the next process is laminated. Arranged. In other words, the pre-processing of the processing in the resist coating processing unit 22 is performed on the glass substrate G by the first thermal processing unit 25 and the second thermal processing unit 71.

なお、第1の熱系の処理部25及び第2の熱系の処理部71のユニット構成は同様な構成でも良いが、さらに好ましいのは洗浄処理部21に比べてレジスト塗布処理部22の方が処理の性質から熱の影響が受けやすいために、第1の熱系の処理部25にて配置する各処理ユニットでの処理の熱量の合計熱量より第2の熱系の処理部71のユニットでの処理の熱量の合計熱量が低くなるように構成したり、第1の熱系の処理部25にて配置する温調処理部29の数より第2の熱系の処理部71にて配置する温調処理部29の数が多くなるように構成したり、洗浄処理部21と加熱処理部28との間に介在する温調処理部29の数よりレジスト塗布処理部22と加熱処理部28との間に介在する温調処理部29の数がより多くなるように構成したり、第2の熱系の処理部71のユニット構成は温調処理部29のみにて構成するようにしてもよい。   The unit configurations of the first thermal processing unit 25 and the second thermal processing unit 71 may be similar, but the resist coating processing unit 22 is more preferable than the cleaning processing unit 21. However, the unit of the processing unit 71 of the second heat system is more than the total amount of heat of processing in each processing unit arranged in the processing unit 25 of the first heat system. The total heat quantity of the heat in the process is configured to be lower, or arranged in the second heat system processing unit 71 than the number of temperature control processing units 29 arranged in the first heat system processing unit 25 The number of temperature control processing units 29 to be increased is increased, or the number of temperature control processing units 29 interposed between the cleaning processing unit 21 and the heat processing unit 28 is larger than that of the resist coating processing unit 22 and the heat processing unit 28. The number of temperature control processing units 29 interposed between the two is increased. The unit structure of the second thermal system of the processing unit 71 may be composed of only the temperature regulation processing unit 29.

さらに、レジスト塗布処理部22の上方の他方側には、レジスト塗布処理部22にて処理されたガラス基板Gに形成されたレジスト膜に対して所定の温度を処理してレジスト膜を硬化させる複数の加熱処理ユニット75等で構成される加熱処理部76と、この加熱処理部76の所定の処理ユニット75で処理されたガラス基板Gを次工程の処理における処理時の温度または装置内温度に略設定するための温調処理部77が積層して配置され第3の熱系の処理部72が構成されている。なお、レジスト塗布処理部22と加熱処理部76との間に温調処理部77を介在させるのは前述と同様な理由である。   Further, on the other side above the resist coating processing unit 22, a plurality of resist films formed on the glass substrate G processed in the resist coating processing unit 22 are processed at a predetermined temperature to cure the resist film. The heat treatment unit 76 constituted by the heat treatment unit 75 and the like, and the glass substrate G treated by the predetermined treatment unit 75 of the heat treatment unit 76 are substantially equal to the temperature at the time of processing in the processing of the next process or the temperature in the apparatus A temperature control processing unit 77 for setting is stacked and arranged, and a third thermal processing unit 72 is configured. Note that the temperature adjustment processing unit 77 is interposed between the resist coating processing unit 22 and the heat processing unit 76 for the same reason as described above.

次に,前述した搬送機構12は、レジスト塗布処理部22内にレジスト塗布処理部22の第一の般入出口39からガラス基板Gを搬入及び加熱処理部28と温調処理部29に対してそれぞれ設けられている般入出口39からガラス基板Gを搬入出自在に構成されている。なお、搬送機構12の動作については基本的に前述に記したとおりである。   Next, the above-described transport mechanism 12 carries the glass substrate G into the resist coating processing unit 22 from the first general entrance / exit 39 of the resist coating processing unit 22, and with respect to the heating processing unit 28 and the temperature control processing unit 29. The glass substrate G can be carried in and out through a general inlet / outlet 39 provided. The operation of the transport mechanism 12 is basically as described above.

次に、レジスト塗布処理部22内で処理されたガラス基板Gをレジスト塗布処理部22の搬入出口39から搬出または加熱処理部76の加熱処理ユニット75或いは温調処理部77の各々に対してそれぞれの搬入出口39を介してガラス基板Gを般入出させる搬送機構13を図5を参照しながら説明する。なお、レジスト塗布処理部22内で処理されたガラス基板Gをレジスト塗布処理部22の搬入出口39または加熱処理部76の加熱処理ユニット75或いは温調処理部77の各々の搬入出口39は、レジスト塗布部51、減圧乾燥部52、不要レジスト膜除去部53の処理部の配置方向に、つまりレジスト塗布処理部22内の搬送機構の自走方向Y4とほぼ直交する方向に位置するよう構成されている。   Next, the glass substrate G processed in the resist coating processing unit 22 is carried out from the loading / unloading port 39 of the resist coating processing unit 22 or is respectively applied to the heating processing unit 75 or the temperature adjustment processing unit 77 of the heating processing unit 76. A transport mechanism 13 for generally loading and unloading the glass substrate G through the loading / unloading port 39 will be described with reference to FIG. Note that the glass substrate G processed in the resist coating processing unit 22 is provided with a loading / unloading port 39 of the resist coating processing unit 22, a heating processing unit 75 of the heating processing unit 76, or a loading / unloading port 39 of the temperature control processing unit 77. The coating unit 51, the reduced pressure drying unit 52, and the unnecessary resist film removing unit 53 are configured to be disposed in the direction of arrangement of the processing units, that is, in a direction substantially orthogonal to the self-running direction Y4 of the transport mechanism in the resist coating processing unit 22. Yes.

したがって、搬送機構13は、レジスト塗布処理部22内の搬送機構の自走方向Y4とほぼ直交する方向に位置するよう配置されており、搬送機構13は、前述にも説明した搬送機構12と同様にガラス基板Gを保持或いは支持する保持機構としてのアーム41を積層して複数備えている。これらのアーム41は各々独立して伸縮(X2方向)自在に構成されており、また、これらのアーム41の基台40は複数のアーム41を一括して上下方向(Z2方向)及び回転方向(θ2方向)に移動自在に構成されている。   Accordingly, the transport mechanism 13 is disposed so as to be positioned in a direction substantially orthogonal to the self-running direction Y4 of the transport mechanism in the resist coating processing unit 22, and the transport mechanism 13 is the same as the transport mechanism 12 described above. A plurality of arms 41 as a holding mechanism for holding or supporting the glass substrate G are provided. These arms 41 are each configured to be independently extendable and contractible (X2 direction), and the base 40 of these arms 41 collectively includes a plurality of arms 41 in the vertical direction (Z2 direction) and the rotation direction ( It is configured to be movable in the (θ2 direction).

さらに、搬送機構13は、現像処理部23内に現像処理部23の第一の般入出口39からガラス基板Gを搬入自在に構成されており,さらに現像処理部23の上方、つまり上部の一方側に配置され、ガラス基板Gに対して所定の熱にて処理する第4の熱系の処理部73として、後述する露光装置10にて処理されたガラス基板Gを所定の温度で加熱処理する加熱処理部75と、この加熱処理部75と現像処理部23との間には加熱処理部75の熱が現像処理部23に影響を与えないよう加熱処理部75で処理されたガラス基板Gを現像処理部23での処理温度と略同温、例えば室温に設定する温調処理部77の各々の般入出口39を介してガラス基板Gを搬入出自在に構成されている。   Further, the transport mechanism 13 is configured so that the glass substrate G can be carried into the development processing unit 23 from the first general entrance / exit 39 of the development processing unit 23, and further, one of the upper side of the development processing unit 23, that is, one on the upper side. As a fourth thermal processing unit 73 disposed on the side and processing the glass substrate G with a predetermined heat, the glass substrate G processed with the exposure apparatus 10 described later is heated at a predetermined temperature. Between the heat processing unit 75 and the heat processing unit 75 and the development processing unit 23, the glass substrate G processed by the heat processing unit 75 so that the heat of the heat processing unit 75 does not affect the development processing unit 23. The glass substrate G is configured to be able to be carried in and out through each general inlet / outlet 39 of the temperature adjustment processing unit 77 that is set to substantially the same temperature as the processing temperature in the development processing unit 23, for example, room temperature.

なお、第4の熱系の処理部73と第2の熱系の処理部71の処理ユニット群は互いに般入出口39が対抗する方向に配置され、さらに現像処理部23とレジスト塗布処理部22の般入出口39も対抗するよう配置されている。   The processing unit groups of the fourth thermal processing unit 73 and the second thermal processing unit 71 are arranged in the direction in which the general inlet / outlet 39 oppose each other, and further the development processing unit 23 and the resist coating processing unit 22. The general entrance / exit 39 is also arranged to oppose.

次に、現像処理部23の構成について図6を参照して説明を行う。現像処理部23は、所定の処理、例えば液系の処理を施す処理部を含む複数の処理部によって構成されている。すなわち、その処理部の一つは、ガラス基板Gの露光装置10により所定の回路パターンが形成されたレジスト膜に対して所定の液処理としてガラス基板Gに対して現像液を供給する現像液供給機構としての現像液ノズル81から現像液をガラス基板Gに対して供給する現像液供給部80と、他の処理部の一つとして、現像液供給部80でガラス基板G上に盛られた現像液の現像反応を進行させると共に現像反応が終了した後にガラス基板Gに対して純水等のリンス液をリンス液供給ノズル83から供給しガラス基板G上の現像液を除去(現像液からリンス液に置換)すると共にガラス基板Gの乾燥を例えば乾燥エアー等の乾燥促進機構(図示せず)により乾燥を促進させるリンス液供給部82とを備えている。   Next, the configuration of the development processing unit 23 will be described with reference to FIG. The development processing unit 23 includes a plurality of processing units including a processing unit that performs predetermined processing, for example, liquid processing. That is, one of the processing units supplies a developing solution for supplying a developing solution to the glass substrate G as a predetermined liquid treatment for a resist film on which a predetermined circuit pattern is formed by the exposure apparatus 10 for the glass substrate G. A developer supply unit 80 that supplies a developer to the glass substrate G from a developer nozzle 81 as a mechanism, and a developer that is stacked on the glass substrate G by the developer supply unit 80 as one of the other processing units. The development reaction of the liquid is allowed to proceed, and after the development reaction is completed, a rinsing liquid such as pure water is supplied from the rinsing liquid supply nozzle 83 to the glass substrate G to remove the developing liquid on the glass substrate G (from the developing liquid to the rinsing liquid) And a rinsing liquid supply unit 82 that accelerates the drying of the glass substrate G by a drying acceleration mechanism (not shown) such as dry air.

また、現像処理部23内には、現像液供給部80とリンス液供給部82との間でガラス基板Gを搬送自在(一方向、つまり現像液供給部80側から次処理工程を行うリンス液供給部82方向で、搬送機構15の自走方向Y2とほぼ平行な方向に略水平に搬送)に構成され、搬送機構13及び後述する搬送機構14からそれぞれ般入出口39を介してガラス基板Gを直接若しくは間接的に受渡し自在に構成されると共にガラス基板Gを点或いは面接触にて搬送自在に構成された搬送機構としてのローラによる搬送機構85とを備えている。   Further, the glass substrate G can be freely transported between the developer supply unit 80 and the rinse solution supply unit 82 in the development processing unit 23 (a rinse solution for performing the next processing step in one direction, that is, from the developer supply unit 80 side). Glass substrate G from the transport mechanism 13 and the transport mechanism 14 described later through the general entrance / exit 39, respectively, in the direction of the supply unit 82 and transported substantially horizontally in a direction substantially parallel to the self-running direction Y2 of the transport mechanism 15. And a transfer mechanism 85 using a roller as a transfer mechanism configured to be able to transfer the glass substrate G by point or surface contact.

なお、現像処理部23内の搬送機構85または洗浄処理部23内の搬送機構38においてローラによる搬送を記したがこれに限定されず例えばレジスト塗布処理部22内の搬送機構79のようなアーム69,70にて搬送機構を構成しても良いしレジスト塗布処理部22内の搬送機構79においてもローラによる搬送機構に置き換えても良く、基板を上述のように搬送可能であればその機構の種類を限定するものではない。   In addition, although conveyance by a roller is described in the conveyance mechanism 85 in the development processing unit 23 or the conveyance mechanism 38 in the cleaning processing unit 23, the present invention is not limited to this. , 70 may constitute a conveyance mechanism, or the conveyance mechanism 79 in the resist coating processing unit 22 may be replaced with a conveyance mechanism using a roller. If the substrate can be conveyed as described above, the type of the mechanism is possible. It is not intended to limit.

次に、図6に示すように現像処理部23の上方、つまり上部の第4の熱系の処理部73配置側ではない方の一方端側には、第5の熱系の処理部74として現像処理部23にて処理されたガラス基板Gに対して所定の温度で処理を施しガラス基板G上のレジスト膜を乾燥硬化させる加熱処理部100、この加熱処理部100で処理されたガラス基板Gを次工程の処理における処理時の温度または装置内温度に略設定するための温調処理部101が積層して配置され、温調処理部101の下部にはガラス基板Gに対して現像の脱色処理を行うための紫外線処理部としてi線の紫外線を照射する紫外線照射ユニット102(例えば半導体ウエハの処理の場合においては電磁エネルギー処理部、例えばエレクトロンビームを照射するEB処理部等)が設けられ、紫外線照射ユニット102の下部にはガラス基板G上に形成されたレジスト膜の検査を行う検査処理部103が設けられている。   Next, as shown in FIG. 6, a fifth thermal processing unit 74 is provided above the development processing unit 23, that is, on the one end side that is not the arrangement side of the upper fourth thermal processing unit 73. The glass substrate G processed in the development processing unit 23 is processed at a predetermined temperature to dry and cure the resist film on the glass substrate G, and the glass substrate G processed in the heat processing unit 100 The temperature adjustment processing unit 101 for substantially setting the temperature at the time of processing in the processing of the next process or the temperature in the apparatus is laminated, and decolorization of development with respect to the glass substrate G below the temperature control processing unit 101 An ultraviolet irradiation unit 102 for irradiating i-line ultraviolet rays (for example, an electromagnetic energy processing unit, for example, an EB processing unit for irradiating an electron beam in the case of processing a semiconductor wafer) serves as an ultraviolet processing unit for performing processing. Vignetting, the lower portion of the ultraviolet irradiation unit 102 inspection processing unit 103 to inspect the resist film formed on the glass substrate G is provided.

次に、搬送機構14は、前述にも説明した搬送機構13と同様にガラス基板Gを保持或いは支持する保持機構としてのアーム41を積層して複数備えている。これらのアーム41は各々独立して伸縮(X3方向)自在に構成されており、また、これらのアーム41の基台40は複数のアーム41を一括して上下方向(Z3方向)及び回転方向(θ3方向)に移動自在に構成され、現像処理部23内で処理されたガラス基板Gを現像処理部23の搬入出口39から搬出または加熱処理部100或いは温調処理部101或いは紫外線照射ユニット102或いは検査処理部103の各々に対してそれぞれの搬入出口39を介してガラス基板Gを般入出自在に構成されている。   Next, the transport mechanism 14 is provided with a plurality of stacked arms 41 as a holding mechanism for holding or supporting the glass substrate G similarly to the transport mechanism 13 described above. These arms 41 are configured to be independently extendable and contractible (X3 direction), and the base 40 of these arms 41 collectively includes a plurality of arms 41 in the vertical direction (Z3 direction) and the rotation direction ( The glass substrate G is configured to be movable in the direction (θ3) and is processed in the development processing unit 23, and is unloaded from the loading / unloading port 39 of the development processing unit 23, or the heating processing unit 100, the temperature control processing unit 101, the ultraviolet irradiation unit 102, or the like. The glass substrate G can be generally inserted into and removed from each of the inspection processing units 103 via respective loading / unloading ports 39.

次に、図1に示した基板搬送機構16について図7,図8,図9の斜視図及び図10の要部断面図を参照して説明する。この基板搬送機構16は、図1に示すように処理ステーション部91内の複数の搬送機構12,13,14とそれぞれガラス基板Gを受け渡す受渡し位置(図中P1,P2,P3)にてガラス基板Gを受け渡し自在(TP)に構成され、またカセットステーション部90の搬送機構11ともガラス基板Gを受け渡し自在(TP)に構成されている。   Next, the substrate transport mechanism 16 shown in FIG. 1 will be described with reference to the perspective views of FIGS. As shown in FIG. 1, the substrate transport mechanism 16 is made of glass at a delivery position (P1, P2, P3 in the figure) for delivering the glass substrate G to and from the plurality of transport mechanisms 12, 13, 14 in the processing station 91. The substrate G is configured to be freely transferred (TP), and the transport mechanism 11 of the cassette station unit 90 is also configured to be able to transfer the glass substrate G (TP).

図7に示すように基板搬送機構16は、ガラス基板Gの側方或いは周縁部を保持する周縁部保持部材120と裏面側を保持する裏面部保持部材121とを備えた搬送機構11,12,13または14のアーム41がX方向に移動し基板搬送機構16上に位置した後に、図8に示すようにガラス基板Gの側方或いは周縁部を保持すると共にアーム41と干渉しないように上昇する上下動自在に構成された周縁部保持部材125と、アーム41と干渉しないようにアームのスリット部122から突出してガラス基板Gの裏面側を保持すると共に上下動自在に構成された裏面部保持部材126とでアーム41上のガラス基板Gを受け取り自在構成されている。   As shown in FIG. 7, the substrate transport mechanism 16 includes transport mechanisms 11, 12 including a peripheral edge holding member 120 that holds the side or peripheral edge of the glass substrate G and a back surface holding member 121 that holds the back surface side. After the 13 or 14 arm 41 moves in the X direction and is positioned on the substrate transport mechanism 16, the side or peripheral edge of the glass substrate G is held and raised so as not to interfere with the arm 41 as shown in FIG. 8. A peripheral edge holding member 125 configured to move up and down, and a rear surface holding member configured to protrude from the slit portion 122 of the arm so as not to interfere with the arm 41 and hold the back side of the glass substrate G and to be movable up and down. 126 is configured to receive the glass substrate G on the arm 41 freely.

さらに、基板搬送機構16は、搬送機構11,12,13または14のアーム41がX方向に移動し基板搬送機構16上から退避した後に、図9に示すように周縁部保持部材125及び裏面部保持部材126が降下した際にガラス基板Gの側方或いは周縁部を保持すると周縁部保持部材128と、ガラス基板Gの裏面側を保持する裏面部保持部材129とを備えている。   Further, the substrate transport mechanism 16 is configured such that after the arm 41 of the transport mechanism 11, 12, 13 or 14 moves in the X direction and retracts from the substrate transport mechanism 16, as shown in FIG. When holding the side or peripheral edge of the glass substrate G when the holding member 126 is lowered, a peripheral edge holding member 128 and a back surface holding member 129 for holding the back side of the glass substrate G are provided.

さらに、基板搬送機構16の周縁部保持部材128は、図10に示すように、ガラス基板Gの位置決め機構として複数の角度(θ1,θ2)を有した落とし込み部130を備えており、基板搬送機構16の移動中においてもガラス基板Gの位置がずれるのを抑制している。このような位置決め機構は、搬送機構11,12,13または14のアーム41との受渡しの際にも位置がずれるのを抑制する効果を有している。また、搬送機構11,12,13または14のアーム41の周縁部保持部材120もこのような機構を備えておりガラス基板Gの搬送中或いは受渡し時の動作をより確実に行うよう構成されている。なお、基板搬送機構16には、図示しない温調機構が備えられガラス基板Gを所定の温度、例えば搬送に適した所定温度または前述の温調処理部の処理温度と略同温に設定自在に構成されている。   Further, as shown in FIG. 10, the peripheral edge holding member 128 of the substrate transport mechanism 16 includes a drop portion 130 having a plurality of angles (θ1, θ2) as a positioning mechanism of the glass substrate G. It is possible to prevent the position of the glass substrate G from shifting even during movement of 16. Such a positioning mechanism has an effect of suppressing the displacement of the position even when the transport mechanism 11, 12, 13 or 14 is transferred to and from the arm 41. Further, the peripheral edge holding member 120 of the arm 41 of the transport mechanism 11, 12, 13, or 14 is also provided with such a mechanism, and is configured to perform the operation during transport of the glass substrate G or during delivery more reliably. . The substrate transport mechanism 16 is provided with a temperature control mechanism (not shown) so that the glass substrate G can be set to a predetermined temperature, for example, a predetermined temperature suitable for transport or substantially the same temperature as the processing temperature of the temperature control processing unit. It is configured.

次に、インターフェイスステーション部92について図1を参照しながら説明を行う。インターフェイスステーション部92は、前述にも説明した搬送機構11と同様にガラス基板Gを保持或いは支持する保持機構としてのアーム41を積層して複数備え、これらのアーム41は各々独立して伸縮自在に構成されており、また、これらのアーム41の基台は複数のアーム41を一括して上下方向(Z方向)及び回転方向(θ方向)に移動自在に構成され基台は搬送機構11のY1方向と平行するY3方向に移動自在に構成された搬送機構15を備えている。   Next, the interface station unit 92 will be described with reference to FIG. The interface station unit 92 is provided with a plurality of stacked arms 41 as holding mechanisms for holding or supporting the glass substrate G in the same manner as the transport mechanism 11 described above, and these arms 41 can be extended and retracted independently. Further, the base of these arms 41 is configured such that the plurality of arms 41 can be moved together in the vertical direction (Z direction) and the rotation direction (θ direction), and the base is Y1 of the transport mechanism 11. A transport mechanism 15 configured to be movable in the Y3 direction parallel to the direction is provided.

さらに、搬送機構15は、処理ステーション部91の搬送機構13及び露光装置10との間で直接或いは間接的にガラス基板Gを受渡し自在に構成されている。   Further, the transport mechanism 15 is configured to be able to transfer the glass substrate G directly or indirectly between the transport mechanism 13 of the processing station unit 91 and the exposure apparatus 10.

次に、図2における洗浄処理部21,図3におけるレジスト塗布処理部22及び図6における現像処理部23の図中に示すそれぞれの処理部内部の処理部間に示された点線部について図11及び図12を参照して説明する。それぞれの処理部21,22,23内部の処理部間には例えばそれぞれの処理部との雰囲気干渉を抑制するために雰囲気遮断機構として例えば図11または図12で示すような機構を備えている。(ここではガラス基板Gをローラ搬送する例で説明する。)   Next, FIG. 11 shows dotted line portions shown between the processing units in the respective processing units shown in the drawing of the cleaning processing unit 21 in FIG. 2, the resist coating processing unit 22 in FIG. 3, and the development processing unit 23 in FIG. A description will be given with reference to FIG. For example, a mechanism as shown in FIG. 11 or FIG. 12 is provided between the processing units inside each of the processing units 21, 22, and 23 as an atmosphere blocking mechanism in order to suppress atmospheric interference with each processing unit, for example. (Here, an example in which the glass substrate G is conveyed by rollers will be described.)

すなわち、図11に示す雰囲気遮断機構150における開閉機構として上シャッタ152と下シャッタ153が設けられ、いずれか一方の側、例えば下シャッタ153の上シャッタ152との当接面にはシール部材としてシリコンゴム154等が配置されている。また、上シャッタ152と下シャッタ153とは相対的に近接離間(図中Z5)するよう構成されており上シャッタ152と下シャッタ153とが接触した際には処理部間の雰囲気を遮断自在に構成している。   That is, an upper shutter 152 and a lower shutter 153 are provided as an opening / closing mechanism in the atmosphere blocking mechanism 150 shown in FIG. 11, and silicon is used as a seal member on a contact surface of one side, for example, the upper shutter 152 of the lower shutter 153. Rubber 154 and the like are disposed. Further, the upper shutter 152 and the lower shutter 153 are configured to be relatively close to each other (Z5 in the drawing), and when the upper shutter 152 and the lower shutter 153 come into contact with each other, the atmosphere between the processing units can be cut off. It is composed.

また、図12に示す雰囲気遮断機構150においては、遮断媒体、例えば、気体、例えばクリーエアー等または液体、例えば純水等を供給する遮断媒体供給機構156から開閉機構、例えばバルブ157を介してノズル158からカーテン状に吐出されるよう構成されている。また、ノズル158の下方位置には、ノズル158から吐出された遮断媒体を回収するための遮断媒体受け部159が設けられ、この遮断媒体受け部159の遮断媒体は開閉機構、例えばバルブ160を介して遮断媒体回収機構161により回収されるよう構成されている。さらに、遮断媒体回収機構161は回収した遮断媒体の少なくとも一部をコストダウン等のメリットから遮断媒体供給機構156に対して循環経路162を介して戻し、循環利用自在に構成している。   In addition, in the atmosphere blocking mechanism 150 shown in FIG. 12, a blocking medium such as a gas, for example, clean air, or a liquid, such as pure water, is supplied from a blocking medium supply mechanism 156 via an opening / closing mechanism, for example, a valve 157. It is comprised so that it may discharge in curtain shape from 158. Further, a blocking medium receiving portion 159 for collecting the blocking medium discharged from the nozzle 158 is provided at a position below the nozzle 158, and the blocking medium of the blocking medium receiving portion 159 passes through an opening / closing mechanism such as a valve 160. The blocking medium recovery mechanism 161 is configured to be recovered. Further, the blocking medium recovery mechanism 161 is configured to be freely circulated by returning at least a part of the recovered blocking medium to the blocking medium supply mechanism 156 via the circulation path 162 from the merits such as cost reduction.

このような雰囲気遮断機構150の動作については、ガラス基板Gが搬送機構38,79,85により雰囲気遮断機構150を通過する際は、例えばシャッタ152,153を使用する場合は開閉或いは遮断媒体おいて例えば液体を使用する場合はその吐出を停止するよう構成する必要がある。しかしながら、遮断媒体おいて例えば気体を使用する場合は稼動の停止を必要としない場合が多い。つまり、例えば洗浄処理部21内において洗浄部30と乾燥促進部35との間に雰囲気遮断機構150を配置した場合、遮断媒体おいて例えば気体を使用していると洗浄部30で処理されてきたガラス基板G上の洗浄液を吹き飛ばすことになり後段の処理の乾燥促進部35の処理時間が短縮できるという二次的な効果を発生させることができる。この場合特に注意する点として遮断媒体によりガラス基板G上の洗浄液が吹き飛んでミストになった際、このミストが乾燥促進部35で処理するまたは処理後のガラス基板G上に付着しないよう対策を行う必要がある。このような対策の一つとしてガラス基板Gの搬送方向に複数の雰囲気遮断機構150を配置してもよい。以上のことから、雰囲気遮断機構150は配置環境或いは前後の処理環境に応じて適宜選択するようにすることが必要である。   Regarding the operation of the atmosphere blocking mechanism 150, when the glass substrate G passes through the atmosphere blocking mechanism 150 by the transport mechanisms 38, 79, 85, for example, when using the shutters 152, 153, an opening / closing or blocking medium is used. For example, in the case of using a liquid, it is necessary to configure to stop the discharge. However, for example, when gas is used in the blocking medium, it is often unnecessary to stop the operation. That is, for example, when the atmosphere blocking mechanism 150 is arranged between the cleaning unit 30 and the drying promoting unit 35 in the cleaning processing unit 21, the cleaning unit 30 has been processed if, for example, gas is used in the blocking medium. Since the cleaning liquid on the glass substrate G is blown off, a secondary effect that the processing time of the drying promoting unit 35 in the subsequent processing can be shortened can be generated. In this case, as a point to be particularly noted, when the cleaning liquid on the glass substrate G is blown off by the blocking medium to be mist, measures are taken so that the mist is not processed or adhered to the glass substrate G after processing by the drying accelerating unit 35. There is a need. As one of such measures, a plurality of atmosphere blocking mechanisms 150 may be disposed in the conveyance direction of the glass substrate G. From the above, it is necessary to appropriately select the atmosphere blocking mechanism 150 according to the arrangement environment or the front and rear processing environments.

次に、各処理部に設けられた搬入出口39について図13及び図14を参照して説明する。各処理部に設けられた搬入出口39は、各処理部の内部方向から外方向に見た図13に示すように各処理部内の内壁部165には搬入出口39の周囲にシール部材、例えばOリング166が備えられており、図14に示す開閉機構、例えばシャッタ機構167が待機位置から所定の動作、例えば図中のZ0方向に移動しさらにX0方向に移動しOリング166と当接し搬入出口39を開閉自在に構成されている。   Next, the loading / unloading port 39 provided in each processing unit will be described with reference to FIGS. 13 and 14. The loading / unloading port 39 provided in each processing unit has a sealing member, for example, O, around the loading / unloading port 39 on the inner wall 165 in each processing unit as shown in FIG. A ring 166 is provided, and the opening / closing mechanism shown in FIG. 14, for example, the shutter mechanism 167 moves from the standby position to a predetermined operation, for example, moves in the Z0 direction and further moves in the X0 direction and contacts the O-ring 166 to carry in and out. 39 is configured to be openable and closable.

さらに、各処理部の開閉自在な開閉機構を備えた搬入出口39は、装置内には通常、クリーンルームからのエアーをフィルター等を介してダウンフローを形成するように構成されており,各処理部の雰囲気の干渉を防止することがその主たる目的の一つである。例えば、加熱処理部75の熱を帯びた雰囲気がレジスト塗布処理部22内に流れ込むとレジスト塗布工程は熱の影響で塗布膜の厚みが変動しやすい性質のためガラス基板Gの処理の歩留まりが発生してしまう。また、例えば洗浄処理部21からの洗浄液等のミストが洗浄処理部21外に飛散し、このミストが搬送中等のガラス基板G上に付着しないよう対策を行う必要がある。このような問題を解消するためにも、このような問題が発生する場合は搬入出口39の開閉機構は有効である。   Further, the loading / unloading port 39 provided with an opening / closing mechanism that can freely open and close each processing unit is usually configured to form a downflow of air from a clean room through a filter or the like in the apparatus. One of the main purposes is to prevent the interference of the atmosphere. For example, when the heat-treated atmosphere of the heat treatment unit 75 flows into the resist coating processing unit 22, the resist coating process easily changes the thickness of the coating film due to the influence of heat, so that the processing yield of the glass substrate G is generated. Resulting in. Further, for example, it is necessary to take measures to prevent mist such as cleaning liquid from the cleaning processing unit 21 from splashing out of the cleaning processing unit 21 and adhere to the glass substrate G during transportation. In order to solve such a problem, when such a problem occurs, the opening / closing mechanism of the loading / unloading port 39 is effective.

また、例えばレジスト塗布処理部22内部の雰囲気圧力をレジスト塗布処理部22外部の雰囲気圧力に対して、実質的に高い圧力に設定してレジスト塗布処理部22外部の雰囲気がレジスト塗布処理部22内部に進入するようにし、それによる他の処理部が特段の影響を及ぼさない場合はレジスト塗布処理部22の搬入出口39の開閉機構は特段備えていなくてもよい。   Further, for example, the atmospheric pressure inside the resist coating processing unit 22 is set to a substantially higher pressure than the atmospheric pressure outside the resist coating processing unit 22, and the atmosphere outside the resist coating processing unit 22 is set inside the resist coating processing unit 22. If the other processing unit does not have a special influence, the opening / closing mechanism of the loading / unloading port 39 of the resist coating processing unit 22 may not be particularly provided.

以上のように構成されたレジスト塗布現像処理装置1におけるガラス基板Gの処理工程の手順の一例を以下に説明する。始めに、カセットステーション部90のカセット配置部2に人的搬送或いは機械的搬送、例えばAGVロボットにより少なくとも一つのカセットCが搬送され、このカセット配置部2に配置された未処理のガラス基板Gを複数枚収納するカセットCからガラス基板Gを一枚毎搬送装置11に搬出し、その搬出したガラス基板Gを紫外線処理部24に直接搬入し、紫外線処理部24にて洗浄前処理が施される。   An example of the procedure of the processing steps of the glass substrate G in the resist coating and developing treatment apparatus 1 configured as described above will be described below. First, at least one cassette C is transported to the cassette placement unit 2 of the cassette station unit 90 by human or mechanical transport, for example, by an AGV robot, and an unprocessed glass substrate G placed in the cassette placement unit 2 is transferred. The glass substrates G are unloaded from the cassette C storing a plurality of sheets to the transfer device 11 one by one, and the unloaded glass substrates G are directly loaded into the ultraviolet processing unit 24, where pretreatment for cleaning is performed in the ultraviolet processing unit 24. .

次いで、紫外線処理部24にて処理されたガラス基板Gは搬送装置11により紫外線処理部24の下方に位置する洗浄処理部21に般入出口39を介して搬送され(般入出口39の開閉機構については特に述べない。以下同様)洗浄処理部21内のローラによる搬送機構38に直接或いは間接的に受け渡され、次いで、搬送機構38のローラの回転駆動によりガラス基板Gは洗浄部30の処理位置に略水平に搬送され、洗浄処理が施される。   Next, the glass substrate G processed in the ultraviolet processing section 24 is transported by the transport device 11 to the cleaning processing section 21 located below the ultraviolet processing section 24 via the general entrance / exit 39 (opening / closing mechanism of the general entrance / exit 39). The same applies hereinafter) The same is applied to the transport mechanism 38 using rollers in the cleaning processing section 21, and then the glass substrate G is processed by the cleaning section 30 by the rotational driving of the rollers of the transport mechanism 38. It is transported approximately horizontally to the position and subjected to a cleaning process.

次いで、洗浄処理が施されたガラス基板Gは搬送機構38のローラの回転駆動により乾燥促進部35の処理位置に略水平に搬送(搬送路の途中に配置する雰囲気遮断機構については前述したので特に述べない。以下同様)され、乾燥処理が施される。乾燥処理が施されたガラス基板Gは搬送機構38のローラの回転駆動により搬送機構12と直接或いは間接的にガラス基板Gを受け渡す受渡位置にガラス基板Gを略水平に搬送し、その後、搬送機構12により洗浄処理部21の般入出口39を介して洗浄処理部21外に搬送し、次いで搬送機構12はガラス基板Gを洗浄処理部21の上方に配置する加熱処理部28の脱水ベークユニット27またはレジスト塗布処理部22の上方の温調処理部29に般入出口39を介して搬送し、ガラス基板Gは脱水ベークユニット27内にて脱水処理が施される。   Next, the glass substrate G that has been subjected to the cleaning process is transported substantially horizontally to the processing position of the drying accelerating unit 35 by the rotational drive of the rollers of the transport mechanism 38 (the atmosphere blocking mechanism disposed in the middle of the transport path has been described above. (The same applies hereinafter) and a drying process is performed. The glass substrate G that has been subjected to the drying process is transported substantially horizontally to a delivery position where the glass substrate G is delivered directly or indirectly to the transport mechanism 12 by rotation of the rollers of the transport mechanism 38, and then transported. The mechanism 12 transports the cleaning substrate 21 to the outside of the cleaning processor 21 through the general inlet / outlet 39 of the cleaning processor 21, and the transport mechanism 12 then dehydrates and bake units of the heating processor 28 that places the glass substrate G above the cleaning processor 21. 27 or the temperature control processing unit 29 above the resist coating processing unit 22 is conveyed through a general entrance / exit 39, and the glass substrate G is subjected to dehydration processing in the dehydration bake unit 27.

次いで、脱水ベークユニット27内にて脱水処理が施されたガラス基板Gは、搬送機構12により脱水ベークユニット27内より搬出され搬送機構12により脱水ベークユニット27の下方位置の温調処理部29に搬送され温調処理部29内にて所定の温度まで冷却され所定の温度に維持する処理が施される。   Next, the glass substrate G that has been subjected to the dehydration process in the dehydration bake unit 27 is carried out of the dehydration bake unit 27 by the transport mechanism 12 and is transferred to the temperature adjustment processing unit 29 below the dewatering bake unit 27 by the transport mechanism 12. A process of cooling to a predetermined temperature and maintaining the predetermined temperature in the temperature adjustment processing unit 29 is performed.

次いで、温調処理部29内にて所定の温度に維持されたガラス基板Gは、搬送機構12により温調処理部29内より搬出され搬送機構12により温調処理部29の上方位置のアドヒージョン処理ユニット26に搬送されアドヒージョン処理ユニット26内にて疎水化処理(HMDS処理)が施される。   Next, the glass substrate G maintained at a predetermined temperature in the temperature control processing unit 29 is carried out of the temperature control processing unit 29 by the transport mechanism 12 and is subjected to an adhesion process at a position above the temperature control processing unit 29 by the transport mechanism 12. It is transported to the unit 26 and subjected to a hydrophobizing process (HMDS process) in the adhesion processing unit 26.

次いで、アドヒージョン処理ユニット26内にて処理されたガラス基板Gは、搬送機構12によりアドヒージョン処理ユニット26の下方位置に配置される温調処理部29またはレジスト塗布処理部22の上方に位置する温調処理部29のいずれかの温調処理部29に選択搬送されその選択された温調処理部29内にて所定の温度、例えば次工程の処理を施すレジスト塗布処理部22内での処理における温度とほぼ同温またはその近傍の温度まで冷却され所定の温度、例えば、ほぼ室温に設定する処理が施される。   Next, the glass substrate G processed in the adhesion processing unit 26 is heated by the transport mechanism 12 so as to be positioned above the temperature adjustment processing unit 29 or the resist coating processing unit 22 disposed below the adhesion processing unit 26. A predetermined temperature in the selected temperature adjustment processing unit 29 that is selectively conveyed to any one of the temperature adjustment processing units 29 of the processing unit 29, for example, a temperature in processing in the resist coating processing unit 22 that performs processing in the next process. And a process of setting the temperature to a predetermined temperature, for example, approximately room temperature, is performed.

次いで、温調処理部29内にて所定の温度に維持されたガラス基板Gは、搬送機構12により温調処理部29内より搬出され搬送機構12により温調処理部29の下方に位置するレジスト塗布処理部22に般入出口39を介して搬送されレジスト塗布処理部22内の搬送機構79に直接或いは間接的に受け渡され、次いで、搬送機構79によりガラス基板Gはレジスト塗布部51の処理位置に略水平に搬送され、レジスト液の塗布処理が施される。   Next, the glass substrate G maintained at a predetermined temperature in the temperature control processing unit 29 is unloaded from the temperature control processing unit 29 by the transport mechanism 12 and is positioned below the temperature control processing unit 29 by the transport mechanism 12. The glass substrate G is transferred to the coating processing unit 22 via the general entrance / exit 39 and directly or indirectly transferred to the transporting mechanism 79 in the resist coating processing unit 22. It is transported approximately horizontally to the position, and a resist solution coating process is performed.

次いで、レジスト塗布部51にてレジスト液の塗布処理が施されたガラス基板Gは搬送機構79により減圧乾燥部52の処理位置に略水平に搬送され、減圧することにより乾燥させる処理が施される。減圧処理が施されたガラス基板Gは搬送機構79により不要レジスト膜除去部53の処理位置に略水平に搬送され、ガラス基板Gの周縁部に形成された不要部分のレジスト膜を除去する処理が施される。不要部分のレジスト膜が除去処理されたガラス基板Gは搬送機構79により搬送機構13と直接或いは間接的にガラス基板Gを受け渡す受渡位置にガラス基板Gを略水平に搬送し、その後、搬送機構13によりレジスト塗布処理部22の般入出口39を介してレジスト塗布処理部22外に搬送する。   Next, the glass substrate G on which the resist coating process has been performed in the resist coating unit 51 is transported substantially horizontally to the processing position of the vacuum drying unit 52 by the transport mechanism 79, and is subjected to a drying process by reducing the pressure. . The glass substrate G subjected to the decompression process is transported substantially horizontally to the processing position of the unnecessary resist film removing unit 53 by the transport mechanism 79, and a process of removing the unnecessary portion of the resist film formed on the peripheral edge of the glass substrate G is performed. Applied. The glass substrate G from which the unnecessary portion of the resist film has been removed is transported approximately horizontally by the transport mechanism 79 to a delivery position where the glass substrate G is delivered directly or indirectly to the transport mechanism 13, and then the transport mechanism. 13 is transferred to the outside of the resist coating processing unit 22 through the general entrance / exit 39 of the resist coating processing unit 22.

次いで、搬送機構13はガラス基板Gをレジスト塗布処理部22の上方に配置する加熱処理部76の内の選択された加熱処理ユニット75に搬送し、ガラス基板Gは加熱処理ユニット75内にて加熱処理が施される。   Next, the transport mechanism 13 transports the glass substrate G to the selected heat processing unit 75 in the heat processing unit 76 disposed above the resist coating processing unit 22, and the glass substrate G is heated in the heat processing unit 75. Processing is performed.

次いで、加熱処理ユニット75内にて加熱処理されたガラス基板Gは、搬送機構13により加熱処理ユニット75の下方位置に配置される温調処理部77内にて所定の温度、例えば搬送に適した温度として搬送機構配置部6内の雰囲気温度とほぼ同温またはその近傍の温度まで冷却され所定の温度に維持する処理が施される。   Next, the glass substrate G that has been heat-treated in the heat-treatment unit 75 is suitable for a predetermined temperature, for example, for conveyance, in a temperature adjustment processing unit 77 that is disposed at a position below the heat-treatment unit 75 by the conveyance mechanism 13. The temperature is cooled to substantially the same temperature as the ambient temperature in the transport mechanism arrangement unit 6 or a temperature in the vicinity thereof, and a process of maintaining a predetermined temperature is performed.

次いで、温調処理部77内にて処理されたガラス基板Gは、搬送機構13により温調処理部77外に搬出された後に、インターフェイスステーション部92の搬送機構15に対して直接或いは間接的にガラス基板Gを引き渡す。さらに、搬送機構15は露光装置10に対して直接或いは間接的にガラス基板Gを引き渡し、露光装置10内にてガラス基板Gのレジスト膜に所定の回路パターンが露光処理される。   Next, the glass substrate G processed in the temperature control processing unit 77 is carried out of the temperature control processing unit 77 by the transport mechanism 13 and then directly or indirectly to the transport mechanism 15 of the interface station unit 92. Hand over the glass substrate G. Further, the transport mechanism 15 delivers the glass substrate G directly or indirectly to the exposure apparatus 10, and a predetermined circuit pattern is exposed on the resist film of the glass substrate G in the exposure apparatus 10.

次いで、露光装置10内で露光処理されたガラス基板Gは、露光装置10からインターフェイスステーション部92の搬送機構15に対して直接或いは間接的に引き渡され、さらに、搬送機構15は搬送機構13に対してガラス基板Gを直接或いは間接的に引き渡す。   Next, the glass substrate G subjected to the exposure process in the exposure apparatus 10 is directly or indirectly delivered from the exposure apparatus 10 to the transport mechanism 15 of the interface station unit 92, and the transport mechanism 15 is further transferred to the transport mechanism 13. The glass substrate G is handed over directly or indirectly.

次いで、ガラス基板Gは搬送機構13により現像処理部23の上方に位置する加熱処理ユニット75に搬送され露光後の加熱処理が施される。加熱処理ユニット75内にて処理されたガラス基板Gは搬送機構13により加熱処理ユニット75の下方位置に配置される温調処理部77またはレジスト塗布処理部22の上方に位置する温調処理部77のいずれかの温調処理部77に選択搬送されその選択された温調処理部77内にて所定の温度、例えば次工程の処理を施す現像処理部23内での処理における温度とほぼ同温またはその近傍の温度まで冷却され所定の温度、例えば、ほぼ室温に設定する処理が施される。   Next, the glass substrate G is transported by the transport mechanism 13 to the heat processing unit 75 positioned above the development processing unit 23 and subjected to heat treatment after exposure. The glass substrate G processed in the heat processing unit 75 is moved by the transport mechanism 13 at a position below the heat processing unit 75 or a temperature control processing section 77 positioned above the resist coating processing section 22. The predetermined temperature within the selected temperature adjustment processing unit 77 and, for example, the temperature in the processing in the development processing unit 23 that performs the next process, is approximately the same as the temperature in the selected temperature adjustment processing unit 77. Alternatively, it is cooled to a temperature in the vicinity thereof, and a process of setting to a predetermined temperature, for example, approximately room temperature, is performed.

次いで、温調処理部77内にて所定の温度に設定されたガラス基板Gは、搬送機構13により温調処理部77内より搬出され搬送機構13により温調処理部77の下方に位置する現像処理部23に般入出口39を介して搬送され現像処理部23内の搬送機構85に直接或いは間接的に受け渡され、次いで、搬送機構85によりガラス基板Gは現像液供給部80の処理位置に略水平に搬送され、現像液をガラス基板Gに供給することによりガラス基板G上に現像液の液盛り処理が施される。   Next, the glass substrate G set at a predetermined temperature in the temperature control processing unit 77 is unloaded from the temperature control processing unit 77 by the transport mechanism 13 and is developed below the temperature control processing unit 77 by the transport mechanism 13. It is conveyed to the processing unit 23 via the general entrance / exit 39 and is directly or indirectly transferred to the conveyance mechanism 85 in the development processing unit 23, and then the glass substrate G is transferred to the processing position of the developer supply unit 80 by the conveyance mechanism 85. And the developer is supplied to the glass substrate G, whereby the liquid buildup process of the developer is performed on the glass substrate G.

次いで、現像液供給部80にて現像液の液盛り処理が施されたガラス基板Gは搬送機構85によりリンス液供給部82の処理位置に現像液の液盛りされたガラス基板Gは現像液がガラス基板G上から零れ落ちないよう略水平に搬送され、現像液によるレジスト膜との化学反応が終了した後にリンス液と供給し置換させ、その後、図示しないエアー供給による乾燥或いは振切り乾燥等の乾燥処理が施される。リンス液による処理が施されたガラス基板Gは搬送機構85により搬送機構14と直接或いは間接的にガラス基板Gを受け渡す受渡位置にガラス基板Gを略水平に搬送し、その後、搬送機構14によりガラス基板Gは現像処理部23の般入出口39を介して現像処理部23外に搬出される。   Next, the glass substrate G on which the developer liquid has been deposited in the developer supply unit 80 is transferred to the glass substrate G on which the developer has been deposited at the processing position of the rinse liquid supply unit 82 by the transport mechanism 85. After the chemical reaction with the resist film by the developer is completed, the substrate is transported approximately horizontally so that it does not fall off from the glass substrate G, and is supplied and replaced with a rinsing solution. A drying process is performed. The glass substrate G that has been treated with the rinsing liquid is transported substantially horizontally to a delivery position where the glass substrate G is directly or indirectly delivered to the transport mechanism 14 by the transport mechanism 85. The glass substrate G is carried out of the development processing unit 23 through the general entrance / exit 39 of the development processing unit 23.

次いで、搬送機構14はガラス基板Gを現像処理部23の上方に配置する紫外線処理部102に搬送し、ガラス基板Gは紫外線処理部102内にて脱色処理が施される。その後、ガラス基板Gは搬送機構14により加熱処理部100に搬送され加熱処理された後、ガラス基板Gは搬送機構14により温調処理部101に搬送され冷却処理される。   Next, the transport mechanism 14 transports the glass substrate G to the ultraviolet processing unit 102 disposed above the development processing unit 23, and the glass substrate G is subjected to decoloring processing in the ultraviolet processing unit 102. Thereafter, the glass substrate G is transported to the heat treatment unit 100 by the transport mechanism 14 and subjected to heat treatment, and then the glass substrate G is transported to the temperature adjustment processing unit 101 by the transport mechanism 14 and subjected to cooling processing.

次いで、搬送機構14はガラス基板Gを検査処理部103に搬送し、ガラス基板Gのレジスト膜の状態を検査する処理が施される。その後、ガラス基板Gは搬送機構14によりP1(図1中)位置に配置する基板搬送機構16を介して間接的に或いは直接、カセットステーション部90の搬送機構11にガラス基板Gを受け渡す。   Next, the transport mechanism 14 transports the glass substrate G to the inspection processing unit 103 and performs a process of inspecting the state of the resist film on the glass substrate G. Thereafter, the glass substrate G is transferred to the transport mechanism 11 of the cassette station unit 90 indirectly or directly by the transport mechanism 14 via the substrate transport mechanism 16 disposed at the position P1 (in FIG. 1).

次いで、搬送機構11はガラス基板Gをカセット配置部2に配置する処理済のガラス基板Gを収納するカセットCに対して搬入し、一連の処理が終了する。   Next, the transport mechanism 11 carries the glass substrate G into the cassette C that houses the processed glass substrate G that places the glass substrate G in the cassette placement unit 2, and the series of processing ends.

なお、基板搬送機構16の動作或いは役割としては、上記に述べた他に次のような動作或いは役割を行う。ガラス基板Gの処理が上述した一連の処理ではなく、基板搬送機構16の動作として、例えば洗浄処理までの処理のみを施したい場合においては、洗浄処理部21で終了したP2(図1中)位置に配置しガラス基板Gを搬送機構12を介して間接的に或いは直接受け取り、P1(図1中)位置に移動しカセットステーション部90の搬送機構11にガラス基板Gを受け渡す。また、例えばレジスト塗布処理までの処理のみを施したい場合或いは露光処理までの処理のみを施したい場合或いは露光処理終了後熱系の処理までの処理のみを施したい場合においては、P3(図1中)位置に配置しガラス基板Gを搬送機構13を介して間接的に或いは直接受け取り、P1(図1中)位置に移動しカセットステーション部90の搬送機構11にガラス基板Gを受け渡す。   The operation or role of the substrate transport mechanism 16 performs the following operation or role in addition to the above. When the processing of the glass substrate G is not the series of processing described above, but only the processing up to the cleaning processing is performed as the operation of the substrate transport mechanism 16, for example, the position P <b> 2 (in FIG. 1) ended by the cleaning processing unit 21. The glass substrate G is indirectly or directly received via the transport mechanism 12 and moved to the P1 (in FIG. 1) position, and the glass substrate G is delivered to the transport mechanism 11 of the cassette station unit 90. Further, for example, when it is desired to perform only the processing up to the resist coating processing, only the processing up to the exposure processing, or only the processing up to the thermal processing after completion of the exposure processing, P3 (in FIG. 1) The glass substrate G is indirectly or directly received via the transport mechanism 13 and moved to the P1 (in FIG. 1) position, and the glass substrate G is delivered to the transport mechanism 11 of the cassette station unit 90.

このように、装置1内の所定の処理を選択する場合或いは装置1の故障或いは停止等のガラス基板Gの処理がそれ以上実行不可となった際の装置1内からのガラス基板Gの払出を行う場合において各搬送機構とアクセスするよう動作する。   As described above, when a predetermined process in the apparatus 1 is selected, or when the glass substrate G is no longer able to be processed, such as when the apparatus 1 is broken or stopped, the glass substrate G is discharged from the apparatus 1. When performing, it operates to access each transport mechanism.

以上のように本実施形態によれば、ガラス基板Gに対して所定の処理を施す処理部として洗浄処理部21においては処理の前後の工程を実施する処理部として洗浄部30と乾燥促進部35が一方向に配置され、また、レジスト塗布処理部22においては処理の前後の工程を実施する処理部としてレジスト塗布部51と減圧乾燥部52と不要レジスト膜除去部53が一方向に配置され、また、現像処理部23においては処理の前後の工程を実施する処理部として現像液供給部80とリンス液供給部82が一方向に配置され、さらに洗浄処理部21内及びレジスト塗布処理部22内及び現像液供給部80内には一方向にガラス基板Gを搬送自在の搬送機構38,79,85がそれぞれ備えられ、さらに洗浄処理部21及びレジスト塗布処理部22及び現像液供給部80にはそれぞれの部で処理されたガラス基板Gを搬送する搬送機構12,13,14がそれぞれ設けられている。   As described above, according to the present embodiment, in the cleaning processing unit 21 as a processing unit that performs a predetermined process on the glass substrate G, the cleaning unit 30 and the drying promoting unit 35 are performed as processing units that perform processes before and after the processing. Is disposed in one direction, and in the resist coating processing unit 22, a resist coating unit 51, a reduced pressure drying unit 52, and an unnecessary resist film removing unit 53 are disposed in one direction as processing units for performing the steps before and after the processing. In the development processing unit 23, a developing solution supply unit 80 and a rinsing solution supply unit 82 are arranged in one direction as processing units for performing the steps before and after the processing, and further in the cleaning processing unit 21 and the resist coating processing unit 22. The developer supply unit 80 includes transport mechanisms 38, 79, and 85 that can transport the glass substrate G in one direction. The fine developer supply unit 80 transport mechanism 12, 13, 14 for transporting the glass substrates G processed in the respective parts are respectively provided.

すなわち、所定の前後の処理を行う処理部を一体化し、さらに、その一体化された処理システムの内部及び外部にそれぞれ基板を搬送する搬送機構を備えブロック化(例えば、洗浄処理部21と搬送機構12またはレジスト塗布処理部22と搬送機構13または現像処理部23と搬送機構14)したことで、従来の別個に処理部を配置し構成したシステムに比べ例えば、処理部を構成する処理室の隣り合う側方部の処理壁の厚みが削減できるので、その分、スペースを削除できるために装置の小型化が図れることとなり、その結果、装置のフットプリントを小さくすることが可能となる。また、同様の雰囲気に設定される複数の処理部においては、各々処理部に雰囲気を設定するための機構が必要となるが、一体化することで、それらの雰囲気を設定するための機構を削減することができ、装置の小型化が図れることとなり、その結果、装置のフットプリントを小さくすることが可能となる。また、装置の価格を低減することができ産業の発展にさらに寄与することができる。   In other words, a processing unit that performs predetermined pre- and post-processing is integrated, and further includes a transport mechanism that transports the substrate to the inside and the outside of the integrated processing system (for example, the cleaning processing unit 21 and the transport mechanism). 12 or the resist coating processing unit 22 and the transport mechanism 13 or the development processing unit 23 and the transport mechanism 14), for example, adjacent to the processing chamber constituting the processing unit, compared to the conventional system in which the processing unit is separately arranged and configured. Since the thickness of the processing wall at the side portion can be reduced, the space can be deleted accordingly, so that the apparatus can be reduced in size. As a result, the footprint of the apparatus can be reduced. In addition, a mechanism for setting the atmosphere in each processing unit is required in a plurality of processing units set to the same atmosphere, but by integrating them, the mechanism for setting those atmospheres is reduced. Therefore, the apparatus can be reduced in size, and as a result, the footprint of the apparatus can be reduced. In addition, the price of the apparatus can be reduced, which can further contribute to industrial development.

さらに、所定の前後の処理を行う処理部を一体化したことにより、処理部間の搬送の時間を一定にすると共に従来の別個に処理部を配置し構成したシステムに比べ複数の基板の処理条件が一定にすることが可能となり、したがって基板毎の処理のバラツキを抑えることができ、もって歩留まりの低減を図ることが可能となる。   Furthermore, by integrating the processing units that perform predetermined pre- and post-processing, the processing time for a plurality of substrates is made as compared with the conventional system in which the processing time between the processing units is made constant and the processing units are separately arranged and configured. Therefore, it is possible to suppress the variation in processing for each substrate, thereby reducing the yield.

さらに、所定の前後の処理を行う処理部を一体化し、さらにその処理部に一つの搬送機構を備えシステムを構成し、そのシステムを少なくとも一つ或いは複数組み合わせてシステム全体を構成したことにより、従来の別個に処理部を配置し構成したシステムに比べ例えば、処理部を構成する処理室の隣り合う側方部の処理壁の厚みが削減できるので、その分、スペースを削除できるために装置の小型化が図れることとなり、その結果、装置のフットプリントを小さくすることが可能となる。また、所定の前後の処理を行う処理部(処理部配置部)の上方に処理部配置部で処理された基板に対して所定の処理を施す処理部、例えば加熱処理部を配置したことにより、その分、さらにスペースを削除できるために装置の小型化が図れる。さらに、処理部配置部毎に備えた搬送機構により処理部配置部および加熱処理部にアクセス可能であるため、余分な搬送機構を持つ必要が無くさらにスペースを削除できるために装置の小型化が図れる。   Furthermore, by integrating a processing unit that performs predetermined pre- and post-processing, further comprising a single transport mechanism in the processing unit, and configuring the entire system by combining at least one or a plurality of such systems, For example, since the thickness of the processing wall of the side part adjacent to the processing chamber constituting the processing unit can be reduced compared to the system in which the processing unit is separately arranged, the size of the apparatus can be reduced because space can be deleted accordingly. As a result, the footprint of the apparatus can be reduced. In addition, by arranging a processing unit that performs a predetermined process on the substrate processed by the processing unit arrangement unit, for example, a heating processing unit, above the processing unit (processing unit arrangement unit) that performs the processing before and after the predetermined, Accordingly, since the space can be further deleted, the apparatus can be reduced in size. Furthermore, since the processing unit arrangement unit and the heat treatment unit can be accessed by the conveyance mechanism provided for each processing unit arrangement unit, it is not necessary to have an extra conveyance mechanism, and further space can be eliminated, so that the size of the apparatus can be reduced. .

さらに、所定の前後の処理を行う処理部(処理部配置部)の上方に処理部配置部で処理された基板に対して所定の処理を施す処理部、例えば加熱処理部を配置したことにより、加熱処理部を処理部配置部、例えば非加熱処理部の上方側に設けたことにより加熱処理部の熱が下方にいくのを抑制でき、処理部配置部に熱の影響を与えるのを抑制し、もって、歩留まりの低減を図ることが可能となる。   Furthermore, by disposing a processing unit that performs a predetermined process on the substrate processed in the processing unit arrangement unit, for example, a heating processing unit, above the processing unit (processing unit arrangement unit) that performs the processing before and after the predetermined, By providing the heat treatment part on the upper side of the treatment part arrangement part, for example, the non-heat treatment part, it is possible to suppress the heat of the heat treatment part from going down, and to suppress the influence of the heat on the treatment part arrangement part. Therefore, it becomes possible to reduce the yield.

さらに、所定の前後の処理を行う処理部(処理部配置部)毎に専用の搬送機構を備え、それを一体に構成し、それぞれの搬送機構から基板を受渡し自在に構成された少なくとも一つの基板搬送機構を有しているので、メンテナンス、基板の払出等においてシステムの使い勝手の自由度が拡大し、また基板搬送機構の配置エリア、例えば直線状の領域に人が入りメンテナンスエリアとして使用することができる。   Further, each processing unit (processing unit placement unit) that performs a predetermined front-rear process includes a dedicated transport mechanism, and is configured as an integral unit so that a substrate can be delivered from each transport mechanism. Since it has a transport mechanism, the degree of freedom of use of the system is expanded in maintenance, substrate dispensing, etc., and people can enter the placement area of the substrate transport mechanism, for example, a linear area, and use it as a maintenance area it can.

さらに、一つの処理部配置部に付属する処理部配置部内の基板の搬送方向に対して同方向に配置される搬送機構と、他の一つの処理部配置部に付属する処理部配置部内の基板の搬送方向に対して垂直方向に配置される搬送機構との少なくとも二つのシステムを有してそれらを組み合わせてシステム全体を構成したことにより、従来の別個に処理部を配置し構成したシステムに比べ例えば、処理部を構成する処理室の隣り合う側方部の処理壁の厚みが削減できるので、その分、スペースを削除できるために装置の小型化が図れることとなり、その結果、装置のフットプリントを小さくすることが可能となる。   Furthermore, a transport mechanism disposed in the same direction as the transport direction of the substrate in the processing unit placement unit attached to one processing unit placement unit, and a substrate in the processing unit placement unit attached to the other one processing unit placement unit Compared to the conventional system in which the processing unit is separately arranged and configured by having at least two systems with the transfer mechanism arranged in the direction perpendicular to the transfer direction of the two and combining them For example, since the thickness of the processing wall of the side part adjacent to the processing chamber constituting the processing unit can be reduced, the space can be deleted accordingly, and the apparatus can be reduced in size. Can be reduced.

さらに、液処理部(処理部配置部)の上方に加熱処理部を配置、(つまり処理部配置部の般入出口より上方または処理部配置部内の基板の搬送高さよりも上方に配置)したことにより、加熱処理部を液処理部の上方側に設けたことにより加熱処理部の熱が下方にいくのを抑制でき、液処理部に熱の影響を与えるのを抑制し、もって、歩留まりの低減を図ることが可能となる。   Furthermore, the heat processing unit is arranged above the liquid processing unit (processing unit arranging unit) (that is, arranged above the general entrance / exit of the processing unit arranging unit or above the transport height of the substrate in the processing unit arranging unit). Thus, by providing the heat treatment unit on the upper side of the liquid treatment unit, it is possible to suppress the heat of the heat treatment unit from going down, and to suppress the influence of heat on the liquid treatment unit, thereby reducing the yield. Can be achieved.

さらに、液処理部(処理部配置部)の内部に雰囲気遮断機構を配置したことにより、処理部配置部内の処理部間の雰囲気の干渉を抑制でき、各液処理部間の影響を抑制し、もって、歩留まりの低減を図ることが可能となる。   Furthermore, by arranging the atmosphere blocking mechanism inside the liquid processing unit (processing unit arrangement unit), it is possible to suppress the interference of the atmosphere between the processing units in the processing unit arrangement unit, suppress the influence between each liquid processing unit, Therefore, it becomes possible to reduce the yield.

次に、本発明の第2の実施形態について説明する。図15は本発明の第2の実施形態に係るLCD用のガラス基板のレジスト塗布現像処理装置を示す平面図である。図16は図15の要部を示す断面図である。なお、第1の実施形態における記号と同一のものについては、その説明を省略するものとする。   Next, a second embodiment of the present invention will be described. FIG. 15 is a plan view showing a resist coating and developing apparatus for a glass substrate for LCD according to a second embodiment of the present invention. 16 is a cross-sectional view showing a main part of FIG. The description of the same symbols as those in the first embodiment will be omitted.

図15にも示すようにレジスト塗布現像処理装置109に備えられた、処理部配置部、例えば現像処理部23で処理されたガラス基板Gは、搬送機構14により現像処理部23の上部に配置された第5の熱系の処理部74にて第1の実施形態のように処理を施されるよう構成されている。さらに、搬送機構14は、図16にも示すように他の搬送機構、例えば搬送機構11の搬送領域108上に配置されガラス基板Gに対して熱系の処理を施す熱系処理部110に対してもガラス基板Gを搬送自在に構成されている。さらに、搬送機構14は、図15にも示すように他の搬送機構、例えば基板搬送機構16の搬送領域上に配置されガラス基板Gに対して熱系の処理を施す熱系処理部110に対してもガラス基板Gを搬送自在に構成されている。   As shown in FIG. 15, the glass substrate G processed in the processing unit arrangement unit, for example, the development processing unit 23, provided in the resist coating and developing processing device 109 is arranged on the development processing unit 23 by the transport mechanism 14. Further, the fifth heat processing unit 74 is configured to perform the processing as in the first embodiment. Further, as shown in FIG. 16, the transport mechanism 14 is also disposed on another transport mechanism, for example, the transport region 108 of the transport mechanism 11, with respect to the thermal processing unit 110 that performs thermal processing on the glass substrate G. However, the glass substrate G is configured to be transportable. Further, as shown in FIG. 15, the transport mechanism 14 is disposed on another transport mechanism, for example, the transport region of the substrate transport mechanism 16, and the thermal processing unit 110 that performs thermal processing on the glass substrate G. However, the glass substrate G is configured to be transportable.

熱系処理部110は、図16に示すように、ガラス基板Gに対して所定の熱にて処理する加熱処理ユニット114が複数積層して配置されて構成された加熱処理部115と、この加熱処理部115の下方かつ搬送機構11或いは基板搬送機構16の搬送領域108の上方には加熱処理部115で処理された115ガラス基板Gに対して搬送或いは次の工程における処理時の温度に略設定するための温調処理ユニット116が複数積層して配置されて構成された温調処理部117とで構成されている。   As shown in FIG. 16, the thermal processing unit 110 includes a heating processing unit 115 configured by laminating a plurality of heating processing units 114 that process the glass substrate G with predetermined heat, and the heating processing unit 115. Below the processing unit 115 and above the transfer region 108 of the transfer mechanism 11 or the substrate transfer mechanism 16, the temperature at the time of transfer to the 115 glass substrate G processed by the heat processing unit 115 or processing in the next step is set approximately. And a temperature adjustment processing unit 117 configured by stacking and arranging a plurality of temperature adjustment processing units 116.

このように第1の実施形態より多くの熱系処理部110を備えて構成したことで、例えば、現像処理部23(処理部配置部)で処理されるガラス基板Gの処理時間が第5の熱系の処理部74にて処理されるガラス基板Gの処理時間より短い場合等の処理時間のずれが生じる場合、第1の実施形態より待機時間による処理のスループットの低下を防止することが可能となる。また、第5の熱系の処理部74にて高さ方向に制限がある場合等にはそこに配置する処理部の数に限界があるので、分散することによりさらに装置内のスペースの有効活用が図れ、装置の小型化が図れる。   Since the thermal processing unit 110 is provided with more thermal processing units 110 than in the first embodiment, for example, the processing time of the glass substrate G processed in the development processing unit 23 (processing unit placement unit) is the fifth. When a processing time shift occurs such as when the processing time of the glass substrate G processed by the thermal processing unit 74 is shorter, it is possible to prevent a decrease in processing throughput due to the standby time than in the first embodiment. It becomes. In addition, when there is a limit in the height direction in the fifth heat system processing unit 74, there is a limit to the number of processing units arranged there. Therefore, the apparatus can be miniaturized.

また、熱系処理部110にて、加熱処理部115と搬送機構11或いは基板搬送機構16の搬送領域108の間に温調処理ユニット116を配置したので搬送機構11或いは基板搬送機構16にて保持するガラス基板Gへの熱の伝達を抑制でき、もって、歩留まりの低減を図ることが可能となる。さらに熱の影響から考慮するに、例えば他の搬送機構11の上方の熱系処理部110には加熱処理ユニット114のみで構成された熱系処理部110と現像処理部23(処理部配置部)の上方には温調処理ユニット116のみで構成された熱系の処理部74で構成して現像処理部23(処理部配置部)に対して、よりガラス基板Gへの熱の伝達を抑制することもできる。   Further, in the thermal processing unit 110, the temperature adjustment processing unit 116 is disposed between the heat processing unit 115 and the transport region 108 of the transport mechanism 11 or the substrate transport mechanism 16, so that it is held by the transport mechanism 11 or the substrate transport mechanism 16. Therefore, it is possible to suppress the transfer of heat to the glass substrate G, and thus it is possible to reduce the yield. Further, considering the influence of heat, for example, the thermal processing unit 110 above the other transport mechanism 11 includes the thermal processing unit 110 and the development processing unit 23 (processing unit placement unit) configured only by the heating processing unit 114. The thermal processing unit 74 composed only of the temperature control processing unit 116 is provided above the control unit to suppress the transfer of heat to the glass substrate G with respect to the development processing unit 23 (processing unit placement unit). You can also.

さらに、このような構成は図15にも示すように、例えば搬送機構14は他の搬送機構、例えば搬送機構16の搬送領域上に配置されガラス基板Gに対して熱系の処理を施す熱系処理部111に対しガラス基板Gを搬送自在に構成され、搬送機構13は複数の他の搬送機構、例えば搬送機構16の搬送領域上に配置されガラス基板Gに対して熱系の処理を施す熱系処理部112に対し、または、他の搬送機構、例えば搬送機構15の搬送領域上に配置されガラス基板Gに対して熱系の処理を施す熱系処理部112に対しガラス基板Gを搬送自在に構成され、前述のような効果と同様な効果を生み出すよう構成されている。   Further, as shown in FIG. 15, for example, the transport mechanism 14 is arranged on the transport area of another transport mechanism, for example, the transport mechanism 16, and the heat system that performs the heat processing on the glass substrate G is used. The glass substrate G is configured to be freely transportable to the processing unit 111, and the transport mechanism 13 is disposed on a transport region of a plurality of other transport mechanisms, for example, the transport mechanism 16, and performs heat processing on the glass substrate G. The glass substrate G can be freely transferred to the system processing unit 112 or to the heat processing unit 112 which is disposed on the transfer region of another transfer mechanism, for example, the transfer mechanism 15 and performs the heat processing on the glass substrate G. It is comprised so that the effect similar to the above-mentioned effect may be produced.

次に、本発明の第3の実施形態に係るLCD用のガラス基板のレジスト塗布現像処理装置について説明する。図17は本発明の第3の実施形態に係るLCD用のガラス基板のレジスト塗布現像処理装置を示す平面図である。図18は図17の要部を示す断面図である。図19は図17の要部を示す斜視図である。なお、第1の実施形態における記号と同一のものについては、その説明を省略するものとする。   Next, a resist coating and developing apparatus for a glass substrate for LCD according to a third embodiment of the present invention will be described. FIG. 17 is a plan view showing a resist coating and developing apparatus for a glass substrate for LCD according to a third embodiment of the present invention. 18 is a cross-sectional view showing a main part of FIG. FIG. 19 is a perspective view showing a main part of FIG. The description of the same symbols as those in the first embodiment will be omitted.

図17にも示すようにレジスト塗布現像処理装置170には、第1の実施形態の基板搬送機構が配置されている直線状の搬送配置部171がガラス基板Gを一時待機させるための待機部172により複数分割されており、その分割された複数の領域173にはそれぞれ基板搬送機構16a,16bが配置されている。さらに、基板搬送機構16aと基板搬送機構16bとは待機部172を介してガラス基板Gを受渡し自在に構成され、基板搬送機構16bと搬送機構13とは直接或いは間接的にガラス基板Gを受渡し自在に構成されている。なお、基板搬送機構16a,16bは自走式で図中Y2方向に自走自在に構成されている。   As shown in FIG. 17, in the resist coating and developing apparatus 170, the linear transport arrangement unit 171 in which the substrate transport mechanism of the first embodiment is arranged waits for the glass substrate G to stand by temporarily. The substrate transport mechanisms 16a and 16b are respectively disposed in the plurality of divided regions 173. Further, the substrate transport mechanism 16a and the substrate transport mechanism 16b are configured to be able to deliver the glass substrate G via the standby unit 172, and the substrate transport mechanism 16b and the transport mechanism 13 can directly or indirectly deliver the glass substrate G. It is configured. The substrate transfer mechanisms 16a and 16b are self-propelled and configured to be self-propelled in the Y2 direction in the figure.

さらに、基板搬送機構16aと基板搬送機構16bは、図18にも示すようにアーム41には、ガラス基板Gを保持或いは支持する保持機構としての保持部材175を複数備えられ、またスリット部176を備えている。さらに、アーム41の下方位置にはアーム41のスリット部176から突出自在のガラス基板Gを保持或いは支持する保持機構としての保持部材177を複数備えた保持部材の基台178と、この基台178を一括して昇降移動させる昇降機構、例えばエアーシリンダ179にて構成されるガラス基板Gを一時待機する機構を備えている。   Further, in the substrate transport mechanism 16a and the substrate transport mechanism 16b, the arm 41 is provided with a plurality of holding members 175 as a holding mechanism for holding or supporting the glass substrate G, as shown in FIG. I have. Further, at a position below the arm 41, a holding member base 178 having a plurality of holding members 177 as a holding mechanism for holding or supporting the glass substrate G that can freely protrude from the slit portion 176 of the arm 41, and the base 178. A lifting / lowering mechanism that moves up and down collectively, for example, a mechanism for temporarily waiting for the glass substrate G constituted by the air cylinder 179 is provided.

さらに、基板搬送機構16aと基板搬送機構16bの動作として、搬送機構13と基板搬送機構16bとのガラス基板Gの受渡しとしては、例えば始めに基板搬送機構16bのエアーシリンダ179にて基台178を上昇させ保持部材177を基板搬送機構16bのアーム41より突出させておき、搬送機構13のアーム41によりガラス基板Gを保持部材177に渡す、この後エアーシリンダ179にて基台178を下降させ保持部材177のガラス基板Gを基板搬送機構16bのアーム41の保持部材175に渡す。したがって基板搬送機構16aと基板搬送機構16bには基板を一時待機させる機能も有している。   Further, as an operation of the substrate transport mechanism 16a and the substrate transport mechanism 16b, as a delivery of the glass substrate G between the transport mechanism 13 and the substrate transport mechanism 16b, for example, first, the base 178 is set by the air cylinder 179 of the substrate transport mechanism 16b. The holding member 177 is raised and protruded from the arm 41 of the substrate transfer mechanism 16b, and the glass substrate G is transferred to the holding member 177 by the arm 41 of the transfer mechanism 13. Thereafter, the base 178 is lowered and held by the air cylinder 179. The glass substrate G of the member 177 is transferred to the holding member 175 of the arm 41 of the substrate transport mechanism 16b. Therefore, the substrate transport mechanism 16a and the substrate transport mechanism 16b also have a function of temporarily waiting the substrate.

さらに、基板搬送機構16aと基板搬送機構16bは、それぞれアーム41を有していることから、処理部配置部、例えば、現像処理部23の長手方向、つまり現像処理部23内の搬送機構38によるガラス基板Gの搬送方向と略直交する方向に備えられた搬入出口39からガラス基板Gを搬入出自在に構成し、搬送機構38に対してガラス基板Gを直接或いは間接的に受渡し自在に構成されている。   Further, since the substrate transport mechanism 16a and the substrate transport mechanism 16b each have the arm 41, the processing unit disposition unit, for example, the longitudinal direction of the development processing unit 23, that is, the transport mechanism 38 in the development processing unit 23. The glass substrate G is configured to be able to be loaded and unloaded from a loading / unloading port 39 provided in a direction substantially orthogonal to the conveyance direction of the glass substrate G, and the glass substrate G can be directly or indirectly transferred to the conveyance mechanism 38. ing.

このような構成においては、処理部配置部のメンテナンス、基板の払出等においてシステムの使い勝手の自由度が拡大し、またガラス基板Gの搬送時間も搬送機構が増したことから搬送におけるスループットも、さらに向上させることができる。また、待機部172を有していることから、基板搬送機構16aと基板搬送機構16bが待機部172にガラス基板Gに一時待機させることもできるので基板搬送機構16a或いは基板搬送機構16bの搬送における搬送遅延を抑制することができ、もってガラス基板Gの搬送或いは処理におけるスループットも、さらに向上させることができる。   In such a configuration, the degree of freedom of use of the system is expanded in the maintenance of the processing unit arrangement unit, the dispensing of the substrate, etc., and the transfer time of the glass substrate G is also increased, so that the throughput in the transfer is further increased. Can be improved. In addition, since the standby unit 172 is provided, the substrate transfer mechanism 16a and the substrate transfer mechanism 16b can cause the standby unit 172 to temporarily wait on the glass substrate G. Therefore, in the transfer of the substrate transfer mechanism 16a or the substrate transfer mechanism 16b. The conveyance delay can be suppressed, and the throughput in the conveyance or processing of the glass substrate G can be further improved.

次に、本発明の第4の実施形態に係るLCD用のガラス基板のレジスト塗布現像処理装置について説明する。図20は本発明の第4の実施形態に係るLCD用のガラス基板のレジスト塗布現像処理装置を示す平面図である。なお、第3の実施形態における記号と同一のものについては、その説明を省略するものとする。   Next, a resist coating and developing apparatus for a glass substrate for LCD according to a fourth embodiment of the present invention will be described. FIG. 20 is a plan view showing a resist coating and developing apparatus for a glass substrate for LCD according to a fourth embodiment of the present invention. The description of the same symbols as those in the third embodiment will be omitted.

図20にも示すようにレジスト塗布現像処理装置180は、第3の実施形態の説明で用いた図17と比べて解かるように、基板搬送機構16bの機能を搬送機構13で補って構成したものである。すなわち、搬送機構13は、搬送機構13を自走式にし、図中Y2方向に移動可能として構成され、基板搬送機構16bのガラス基板Gを一時待機する機構等を付加して構成されている。   As shown in FIG. 20, the resist coating and developing apparatus 180 is configured by supplementing the function of the substrate transport mechanism 16 b with the transport mechanism 13 as understood from FIG. 17 used in the description of the third embodiment. Is. That is, the transport mechanism 13 is configured to make the transport mechanism 13 self-propelled and move in the Y2 direction in the figure, and is configured by adding a mechanism for temporarily waiting for the glass substrate G of the substrate transport mechanism 16b.

このように構成したことで、搬送機構の数を減らすことができ装置価格を抑えることができると共に、搬送機構による装置内雰囲気の乱れをさらに少なくすることができ、ミスト等の付着も抑制することができるので処理の歩留りを向上することができる。さらに、搬送機構の用力等のスペースを削除できるために装置の小型化が図れることとなり、その結果、装置のフットプリントを小さくすることが可能となる。   With this configuration, the number of transport mechanisms can be reduced, the device price can be reduced, the turbulence in the device atmosphere due to the transport mechanism can be further reduced, and adhesion of mist and the like can also be suppressed. Therefore, the process yield can be improved. Furthermore, since the space such as the working force of the transport mechanism can be deleted, the apparatus can be reduced in size, and as a result, the footprint of the apparatus can be reduced.

次に、本発明の第5の実施形態に係るLCD用のガラス基板のレジスト塗布現像処理装置について説明する。図21は、本発明の第5の実施形態に係るLCD用のガラス基板のレジスト塗布現像処理装置を示す平面図である。図22は図21の要部を示す斜視図である。なお、前述した実施形態における記号と同一のものについては、その説明を省略するものとする。   Next, a resist coating and developing apparatus for a glass substrate for LCD according to a fifth embodiment of the present invention will be described. FIG. 21 is a plan view showing a resist coating and developing apparatus for a glass substrate for LCD according to a fifth embodiment of the present invention. FIG. 22 is a perspective view showing a main part of FIG. The description of the same symbols as those in the above-described embodiment will be omitted.

図21にも示すようにレジスト塗布現像処理装置181の直線状の搬送配置部171には、ガラス基板Gを搬送する基板搬送機構16aが配置され、さらにカセットステーション90側に熱系の処理部185が配置されている。この熱系の処理部185は、図22にも示すように、ガラス基板Gを加熱処理する複数の加熱処理ユニット186を有する加熱処理部187と、加熱処理部187の下方位置に設けられガラス基板Gを搬送等に適した所定温度に設定する温調処理ユニット188を有する温調処理部189と、温調処理部189の下方位置に設けられガラス基板Gをカセットステーション部90と処理ステーション部91との間で受け渡す受渡し部190と、を有している。なお、受渡し部190には、ガラス基板Gを搬送等に適した所定温度に設定する温調機構を備えていてもよい。   As shown also in FIG. 21, a substrate transport mechanism 16a for transporting the glass substrate G is disposed in the linear transport placement unit 171 of the resist coating and developing treatment apparatus 181. Is arranged. As shown in FIG. 22, the thermal processing unit 185 includes a heat processing unit 187 having a plurality of heat processing units 186 that heat-process the glass substrate G, and a glass substrate provided below the heat processing unit 187. A temperature adjustment processing unit 189 having a temperature adjustment processing unit 188 that sets G to a predetermined temperature suitable for conveyance and the like. And a delivery section 190 that delivers between the two. The delivery unit 190 may be provided with a temperature adjustment mechanism that sets the glass substrate G to a predetermined temperature suitable for conveyance or the like.

さらに、図22にも示すように加熱処理ユニット186の加熱処理部187は、現像処理部23の搬入出口39の高さ位置Zaよりも高い位置Zbに配置するよう構成され、加熱処理部187の熱の影響を抑制するよう構成されている。さらに、温調処理ユニット188及び受渡し部190には、搬送機構14及び基板搬送機構16aから(XA方向(処理部配置部内のガラス基板Gの搬送方向或いは基板搬送装置の自走方向と略直交する方向或いは搬送機構11の自走方向と平行する略同方向)及びXB方向(処理部配置部内のガラス基板Gの搬送方向或いは基板搬送装置の自走方向と略同方向或いは搬送機構11の自走方向と略直交方向)から)アクセス可能にXA及びXB方向にガラス基板Gを搬入出自在にそれぞれ搬入出口39が備えられ、さらに受渡し部190には、搬送機構15からアクセス可能にXC方向(処理部配置部内のガラス基板Gの搬送方向或いは基板搬送装置の自走方向と略同方向或いは搬送機構11の自走方向と略直交方向)にガラス基板Gを搬入出自在に搬入出口39が備えられている。また、加熱処理部187の加熱処理ユニット186には、搬送機構14から(XA方向から)のみアクセス可能にXA方向にガラス基板Gを搬入出自在に搬入出口39が備えられている。   Further, as shown in FIG. 22, the heat processing unit 187 of the heat processing unit 186 is configured to be disposed at a position Zb higher than the height position Za of the loading / unloading port 39 of the development processing unit 23. It is configured to suppress the influence of heat. Further, the temperature adjustment processing unit 188 and the delivery unit 190 are connected to the transport mechanism 14 and the substrate transport mechanism 16a (in the XA direction (substantially orthogonal to the transport direction of the glass substrate G in the processing unit disposition unit or the self-running direction of the substrate transport apparatus). Direction or substantially the same direction parallel to the self-running direction of the transport mechanism 11 and the XB direction (substantially the same direction as the transport direction of the glass substrate G in the processing unit placement unit or the self-running direction of the substrate transport device or the self-running of the transport mechanism 11. The glass substrate G can be loaded and unloaded in the XA and XB directions so as to be accessible (from the direction substantially orthogonal to the direction), and the delivery section 190 is accessible in the XC direction (processing) The glass substrate G is loaded in the direction of conveyance of the glass substrate G in the part arrangement section, the direction substantially the same as the self-running direction of the substrate transport apparatus, or the direction substantially perpendicular to the self-running direction of the transport mechanism 11). Freely out port 39 is provided. In addition, the heat treatment unit 186 of the heat treatment unit 187 is provided with a loading / unloading port 39 that allows the glass substrate G to be loaded / unloaded in the XA direction so as to be accessible only from the transport mechanism 14 (from the XA direction).

このように構成されたシステムにおけるガラス基板Gの処理搬送手順の一例としては、搬送機構14によりガラス基板Gは現像処理部23から搬出され、搬送機構14によりガラス基板Gは選択された加熱処理ユニット186に搬送され処理される。この後、搬送機構14によりガラス基板Gは選択された加熱処理ユニット186から搬出され搬送機構14により選択された温調処理ユニット188に搬送され処理される。この後、搬送機構16aにより選択された温調処理ユニット188からガラス基板Gは搬出され、さらに搬送機構16aにより受渡し部190に搬入される。受渡し部190のXC方向の搬入出口39を開閉機構で開口した後、カセットステーション部90の搬送機構11により搬入出口39からガラス基板Gを取りだし,実質的に処理ステーション部91から搬出する。   As an example of the processing and conveyance procedure of the glass substrate G in the system configured as described above, the glass substrate G is unloaded from the development processing unit 23 by the conveyance mechanism 14 and the glass substrate G is selected by the conveyance mechanism 14. It is conveyed to 186 and processed. Thereafter, the glass substrate G is unloaded from the selected heat treatment unit 186 by the transfer mechanism 14 and transferred to the temperature adjustment processing unit 188 selected by the transfer mechanism 14 for processing. Thereafter, the glass substrate G is unloaded from the temperature adjustment processing unit 188 selected by the transfer mechanism 16a, and further transferred into the delivery unit 190 by the transfer mechanism 16a. After the loading / unloading port 39 in the XC direction of the delivery unit 190 is opened by an opening / closing mechanism, the glass substrate G is taken out from the loading / unloading port 39 by the transfer mechanism 11 of the cassette station unit 90 and is substantially unloaded from the processing station unit 91.

このように構成したことで、例えば、カセットステーション部90からの雰囲気が処理ステーション部91側に流れ込まない必要性がある場合、受渡し部190のXC方向の搬入出口39のみなのでカセットステーション部90側のミスト等の影響を抑制することができる。また、例えば処理ステーション部91をカセットステーション部90側より圧力調整機構等により陽圧に設定する場合、圧力調整機構等の風力等の用力、例えば電力がより小さなものですむ為に装置価格を抑えることができると共に、ステーション間の雰囲気の干渉をさらに少なくすることができ、ミスト等の付着も抑制することができるので処理の歩留りを向上することができる。さらに、圧力調整機構等の用力等のスペースを低減できるために装置の小型化が図れることとなり、その結果、装置のフットプリントを小さくすることが可能となる。   With this configuration, for example, when it is necessary that the atmosphere from the cassette station unit 90 does not flow into the processing station unit 91 side, only the loading / unloading port 39 in the XC direction of the delivery unit 190 is provided. The influence of mist etc. can be suppressed. In addition, for example, when the processing station unit 91 is set to a positive pressure from the cassette station unit 90 side by a pressure adjustment mechanism or the like, the use of wind pressure or the like such as the pressure adjustment mechanism or the like, for example, requires less power so that the apparatus price is reduced. In addition, the interference of the atmosphere between the stations can be further reduced, and adhesion of mist and the like can be suppressed, so that the processing yield can be improved. Furthermore, the space for the pressure adjusting mechanism and the like can be reduced, so that the apparatus can be downsized. As a result, the footprint of the apparatus can be reduced.

また、温調処理ユニット188を受渡し部190として活用する場合は、温調処理ユニット188のXC方向側にさらに搬入出口39を備え、基板搬送機構16aによる温調処理ユニット188から受渡し部190へのガラス基板Gの搬送の工程を削除することが可能となり、ガラス基板Gの搬送時間のスループットを向上することもできる。また、検査機構を装置内に備えずに他の装置として接続する場合等、搬送機構14からアクセスできるように熱系の処理部185と対向する側に接続して、装置の接続性を上げてもよい。   In addition, when the temperature adjustment processing unit 188 is used as the delivery unit 190, a loading / unloading port 39 is further provided on the XC direction side of the temperature adjustment processing unit 188, and the temperature adjustment processing unit 188 by the substrate transport mechanism 16a is transferred to the delivery unit 190. It becomes possible to delete the process of conveying the glass substrate G, and the throughput of the conveying time of the glass substrate G can also be improved. In addition, when connecting as another apparatus without providing the inspection mechanism in the apparatus, the apparatus is connected to the side facing the thermal processing unit 185 so that it can be accessed from the transport mechanism 14 to increase the connectivity of the apparatus. Also good.

次に、本発明の第6の実施形態に係るLCD用のガラス基板のレジスト塗布現像装置の他の実施の形態として処理液塗布処理装置について説明する。図23は本発明の第6の実施形態に係るLCD用のガラス基板の処理液塗布処理装置を示す平面図である。図24は図23の処理部配置部の要部を示す平面図、図25は図23の処理部配置部の要部を示す斜視図、図26は処理の説明をする図、図27は図24の処理部配置部の他の実施の形態としての処理部配置部の要部を示す平面図である。なお、前述した実施形態における記号と同一のものについては、その説明を省略するものとする。   Next, a processing liquid coating treatment apparatus will be described as another embodiment of a resist coating and developing apparatus for an LCD glass substrate according to a sixth embodiment of the present invention. FIG. 23 is a plan view showing a processing solution coating apparatus for a glass substrate for LCD according to a sixth embodiment of the present invention. 24 is a plan view showing the main part of the processing unit arrangement part of FIG. 23, FIG. 25 is a perspective view showing the main part of the processing part arrangement part of FIG. 23, FIG. 26 is a diagram for explaining processing, and FIG. It is a top view which shows the principal part of the process part arrangement | positioning part as other embodiment of 24 process part arrangement | positioning parts. The description of the same symbols as those in the above-described embodiment will be omitted.

図23にも示すように処理液塗布処理装置194は、例えばカラー溶剤等(半導体ウエハの場合は、このような塗布液としては、例えばSODまたはSOG膜を形成するための有機或いは無機の溶剤が考えられる。)の処理液を塗布するための処理部配置部、例えば前述のようなレジスト塗布処理部22と同様の構成の塗布処理部22aと、処理部配置部、例えば洗浄処理部21と、前述の熱系の処理部185と同様の構成であってその構成の中に加熱処理部187を含んでいない熱系の処理部185aと、搬送機構12,16aと、塗布処理部22aと洗浄処理部21との上部に各々一つまたは複数配置された他の処理部配置部としての熱系の処理部200と、で構成された第1の処理ステーション部195と、カセットステーション部90と、搬送機構15aとこの搬送機構15aを挟んで対象に複数、例えば二つ配置された熱系の処理部200を備えた熱系の第2の処理ステーション部196と、でその主要部が構成されている。なお、熱系の処理部200は少なくとも1つ、複数の場合は積層して配置されている。   As shown also in FIG. 23, the processing liquid coating processing apparatus 194 uses, for example, a color solvent (in the case of a semiconductor wafer, for example, an organic or inorganic solvent for forming an SOD or SOG film is used as such a coating liquid. For example, a coating processing unit 22a having the same configuration as the resist coating processing unit 22 as described above, a processing unit mounting unit, for example, a cleaning processing unit 21, and the like. The thermal processing unit 185a, which does not include the heat processing unit 187 in the configuration, the transport mechanisms 12, 16a, the coating processing unit 22a, and the cleaning process are the same as the configuration of the thermal processing unit 185 described above. A first processing station unit 195 composed of a thermal processing unit 200 as another processing unit arrangement unit arranged one or more on the upper part of the unit 21, and a cassette station unit 9 And a thermal system second processing station unit 196 including a plurality of, for example, two thermal processing units 200 arranged on the target with the transport mechanism 15a interposed therebetween, and the main part thereof is configured. Has been. It should be noted that at least one thermal processing unit 200 is disposed in a stacked manner.

さらに、熱系の処理部200は、図24に示すように、熱系の処理部200には、ガラス基板Gを搬入或いは搬出するための搬入出口39が少なくとも1つ、例えば複数、例えば3つ備えられており、さらに熱系の処理部200内部には、熱系の処理部200外部に配置された搬送機構16aまたは搬送機構15aと直接或いは間接的にガラス基板Gを受け渡す温調機構を備えると共に図中XP方向(処理部配置部の長手方向)に移動する移動処理部としての移動機構を備えたアーム状の温調処理部205と、ガラス基板Gを所定の温度にて加熱処理する加熱処理部206と、前述したような雰囲気遮断機構150と、でその主要部が構成されている。   Furthermore, as shown in FIG. 24, the thermal processing unit 200 includes at least one, for example, three, for example, three loading / unloading ports 39 for loading or unloading the glass substrate G. Furthermore, inside the thermal processing unit 200, a temperature control mechanism that delivers the glass substrate G directly or indirectly with the transport mechanism 16a or the transport mechanism 15a disposed outside the thermal system processing unit 200 is provided. And heat-treating the glass substrate G at a predetermined temperature and an arm-shaped temperature adjustment processing unit 205 having a moving mechanism as a movement processing unit that moves in the XP direction (longitudinal direction of the processing unit arrangement unit) in the drawing. The heat processing unit 206 and the atmosphere blocking mechanism 150 as described above constitute the main part.

さらに、温調処理部205は、温調処理部205の下方から突出自在に構成され、ガラス基板Gを保持或いは支持するための保持部材、例えば保持ピン207と接触しないようにスリット部208を複数備え、さらに、温調処理部205はガラス基板Gを保持或いは支持するための保持部材、例えば保持ピン209を備えている。この温調処理部205の待機位置としては、図のように熱系の処理部200外部に配置された搬送機構16aまたは搬送機構15aと直接或いは間接的にガラス基板Gを受け渡す位置の温調領域210である。   Further, the temperature adjustment processing unit 205 is configured to protrude from below the temperature adjustment processing unit 205, and includes a plurality of slit portions 208 so as not to contact a holding member for holding or supporting the glass substrate G, for example, the holding pins 207. In addition, the temperature adjustment processing unit 205 includes a holding member for holding or supporting the glass substrate G, for example, a holding pin 209. As a standby position of the temperature adjustment processing unit 205, as shown in the figure, the temperature adjustment at a position where the glass substrate G is directly or indirectly transferred to or from the transfer mechanism 16a or the transfer mechanism 15a disposed outside the heat processing unit 200. Region 210.

次に、加熱処理部206は加熱処理領域に固定されて配置されており、図25にも示すように蓋部219と基台212とで少なくともいずれか一方が近接することにより処理室を形成するよう構成されている。基台212には、ガラス基板Gを所定の温度にて設定するための加熱体としての熱板213と、この熱板213の周囲に配置され蓋部219の底部と接触し処理室内を密閉空間にするためのシール部材としてのOリング214と、Oリング214と熱板213との間には処理室内を排気する複数の排気口215とを備えており、複数の排気口215は排気機構、例えば真空ポンプ216に開閉機構、例えばバルブ217を介して接続されている。また、熱板213には複数のガラス基板Gを保持或いは支持するための保持部材、例えば保持ピン(図示しない)が突出自在に構成された穴部218が設けられ、さらに熱板213には穴部218に対して突出自在に構成された保持ピンから受け渡されるガラス基板Gを熱板213上に位置決めすると共に保持或いは支持するための保持部材、例えば保持ピン220が設けられている。   Next, the heat treatment unit 206 is fixedly arranged in the heat treatment region, and as shown in FIG. 25, at least one of the lid 219 and the base 212 is close to form a treatment chamber. It is configured as follows. The base 212 has a heat plate 213 as a heating body for setting the glass substrate G at a predetermined temperature, and is in contact with the bottom of the lid portion 219 disposed around the heat plate 213 and is a sealed space in the processing chamber. And a plurality of exhaust ports 215 for exhausting the processing chamber between the O-ring 214 and the heat plate 213, the plurality of exhaust ports 215 being an exhaust mechanism, For example, the vacuum pump 216 is connected via an opening / closing mechanism, for example, a valve 217. The hot plate 213 is provided with a hole 218 in which a holding member for holding or supporting a plurality of glass substrates G, for example, a holding pin (not shown) can be protruded, and the hot plate 213 has a hole. A holding member, for example, a holding pin 220, is provided for positioning and holding or supporting the glass substrate G transferred from a holding pin configured to be able to protrude with respect to the portion 218 on the hot plate 213.

また、蓋部219には、基台212と処理室を構成した際にその処理空間内に所定の処理ガス或いは不活性ガス、例えば窒素等の所定のガスを気体供給部223から開閉機構、例えばバルブ224を介して供給する気体供給機構221と、基台212と処理室を構成した際にその処理空間内を開閉機構、例えばバルブ225を介して排気部、例えば真空ポンプ226にて排気する排気機構222とが備えられている。   Further, when the base 212 and the processing chamber are configured, an opening / closing mechanism such as a predetermined processing gas or an inert gas such as nitrogen is supplied to the lid 219 from the gas supply unit 223. When the gas supply mechanism 221 supplied through the valve 224, the base 212, and the processing chamber are configured, the processing space is exhausted by the opening / closing mechanism, for example, the valve 225, by the exhaust unit, for example, the vacuum pump 226. Mechanism 222 is provided.

このように構成されたシステムにおける、ガラス基板Gの処理の手順の一例を下記に説明する。まず始めに、搬送機構11によりカセットCから搬出されたガラス基板Gは、第1の雰囲気下に配置されている搬送機構11により、いずれかの洗浄処理部21に搬入され洗浄処理が施される。さらに、洗浄処理部21にて処理されたガラス基板Gは、搬送機構12により洗浄処理部21から搬出され、塗布処理部22aまたは洗浄処理部21のいずれかの上方の熱系の処理部200に選択搬送される。   An example of a procedure for processing the glass substrate G in the system configured as described above will be described below. First, the glass substrate G carried out of the cassette C by the transport mechanism 11 is carried into one of the cleaning processing units 21 and subjected to a cleaning process by the transport mechanism 11 arranged in the first atmosphere. . Further, the glass substrate G processed in the cleaning processing unit 21 is unloaded from the cleaning processing unit 21 by the transport mechanism 12 and is transferred to the thermal processing unit 200 above either the coating processing unit 22 a or the cleaning processing unit 21. Selected and transported.

搬送機構12と熱系の処理部200との受渡し手順の一例としては、熱系の処理部200の搬入出口39の図示しない開閉機構が開口した後、搬送機構12のガラス基板Gを保持したアーム41が搬入出口39を介して熱系の処理部200内の温調処理部205の上方に位置する。この後、温調処理部205の下方から突出してくる保持ピン207上にガラス基板Gが移し替えられた後に、搬送機構12のアーム41は熱系の処理部200外に退避する。(この後、搬入出口39の図示しない開閉機構が閉じられる)保持ピン207は、ガラス基板Gを保持したまま下降し温調処理部205の保持ピン209にガラス基板Gを受け渡す(この時、温調処理部205は静止状態となっており、温調処理部205の保持ピン209に保持されたガラス基板Gは温調処理部205の温調機構により所定の温度、例えば略室温23℃に温調処理が開始される(加熱処理前温調処理工程))。   As an example of a delivery procedure between the transport mechanism 12 and the thermal processing unit 200, an arm that holds the glass substrate G of the transport mechanism 12 after the opening / closing mechanism (not shown) of the loading / unloading port 39 of the thermal processing unit 200 is opened. 41 is located above the temperature adjustment processing unit 205 in the processing unit 200 of the thermal system via the loading / unloading port 39. Thereafter, after the glass substrate G is transferred onto the holding pins 207 protruding from the lower side of the temperature adjustment processing unit 205, the arm 41 of the transport mechanism 12 is retracted out of the thermal processing unit 200. (After that, the opening / closing mechanism (not shown) of the loading / unloading port 39 is closed) The holding pin 207 descends while holding the glass substrate G and delivers the glass substrate G to the holding pin 209 of the temperature adjustment processing unit 205 (at this time, The temperature adjustment processing unit 205 is in a stationary state, and the glass substrate G held by the holding pins 209 of the temperature adjustment processing unit 205 is brought to a predetermined temperature, for example, approximately room temperature 23 ° C. by the temperature adjustment mechanism of the temperature adjustment processing unit 205. Temperature control processing is started (temperature control processing step before heat processing)).

次に、温調処理部205は保持ピン209にガラス基板Gを保持した状態で温調領域210(第2の雰囲気)から加熱処理領域211(第3の雰囲気)に、つまり加熱処理部206方向(XP方向)に雰囲気遮断機構150を介し加熱処理部206の熱板213の上方位置に水平移動する。穴部218から保持ピンを突出させこの保持ピンの上昇により温調処理部205のガラス基板Gを保持し受け渡す(この後、温調処理部205は温調領域210に移動し待機する。)。   Next, the temperature control processing unit 205 moves from the temperature control region 210 (second atmosphere) to the heat processing region 211 (third atmosphere) with the glass substrate G held by the holding pins 209, that is, in the direction of the heat processing unit 206. It moves horizontally (in the XP direction) to a position above the hot plate 213 of the heat treatment unit 206 via the atmosphere blocking mechanism 150. A holding pin protrudes from the hole 218 and the glass substrate G of the temperature adjustment processing unit 205 is held and transferred by raising the holding pin (then, the temperature adjustment processing unit 205 moves to the temperature adjustment region 210 and stands by). .

次に、気体供給機構221から所定の気体を加熱処理領域211内に供給しガラス基板Gの周囲雰囲気をほぼ所定の気体に設定(加熱処理前雰囲気設定工程)した後にガラス基板Gを保持する保持ピンが下降し穴部218内に収納され、ガラス基板Gは熱板213の保持ピン220に受け渡される。この後蓋部219が下降し蓋部219の底部と基台212のOリング214が接触し処理室を形成する。さらに、気体供給機構221から所定の気体を処理室内に導入しつつ排気口215または排気機構222により処理室内を排気してガラス基板Gは加熱処理、例えば加熱温度として200℃以上の温度にて加熱処理される(加熱処理工程)。   Next, holding a glass substrate G after supplying a predetermined gas from the gas supply mechanism 221 into the heat treatment region 211 and setting the ambient atmosphere of the glass substrate G to a substantially predetermined gas (atmosphere setting step before the heat treatment). The pins are lowered and stored in the holes 218, and the glass substrate G is transferred to the holding pins 220 of the hot plate 213. Thereafter, the lid portion 219 descends and the bottom of the lid portion 219 and the O-ring 214 of the base 212 come into contact with each other to form a processing chamber. Further, while introducing a predetermined gas from the gas supply mechanism 221 into the processing chamber, the processing chamber is exhausted by the exhaust port 215 or the exhaust mechanism 222 to heat the glass substrate G, for example, at a temperature of 200 ° C. or higher as a heating temperature. Processed (heat treatment process).

次に、処理室内にてガラス基板Gを加熱処理した後に、蓋部219を上昇させ基台212と離間することにより処理室の形成を解除する。穴部218から保持ピンを突出させこの保持ピンの上昇により熱板213よりガラス基板Gを離間し保持する(この時までは気体供給機構221から所定の気体をガラス基板Gに供給している(加熱処理後雰囲気設定工程))。ガラス基板Gが所定の温度まで低下した後、温調処理部205は温調領域210(第2の雰囲気)から移動し熱板213と穴部218から突出した保持ピンで保持されているガラス基板Gとの間の所定位置に位置する。   Next, after the glass substrate G is heat-treated in the processing chamber, the lid 219 is raised and separated from the base 212 to cancel the formation of the processing chamber. A holding pin protrudes from the hole 218 and the glass substrate G is separated and held from the heat plate 213 by raising the holding pin (until this time, a predetermined gas is supplied from the gas supply mechanism 221 to the glass substrate G ( After-heat treatment atmosphere setting step)). After the glass substrate G is lowered to a predetermined temperature, the temperature adjustment processing unit 205 moves from the temperature adjustment region 210 (second atmosphere) and is held by the holding pins protruding from the heat plate 213 and the hole 218. It is located at a predetermined position with G.

次に、穴部218から突出した保持ピンは穴部218内に収納されるよう下降し、ガラス基板Gは温調処理部205の保持ピン209に受け渡される。(受け渡されたガラス基板Gは温調処理部205の温調機構により所定の温度に設定するよう冷却され始める。)この後、温調処理部205は保持ピン209にガラス基板Gを保持した状態で加熱処理領域211(第3の雰囲気)から温調領域210(第2の雰囲気)に、つまり温調処理部205の待機方向(XP方向)に雰囲気遮断機構150を介し温調処理部205の待機位置まで移動し静止状態で温調処理部205の温調機構により所定の温度にガラス基板Gを温調処理する。(加熱処理後温調処理工程)(なお、移動途中或いは温調処理部205の待機位置にて温調処理部205の保持ピン209に保持されたガラス基板Gに対して温調処理部205の温調機構の設定温度とほぼ同温のガスを図示しない気体供給機構(温調促進機構)から供給するようにしてガラス基板Gの温調処理のスループットを高めるようにしてもよい。また、雰囲気遮断機構150を前述のように気体にて構成した場合は、その気体を温調処理部205の温調機構の設定温度とほぼ同温にすることで同様の効果を得ることができる。)この後、熱系の処理部200の搬入出口39の図示しない開閉機構が開口した後、搬送機構12にて温調処理部205の下方から突出してくる保持ピン207を介してガラス基板Gを受け取り、熱系の処理部200外に搬入出口39を介してガラス基板Gを搬出する。   Next, the holding pin protruding from the hole 218 is lowered so as to be accommodated in the hole 218, and the glass substrate G is transferred to the holding pin 209 of the temperature adjustment processing unit 205. (The transferred glass substrate G begins to be cooled to be set to a predetermined temperature by the temperature adjustment mechanism of the temperature adjustment processing unit 205.) Thereafter, the temperature adjustment processing unit 205 holds the glass substrate G on the holding pins 209. In the state, from the heat treatment region 211 (third atmosphere) to the temperature adjustment region 210 (second atmosphere), that is, in the standby direction (XP direction) of the temperature adjustment processing unit 205, the temperature adjustment processing unit 205 The glass substrate G is temperature-controlled at a predetermined temperature by the temperature adjustment mechanism of the temperature adjustment processing unit 205 in a stationary state. (Temperature adjustment processing step after heat treatment) (In addition, the temperature adjustment processing unit 205 performs the movement of the temperature adjustment processing unit 205 with respect to the glass substrate G held by the holding pins 209 of the temperature adjustment processing unit 205 at the standby position of the temperature adjustment processing unit 205. A gas having a temperature substantially equal to the set temperature of the temperature control mechanism may be supplied from a gas supply mechanism (temperature control promotion mechanism) (not shown) to increase the temperature control processing throughput of the glass substrate G. When the shut-off mechanism 150 is configured with gas as described above, the same effect can be obtained by setting the gas to substantially the same temperature as the set temperature of the temperature control mechanism of the temperature control processing unit 205.) Then, after the opening / closing mechanism (not shown) of the loading / unloading port 39 of the thermal processing unit 200 is opened, the glass substrate G is received via the holding pin 207 protruding from below the temperature adjustment processing unit 205 by the transport mechanism 12. Thermal system processing 200 outside via the transfer port 39 unloading the glass substrate G.

このような、処理を施す例として、被処理基板、例えば半導体ウエハにおけるSOD膜、例えばLow−K膜(低誘電率膜)等の加熱処理について図26を参照して具体的に述べる。この図26は、加熱処理前雰囲気設定工程或いは加熱処理後雰囲気設定工程における工程が基板の処理に対する影響を指し示すための表である。Low−K膜の加熱処理においては、基板と基板に形成されたLow−K膜とが同温だと仮定すると、基板の温度が所定の温度、例えば約200℃の温度或いはそれ以上の温度において、基板の周囲の雰囲気の酸素濃度が所定の濃度以上、例えば約30〜100ppm、好ましくは30ppm以上だとLow−K膜が酸化等の不具合を起こしてしまうということを本発明者は発見するに至った。   As an example of performing such processing, a heat treatment of a substrate to be processed, for example, an SOD film on a semiconductor wafer, for example, a Low-K film (low dielectric constant film) will be specifically described with reference to FIG. FIG. 26 is a table for indicating the influence of the steps in the pre-heat treatment atmosphere setting step or the post-heat treatment atmosphere setting step on the substrate processing. In the heat treatment of the Low-K film, assuming that the substrate and the Low-K film formed on the substrate have the same temperature, the temperature of the substrate is a predetermined temperature, for example, a temperature of about 200 ° C. or higher. The present inventor discovers that the low-K film causes problems such as oxidation when the oxygen concentration in the atmosphere around the substrate is a predetermined concentration or higher, for example, about 30 to 100 ppm, preferably 30 ppm or higher. It came.

したがって、加熱処理前雰囲気設定工程において、気体供給機構221により基板の周囲雰囲気を設定する所定の気体としては例えば、不活性ガスとして窒素を使用し、熱板213上方に、熱板213の穴部218から突出する保持ピンにより保持される基板の条件は、所定の温度以下、例えば約200℃の温度以下に維持された状態で、所定の酸素濃度以下、例えば約30〜100ppm、好ましくは30ppm以下に設定した後、基板を熱板213に近接し加熱、例えば200℃以上の温度、例えば450℃の温度で加熱処理する。また、加熱処理後雰囲気設定工程においてはの基板の条件は、所定の温度以下、例えば約200℃の温度以下に基板温度が低下した状態で、所定の酸素濃度以上、例えば約30〜100ppm、好ましくは30ppm以上、に基板の周囲の酸素濃度を大気の酸素濃度に解除する必要がある。   Accordingly, in the pre-heat treatment atmosphere setting step, for example, nitrogen is used as an inert gas as the predetermined gas for setting the ambient atmosphere around the substrate by the gas supply mechanism 221, and the hole of the hot plate 213 is disposed above the hot plate 213. The condition of the substrate held by the holding pins protruding from 218 is a predetermined oxygen concentration or lower, for example, about 30 to 100 ppm, preferably 30 ppm or lower, while being maintained at a predetermined temperature or lower, for example, about 200 ° C. or lower. Thereafter, the substrate is heated close to the hot plate 213, for example, at a temperature of 200 ° C. or higher, for example, 450 ° C. Further, the substrate condition in the atmosphere setting step after the heat treatment is a predetermined oxygen concentration or higher, for example, about 30 to 100 ppm, preferably in a state where the substrate temperature is lowered to a predetermined temperature or lower, for example, about 200 ° C. or lower. It is necessary to release the oxygen concentration around the substrate to 30 ppm or more to the atmospheric oxygen concentration.

また、基板に所定のエネルギーを加えるものとして熱板213を開示しているが、例えば熱板等の加熱体と置き換えてまたは併用して所定の電磁エネルギー、例えばEB装置によりエレクトロンビーム等を照射してもよい。この際においても、上述したように基板の温度と基板の周囲の酸素濃度の関係は略同様に設定する必要がある。   Further, although the hot plate 213 is disclosed as applying predetermined energy to the substrate, it is replaced with a heating body such as a hot plate or used in combination with predetermined electromagnetic energy, for example, an electron beam or the like by an EB apparatus. May be. Also in this case, as described above, the relationship between the substrate temperature and the oxygen concentration around the substrate needs to be set in substantially the same manner.

また、温調領域210(第2の雰囲気)或いは加熱処理領域211(第3の雰囲気)の雰囲気を常に所定の酸素濃度以下に、例えば窒素等で常に供給しつづけて熱系の処理部200内を充満しておくのも有効な手段ではあるが窒素の消費が激しくなりランニングコストが多大なものとなってしまうため、次のような一解決策が考えられる。   In addition, the atmosphere in the temperature control region 210 (second atmosphere) or the heat treatment region 211 (third atmosphere) is always supplied at a predetermined oxygen concentration or lower, for example, with nitrogen or the like, for example, in the thermal processing unit 200. Although it is an effective means to fill the gas, the consumption of nitrogen becomes intense and the running cost becomes great, so the following solution can be considered.

すなわち、熱系の処理部200内を気体供給機構221或いは温調促進機構から酸素濃度、例えば30ppm以下の含有する気体、窒素等を供給し、陽圧に維持するために熱系の処理部200の搬入出口39を図示しない開閉機構によって閉じてある程度の気密状態に維持させる。さらに、雰囲気遮断機構150を前述のようなシャッタ機構とし、温調領域210(第2の雰囲気)と加熱処理領域211(第3の雰囲気)の雰囲気を遮断可能に構成する。   That is, the thermal processing unit 200 is supplied with oxygen concentration, for example, 30 ppm or less containing gas, nitrogen or the like from the gas supply mechanism 221 or the temperature control promotion mechanism, and maintained at a positive pressure in the thermal processing unit 200. The loading / unloading port 39 is closed by an opening / closing mechanism (not shown) to maintain a certain degree of airtightness. Further, the atmosphere blocking mechanism 150 is configured as a shutter mechanism as described above so that the atmosphere in the temperature control region 210 (second atmosphere) and the heat treatment region 211 (third atmosphere) can be blocked.

さらに、熱系の処理部200外に配置する搬送機構12の配置雰囲気は装置内雰囲気(第1の雰囲気)とすると、搬送機構12が熱系の処理部200に対してアクセスする際、熱系の処理部200の搬入出口39は開閉機構によって開口するために第1の雰囲気が第2の雰囲気にアーム41の進入により流れ込む恐れがある。しかしながら、その際には雰囲気遮断機構150の閉動作により温調領域210と加熱処理領域211とは隔離しておけば加熱処理領域211には影響を及ぼさない。また、雰囲気遮断機構150が開動作の際には加熱処理領域211と温調領域210との雰囲気干渉の問題があるので圧力は実質的に、第1の雰囲気の圧力<第2の雰囲気の圧力または/及び第2の雰囲気の圧力<第3の雰囲気の圧力または/及び酸素濃度は実質的に、第1の雰囲気の酸素濃度>第2の雰囲気の酸素濃度または/及び第2の雰囲気の酸素濃度>第3の雰囲気の酸素濃度となるように設定しておくと雰囲気干渉の問題が無く基板の処理に不具合が生ずるのを抑制することが可能となる。   Further, when the atmosphere of the transport mechanism 12 disposed outside the thermal processing unit 200 is the atmosphere inside the apparatus (first atmosphere), when the transport mechanism 12 accesses the thermal processing unit 200, the thermal system Since the loading / unloading port 39 of the processing unit 200 is opened by the opening / closing mechanism, the first atmosphere may flow into the second atmosphere due to the entry of the arm 41. However, in that case, if the temperature control region 210 and the heat treatment region 211 are separated by the closing operation of the atmosphere blocking mechanism 150, the heat treatment region 211 is not affected. Further, when the atmosphere blocking mechanism 150 is opened, there is a problem of atmospheric interference between the heat treatment region 211 and the temperature control region 210, so that the pressure is substantially the pressure of the first atmosphere <the pressure of the second atmosphere. Or / and the pressure of the second atmosphere <the pressure of the third atmosphere or / and the oxygen concentration is substantially the oxygen concentration of the first atmosphere> the oxygen concentration of the second atmosphere or / and the oxygen of the second atmosphere If the concentration is set such that the oxygen concentration of the third atmosphere is set, there is no problem of atmospheric interference, and it is possible to suppress the occurrence of problems in the processing of the substrate.

また、温度は実質的に、第1の雰囲気の温度<第2の雰囲気の温度または/及び第2の雰囲気の温度<第3の雰囲気の温度とし、第3の雰囲気の温度については、例えば所定の温度以下、例えば約200℃以下で第2の雰囲気の温度の温調処理部205の温調に影響を与えない温度とすると加熱処理前にある程度暖められるので基板の処理のスループット等が向上する。   Further, the temperature is substantially the first atmosphere temperature <the temperature of the second atmosphere or / and the temperature of the second atmosphere <the temperature of the third atmosphere. If the temperature of the second atmosphere temperature is not affected by the temperature adjustment of the second atmosphere, for example, about 200 ° C. .

さらに、上記のような酸素濃度の影響は雰囲気中の湿度にも関係が有るため、湿度は実質的に、第1の雰囲気の湿度>第2の雰囲気の湿度または/及び第2の雰囲気の湿度>第3の雰囲気の湿度に設定されている方が好ましい。   Further, since the influence of the oxygen concentration as described above is also related to the humidity in the atmosphere, the humidity is substantially the humidity of the first atmosphere> the humidity of the second atmosphere or / and the humidity of the second atmosphere. > It is preferable to set the humidity of the third atmosphere.

次に、図23に示すガラス基板Gの処理手順に戻ると、搬送機構12にて熱系の処理部200外に搬入出口39を介してガラス基板Gを搬出した後、搬送機構12によりガラス基板Gは、塗布処理部22aにて所定の塗布処理が施され、この後、ガラス基板Gは、搬送機構16aにて塗布処理部22aの上部の熱系の処理部200若しくは搬送機構16aにてガラス基板Gは搬送機構15aに直接或いは間接的に渡され(第1の処理ステーション部195側から熱系の第2の処理ステーション部196側に)搬送機構15aにより第2の処理ステーション部196側に配置される複数の熱系の処理部200の内の選択された熱系の処理部200に直接或いは間接的に搬送され、前述のように熱系の処理が施される。   Next, returning to the processing procedure of the glass substrate G shown in FIG. 23, after the glass substrate G is unloaded through the loading / unloading port 39 out of the thermal processing unit 200 by the transfer mechanism 12, the glass substrate G is transferred by the transfer mechanism 12. G is subjected to a predetermined coating process by the coating processing unit 22a, and then the glass substrate G is glass by the heat processing unit 200 or the transport mechanism 16a above the coating processing unit 22a by the transport mechanism 16a. The substrate G is directly or indirectly transferred to the transport mechanism 15a (from the first processing station unit 195 side to the second processing station unit 196 side of the thermal system) and transferred to the second processing station unit 196 side by the transport mechanism 15a. It is directly or indirectly transferred to a selected thermal processing unit 200 among the plurality of thermal processing units 200 to be arranged, and is subjected to thermal processing as described above.

次に、塗布処理部22aの上部の熱系の処理部200に対しては搬送機構16aにて或いは第2の処理ステーション部196側に配置される複数の熱系の処理部200の内の選択された熱系の処理部200で処理されたガラス基板Gは一旦搬送機構15aを介して直接或いは間接的に搬送機構16aに受け渡される。さらに、ガラス基板Gは搬送機構16aにより処理部185aに引き渡され処理部185aから搬送機構11により搬出されカセットCに搬入され一連の処理が終了する。   Next, for the thermal processing unit 200 on the upper part of the coating processing unit 22a, the selection is made among the plurality of thermal processing units 200 arranged in the transport mechanism 16a or on the second processing station unit 196 side. The glass substrate G processed by the thermal processing unit 200 is once transferred directly or indirectly to the transport mechanism 16a via the transport mechanism 15a. Further, the glass substrate G is transferred to the processing unit 185a by the transport mechanism 16a, and is transported from the processing unit 185a by the transport mechanism 11 and loaded into the cassette C, and the series of processes is completed.

このように構成したことで、処理部配置部としての熱系の処理部200においては、熱系の処理部200内に複数の処理部として温調領域210と加熱処理領域211とにそれぞれ設けられた加熱処理部206と温調処理部205とにより、すなわち、所定の前後の処理を行う処理部を一体化し、さらに、その一体化された処理システムの内部において基板を搬送する搬送機能をいずれかの少なくとも1つの処理部、ここでは温調処理部205にもたせ、備えブロック化したことで、従来の別個に処理部を配置し構成したシステムに比べ例えば、処理部を構成する処理室の隣り合う側方部の処理壁の厚みが削減できるので、その分、スペースを削除できるために装置の小型化が図れることとなり、その結果、装置のフットプリントを小さくすることが可能となる。また、雰囲気遮断機構150を複数の処理部間、例えば加熱処理部206と温調処理部205との間に備えたことにより処理部の配置領域の雰囲気の干渉を抑制することができる。さらに、熱系の処理部を一体化することで、熱系の処理部配置部外への熱を持った雰囲気が、一旦温調処理部205を介して基板の搬送が行われることから直接、加熱処理部206からの熱が流出するのが抑制でき、他の処理部配置部として例えば液系の処理部配置部に対して熱の影響を抑制することができ、もって基板の処理の歩留りを低減する事が可能となる。   With this configuration, the thermal processing unit 200 serving as the processing unit placement unit is provided in the thermal control unit 200 as a plurality of processing units in the temperature control region 210 and the heat processing region 211, respectively. The heating processing unit 206 and the temperature control processing unit 205, ie, a processing unit that performs predetermined pre- and post-processing, are integrated, and any one of the transfer functions for transporting the substrate within the integrated processing system. Compared to the conventional system in which the processing unit is separately arranged and configured, it is adjacent to the processing chambers that constitute the processing unit. Since the thickness of the processing wall at the side can be reduced, the space can be deleted accordingly, and the device can be downsized. As a result, the footprint of the device can be reduced. It becomes possible. Further, by providing the atmosphere blocking mechanism 150 between a plurality of processing units, for example, between the heat processing unit 206 and the temperature adjustment processing unit 205, it is possible to suppress the interference of the atmosphere in the arrangement region of the processing units. Furthermore, by integrating the thermal processing unit, the atmosphere with the heat outside the thermal processing unit arrangement unit is once directly transferred from the substrate through the temperature control processing unit 205, Heat from the heat treatment unit 206 can be suppressed from flowing out, and the influence of heat can be suppressed as another processing unit arrangement unit, for example, a liquid processing unit arrangement unit, thereby increasing the substrate processing yield. It becomes possible to reduce.

さらに、熱系の処理部200を複数積層してブロック化し、このブロックを少なくとも1つ以上、例えば2つのブロックを配置(例えば図23のように液処理等を行う処理ステーション部195の方向に低加熱処理としての温調処理部205が配置されるように(加熱処理部を処理ステーション部195よりできるだけ離間することにより熱の影響を押さえるよう配置)搬送機構15aを挟んで対抗するように配置)し、搬送機構15aにより複数のブロックの熱系の処理部200に対し基板を搬入あるいは搬送自在に構成されている熱系の処理ステーション部196を設けたことにより、熱系の処理ステーション196部と処理ステーション部195との雰囲気を個々に管理することが可能となり、熱系の処理部200の熱の影響が液処理等を行う処理ステーション部195により作用しないために基板の処理の歩留りを低減する事が可能となる。さらに熱系の処理ステーション部196を一体化したことにより装置システムを構築する際、自由度が向上する。   Further, a plurality of thermal processing units 200 are stacked to form a block, and at least one block, for example, two blocks are arranged (for example, as shown in FIG. The temperature adjustment processing unit 205 as the heat treatment is arranged (arranged so as to suppress the influence of heat by separating the heat treatment unit as far as possible from the processing station unit 195) and arranged to oppose the conveyance mechanism 15a) In addition, by providing a thermal processing station unit 196 configured to allow a substrate to be carried into or transported to the thermal processing unit 200 of a plurality of blocks by the transport mechanism 15a, It is possible to individually manage the atmosphere with the processing station unit 195, and the influence of the heat of the thermal processing unit 200 is liquid processing. It is possible to reduce the yield of the processing of the substrate in order not to act by the processing station unit 195 that performs. Furthermore, when the apparatus system is constructed by integrating the thermal processing station unit 196, the degree of freedom is improved.

また、熱系の処理部200の他の実施の形態として、図27を参照して説明する。図27の熱系の処理部200においての基板の搬入出口は、温調処理部205側の搬入出口39bと、加熱処理部206の搬入出口39aとで構成され、図23に示す搬送機構15aは図中Yt方向(処理ステーション部195内の搬送機構16aの自走方向(Y2)の延長線上或いはその延長線上とほぼ平行する線上方向或いは熱系の処理部200の温調処理部205の移動方向(XP)と平行する線上)に自走自在に構成されている。(前述の実施の形態では自走に構成されていないで固定されていた。)このような搬送機構15aにより搬入出口39bを介して温調処理部205に、及び搬入出口39aを介して加熱処理部206に対して基板を搬送自在に構成されている。   Further, another embodiment of the thermal processing unit 200 will be described with reference to FIG. The substrate loading / unloading port in the thermal processing unit 200 of FIG. 27 includes a loading / unloading port 39b on the temperature adjustment processing unit 205 side and a loading / unloading port 39a of the heat processing unit 206. The transfer mechanism 15a illustrated in FIG. In the figure, in the Yt direction (on the extension line in the self-running direction (Y2) of the transport mechanism 16a in the processing station unit 195, or on the line substantially parallel to the extension line, or the moving direction of the temperature adjustment processing unit 205 of the thermal processing unit 200) (On a line parallel to (XP)). (In the above-described embodiment, it is not configured to be self-propelled but is fixed.) By such a transport mechanism 15a, heat treatment is performed to the temperature adjustment processing unit 205 via the loading / unloading port 39b and via the loading / unloading port 39a. The substrate 206 is configured to be transportable with respect to the unit 206.

このように構成されるシステムでの作用としては、まず、搬送機構15aにより熱系の処理部200の加熱処理部206に対して基板を直接或いは間接的に搬入する。加熱処理部206にて基板の処理が終了した後、温調処理部205が加熱処理部206方向に移動した後、加熱処理部206の基板は温調処理部205に引き渡され、基板は温調処理部205にて温調処理される。   As an operation in the system configured as described above, first, the substrate is directly or indirectly carried into the heat processing unit 206 of the thermal processing unit 200 by the transport mechanism 15a. After the processing of the substrate is completed in the heat processing unit 206, the temperature adjustment processing unit 205 moves in the direction of the heat processing unit 206, and then the substrate of the heat processing unit 206 is delivered to the temperature adjustment processing unit 205, and the substrate is temperature controlled. Temperature processing is performed in the processing unit 205.

このように構成したことで、例えば加熱処理前に温調工程が必要ではない場合、加熱処理部側に搬入出口39aが配置されていても特段問題とならない、例えば加熱温度が低いとか処理部配置部内の雰囲気を特に設定する必要がない場合等の場合、加熱処理部側に搬入出口39aが配置されていても熱系の処理ステーション部196内にて所定の対策が施され、処理ステーション部195側への熱影響を抑制している場合等においては、熱系の処理部200内に基板を搬入する際に一旦温調処理部205を介在させることが無いので処理のスループットを向上させることができる。   With this configuration, for example, when a temperature adjustment step is not required before the heat treatment, there is no particular problem even if the loading / unloading port 39a is disposed on the heat treatment portion side, for example, the heat treatment temperature is low or the treatment portion is disposed. In the case where it is not necessary to set the atmosphere inside the unit, even if the loading / unloading port 39a is arranged on the heat processing unit side, predetermined measures are taken in the heat processing station unit 196, and the processing station unit 195 In the case where the thermal influence on the side is suppressed, the temperature adjustment processing unit 205 is not interposed once when the substrate is carried into the thermal processing unit 200, so that the processing throughput can be improved. it can.

なお、以上に述べた熱系の処理部200については、他の実施の形態で配置されている加熱処理部或いは温調処理部と置き換えてよいということはいうまでもないが、それぞれ個別の加熱処理部或いは温調処理部と熱系の処理部200とを併用して配置しても良い。   In addition, it cannot be overemphasized that about the heat processing part 200 described above, it may replace with the heat processing part or temperature control processing part which are arrange | positioned by other embodiment, Each heating The processing unit or the temperature control processing unit and the thermal processing unit 200 may be used in combination.

なお、本発明は上記実施の形態に限定されず本発明の思想の範囲内で種々の変形、或いは各実施の形態に要部或いは全体を複数組み合わせて構成される変形、例えば、装置のレイアウトはあくまでも例示であり、これに限るものではないし、また、処理に関しても上記のようにレジスト塗布現像処理装置による処理に限られるものではなく、液処理と熱的処理を行う他の装置、例えば、所定の処理液を基板に対して塗布するだけの装置或いは所定の処理液を基板に対して洗浄するだけの装置或いは所定の温度にて基板を温度処理するだけの装置或いはそれらの構成を組み合わせた装置等にも適用することも可能である。さらに被処理基板としてLCD基板や半導体ウエハを用いた場合について示したが、これに限らずカラーフィルター・コンパクトディスク・MD等の他の被処理基板の処理にも適用可能であることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiments, and various modifications within the scope of the idea of the present invention, or modifications configured by combining a plurality of essential parts or the whole of each embodiment, for example, the layout of the apparatus, However, the processing is not limited to the processing by the resist coating and developing processing apparatus as described above, and other apparatuses that perform liquid processing and thermal processing, for example, predetermined processing. A device that simply applies the processing liquid to the substrate, a device that only cleans the substrate with a predetermined processing liquid, a device that only temperature-treats the substrate at a predetermined temperature, or a device that combines these configurations It is also possible to apply to the above. Furthermore, although the case where an LCD substrate or a semiconductor wafer is used as the substrate to be processed has been shown, it is needless to say that the present invention is not limited to this and can be applied to processing of other substrates to be processed such as color filters, compact discs, MDs and the like. Absent.

本発明の第1の実施形態に係るレジスト塗布現像処理装置を示す平面図。1 is a plan view showing a resist coating and developing treatment apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部の内部を示す側面図。The side view which shows the inside of the principal part of the resist coating and developing processing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部の内部を示す側面図。The side view which shows the inside of the principal part of the resist coating and developing processing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部の内部を示す平面図。The top view which shows the inside of the principal part of the resist application | coating development processing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部を示す側面図。1 is a side view showing a main part of a resist coating and developing treatment apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部の内部を示す側面図。The side view which shows the inside of the principal part of the resist coating and developing processing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部を示す斜視図。1 is a perspective view showing a main part of a resist coating and developing treatment apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部を示す斜視図。1 is a perspective view showing a main part of a resist coating and developing treatment apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部を示す斜視図。1 is a perspective view showing a main part of a resist coating and developing treatment apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部を示す断面図。Sectional drawing which shows the principal part of the resist application | coating development processing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部を示す斜視図。1 is a perspective view showing a main part of a resist coating and developing treatment apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部を示す断面図。Sectional drawing which shows the principal part of the resist application | coating development processing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部を示す斜視図。1 is a perspective view showing a main part of a resist coating and developing treatment apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係るレジスト塗布現像処理装置の要部を示す断面図。Sectional drawing which shows the principal part of the resist application | coating development processing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るレジスト塗布現像処理装置を示す平面図。The top view which shows the resist application | coating development processing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るレジスト塗布現像処理装置の要部を示す断面図。Sectional drawing which shows the principal part of the resist application | coating development processing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るレジスト塗布現像処理装置を示す平面図。The top view which shows the resist application | coating development processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係るレジスト塗布現像処理装置の要部を示す断面図。Sectional drawing which shows the principal part of the resist coating and developing processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係るレジスト塗布現像処理装置の要部を示す斜視図。The perspective view which shows the principal part of the resist coating and developing processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係るレジスト塗布現像処理装置を示す平面図。The top view which shows the resist coating and developing processing apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係るレジスト塗布現像処理装置を示す平面図。The top view which shows the resist application | coating development processing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係るレジスト塗布現像処理装置の要部を示す斜視図。The perspective view which shows the principal part of the resist application | coating development processing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る処理液塗布処理装置を示す平面図。The top view which shows the process liquid application | coating apparatus which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る処理液塗布処理装置の要部を示す平面図。The top view which shows the principal part of the process liquid coating processing apparatus which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る処理液塗布処理装置の要部を示す斜視図。The perspective view which shows the principal part of the process liquid coating processing apparatus which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る処理の説明をする図。The figure explaining the process which concerns on the 6th Embodiment of this invention. 図24の他の実施の形態を示す平面図。The top view which shows other embodiment of FIG.

符号の説明Explanation of symbols

1,170,180,181……レジスト塗布現像処理装置
5,6,7……搬送機構配置部
11,12,13,14,15,15a……搬送機構
16,16a,16b……搬送機構(基板搬送機構)
21……洗浄処理部(処理部配置部)
22……レジスト塗布処理部(処理部配置部)
23……現像処理部(処理部配置部)
25,71,72,73,74……熱系の処理部
38,79,85……搬送機構
90……カセットステーション部
91,195,196……処理ステーション部
92……インターフェイスステーション部
150……雰囲気遮断機構194……処理液塗布装置
200……熱系の処理部(処理部配置部)
205……温調処理部
206……加熱処理部G……LCDガラス基板
1, 170, 180, 181... Resist coating and developing apparatus 5, 6, 7... Transport mechanism placement unit 11, 12, 13, 14, 15, 15 a. Substrate transport mechanism)
21 …… Cleaning processing unit (processing unit placement unit)
22 …… Resist application processing section (processing section placement section)
23 …… Development processing section (processing section placement section)
25, 71, 72, 73, 74... Thermal processing units 38, 79, 85... Transport mechanism 90... Cassette station units 91, 195, 196. Atmosphere blocking mechanism 194... Treatment liquid coating apparatus 200... Thermal processing section (processing section placement section)
205 …… Temperature control unit 206 …… Heating unit G …… LCD glass substrate

Claims (6)

被処理基板をローラにて搬送自在に構成されたローラ搬送機構を有するとともに被処理基板を搬入出する搬入出口を有するローラ搬送部、前記ローラ搬送部の上部に配置され被処理基板に対して温調処理する温調処理部、及び前記温調処理部の上部に配置され前記温調処理部より高い温度にて前記被処理基板に熱処理を施す熱処理部を具備した第一の被処理基板処理部と、被処理基板を搬送自在に構成された搬送機構を有するとともに被処理基板を搬入出する搬入出口を有する搬送部、前記搬送部の上部に配置され被処理基板に対して温調処理する温調処理部、及び前記温調処理部の上部に配置され前記温調処理部より高い温度にて前記被処理基板に熱処理を施す熱処理部を具備した第二の被処理基板処理部と、を具備し、前記第一の被処理基板処理部と前記第二の被処理基板処理部との間であって各被処理基板処理部外に配置され、前記第一の被処理基板処理部のローラ搬送部のローラ搬送機構または/及び前記第二の被処理基板処理部の搬送部の搬送機構に対して前記被処理基板を搬送自在に構成された自走不可である第一の搬送機構を具備したことを特徴とする基板処理装置。   A roller transport unit having a roller transport mechanism configured to freely transport a substrate to be processed by a roller and having a loading / unloading port for loading and unloading the substrate to be processed. A first substrate processing unit that includes a temperature control processing unit that performs conditioning processing, and a thermal processing unit that is disposed above the temperature control processing unit and that performs thermal processing on the substrate to be processed at a temperature higher than the temperature control processing unit. And a transport unit having a transport mechanism configured to transport the substrate to be processed and having a loading / unloading port for loading and unloading the substrate to be processed, and a temperature at which the substrate to be processed is temperature-controlled. A second processing target substrate processing unit including a conditioning processing unit, and a thermal processing unit disposed above the temperature control processing unit and performing a thermal processing on the processing substrate at a temperature higher than the temperature control processing unit. And the first processed Between the plate processing section and the second processed substrate processing section and disposed outside each processed substrate processing section, and / or a roller transport mechanism of a roller transport section of the first processed substrate processing section A substrate processing apparatus comprising a first transfer mechanism configured to be able to transfer the substrate to be processed with respect to a transfer mechanism of a transfer unit of the second substrate processing unit to be processed. . 前記第一の搬送機構から被処理基板を受け渡し自在に構成され、前記被処理基板を自走して搬送する第二の搬送機構を具備したことを特徴とする請求項記載の基板処理装置。 The first are passed freely configure target substrate from the transfer mechanism, the substrate processing apparatus according to claim 1, characterized by including a second transport mechanism for transporting to the self-propelled substrate to be processed. 前記ローラ搬送部において、被処理基板に対して処理液を供給する処理液供給機構を具備したことを特徴とする請求項1又は請求項2記載の基板処理装置。 The substrate processing apparatus according to claim 1 , wherein the roller transport unit includes a processing liquid supply mechanism that supplies a processing liquid to the substrate to be processed. 前記被処理基板に対して気体を供給する気体供給機構と、この気体供給機構からの気体を排気する排気機構と、を具備したことを特徴とする請求項1から請求項3のいずれかに記載の基板処理装置。 The gas supply mechanism which supplies gas with respect to the said to-be-processed substrate, and the exhaust mechanism which exhausts the gas from this gas supply mechanism were comprised, The any one of Claims 1-3 characterized by the above-mentioned. Substrate processing equipment. 請求項1から請求項4のいずれかに記載の基板処理装置を使用して、被処理基板を処理することを特徴とする基板処理方法。 A substrate processing method, comprising: processing a substrate to be processed using the substrate processing apparatus according to claim 1 . 請求項1から請求項5のいずれかに記載の基板処理装置を使用して、被処理基板を製造することを特徴とする基板の製造方法。 A substrate manufacturing method using the substrate processing apparatus according to claim 1 to manufacture a substrate to be processed.
JP2005177100A 2005-06-17 2005-06-17 Substrate processing apparatus, substrate processing method, and substrate manufacturing method Expired - Lifetime JP3966884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005177100A JP3966884B2 (en) 2005-06-17 2005-06-17 Substrate processing apparatus, substrate processing method, and substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005177100A JP3966884B2 (en) 2005-06-17 2005-06-17 Substrate processing apparatus, substrate processing method, and substrate manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001170284A Division JP2002329661A (en) 2001-04-27 2001-04-27 Substrate processing device and method therefor, and method for manufacturing substrate

Publications (2)

Publication Number Publication Date
JP2005303328A JP2005303328A (en) 2005-10-27
JP3966884B2 true JP3966884B2 (en) 2007-08-29

Family

ID=35334390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005177100A Expired - Lifetime JP3966884B2 (en) 2005-06-17 2005-06-17 Substrate processing apparatus, substrate processing method, and substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP3966884B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212295A (en) * 2008-03-04 2009-09-17 Tokyo Electron Ltd Application solidification device and application solidification method of chemical solution
JP7186605B2 (en) * 2018-12-27 2022-12-09 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153767A (en) * 1994-11-29 1996-06-11 Dainippon Screen Mfg Co Ltd Substrate treating device
JP3597639B2 (en) * 1996-06-05 2004-12-08 大日本スクリーン製造株式会社 Substrate processing apparatus and substrate processing method
JPH11251399A (en) * 1998-02-27 1999-09-17 Dainippon Screen Mfg Co Ltd Device for processing substrate
JPH11260883A (en) * 1998-03-09 1999-09-24 Dainippon Screen Mfg Co Ltd Substrate treating apparatus
JP3499145B2 (en) * 1998-10-28 2004-02-23 東京エレクトロン株式会社 Heat treatment method, heat treatment apparatus and treatment system

Also Published As

Publication number Publication date
JP2005303328A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4005609B2 (en) Substrate processing apparatus, substrate processing method, and substrate manufacturing method
KR101166109B1 (en) Facility for treating substrates
JP2012250232A (en) Substrate processing equipment and substrate processing method
JP4319175B2 (en) Vacuum dryer
KR102467054B1 (en) Apparatus and Method for treating substrate
KR102315667B1 (en) Method and Apparatus for treating substrate
JP2011205004A (en) Substrate processing apparatus and substrate processing method
JP2000106341A (en) Method and device for substrate treatment
JP2004282024A (en) Substrate treatment device
JP2002329661A (en) Substrate processing device and method therefor, and method for manufacturing substrate
JP3966884B2 (en) Substrate processing apparatus, substrate processing method, and substrate manufacturing method
KR102054221B1 (en) Apparatus for transferring substrate and Apparatus for treating substrate with it
JP2008109158A (en) Substrate treatment apparatus, substrate treatment method, substrate producing method and electronic device
JP2008166820A (en) Apparatus and method for processing substrate, method for manufacturing substrate, and electronic instrument
KR101895410B1 (en) Apparatus for treating substrate
JP3611568B2 (en) Substrate processing apparatus, substrate processing method, and substrate manufacturing method
KR101582569B1 (en) Substrate treating apparatus, substrate treating facility including the apparatus, and substrate treating method using the apparatus
JP3559219B2 (en) Coating and developing system and coating and developing method
JP2008124502A (en) Substrate treatment equipment, method for treating substrate, method for manufacturing substrate, and electronic instrument
KR102037921B1 (en) Apparatus and Method for treating substrate
KR101768518B1 (en) Transfer chamber, Apparatus for treating substrate, and method for trasnferring substrate
JP2008053738A (en) Substrate processing device, method for processing substrate, and method for manufacturing substrate
JP2005142590A (en) Substrate processing device and method, and method for manufacturing substrate
JP2003142552A (en) Substrate treatment apparatus
JP2002173775A (en) Semiconductor manufacturing apparatus, and manufacturing method of semiconductor apparatus

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

RVTR Cancellation of determination of trial for invalidation
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5