JP2011094639A - 真空袋体および真空断熱材 - Google Patents

真空袋体および真空断熱材 Download PDF

Info

Publication number
JP2011094639A
JP2011094639A JP2009246171A JP2009246171A JP2011094639A JP 2011094639 A JP2011094639 A JP 2011094639A JP 2009246171 A JP2009246171 A JP 2009246171A JP 2009246171 A JP2009246171 A JP 2009246171A JP 2011094639 A JP2011094639 A JP 2011094639A
Authority
JP
Japan
Prior art keywords
heat
layer
thin
welded
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009246171A
Other languages
English (en)
Inventor
Toshio Kobayashi
俊夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009246171A priority Critical patent/JP2011094639A/ja
Publication of JP2011094639A publication Critical patent/JP2011094639A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

【課題】長期に渡って優れた密封性能を維持する真空袋体を提供する。
【解決手段】真空袋体1、および真空断熱材11は、外被材3が表面保護層4、ガスバリア層5、熱溶着層6で構成されており、外被材3の外周部同士が熱溶着された封止部7の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、凹部の最深部に熱溶着層6の厚みが最深部の周辺部よりも薄い薄肉部8が形成され、薄肉部8の熱溶着層6は上層との境界面のうねりの波高が、非封止部の2枚の外被材3の熱溶着層6の厚みの和に対して、1.5倍以上2倍以下であるので、薄肉部8が所定の厚みまで達し、かつ外被材3周縁の端面から封止部7を通って侵入する大気ガス量を抑制する薄肉部8でのクラック発生が極めて起きにくくなる。
【選択図】図1

Description

本発明は、長期にわたって優れた密閉性能を維持する真空袋体および断熱性能を維持する真空断熱材に関するものである。
近年、菓子や食品、あるいは液体、気体、固体状の薬品や生活雑貨などを密封袋に真空密封し長期保存を可能としたり、密封袋に発泡体、粉末、繊維体を真空密封し真空断熱材としたり、真空袋体の密封技術が広く用いられている。ここでは、真空断熱材を例に説明する。
深刻な地球環境問題である温暖化への対策として、家電製品や設備機器並びに住宅などの建物の省エネルギー化を推進する動きが活発となっており、優れた断熱効果を長期的に維持する真空断熱材が、これまで以上に求められている。
真空断熱材とは、グラスウールやシリカ粉末などの微細空隙を有する芯材を、ガスバリア性を有する外被材で覆い、外被材の内部を減圧密封したものである。真空断熱材は、その内空間を高真空に保ち、気相を伝わる熱量を出来る限り小さくすることにより、高い断熱効果の発現を可能としたものである。よって、その優れた断熱効果を長期にわたって発揮するためには、真空断熱材内部の高い真空度を維持する技術が極めて重要となる。
真空断熱材内部の真空度を維持する方法として、気体吸着剤や水分吸着剤を芯材とともに真空断熱材内部に減圧密封する方法が、一般的に用いられている。これによって、真空包装後に芯材の微細空隙から真空断熱材中へ放出される残存水分や、外気から外被材を透過して経時的に真空断熱材内へ浸透する水蒸気や酸素等の大気ガスを除去することが可能となる。
しかし、現存の吸着剤の吸着能力を考慮すると、高い断熱効果を長期的に維持する真空断熱材を提供するには、吸着剤の使用だけでは不十分であるといえ、真空断熱材内部へ浸透する大気ガス量自体を抑制する手段を講じる必要がある。
ここで、外気から真空断熱材内部へ侵入するガス経路について述べる。
真空断熱材は、通常、2枚の長方形の外被材を重ね合わせて外被材の3辺の周縁近傍の外周部同士を熱溶着して作製した3方シール袋内へ3方シール袋の開口部から芯材を挿入し、真空包装機を用いて外被材の袋内部を真空引きしながら、3方シール袋の開口部を熱溶着することによって製造される。
外被材には、通常、最内層に低密度ポリエチレンなどの熱可塑性樹脂からなる熱溶着層、中間層にアルミニウム箔やアルミニウム蒸着フィルムなどのバリア性を有する材料からなるガスバリア層、そして最外層にはナイロンフィルムやポリエチレンテレフタレートフィルムなどの表面保護の役割を果たす表面保護層を、接着剤を介して積層したラミネートフィルムを用いる。
この場合、外気から真空断熱材内部へ透過する大気ガスは、外被材表面から透過してくる成分と、外被材周縁の端面の熱溶着層が露出している部分から封止部を通って内部に透過してくる成分との2つに分類される。
このうち、熱溶着層を構成している熱可塑性樹脂は、ガスバリア層と比べると気体透過度および透湿度が極めて高いことから、真空断熱材内部へ経時的に侵入する大気ガス量のうち、外被材周縁の端面の熱溶着層が露出している部分から封止部を通って内部に透過したものが大半を占める。
よって、長期にわたって優れた断熱性能を維持する真空断熱材の提供には、外被材周縁の端面の熱溶着層が露出している部分からの大気ガス浸透量抑制が不可欠であり、その効果的な手法が課題とされてきた。
この課題に対して、封止部における熱溶着層の一部を薄肉にした薄肉部を設けた真空断熱材が報告されている(例えば、特許文献1参照)。
図7は、特許文献1に記載された従来の真空断熱材の断面図である。
図7に示すように、真空断熱材101は、ガスバリア層102と熱溶着層103とを有する外被材104の封止部分の熱溶着層103の一部が薄肉になっている。この薄肉部105は、図8に示すような封止冶具106を用いて、封止部分における外被材104の一部を特に強く加圧することにより形成されたもので、外被材104の全周を取り巻くように形成されている。
従来の構成は、薄肉部105によって外被材周縁の端面から侵入するガスの透過抵抗が増大し、内部へのガス侵入を抑制することで長期に渡って優れた断熱性能を発揮できるとされている。
実開昭62−141190号公報
上記特許文献1の構成では、薄肉部105における外被材104の詳細な形状については述べられていないものの、薄肉部105に、図7および図8に示されるような両面に角部107を有している場合は、真空断熱材101製造時および取り扱い時に、角部107において、外被材104、特にガスバリア層102にクラックの発生が起こる。このクラックから、経年的に大気ガス成分の真空断熱材101内部への侵入が促進されるという課題があった。
ここで、角部107とは、封止部を外被材104の周縁に垂直な平面で切断した場合の断面を見た時、薄肉部105の境界及びその近傍に生じる、熱溶着層103の厚み変化に伴い形成される角形状となった部位(曲率が大きい部位)を指す。
さらに、特許文献1の構成では、薄肉部105を複数有する外被材104については述べられていないものの、薄肉部105を複数有している場合は、真空断熱材101製造時に、薄肉部105が所定の厚みまで達しない、あるいは所定の厚みに達しても薄肉部105において、外被材104、特にガスバリア層102にクラックの発生が起こる。このクラックから、経年的に大気ガス成分の真空断熱材101内部への侵入が促進されるという課題があった。
本発明は、上記従来の課題を解決するものであり、封止部に設けた熱溶着層の薄肉部及びその近傍において、ガスバリア層のクラック発生や封止部破断が極めて起きにくい、長期に渡って優れた密封性能を維持する真空袋体、および断熱性能を維持する真空断熱材を提供することを目的とする。
上記目的を達成するために、本発明の真空袋体は、充填物を挿入して真空密封する2枚の外被材の周縁近傍の外周部同士が加圧加熱溶着された真空袋体において、前記外被材の外周部同士が加圧加熱溶着された封止部の少なくとも一部を前記周縁に垂直な平面で切断した場合の断面を見た時、前記封止部に位置する前記熱溶着層が少なくとも2つの凹部を有し、前記凹部は少なくとも一部が円弧状を形成しており、前記凹部の最深部に前記熱溶着層の厚みが前記最深部の周辺部よりも薄い薄肉部が形成されている。
上記構成において、まず、外被材の周縁部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部の熱溶着層の厚みが局所的に薄い薄肉部を設けていることにより、熱溶着層の薄肉部において、外被材周縁の端面から侵入する気体および水分の透過面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた密封性能を発揮できる。
また、外被材の周縁部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部に位置する前記熱溶着層が少なくとも2つの凹部を有しており、凹部は少なくとも一部が円弧状を形成している。
そのため、熱溶着層より外層側に積層されたガスバリア層は、封止部の薄肉部およびその近傍において、熱溶着層の形状に沿って少なくとも一部が円弧状に曲がり、熱溶着層より外層側に積層されたガスバリア層のクラックの発生が極めて起きにくくなる。
さらに、熱溶着層の薄肉部においては、熱溶着層の厚みが周辺部よりも薄くなり、その厚み減少分だけ強度が低下するが、熱溶着部が有する凹部は少なくとも一部が円弧状を形成している場合、熱溶着層の厚みが円弧に沿って徐々に滑らかに増減することに伴い、封止部の強度も連続的に滑らかに増減することから、熱溶着層の薄肉部において局所的に応力が集中することが起きにくく、熱溶着層の薄肉部及びその近傍の外被材におけるクラック発生や封止部の破断が極めて起きにくくなる。
次に、本発明の真空袋体は、外被材の外周部同士が加圧加熱溶着された封止部の少なくとも一部を前記周縁に垂直な平面で切断した場合の断面を見た時、熱溶着層が少なくとも2つの凹部を有しており、前記凹部は少なくとも一部が円弧状を形成しており、前記凹部の最深部に前記熱溶着層の厚みが前記最深部の周辺部よりも薄い薄肉部が形成され、前記薄肉部の前記熱溶着層は上層との境界面のうねりの波高が、非封止部の2枚の外被材の熱溶着層の厚みの和に対して、1.5倍以上2倍以下である。
上記構成において、薄肉部の熱溶着層は上層との境界面のうねりの波高が、非封止部の2枚の外被材の熱溶着層の厚みの和に対して、1.5倍以上2倍以下となるように、少なくとも一部が円弧状を形成し、溝深さを浅くした加圧加熱治具を使用する。
これにより、治具が外被材に接触する面積を広くし、加圧加熱溶着時に治具から外被材に伝わる熱量が多くなり、熱溶着材料が溶融し流動性を高め、治具の形状に沿った凹部の形状となるため、凹部は少なくとも一部が円弧状を形成し、凹部の最深部に熱溶着層の厚みが最深部の周辺部よりも薄い薄肉部が形成される。
そのため、薄肉部が所定の厚みまで達し、かつガスバリア層にクラックが発生することが極めて起きにくくなる。
また、真空断熱材は前記充填物を芯材とし、前記袋体に前記芯材を挿入して、真空引きを行ったものである。
以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、ガスバリア層のクラック発生や封止部破断が極めて起きにくい、長期に渡って優れた密封性能を維持する真空袋体、および断熱性能を維持する真空断熱材を提供できる。
本発明によれば、外被材周縁の端面から侵入する気体および水分量が抑制され、長期にわたって優れた密封性能を発揮できる。
また、凹部形成時に外力を受けた場合に、熱溶着層より外層側に積層されたガスバリア層のクラックの発生が極めて起きにくくなる。
さらに、熱溶着層の薄肉部において局所的に応力が集中することが起きにくく、熱溶着層の薄肉部及びその近傍の外被材におけるクラック発生や封止部の破断が極めて起きにくくなる。また、充填物を芯材とし、袋体を真空引きした真空断熱材にも適用できる。
以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、クラック発生や封止部破断が極めて起きにくい、長期に渡って優れた密封性能を維持する真空袋体、および断熱性能を維持する真空断熱材を提供できる。
本発明の実施の形態1における真空袋体の断面図 本発明の実施の形態1における真空袋体の平面図 本発明の実施の形態1における真空袋体の薄肉部を含む封止部の一例を示す断面図 本発明の実施の形態1における真空袋体の加圧加熱冶具の一例を示す断面図 本発明の実施の形態1における真空袋体の薄肉部を含む封止部の変形例を示す断面図 本発明の実施の形態2における真空断熱材の断面図 従来の真空断熱材の断面図 従来の真空断熱材の加熱圧縮冶具で薄肉部を形成している状態を示す断面図
第1の発明は、充填物を挿入して真空密封する2枚の外被材の周縁近傍の外周部同士が加圧加熱溶着された真空袋体において、前記外被材の外周部同士が加圧加熱溶着された封止部の少なくとも一部を前記周縁に垂直な平面で切断した場合の断面を見た時、前記封止部に位置する前記熱溶着層が少なくとも2つの凹部を有しており、前記凹部は少なくとも一部が円弧状を形成しており、前記凹部の最深部に前記熱溶着層の厚みが前記最深部の周辺部よりも薄い薄肉部が形成され、前記薄肉部の前記熱溶着層は上層との境界面のうねりの波高が、非封止部の2枚の外被材の熱溶着層の厚みの和に対して、1.5倍以上2倍以下である真空袋体である。
上記構成において、まず、外被材の周縁部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部の熱溶着層の厚みが局所的に薄い薄肉部を設けていることにより、熱溶着層の薄肉部において、外被材周縁の端面から侵入する気体および水分の透過面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた密封性能を発揮できる。
また、外被材の周縁部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部に位置する熱溶着層が少なくとも一部が円弧状の凹部を有しているので、熱溶着層より外層側に積層されたガスバリア層は、封止部の薄肉部およびその近傍において、少なくとも一部が円弧状に曲がり、角部を形成することなく、熱溶着層より外層側に積層されたガスバリア層のクラックの発生が極めて起きにくくなる。
さらに、熱溶着層の薄肉部においては、熱溶着層の厚みが周辺部よりも薄くなり、その厚み減少分だけ強度が低下するが、熱溶着部が有する凹部は少なくとも一部が円弧状を形成している場合、熱溶着層の厚みが円弧に沿って徐々に滑らかに増減することに伴い、封止部の強度も連続的に滑らかに増減することから、熱溶着層の薄肉部において局所的に応力が集中することが起きにくく、熱溶着層の薄肉部及びその近傍の外被材におけるクラック発生や封止部の破断が極めて起きにくくなる。
加えて、上記構成において、薄肉部の熱溶着層は上層との境界面のうねりの波高が、非封止部の2枚の外被材の熱溶着層の厚みの和に対して、1.5倍以上2倍以下となるように、少なくとも一部が円弧状を形成し、溝深さを浅くした加圧加熱治具を使用する。
これにより、治具が外被材に接触する面積を広くし、加圧加熱溶着時に治具から外被材に伝わる熱量が多くなり、熱溶着材料が溶融し流動性を高め、治具の形状に沿った凹部の形状となるため、凹部は少なくとも一部が円弧状を形成し、凹部の最深部に熱溶着層の厚みが最深部の周辺部よりも薄い薄肉部が形成される。
そのため、薄肉部が所定の厚みまで達し、かつガスバリア層にクラックが発生することが極めて起きにくくなる。
以上により、封止部に設けた熱溶着層の薄肉部及びその近傍において、クラック発生や封止部破断が極めて起きにくい、長期に渡って優れた密封性能を維持する袋体を提供できる。
外被材を構成する熱溶着層としては、特に指定されるものではないが、低密度ポリエチレンフィルム、直鎖低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、中密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム、ポリエチレンテレフタレートフィルム等の熱可塑性樹脂あるいはそれらの混合フィルム等が使用できる。
外被材に使用するラミネート接着剤については、特に指定するものではないが、2液硬化型ウレタン接着剤等の従来公知のラミネート用接着剤もしくはエポキシ系樹脂接着剤が使用できる。
外被材の袋形状は、四方シール袋、ガゼット袋、三方シール袋、ピロー袋など、特に指定するものではない。
なお、凹部とは、外被材の外周部同士が熱溶着された封止部の少なくとも一部を外被材の周縁に垂直な平面で切断した場合の断面を見た時、封止部に位置する熱溶着層が少なくとも一つの凹んでいる部分であり、熱溶着層と熱溶着層の外側に隣接する他の層との境界線(境界面)が熱溶着層側へ少なくとも一つの凸となる曲線部を指す。
なお、凹部の最深部とは、凹部を形成している点群のうち、対向する境界面上の点との間に位置する熱溶着層の厚みが、最も薄い箇所に位置する点部を指す。
また、充填物は、菓子や飲料などの食品、あるいは液体、気体、固体状の薬品や生活雑貨などに限らず、発泡体、粉末、繊維体を真空密封した真空断熱材の芯材にも適用できる。
第2の発明は、第1の発明の真空袋体内に微細空隙を有する芯材を充填物として挿入して真空密封した真空断熱材である。
前記真空袋体を構成する前記外被材に加え、真空断熱材の構成材料について、芯材は、その種類について特に指定するものではないが、気層比率90%前後の多孔体であり、ウレタンフォーム、スチレンフォーム、フェノールフォームなどの連続気泡体や、グラスウールやロックウール、アルミナ繊維、シリカアルミナ繊維などの繊維体、パーライトや湿式シリカ、乾式シリカなどの粉体など、従来公知の芯材が使用できる。
吸着剤は、その種類について特に指定するものではないが、芯材や外被材の残留ガス成分や、真空断熱材内へ侵入する水分や気体を吸着するもので、酸化カルシウム、ゼオライト、シリカゲルなどのガス吸着剤や水分吸着剤等のゲッター物質で、真空断熱材の真空度を下げる作用や維持する作用があるものであれば使用できる。
以上により、長期に渡って優れた断熱性能を維持する真空断熱材を提供できる。
以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略するものとする。なお、この実施の形態によってこの発明が限定されるものではない。
(実施の形態1)
図1は、本発明の実施の形態1における真空袋体の断面図、図2は、同実施の形態の真空袋体の平面図、図3は、同実施の形態の真空袋体における薄肉部を含む封止部の一例を示す断面図を示す。
図1において、真空袋体1は、充填物2と、同一寸法に裁断された長方形の2枚の外被材3よりなり、2枚の外被材3の間に充填物2が密封され、充填物2を覆う2枚の外被材3の周縁近傍の外周部同士が熱溶着されている。
2枚の外被材3は、外層側から、表面保護層4と、ガスバリア層5と、熱溶着層6とが積層されてなる。また、外被材3の周囲辺(外周部)には、外被材の有する熱溶着層同士を溶融し貼り合わせた封止部7があり、封止部7の4辺のうちの少なくとも3辺に薄肉部8を有している。
次に、薄肉部8周辺の封止部7の形状について説明する。
図3において、熱溶着層6とガスバリア層5との境界面が有する凹部の波高の大きさには差が設けられており、波高の大きい凹部を有する境界面に設けられた凹部の最深部のみが薄肉部8に位置している。
次に、本実施の形態において、図1〜3に示す本実施の形態の真空袋体1の製造方法の一例を述べる。
まず、2枚の外被材3の熱溶着層6同士が対向するように配置し、外被材3の周囲辺の3辺を熱溶着して袋状とする。この熱溶着時に、金属製の加圧加熱冶具9(図4参照)とシリコンゴムヒーターとで2枚の外被材3を挟むように加熱圧縮し、図3に示す形状の封止部7を形成する。この後、真空袋体1内に充填物2を挿入し、袋内部を約80000Pa以下に減圧しながら、外被材3の袋の開口部を熱溶着させて密封することにより真空袋体1を得る。
ここでは、加圧加熱治具9で熱溶着されていない2枚の外被材3を加圧加熱することにより簿肉部8を含めた封止部7を同時に形成したが、2枚の外被材3周縁に通常の平板治具を用いて簿肉部8を有さない厚みが略均一な熱溶着層6からなる封止部7を形成した後、封止部7上を加圧加熱治具9で加圧加熱して簿肉部8を形成してもよい。
また、4辺目の袋開口部を封止する際は、袋内部を減圧しながら密封するために、真空包装機を用いて封止する必要がある。
通常の真空包装機は、平板の加圧加熱治具が備わっていることから、袋開口部のみは真空包装機を用いて、厚みが略均一な熱溶着層6からなる封止部7を形成した後に、加圧加熱治具9を用いて簿肉部8を形成してもよい。
本実施の形態の真空袋体1は、充填物2を挿入して真空密封する2枚の外被材3の周縁近傍の外周部同士が加圧加熱溶着された真空袋体1において、外被材3の外周部同士が加圧加熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部7に位置する熱溶着層6が少なくとも2つの凹部を有しており、凹部は少なくとも一部が円弧状を形成しており、凹部の最深部に熱溶着層6の厚みが最深部の周辺部よりも薄い薄肉部8が形成されている。
また、封止部7の熱溶着層6は両面に他の層(ガスバリア層5)との境界面を有し、凹部の一方の境界面のうねりの波高が、凹部の他方の境界面のうねりの波高よりも大きい。
また、凹部の一方の境界面の熱溶着層6側に凹となっている部分の最深部と、凹部の他方の境界面の熱溶着層6側に凹となっている部分の最深部とが対向していない。
また、図3に示す例では、封止部7に薄肉部8を少なくとも2個以上(6つ)有している。
以上のように構成された真空袋体1について、以下その動作、作用を説明する。
外被材3は、熱可塑性樹脂やガスバリア性を有する金属箔や樹脂フィルム等をラミネート加工したものであり、外部から真空袋体1内部への大気ガス侵入を抑制する役割を果たすものである。
表面保護層4は、外被材3が有する層のうち、ガスバリア層5よりも外層側に位置する、外力から外被材3、特にガスバリア層5の傷つきや破れを防ぐ役割を果たすものである。
表面保護層4としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム等従来公知の材料が使用でき、同一種類でも2種類以上でも、表面保護層4に複数枚重ねて使用してもよい。
ガスバリア層5は、高いバリア性を有する1種類もしくは2種以上のフィルムから構成される層であり、外被材3に優れたガスバリア性を付与するものである。
ガスバリア層5としては、アルミニウム箔、銅箔、ステンレス箔などの金属箔や、ポリエチレンテレフタレートフィルムやエチレン−ビニルアルコール共重合体フィルムへアルミニウムや銅等の金属原子もしくはアルミナやシリカ等の金属酸化物を蒸着したフィルムや、金属原子や金属酸化物を蒸着した面にコーティング処理を施したフィルム等が使用できる。
熱溶着層6は、外被材3同士を溶着し、袋体1内部の密封性を保持する役割に加えて、充填物による袋体1内部からの突刺し等からガスバリア層5を保護する役割を果たすものである。
熱溶着層6としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、メタロセン触媒系直鎖状低密度ポリエチレンフィルム、高密度ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートフィルム等従来公知の材料が使用でき、1種類でも2種類以上重ねて使用してもよい。
封止部7は、外被材3の熱溶着層6同士を溶着することにより構成され、真空袋体1内部と外部とを遮断する役割を果たしている。
薄肉部8は、外被材3周縁の端面から封止部7を通って真空袋体1内部へ侵入する大気ガスの透過速度を抑制し、真空袋体1の密封性を維持する役割を果たしている。
以上のように、本実施の形態においては、封止部7における熱溶着層6とガスバリア層5との境界面が有する少なくとも一部が円弧状の凹部の最深部位置に薄肉部8が設けられ、この2層の境界面が有する凹部の波高に差が設けられているため、ガスバリア層5および外被材3の劣化や破断が極めて起きにくくなるとともに、真空袋体1内部への経時的な大気ガス侵入が抑制される。
また、上記の製造方法にて真空袋体1を作製した場合、通常、図4に示すような突起部10によって構成される加圧加熱冶具9により熱溶着層6が加圧加熱されるため、加圧による外力が突起部10の接線と垂直な方向にも加わることにより、熱溶着層6の樹脂が薄肉部8の両端方向へ流動しやすくなることから、図10のような従来の封止冶具106のような平面部にて圧縮される場合と比べて、同一の薄肉部8の厚みを得る場合の製造時の温度条件および圧力条件が緩和され、ガスバリア層5および外被材3の劣化が抑制される。
さらに、加圧加熱治具9は薄肉部8の熱溶着層6は上層との境界面のうねりの波高が、非封止部の2枚の外被材3の熱溶着層6の厚みの和に対して、1.5倍以上2倍以下となるように、少なくとも一部が円弧状を形成し、溝深さを浅くしたものを使用する。
これにより、治具が外被材3に接触する面積を広くし、加圧加熱溶着時に治具から外被材3に伝わる熱量が多くなり、熱溶着材料が溶融し流動性を高め、治具の形状に沿った凹部の形状となるため、凹部は少なくとも一部が円弧状を形成し、凹部の最深部に熱溶着層6の厚みが最深部の周辺部よりも薄い薄肉部が形成される。
ここで、非封止部の2枚の外被材3の熱溶着層6の厚みの和に対して、上層との境界面のうねりの波高が1.5倍以下となると、製造時に薄肉部8の所定の厚みを得ることができない。なぜなら、加圧加熱溶着時に治具の溝深さが浅すぎて、溶融し流動した熱溶着材料が隣り合う凹部から溶融し流動した熱溶着材料と干渉し、流動を阻害してしまうからである。
薄肉部8の所定の厚みを得るために、製造時の温度条件を強化すると、外被材3の表面保護層4が溶融しやすくなり、圧力条件を強化すると、熱溶着層6の薄肉部8において局所的に応力が集中し、熱溶着層6の薄肉部8及びその近傍の外被材3におけるクラック発生や封止部の破断が極めて起きやすくなる。
また、非封止部の2枚の外被材3の熱溶着層6の厚みの和に対して、上層との境界面のうねりの波高が2倍以上となると、溶融し流動した熱溶着材料が隣り合う凹部から溶融し流動した熱溶着材料と干渉することはないが、加圧加熱溶着時に2枚の外被材3の間にある空気が逃げ切れず、熱溶着層6にエアガミ(空気溜まり)を発生させる。
言い換えれば、同一の成形条件によって、より熱溶着層6の薄肉部8の厚みを薄くすることが可能となり、外被材3周縁の端面からの気体および水分侵入量の抑制が容易となる。
本実施の形態の真空袋体1は、充填物2を挿入して真空密封する2枚の外被材3の周縁近傍の外周部同士が加圧加熱溶着された真空袋体1において、外被材3の外周部同士が加圧加熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部7に位置する熱溶着層6が少なくとも2つの凹部を有しており、凹部は少なくとも一部が円弧状を形成しており、凹部の最深部に熱溶着層6の厚みが最深部の周辺部よりも薄い薄肉部8が形成されている。
上記構成において、まず、外被材3の周縁部同士が熱溶着された封止部7の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部7の熱溶着層6の厚みが局所的に薄い薄肉部8を設けていることにより、熱溶着層6の薄肉部8において、外被材3周縁の端面から侵入する気体および水分の透過断面積が縮小され、気体および水分の透過抵抗が増大し、気体および水分の透過速度が低減されることから、経時的に透過する気体および水分量が抑制され、長期にわたって優れた断熱性能を発揮できる。
また、外被材3の周縁部同士が熱溶着された封止部7の少なくとも一部を周縁に垂直な平面で切断した場合の断面を見た時、封止部7に位置する熱溶着層6が少なくとも一部が円弧状の凹部を有しているので、熱溶着層6より外層側に積層されたガスバリア層5は、封止部7の薄肉部8およびその近傍において、少なくとも一部が円弧状に曲がり、角部を形成することなく、熱溶着層6より外層側に積層されたガスバリア層5のクラックの発生が極めて起きにくくなる。
さらに、熱溶着層6の薄肉部8においては、熱溶着層6の厚みが周辺部よりも薄くなり、その厚み減少分だけ強度が低下するが、熱溶着層6の厚みが凹部に沿って徐々に滑らかに増減することに伴い、封止部7の強度(曲げ強度など)も位置が変わるにつれて連続的に滑らかに増減することから、熱溶着層6の薄肉部8において局所的に応力が集中することが起きにくく、熱溶着層6の薄肉部8及びその近傍の外被材3におけるクラック発生や封止部7の破断が極めて起きにくくなる。
以上により、封止部7に設けた熱溶着層6の薄肉部8及びその近傍において、クラック発生や封止部7破断が極めて起きにくい、長期に渡って優れた密封性能を維持する真空袋体1を提供できる。
また、本実施の形態の真空袋体1は、封止部7の熱溶着層6は両面にガスバリア層5との境界面を有し、凹部の一方の境界面のうねりの波高が、凹部の他方の境界面のうねりの波高よりも大きい。
薄肉部8及びその近傍では、熱溶着層6よりも外層側にある外被材3(の各層5,4)が、少なくとも一つの凹部である熱溶着層6の形状に沿って歪曲することによる応力を受け、強度が低下する。
よって、凹部の一方(図1では上側)の境界面のうねりの波高を、凹部の他方(図1では下側)の境界面のうねりの波高よりも大きくすることにより、相対的に波高の小さいうねりを有する境界面側(図1では下側)の外被材3の強度低下は、もう一方の相対的に波高の大きいうねりを有する境界面側(図1では上側)の外被材3と比べて僅かとなり、外被材3の封止部7では、強度低下が小さい(図1では下側の)外被材3がもう一方の(図1では上側の)外被材3を支持する形で剛性が保たれ、外力を受けた場合におけるクラック発生および封止部7の破断が極めて起きにくくなる。
薄肉部9があると、熱溶着層6の厚みが薄く強度が低下するだけでなく、凹部の最深部が位置していることにより、歪曲による外被材3の強度低下が起こる。
本実施の形態では、凹部の一方の(図1では上側の)境界面の熱溶着層6側に凹となっている部分の最深部と、凹部の他方の(図1では下側の)境界面の熱溶着層6側に凹となっている部分の最深部とが対向していないことにより、凹部の最深部が位置する封止部7の強度低下が抑制され、封止部7が外力を受けた際の傷つきや破断が極めて起きにくくなる。同時に、凹部におけるガスバリア層5のクラック発生の抑制効果もさらに高くなる。
また、図3に示す例のように、封止部8に薄肉部9を少なくとも2個以上有していることが好ましい。さらには長期にわたって優れた密封性能を発揮するためには、熱溶着幅20mmに対しては、薄肉部9を2個以上7個以下有していることが好ましい。熱溶着幅10mmに対しては、薄肉部9を2個以上4個以下有していることが好ましい。また、熱溶着幅15mmに対しては、薄肉部9を2個以上6個以下有していることが好ましい。
薄肉部8においては、封止部7の他箇所に比べて熱溶着層6の厚みが薄く、シール強度が低下することにより、例えば、製造工程において充填物2を挟み込んだ状態で外被材3が熱溶着された場合、薄肉部8において熱溶着不良が発生することが懸念される。
熱溶着不良が発生した箇所では樹脂が存在しないため、ガス侵入抑制効果が低下する。この対策として、少なくとも2個以上の薄肉部8を設けることにより、熱溶着不良に起因する真空袋体1内部への気体および水分侵入促進の影響が緩和される。
特に、ガラス繊維などのような細いものを用いた場合は、挟雑物として熱溶着の際に挟み込まれた物質が加熱変形し、薄肉部8にスルーホールを形成することが多々あることから、本発明の(本実施の形態の)効果がより顕著となる。
また、薄肉部8においては、外被材3の強度が周囲部よりも低くなり、外力を受けた際の荷重集中が懸念されるが、薄肉部8が複数個存在することにより、外力の荷重が分散され、薄肉部8におけるクラックの発生や封止部7の破断が極めて起きにくくなる。
また、薄肉部8を複数個有する場合は、薄肉部8が1個のみの場合と比べて、薄肉部8における熱溶着層6の厚みを増加させても同一の効果が得られるため、薄肉部8における外被材3強度やシール強度低下が緩和され、薄肉部8におけるクラック発生や封止部7の破断のリスクが低減される。
なお、本実施の形態では、薄肉部8を有する封止部7を3辺としたが、封止部7全周の4辺に設けても良い。
なお、各薄肉部8における熱溶着層6の厚みは、同一でなくても良い。
なお、本実施の形態では、図2に示すように、薄肉部8が直交しているが、薄肉部8は交差していなくてもよい。
なお、各薄肉部8に位置する境界面の凹部の幅は同一ある必要はなく、ガスバリア層5として使用している金属箔やフィルムが、劣化しない程度の幅を有しておればよい。
なお、薄肉部8の間隔は特に指定するものではなく、また、図5のように、境界面が有する凹部同士の間隔が等しくなくてもよい。
なお、本実施の形態では、薄肉部8の位置は特に指定するのもではないが、境界面の有する凹部位置が、外被材3の封止部7とそうでない部分との境目に存在している場合は、薄肉部8の片側の樹脂が十分に加熱されておらず、樹脂の流動性が悪いため薄肉化が困難となり、好ましくない。
以下、本発明における真空袋体1の外被材3の材料構成とその効果について、実施例を用いて説明する。
(実施例1)
実施の形態1において、熱溶着層6として厚み50μmの直鎖状低密度ポリエチレンフィルム(LLDPE)を、ガスバリア層5として厚み6μmのアルミニウム箔6(AL)を、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と厚み25μmのナイロンフィルム(Ny)を積層してなる外被材3と、米からなる充填物2から構成された真空袋体1を作製した。
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層6同士を溶融し貼り合わせた封止部7があり、封止部7の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部8が形成されており、各薄肉部8に位置する一方の(図3では上側のガスバリア層5と熱溶着層6との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図3では上側のガスバリア層5と熱溶着層6との)境界面のうねりの各波高は0.15mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。つまり、薄肉部8の熱溶着層6は上層との境界面のうねりの波高が、非封止部の2枚の外被材3の熱溶着層6の厚みの和0.1mmに対して、1.5倍であった。
また、もう一方の(図3では下側のガスバリア層5と熱溶着層6との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部8の厚みは10μmとなるようにした。このとき、封止部7に薄肉部9を7個有している。
ここで、薄肉部8の厚みは、外被材3をミクロトームにより外被材3の外周部同士が熱溶着された封止部7の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。
以上において、封止部7において、ガスバリア層5にクラックの発生は確認されなかった。また、熱溶着層6にエアガミの発生は確認されなかった。
実施例1では、薄肉部8の熱溶着層6は上層との境界面のうねりの波高が、非封止部の2枚の外被材3の熱溶着層6の厚みの和に対して1.5倍としたため、薄肉部8の厚みは10μmと所定の厚みとなることが確認され、熱溶着層6の薄肉部8及びその近傍の外被材3におけるクラック発生が起きない本発明(の実施の形態1)による効果がより顕著に現れた。
(実施例2)
実施の形態1において、熱溶着層6として厚み50μmの直鎖状低密度ポリエチレンフィルム(LLDPE)を、ガスバリア層5として厚み6μmのアルミニウム箔6(AL)を、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と厚み25μmのナイロンフィルム(Ny)を積層してなる外被材3と、米からなる充填物2から構成された真空袋体1を作製した。
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層6同士を溶融し貼り合わせた封止部7があり、封止部7の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部8が形成されており、各薄肉部8に位置する一方の(図3では上側のガスバリア層5と熱溶着層6との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図3では上側のガスバリア層5と熱溶着層6との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。つまり、薄肉部8の熱溶着層6は上層との境界面のうねりの波高が、非封止部の2枚の外被材3の熱溶着層6の厚みの和0.1mmに対して、2倍であった。
また、もう一方の(図3では下側のガスバリア層5と熱溶着層6との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部8の厚みは10μmとなるようにした。このとき、封止部7に薄肉部9を7個有している。
ここで、薄肉部8の厚みは、外被材3をミクロトームにより外被材3の外周部同士が熱溶着された封止部7の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。
以上において、封止部7において、ガスバリア層5にクラックの発生は確認されなかった。また、熱溶着層6にエアガミの発生は確認されなかった。
(比較例1)
熱溶着層6として厚み50μmの直鎖状低密度ポリエチレンフィルム(LLDPE)を、ガスバリア層5として厚み6μmのアルミニウム箔6(AL)を、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と厚み25μmのナイロンフィルム(Ny)を積層してなる外被材3と、米からなる充填物2から構成された真空袋体1を作製した。
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層6同士を溶融し貼り合わせた封止部7があり、封止部7の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部8が形成されており、各薄肉部8に位置する一方の(図3では上側のガスバリア層5と熱溶着層6との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図3では上側のガスバリア層5と熱溶着層6との)境界面のうねりの各波高は0.13mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。つまり、薄肉部8の熱溶着層6は上層との境界面のうねりの波高が、非封止部の2枚の外被材3の熱溶着層6の厚みの和0.1mmに対して、1.3倍であった。
また、もう一方の(図3では下側のガスバリア層5と熱溶着層6との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部8の厚みは10μmとなるようにした。このとき、封止部7に薄肉部9を7個有している。
ここで、薄肉部8の厚みは、外被材3をミクロトームにより外被材3の外周部同士が熱溶着された封止部7の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。
以上において、封止部7において、ガスバリア層5にクラックの発生は確認された。また、熱溶着層6にエアガミの発生は確認されなかった。
(比較例2)
熱溶着層6として厚み50μmの直鎖状低密度ポリエチレンフィルム(LLDPE)を、ガスバリア層5として厚み6μmのアルミニウム箔6(AL)を、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と厚み25μmのナイロンフィルム(Ny)を積層してなる外被材3と、米からなる充填物2から構成された真空袋体1を作製した。
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層6同士を溶融し貼り合わせた封止部7があり、封止部7の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部8が形成されており、各薄肉部8に位置する一方の(図3では上側のガスバリア層5と熱溶着層6との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図3では上側のガスバリア層5と熱溶着層6との)境界面のうねりの各波高は0.22mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。つまり、薄肉部8の熱溶着層6は上層との境界面のうねりの波高が、非封止部の2枚の外被材3の熱溶着層6の厚みの和0.1mmに対して、2.2倍であった。
また、もう一方の(図3では下側のガスバリア層5と熱溶着層6との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部8の厚みは10μmとなるようにした。このとき、封止部7に薄肉部9を7個有している。
ここで、薄肉部8の厚みは、外被材3をミクロトームにより外被材3の外周部同士が熱溶着された封止部7の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。
以上において、封止部7において、ガスバリア層5にクラックの発生は確認されなかった。また、熱溶着層6にエアガミの発生は確認された。
以上、本発明における実施例および比較例を(表1)に示す。
Figure 2011094639
ただし、(表1)における外被材3の劣化に関しては、下記の基準で判定した。
○:劣化なし(封止部8において、アルミニウム箔にクラックが確認されず。)
×:劣化あり(封止部8において、アルミニウム箔にクラックが確認された。)
また、(表1)における外被材3のエアガミ(空気溜まり)に関しては、下記の基準で判定した。
○:エアガミなし(熱溶着層6において、エアガミが確認されず。)
×:エアガミあり(熱溶着層6において、エアガミが確認された。)
(表1)の結果より、実施の形態1に示す薄肉部8を設けた真空袋体1は、外被材3の劣化も外被材3のエアガミも確認されなかった。
(実施の形態2)
図6は、本発明の実施の形態2における真空断熱材の断面図を示す。
図6において、真空断熱材11は、芯材12と芯材12内に配置された吸着剤13と、同一寸法に裁断された長方形の2枚の外被材3よりなり、2枚の外被材3の間に芯材12と吸着剤13が減圧密封され、芯材12を覆う2枚の外被材3の周縁近傍の外周部同士が熱溶着されている。
2枚の外被材3は、実施の形態1と同様の形態で、外層側から、表面保護層4、ガスバリア層5と、熱溶着層6とが積層されてなる。また、外被材3の周囲辺(外周部)には、外被材の有する熱溶着層同士を溶融し貼り合わせた封止部7があり、封止部7の4辺のうちの少なくとも3辺に薄肉部8を有している。
ここで、薄肉部8周辺の封止部7の形状についても、実施の形態1と同様の形態である。
図3において、熱溶着層6とガスバリア層5との境界面が有する凹部の波高の大きさには差が設けられており、波高の大きい凹部を有する境界面に設けられた凹部の最深部のみが薄肉部8に位置している。
次に、本実施の形態において、図6に示す本実施の形態の真空断熱材11の製造方法の一例を述べる。
まず、2枚の外被材3の熱溶着層6同士が対向するように配置し、外被材3の周囲辺の3辺を熱溶着して袋状とする。この熱溶着時に、金属製の加熱圧縮冶具9(図4参照)とシリコンゴムヒーターとで2枚の外被材3を挟むように加熱圧縮し、図3に示す形状の封止部7を形成する。この後、袋内に芯材12と吸着剤13とを挿入し、袋内部を約200Pa以下に減圧しながら、外被材3の袋の開口部を熱溶着させて密封することにより真空断熱材11を得る。
また、図3に示す例では、封止部7に薄肉部8を少なくとも2個以上(6つ)有している。
以上のように構成された真空断熱材11について、以下その動作、作用を説明する。
まず、芯材12は、真空断熱材11の骨材として微細空間を形成する役割を果たし、真空排気後の真空断熱材11の断熱部を形成するものであり、ガラス繊維からなる。
吸着剤13は、真空包装後に芯材12の微細空隙から真空断熱材11中へ放出された残留ガス成分や、真空断熱材11内へ侵入する水分や気体を吸着除去する役割を果たすものである。
外被材3は、実施の形態1と同様の形態で、外部から真空断熱材1内部への大気ガス侵入を抑制する役割を果たすものである。そのため、本実施の形態においては、真空断熱材11内部への経時的な大気ガス侵入が抑制され、長期にわたって優れた断熱性能を発揮できる。
さらに、熱溶着層6の薄肉部8においては、熱溶着層6の厚みが凹部に沿って徐々に滑らかに増減することに伴い、熱溶着層6の薄肉部8において局所的に応力が集中することが起きにくく、熱溶着層6の薄肉部8及びその近傍の外被材3におけるクラック発生や封止部7の破断が極めて起きにくくなる。
以上により、封止部7に設けた熱溶着層6の薄肉部8及びその近傍において、クラック発生や封止部7破断が極めて起きにくい、長期に渡って優れた断熱性能を維持する真空断熱材11を提供できる。
以下、本発明における真空断熱材11の外被材3の材料構成とその効果について、実施例を用いて説明する。
(実施例1)
実施の形態2において、熱溶着層6として厚み50μmの直鎖状低密度ポリエチレンフィルム(LLDPE)を、ガスバリア層5として厚み6μmのアルミニウム箔6(AL)を、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と厚み25μmのナイロンフィルム(Ny)を積層してなる外被材3と、ガラス繊維からなる芯材12と、酸化カルシウムからなる吸着剤13から構成された真空断熱材11を作製した。
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層6同士を溶融し貼り合わせた封止部7があり、封止部7の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部8が形成されており、各薄肉部8に位置する一方の(図3では上側のガスバリア層5と熱溶着層6との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図3では上側のガスバリア層5と熱溶着層6との)境界面のうねりの各波高は0.15mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。つまり、薄肉部8の熱溶着層6は上層との境界面のうねりの波高が、非封止部の2枚の外被材3の熱溶着層6の厚みの和0.1mmに対して、1.5倍であった。
また、もう一方の(図3では下側のガスバリア層5と熱溶着層6との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部8の厚みは10μmとなるようにした。このとき、封止部7に薄肉部9を7個有している。
さらに、真空断熱材11の外被材3周縁の端面から封止部7を通って侵入する大気ガス量は、7.9×10-15mol/m2/s/Paであった。
ここで、薄肉部9の厚みは、外被材をミクロトームにより外被材の外周部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。
以上において、封止部7において、ガスバリア層5にクラックの発生は確認されなかった。また、熱溶着層6にエアガミの発生は確認されなかった。
実施例1では、薄肉部8の熱溶着層6は上層との境界面のうねりの波高が、非封止部の2枚の外被材3の熱溶着層6の厚みの和に対して1.5倍としたため、薄肉部8の厚みは10μmと所定の厚みとなることが確認され、熱溶着層6の薄肉部8及びその近傍の外被材3におけるクラック発生が起きない本発明(の実施の形態1)による効果がより顕著に現れた。
(実施例2)
実施の形態2において、熱溶着層6として厚み50μmの直鎖状低密度ポリエチレンフィルム(LLDPE)を、ガスバリア層5として厚み6μmのアルミニウム箔6(AL)を、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と厚み25μmのナイロンフィルム(Ny)を積層してなる外被材3と、ガラス繊維からなる芯材12と、酸化カルシウムからなる吸着剤13から構成された真空断熱材11を作製した。
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層6同士を溶融し貼り合わせた封止部7があり、封止部7の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部8が形成されており、各薄肉部8に位置する一方の(図3では上側のガスバリア層5と熱溶着層6との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図3では上側のガスバリア層5と熱溶着層6との)境界面のうねりの各波高は0.2mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。つまり、薄肉部8の熱溶着層6は上層との境界面のうねりの波高が、非封止部の2枚の外被材3の熱溶着層6の厚みの和0.1mmに対して、2倍であった。
また、もう一方の(図3では下側のガスバリア層5と熱溶着層6との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部8の厚みは10μmとなるようにした。このとき、封止部7に薄肉部9を7個有している。
さらに、真空断熱材11の外被材3周縁の端面から封止部7を通って侵入する大気ガス量は、8.1×10-15mol/m2/s/Paであった。
ここで、薄肉部9の厚みは、外被材をミクロトームにより外被材の外周部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。
以上において、封止部7において、ガスバリア層5にクラックの発生は確認されなかった。また、熱溶着層6にエアガミの発生は確認されなかった。
(比較例1)
熱溶着層6として厚み50μmの直鎖状低密度ポリエチレンフィルム(LLDPE)を、ガスバリア層5として厚み6μmのアルミニウム箔6(AL)を、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と厚み25μmのナイロンフィルム(Ny)を積層してなる外被材3と、ガラス繊維からなる芯材12と、酸化カルシウムからなる吸着剤13から構成された真空断熱材11を作製した。
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層6同士を溶融し貼り合わせた封止部7があり、封止部7の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部8が形成されており、各薄肉部8に位置する一方の(図3では上側のガスバリア層5と熱溶着層6との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図3では上側のガスバリア層5と熱溶着層6との)境界面のうねりの各波高は0.13mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。つまり、薄肉部8の熱溶着層6は上層との境界面のうねりの波高が、非封止部の2枚の外被材3の熱溶着層6の厚みの和0.1mmに対して、1.3倍であった。
また、もう一方の(図3では下側のガスバリア層5と熱溶着層6との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部8の厚みは10μmとなるようにした。このとき、封止部7に薄肉部9を7個有している。
さらに、真空断熱材11の外被材3周縁の端面から封止部7を通って侵入する大気ガス量は、9.9×10-15mol/m2/s/Paであった。
ここで、薄肉部9の厚みは、外被材をミクロトームにより外被材の外周部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。
以上において、封止部7において、ガスバリア層5にクラックの発生は確認された。また、熱溶着層6にエアガミの発生は確認されなかった。
(比較例2)
熱溶着層6として厚み50μmの直鎖状低密度ポリエチレンフィルム(LLDPE)を、ガスバリア層5として厚み6μmのアルミニウム箔6(AL)を、また表面保護層4として厚み15μmのナイロンフィルム(Ny)と厚み25μmのナイロンフィルム(Ny)を積層してなる外被材3と、ガラス繊維からなる芯材12と、酸化カルシウムからなる吸着剤13から構成された真空断熱材11を作製した。
外被材3の周囲辺(外周部)には、外被材3の有する熱溶着層6同士を溶融し貼り合わせた封止部7があり、封止部7の4辺のうちの3辺に周縁に垂直な方向に4つ並んだ周縁に平行な溝状の薄肉部8が形成されており、各薄肉部8に位置する一方の(図3では上側のガスバリア層5と熱溶着層6との)境界面の凹部の最深部における曲率半径は1.5mmであり、(図3では上側のガスバリア層5と熱溶着層6との)境界面のうねりの各波高は0.22mm、かつ、隣り合う凹部の最深部との間隔が1.5mmであった。つまり、薄肉部8の熱溶着層6は上層との境界面のうねりの波高が、非封止部の2枚の外被材3の熱溶着層6の厚みの和0.1mmに対して、2.2倍であった。
また、もう一方の(図3では下側のガスバリア層5と熱溶着層6との)境界面が有する凹部の最大波高は0.05mmであった(図3参照)。この際、シール幅(外被材3同士を熱溶着する幅)を20mmとし、薄肉部8の厚みは10μmとなるようにした。このとき、封止部7に薄肉部9を7個有している。
さらに、真空断熱材11の外被材3周縁の端面から封止部7を通って侵入する大気ガス量は、9.9×10-15mol/m2/s/Paであった。
ここで、薄肉部9の厚みは、外被材をミクロトームにより外被材の外周部同士が熱溶着された封止部の少なくとも一部を周縁に垂直な平面で切断し、200倍の倍率で顕微鏡により測定した。
以上において、封止部7において、ガスバリア層5にクラックの発生は確認されなかった。また、熱溶着層6にエアガミの発生は確認された。
以上、本発明における実施例および比較例を(表2)に示す。
Figure 2011094639
ただし、(表2)における外被材3の劣化に関しては、下記の基準で判定した。
○:劣化なし(封止部8において、アルミニウム箔にクラックが確認されず。)
×:劣化あり(封止部8において、アルミニウム箔にクラックが確認された。)
また、(表1)における外被材3のエアガミ(空気溜まり)に関しては、下記の基準で判定した。
○:エアガミなし(熱溶着層6において、エアガミが確認されず。)
×:エアガミあり(熱溶着層6において、エアガミが確認された。)
(表2)の結果より、実施の形態2に示す薄肉部8を設けた真空断熱材12は、外被材3の劣化も外被材3のエアガミも確認されなかった。
本発明にかかる袋体は、長期にわたる使用にも耐えうる密封性能を有しているものであり、菓子、飲料、レトルト食品、液体や固体状の薬品、あるいは洗剤、入浴剤、シャンプーなどの生活雑貨の密封袋などにも適用できる。
また、本発明にかかる真空断熱材は、長期にわたる使用にも耐えうる断熱性能を有しているものであり、冷蔵庫用断熱材や自動販売機、建造物用断熱材、自動車用断熱材、保冷ボックスなどにも適用できる。
1 真空袋体
2 充填物
3 外被材
4 表面保護層
5 ガスバリア層
6 熱溶着層
7 封止部
8 薄肉部
11 真空断熱材
12 芯材

Claims (2)

  1. 充填物を挿入して真空密封する2枚の外被材の周縁近傍の外周部同士が加圧加熱溶着された真空袋体において、前記外被材の外周部同士が加圧加熱溶着された封止部の少なくとも一部を前記周縁に垂直な平面で切断した場合の断面を見た時、前記封止部に位置する前記熱溶着層が少なくとも2つの凹部を有し、前記凹部は少なくとも一部が円弧状を形成しており、前記凹部の最深部に前記熱溶着層の厚みが前記最深部の周辺部よりも薄い薄肉部が形成され、前記薄肉部の前記熱溶着層は上層との境界面のうねりの波高が、非封止部の2枚の外被材の熱溶着層の厚みの和に対して、1.5倍以上2倍以下であることを特徴とする真空袋体。
  2. 請求項1に記載の真空袋体内に微細空隙を有する芯材を充填物として挿入して真空密封したことを特徴とした真空断熱材。
JP2009246171A 2009-10-27 2009-10-27 真空袋体および真空断熱材 Pending JP2011094639A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246171A JP2011094639A (ja) 2009-10-27 2009-10-27 真空袋体および真空断熱材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246171A JP2011094639A (ja) 2009-10-27 2009-10-27 真空袋体および真空断熱材

Publications (1)

Publication Number Publication Date
JP2011094639A true JP2011094639A (ja) 2011-05-12

Family

ID=44111787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246171A Pending JP2011094639A (ja) 2009-10-27 2009-10-27 真空袋体および真空断熱材

Country Status (1)

Country Link
JP (1) JP2011094639A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097630A1 (ja) * 2012-12-20 2014-06-26 パナソニック株式会社 真空断熱材、それを備える断熱箱体、及び真空断熱材の製造方法
CN114730959A (zh) * 2020-02-20 2022-07-08 宝马股份公司 空气挤出器、牵引电池、制造方法以及机动车
CN114829828A (zh) * 2019-12-20 2022-07-29 三菱电机株式会社 真空隔热件以及隔热箱

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097630A1 (ja) * 2012-12-20 2014-06-26 パナソニック株式会社 真空断熱材、それを備える断熱箱体、及び真空断熱材の製造方法
CN104870881A (zh) * 2012-12-20 2015-08-26 松下知识产权经营株式会社 真空隔热件、具备其的隔热箱体以及真空隔热件的制造方法
JPWO2014097630A1 (ja) * 2012-12-20 2017-01-12 パナソニックIpマネジメント株式会社 真空断熱材、それを備える断熱箱体、及び真空断熱材の製造方法
CN114829828A (zh) * 2019-12-20 2022-07-29 三菱电机株式会社 真空隔热件以及隔热箱
CN114829828B (zh) * 2019-12-20 2023-10-03 三菱电机株式会社 真空隔热件以及隔热箱
CN114730959A (zh) * 2020-02-20 2022-07-08 宝马股份公司 空气挤出器、牵引电池、制造方法以及机动车
CN114730959B (zh) * 2020-02-20 2024-04-26 宝马股份公司 空气挤出器、牵引电池、制造方法以及机动车

Similar Documents

Publication Publication Date Title
JP5333038B2 (ja) 真空断熱材とその製造方法
JP4893728B2 (ja) 真空断熱材
JP2010255805A (ja) 真空断熱材
JP2013508640A (ja) 真空断熱材
CN105579760A (zh) 真空隔热材料及其制备方法
JP2011089740A (ja) 袋体、および真空断熱材
JP2011094639A (ja) 真空袋体および真空断熱材
JP2011094638A (ja) 真空袋体および真空断熱材
JP2010260619A (ja) 袋体およびその製造方法
JP2012026512A (ja) 袋体および真空断熱材
JP5381306B2 (ja) 袋体、および真空断熱材
JP2011208763A (ja) 真空断熱材
JP2010071303A (ja) 真空断熱材
JP2011094637A (ja) 真空断熱材
JP2010139006A (ja) 真空断熱材
JP2007138976A (ja) 真空断熱材及びその製造方法
JP2018502259A (ja) 改良されたシーリングジョイントを有する真空絶縁パネル
JP2010173700A (ja) 袋体およびその製造方法
JP2004099060A (ja) 真空断熱材用包装袋の製造方法及びその包装袋を用いた真空断熱材
JPWO2017029727A1 (ja) 真空断熱材及び断熱箱
JP2010174997A (ja) 真空断熱材
JP2012026511A (ja) 袋体および真空断熱材
JP4378953B2 (ja) 真空断熱材
JP2010139005A (ja) 真空断熱材
JP2011208762A (ja) 真空断熱材