JP2011090727A - 回折格子およびそれを用いた光ピックアップ並びに光学的情報再生装置 - Google Patents

回折格子およびそれを用いた光ピックアップ並びに光学的情報再生装置 Download PDF

Info

Publication number
JP2011090727A
JP2011090727A JP2009241969A JP2009241969A JP2011090727A JP 2011090727 A JP2011090727 A JP 2011090727A JP 2009241969 A JP2009241969 A JP 2009241969A JP 2009241969 A JP2009241969 A JP 2009241969A JP 2011090727 A JP2011090727 A JP 2011090727A
Authority
JP
Japan
Prior art keywords
region
diffraction grating
optical
optical pickup
periodic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009241969A
Other languages
English (en)
Inventor
Kunikazu Onishi
邦一 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Media Electronics Co Ltd
Original Assignee
Hitachi Media Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Media Electronics Co Ltd filed Critical Hitachi Media Electronics Co Ltd
Priority to JP2009241969A priority Critical patent/JP2011090727A/ja
Publication of JP2011090727A publication Critical patent/JP2011090727A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

【課題】トラックピッチの変化に対するDPP信号振幅に関して従来と同等以上のダイナミックレンジを確保しつつ、インライン型DPP方式を用いたスーパーマルチ対応の光ピックアップとして実用上十分良好なトラッキング制御性能を備えた光ピックアップあるいは光学的情報再生装置を提供する。
【解決手段】レーザ光源から出射した光束を3本の光束に分割する回折格子を、例えば図に示すように4領域に分割し、各領域内で周期的に配置される格子溝をその配置の位相関係が各領域間で所定の位相関係になるように配置する。
【選択図】図2

Description

本発明は、所定の形態を備えた回折格子と、該回折格子を用いかつ光学的情報記録媒体(以下説明を簡略化するため、この光学的情報記録媒体を光ディスクと記す。)の記録面上に照射された光スポットにより、前記光ディスクに情報信号を記録、または既に記録された情報の再生をおこなう機能を備えた光ピックアップと、その光ピックアップを搭載した光学的情報記録または再生装置に係る。
背景技術として、特許文献1(特開2008−192199号公報)がある。特許文献1は、「インライン型DPP方式の利点を保持したまま、案内溝のピッチが異なる複数の光情報記録媒体に対して安定したトラッキング誤差検出を行う光ピックアップ装置を実現できるようにすること」を目的とし、この目的を達成するため、「本発明は光ピックアップ装置を、互いに位相が異なる3つの領域に分割され且つ中央の領域が互いに位相が異なる複数のサブブロックに分割された回折格子を備える構成とする」と記載されている。
特開2008−192199号公報
同一の光ピックアップによって、CDとDVDなどのような光ディスク記録面上での案内溝間隔すなわちトラックピッチが大幅に異なる複数種類の光ディスクのトラッキング制御信号を良好に検出できる機能を備えた光ピックアップを一般にスーパーマルチ対応光ピックアップと称するが、このスーパーマルチ対応光ピックアップ等に用いられるトラッキング制御信号検出方式としては、例えば上記特許文献1に開示されたような技術がある。これは下記に示すような特殊な周期構造を備えた回折格子40を光ピックアップ内に具備し、該回折格子格子40によってレーザ光源を発したレーザ光束を少なくとも3本の光束に分岐させる方式である。
ここで用いられる回折格子40は、図3に示すようにディスク半径方向(図の水平方向)に対して並列に配置された帯状の4つの領域41,42,43,44に分割され、個々の領域ではそれぞれ所定の周期構造を備えている。そして格子の左端に配置された第1の領域41内の周期構造に対して、反対側の右端に配置された第4の領域44内の周期構造はその位相が互いに略180度ずれ、また前記第1および第4の領域間に配置された第2の領域42と第3の領域43との周期構造の位相も互いに略180度ずれている。さらに前記第1の領域41とそれに隣接する前記第2の領域42との周期構造の位相は略90度ずれている。
このような周期構造を持った回折格子を前記したように光ピックアップの光分岐素子として用いることにより、従来の光ピックアップとは異なり3個の集光スポットを同一の案内溝上に照射した状態で差動プッシュプル方式(以下、簡単のためDPP方式と記す。)によりトラッキング制御信号(DPP信号)を検出できる。そしてその結果、トラックピッチの変化に対するDPP信号振幅に関して広いダイナミックレンジを確保することができ、ディスクのトラックピッチの違いにほとんど影響を受けることなく常に良好なトラッキング制御を行なうことができる。
なお上記のように、3個の集光スポットを同一の案内溝上に照射した状態でのDPP方式を特にインライン型DPP方式と呼ぶ。
前記したように、前記特許文献1に記載の技術はトラックピッチの変化に対するトラッキング制御信号(DPP信号)振幅に関して広いダイナミックレンジを確保することができるが、その一方で、光ディスク記録面上の記録済み領域と未記録領域の境界部分をよぎる際、DPP信号に大きなオフセットが生じ、このオフセットによってトラッキング制御が極めて不安定になってしまうという課題がある。
本発明の目的は、以上のような状況に鑑み、トラックピッチの変化に対するDPP信号振幅に関して上記公知例と同等以上のダイナミックレンジを確保しつつ、光ディスク記録面上の記録済み領域と未記録領域の境界部通過時に生じるDPP信号のオフセットを良好に低減することで、インライン型DPP方式を用いたスーパーマルチ対応の光ピックアップとして実用上十分良好なトラッキング制御性能を備えた光ピックアップあるいは光学的情報再生装置を提供することにある。
上記目的は、上記特許請求の範囲に開示されている手段を用いることで達成できる。
本発明によれば、トラックピッチ変化に対するDPP信号振幅のダイナミックレンジを上記公知例と同等以上に確保し、かつ光ディスク記録面上の記録済み領域と未記録領域の境界部通過時に生じるトラッキング信号のオフセットを良好に低減することで、スーパーマルチ対応として実用上十分良好なトラッキング制御性能を備えた光ピックアップあるいは光学的情報再生装置を実現することができる。
本発明の第1の実施例である光ピックアップの構成を示した概略正面図。 本発明に従う回折格子に関する第1の実施例を示した概略平面図。 従来の回折格子を示した概略平面図。 第1の実施例におけるディスク上光スポット配置と光検出面上の光ビームパターンおよび信号検出のための演算回路の概略構成を示した図。 本発明に従う光ピックアップで得られる第1のDPP信号特性を示した線図。 本発明に従う光ピックアップで得られる第2のDPP信号特性を示した線図。 本発明に従う光ピックアップで得られる第3のDPP信号特性を示した線図。 本発明に従う光ピックアップで得られる第4のDPP信号特性を示した線図。 本発明に従う光ピックアップで得られる第5のDPP信号特性を示した線図。 本発明に従う光ピックアップで得られる第6のDPP信号特性を示した線図。 本発明に従う光ピックアップで得られる第7のDPP信号特性を示した線図。 本発明に従う光ピックアップで得られる第8のDPP信号特性を示した線図。 本発明に従う回折格子に関する第2の実施例を示した概略平面図。 本発明の第2の実施例である光学的情報再生装置または光学的情報記録再生装置の構成を示した概略正面図およびブロック図。
図1は本発明に従う光ピックアップの一実施例を示した概略構成図である。図中の1は半導体レーザ光源、3はハーフミラーまたはビームスプリッタ、4はコリメートレンズ、5は対物レンズ、6は検出レンズ、10は光ディスク、20は所定のパターンで多分割された受光面をもつ光検出器である。対物レンズ5はレンズホルダー15内に固定され、所定の磁気回路によって構成された2次元アクチュエータ25によって光軸に沿ったフォーカス方向とディスク半径方向に沿ったトラッキング方向の2方向に駆動するようになっている。半導体レーザ1とハーフミラー3の間に配置されているのが、本発明で用いられる回折格子30である。半導体レーザ1を発したレーザ光は、この特殊回折格子30によって0次光および±1次回折光の少なくとも3本の光束に回折分離後、ハーフミラー3を反射してコリメートレンズ4を経て対物レンズ5に達し、この対物レンズ5によって各々独立に光ディスク10の記録面上に集光されて3個の集光スポットを形成する。この時光ディスク10の記録面上に集光される3個の集光スポット100および101、102は、図4の左側の図に示すように、光ディスク10上に周期的に設けられた案内溝11のうち全く同一の案内溝上に同時に照射されるよう略一直線状に配置されている。そして各集光スポットのディスク反射光は、往路とほぼ同様の光路を逆にたどり対物レンズ5、コリメートレンズ4を経てハーフミラー3に到達したのち、その光量の一部がハーフミラー3を透過し、検出レンズ6を経て多分割光検出器20内に設けられた所定の受光面に入射する。そして多分割光検出器20内の各受光面から得られた検出信号から所定の演算回路を経てフォーカス制御信号やトラッキング制御信号などの対物レンズ位置制御信号および光ディスク10の記録面に記録された情報信号などが検出される。この時トラッキング制御信号については、図4の右側の図に示すように、多分割光検出器20の各受光面20a,20b,20cで検出された信号から減算器50a,50b,50cおよび加算器51、増幅器52、減算器53などの演算回路を経ることにより、前記したインライン型DPP方式によるトラッキング制御信号が検出される。なおこのインライン型DPP方式自体の詳細な説明は省略する。
ところで、図4に示した例では、いずれも光検出器が少なくともディスクの半径方向に直交する方向、いわゆるディスクの接線方向に対応する方向に2分割された受光面を有し、この2分割受光面の各々からの出力信号の差から各集光スポットのプッシュプル信号を検出する構成になっている。通常、プッシュプル信号はディスクの半径方向に対応する方向に2分割された受光面からの出力信号の差信号から検出されるのが一般的である。しかしながら、図4はフォーカス制御信号の検出方式として非点収差方式を採用した例を示しているため、検出器の受光面上の光スポットは強度分布が光軸回りに略90度回転してしまっている。このためプッシュプル信号は各図に示すように、ディスクの接線方向に対応する方向に2分割された受光面からの出力信号の差から検出するようになっている。なお、上記したような非点収差方式によるフォーカス制御信号検出手段とDPP方式によるトラッキング制御信号検出手段を組み合わせた場合の検出器受光面配置については、詳細な説明は省略する。
ところで、図4に示す本発明の第1の実施例における光学系構成および集光スポット配置は、既に開示されている従来のインライン型DPP方式によるピックアップと何ら変わるところは無いが、半導体レーザ光源を出射したレーザ光束を3本のレーザ光束に回折分離するために配置された回折格子30の格子パターンが、明らかに従来のインライン型DPP方式に用いられる回折格子パターンと異なっている。
図2は、本発明における回折格子30の格子パターンの第1の実施例を示した概略平面図である。この回折格子には直線状の凹凸溝が周期的に形成されている。(例えば、図中の黒帯部が凹部で白帯部が凸部もしくはその逆で表される。)しかも、格子溝が形成されている格子面は31、32、33、34の4領域に分割されている。すなわち31と32および33と34は、ディスクの半径方向に相当する方向(図の水平方向)に並列した配置で分割されており、さらに中央帯部分は光軸中心を通る水平な分割線によりディスクの接線方向の相当する方向(図の垂直方向)に並列するように領域32と領域33に2分割されている。
そしてこの4分割された各領域は、周期的に形成された凹凸溝の配置状の位相関係が互いに異なっている。すなわち、左右両端の領域31と34の格子溝配置は、その位相が互いに180度ずれている。すなわち領域31と領域34とでは、格子溝の凸部と凹部の配置が逆転している。一方、領域32の格子溝配置は、領域31および領域34の格子溝配置の中間の位相になっている。つまり領域32での格子溝配置は、領域31の格子溝配置に対して位相が+90度ずれており、領域34の格子溝配置に対しては位相が−90度ずれている。これに対して領域33の格子溝配置は、領域32の格子溝配置に対してその位相が180度ずれている。すなわち領域32と領域33とでは、格子溝の凸部と凹部の配置が逆転している。
以上のように、本実施例における回折格子30は、極めて特殊な格子パターンを具備している。なお前記したように図4に、従来におけるインライン型DPP方式用の回折格子40の格子パターン(この図4においても図中の黒帯部が格子溝の凹部で白帯部が凸部もしくはその逆で表されている)を示しているが、本実施例の回折格子30は、この従来公知例に対しても明らかに異なる格子パターンを具備している。
なお図3において、中央帯部の領域32および33の横幅Wについては、この回折格子に入射するレーザ光束直径の10%乃至40%程度に設定するのが望ましい。
次に本発明の有効性について、図5乃至図12を用いて説明する。
まず図5乃至図7は、対物レンズのトラッキング方向(ディスク半径方向)への変位量とそれに伴うDPP信号振幅の変化の関係を示したグラフである。通常インライン型DPP方式では、DPP信号すなわちトラッキング制御信号の信号振幅が低下してしまうという特性がある。このような特性は一般にトラッキング制御信号の視野特性と称し、トラッキング制御信号検出方式としての性能の優劣を決める重要な要因となっている。すなわち対物レンズのトラッキング方向変位に伴うDPP信号振幅の低下量が小さければ小さいほど視野特性は良好であると言え、トラッキング制御信号検出方式として良好な性能を持っているものと判断できる。
図5乃至図7は、このDPP信号の視野特性について、本実施例すなわち図3で示した回折格子を用いた場合と、従来の回折格子すなわち図4で示した回折格子を用いた場合とを比較するために行なった計算機シミュレーションの結果をグラフ化した図である。図の横軸はいずれも対物レンズのトラッキング方向変位量を、縦軸はDPP信号すなわちトラッキング制御信号振幅を示している。ただし縦軸については、対物レンズ変位0mmにおける信号振幅を1とした場合の相対値で表している。また図5はディスクの案内溝ピッチTpが0.74μmであるDVD−RまたはRWディスクを再生した場合、図6はディスクの案内溝ピッチTpが1.23μmであるDVD−RAMディスクを再生した場合、図7はディスクの案内溝ピッチTpが1.6μmであるCD−RまたはRWディスクを再生した場合を示している。さらに図5および図6はDVD系のディスクを再生した場合なので、レーザ光束の波長を660nm、対物レンズの開口数を0.65と設定し、図7はCD系のディスクなので、レーザ光束の波長を785nm、対物レンズの開口数を0.53と設定して計算機シミュレーションを行なった。(他の設定パラメータについては、本発明と直接関係ないので説明は省略する。)
図5乃至図7からわかるように、同一の回折格子を用いた場合においても案内溝ピッチが異なる3種類のディスクの全てについて、DPP信号すなわちトラッキング制御信号が検出できている。これが、インライン型DPP方式の最大の特長であるが、さらに言うと本発明の回折格子を用いた場合と従来の回折格子を用いた場合を比較すると、本実施例の回折格子を用いた場合の方が、ほぼ同等もしくは若干良好な視野特性になっている。
次に図8乃至図10は、ディスクの偏芯量とそれに伴うDPP信号振幅の変化の関係を示すグラフである。通常DPP方式では、インライン型である無いに関わらず、ディスクの偏芯、すなわち円周状に刻まれたディスク案内溝の中心軸とディスクの回転中心軸とに偏差がある場合に、ディスクの回転周期に同期してDPP信号すなわちトラッキング制御信号の信号振幅が周期的に変動してしまうという特性がある。しかもこの周期的変動量は、ディスク偏芯量の大きさに伴い拡大してしまうという課題がある。このような特性は一般にトラッキング制御信号の偏芯特性と称し、先に説明した視野特性と共にトラッキング制御信号検出方式としての性能の優劣を決める重要な要因となっている。すなわちディスク偏芯に伴うDPP信号振幅の周期的変動の変動幅が小さければ小さいほど偏芯特性は良好であると言え、トラッキング制御信号検出方式として良好な性能を持っているものと判断できる。
図8乃至図10は、このDPP信号の偏芯特性について、本実施例すなわち図3で示した回折格子を用いた場合と、従来の回折格子すなわち図4で示した回折格子を用いた場合とを比較するために行なった計算機シミュレーションの結果をグラフ化した図である。図の横軸はいずれもディスクの偏芯量を、縦軸はディスクが1回転する間に周期的に変動するDPP信号振幅の最小振幅値を示している。ただし縦軸については、ディスクが1回転する間に周期的に変動するDPP信号振幅の最大振幅値を1とした場合の相対値で表している。すなわち、この縦軸の値が1に近ければ近いほどDPP信号振動の変動幅が小さいと判断できる。また先の視野特性の場合と全く同様に、図8はディスクの案内溝ピッチTpが0.74μmであるDVD−RまたはRWディスクを再生した場合、図9はディスクの案内溝ピッチTpが1.23μmであるDVD−RAMディスクを再生した場合、図10はディスクの案内溝ピッチTpが1.6μmであるCD−RまたはRWディスクを再生した場合を示している。さらに計算機シミュレーションでの主な設定パラメータ、すなわち使用レーザ光の波長や対物レンズの開口数についても、先に述べた視野特性のグラフすなわち図5乃至図8で説明した値と全く同様の値を用いている。
図8乃至図10からわかるように、先に説明した視野特性の場合と全く同様、本実施例の回折格子を用いた場合と従来の回折格子を用いた場合では、本実施例の回折格子を用いた場合の方がほぼ同等もしくは若干良好な偏芯特性を示している。
以上説明したように、視野特性と偏芯特性で、本実施例の回折格子は従来の回折格子に対して同等もしくは若干良好な特性を備えている。
次に図11および図12は、ディスクの未記録領域と記録済み領域との境界部分を光スポットが通過した場合に発生するDPP信号波形そのものを示したグラフである。通常DPP方式では、インライン型である無いに関わらず、記録型ディスクの未記録領域と記録済み領域との境界部分を光スポットが通過する際、DPP信号波形に乱れが生じ信号自体にオフセットが発生してしまうという課題がある。これは未記録領域と記録済み領域で入射レーザ光に対する平均の反射率が異なる(一般には記録済み領域の方が、未記録領域よりも平均反射率が低い。)事に起因する現象で、そのオフセット量の大きさはDPP信号の検出方式によって左右される。またこのDPP信号のオフセットは、対物レンズがトラッキング方向すなわちディスク半径方向に変位した場合により顕著に表れることがわかっている。そして当然のことながら、この境界部分で発生するDPP信号のオフセット量も先に説明した視野特性や偏芯特性と同様に、トラッキング制御信号検出方式としての性能の優劣を決める重要な要因となっている。すなわち境界部分で発生するDPP信号のオフセット量が小さければ小さいほど、トラッキング制御信号検出方式として良好な性能を持っているものと判断できる。
図11および図12は、この記録/未記録境界通過時におけるDPP信号波形について、本実施例すなわち図3で示した回折格子を用いた場合と、従来の回折格子すなわち図4で示した回折格子を用いた場合とを比較するために行なった計算機シミュレーションの結果をグラフ化した図である。図の横軸は、どちらもディスク上の光スポット位置を記録/未記録境界線から距離で表している。また縦軸は、どちらも各光スポット位置におけるDPP信号レベルを示している。ただし縦軸については、未記録領域におけるDPP信号レベルの最大値を1とした場合の相対値で表している。なお、対象のディスクはどちらもDVD−RWディスク(案内溝ピッチ=0.74μm)を想定している。したがって、使用レーザ光の波長は660nm、対物レンズの開口数=0.65として計算機シミュレーションを行なった。また図11は、対物レンズをトラッキング方向すなわちディスク半径方向の一方の向きに0.3mm変位させた場合で、図12は、図11とは反対向きに0.3mm変位させた場合を示している。
この図11および図12を見ると、明らかに本実施例の方がディスクの記録/未記録境界通過直後のDPP信号のオフセット量が小さくなっている。
例えば図11では、光スポットがディスクの未記録領域から記録領域へ変位した直後の信号レベル最大点を本実施例の格子を用いた場合(点P)と従来公知例の格子を用いた場合(点P’)で比較した場合、従来の格子を用いた場合は下側へのオフセット量が大きく、その結果、点P’は横軸(ゼロレベル)をよぎる事ができないでいる。一般にトラッキング制御は、トラッキング制御信号すなわちDPP信号がゼロレベルに引き込むよう制御をかける。従って、この点P’のようにDPP信号レベルが明らかにゼロレベルをよぎらない場合、この時点でトラッキング制御の引き込みは明らかに破綻してしまう。一方、本実施例の格子を用いた場合は、発生するオフセット量が小さいため、DPP信号レベルの最大点Pは図中に示すように完全にゼロレベルをよぎって上側にきているため、トラッキング制御の引き込み動作を問題なく実行させることができる。
さらに図12では、従来の格子を用いた場合、未記録領域から記録領域へ変位した直後の信号レベルに上側への大きなオフセットが加わり、DPP信号レベル最小点Q’が図のように横軸(ゼロレベル)に接する程度で、ゼロレベルをよぎらなくなってしまうと、図11の場合と同様、トラッキング制御の引き込みは明らかに破綻してしまう。一方、本実施例の格子を用いた場合は、図中の点Qのように完全に横軸(ゼロレベル)をよぎって下側に来るため、トラッキング制御の引き込み動作を問題なく実行させることができる。
以上述べたように、本実施例に示す回折格子は、前記視野特性および偏芯特性において、従来の回折格子とほぼ同等または若干良好な特性を備え、かつディスクの未記録/記録済み境界部分通過時のDPP信号波形のオフセットについては、従来の回折格子に比して明らかに良好な特性を備えている。したがって総合的に評価して、本発明に示す回折格子は、インライン型DPP方式によるトラッキング制御信号検出手段として従来よりも良好な性能を備えている。
上記第1の実施例では、図2に示すように中央部帯部が図の上下方向に2分割された例を述べたが、本発明はこれに限定されるものではない。例えば図13に示すように中央帯部が32aと32bと33の3領域(それぞれ図中において破線で囲まれている)に分割された回折格子でも構わない。この場合は図に示すように、中央領域33を図の上下方向すなわちディスク接線方向に対応する方向から領域32aと領域32bで挟み込む配置となっている。そして各領域内に周期的に設けられている格子溝は、領域32a内と32b内で同一の位相で配置されており、中央領域33の格子溝配置は、それに対して位相が180度ずれて配置されている。すなわち領域32aおよび32bと領域33とでは、周期的に配置されている格子溝の凸部と凹部の配置が逆転している。
このような格子溝配置を備えた回折格子を用いても、実施例1と同様の性能を得ることができる。
なお図13に示すような回折格子においても、中央帯部の領域32a、32bおよび33の横幅Wについては、この回折格子に入射するレーザ光束直径の10%乃至40%程度に設定するのが望ましい。
また本発明は、図2および図13に示したような構成の回折格子に限定されるものではなく、中央帯部をさらに4領域以上に多分割したような構成であっても一向に構わない。この場合、図の上下方向に多分割された各領域内の格子溝配置は、互いに隣接する領域間でその位相関係が180度ずれるように配置される。このような格子溝配置をとることで、上記実施例1で示した回折格子と同等の性能を得ることができる。
最後に、本発明に従う光ピックアップを搭載した光学的情報再生装置または光学的情報記録再生装置に関する実施例を図14に示す。
60は、例えば図1の実施例に示すような構成を有する光ピックアップである。なおこの光ピックアップ60には、光ディスク10の半径方向(内外周方向)にその位置をスライドできる機構が設けられており、アクセス制御回路72からのアクセス制御信号に応じて位置制御がおこなわれる。
レーザ点灯回路76からは所定のレーザ駆動電流が光ピックアップ60内の半導体レーザ光源に供給され、所定の光量でレーザ光が出射する。また光ピックアップ60内の所定の光検出器から検出された各種サーボ信号および情報信号は、サーボ信号生成回路74及び情報信号再生回路75に送られる。サーボ信号生成回路74では、これら検出信号からフォーカスエラー信号やトラッキングエラー信号が生成され、これを基にアクチュエータ駆動回路73を経て光ピックアップ60内の2次元アクチュエータを駆動することにより、対物レンズの位置制御がおこなわれる。また情報信号再生回路75では前記検出信号から光ディスク10に記録された情報信号が再生される。
なお前記サーボ信号生成回路74及び情報信号再生回路75で得られた信号の一部はコントロール回路70に送られる。このコントロール回路70には、レーザ点灯回路76やアクセス制御回路72、スピンドルモータ駆動回路71など接続されており、それぞれ光ピックアップ60内の半導体レーザ発光光量の制御、アクセス方向および位置の制御、光ディスク10を回転させるスピンドルモータ77の回転制御等が行われる。また、コントロール回路70の内部には前記サーボ信号生成回路74及び情報信号再生回路75で得られた信号から光ディスクの種類を判別するディスク判別回路(図示せず)が、設けられており、その判別結果から例えばサーボ信号生成回路74の内部に備えられたDPP信号生成回路(図示せず)のサブプッシュプル信号すなわちサブ光スポットから得られたプッシュプル信号の増幅ゲイン(前記K2に相当)等を自動的にコントロールできるようになっている。
以上のような実施例によれば、トラックピッチが異なる複数種類の光ディスクの記録、再生において、対物レンズの変位に伴うトラッキングエラー信号の振幅劣化や残留するオフトラック量が良好に改善された実用的なトラッキングエラー信号を検出できるので、高汎用性、高信頼性を備えた光ピックアップやそれを用いた光学的情報記録または再生装置を実現することができる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、上記の各構成は、それらの一部又は全部が、ハードウェアで構成されても、プロセッサでプログラムが実行されることにより実現されるように構成されてもよい。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1…半導体レーザ光源,7…対物レンズ,8…光ディスク,20…光検出器,30,40…回折格子

Claims (3)

  1. レーザ光束を少なくとも3本の光束に分岐する機能を備え、かつ第1及び第2及び第3および第4の少なくとも4つの領域に分割され各領域内で所定の周期構造を備えた回折格子であって、
    前記第3および第4の領域は前記第1の領域と第2の領域の間でかつ前記第1の領域と第2の領域の配列方向に対して略垂直な方向に沿って配置され、
    前記第2の領域内では前記第1の領域内に備えられた周期構造の位相に対して略180度異なる位相を有する周期構造を備え、かつ前記第3の領域内では前記第1の領域内に備えられた周期構造の位相に対して略90度異なる位相を有する周期構造を備え、かつ前記第4の領域内では前記第3の領域内に備えられた周期構造の位相に対して略180度異なる位相を有する周期構造を備えたことを特徴とする回折格子。
  2. レーザ光源と、
    請求項1記載の回折格子と、
    該回折格子によって分岐された3本の光束を集光して光学的情報記録媒体の記録面上に各々独立した3個の集光スポットを照射する集光光学系と、
    前記3個の集光スポットの前記光学的情報記録媒体からの反射光を各々少なくとも2分割以上に分割された受光面で受光するように配置された光検出器とを具備し、
    前記3個の集光スポットを前記光学的情報記録媒体の記録面上に周期的に配置された案内溝に対して略直交する方向に関して略ゼロもしくは前記案内溝周期の略整数倍の間隔で配置したことを特徴する光ピックアップ。
  3. 請求項2記載の光ピックアップを備え、かつ該光ピックアップ内に具備された前記光検出器の各受光面からの出力された信号に所定の演算処理を施すことにより、差動プッシュプル方式によるトラッキング制御信号を検出する機能を備えたトラッキング制御信号検出装置を少なくとも具備したことを特徴とする光学的情報再生装置。
JP2009241969A 2009-10-21 2009-10-21 回折格子およびそれを用いた光ピックアップ並びに光学的情報再生装置 Pending JP2011090727A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009241969A JP2011090727A (ja) 2009-10-21 2009-10-21 回折格子およびそれを用いた光ピックアップ並びに光学的情報再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009241969A JP2011090727A (ja) 2009-10-21 2009-10-21 回折格子およびそれを用いた光ピックアップ並びに光学的情報再生装置

Publications (1)

Publication Number Publication Date
JP2011090727A true JP2011090727A (ja) 2011-05-06

Family

ID=44108853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241969A Pending JP2011090727A (ja) 2009-10-21 2009-10-21 回折格子およびそれを用いた光ピックアップ並びに光学的情報再生装置

Country Status (1)

Country Link
JP (1) JP2011090727A (ja)

Similar Documents

Publication Publication Date Title
JP4151313B2 (ja) 光再生装置
JP4645410B2 (ja) 光ピックアップ及び光ディスク装置
JP2007042252A (ja) 光学素子および光ピックアップ装置ならびに光学的情報記録および/または再生装置
JP4444977B2 (ja) 光ピックアップ装置
JP4106072B1 (ja) 光ピックアップ装置
JP4630844B2 (ja) 光ピックアップ装置
JP5319978B2 (ja) 光ピックアップ装置、光ディスク装置および回折格子
JP2009503761A (ja) 光ピックアップ及びそれを採用した光記録及び/または再生機器
JP4729418B2 (ja) 回折格子、光ピックアップ装置、光ディスク装置
JP2006294215A (ja) 多層記録媒体及びその記録及び/または再生のための光ピックアップ装置
JP2005339646A (ja) 光ピックアップおよびそれに使用される回折格子
JP4251524B2 (ja) 光ピックアップ装置
JP2007035109A (ja) 光検出器、回折格子、光ピックアップ、光ディスク装置
JP2008176905A (ja) 光ピックアップ装置
JP4268971B2 (ja) 光ピックアップ
JP4444947B2 (ja) 光ピックアップ装置
JP2011090727A (ja) 回折格子およびそれを用いた光ピックアップ並びに光学的情報再生装置
JP5172852B2 (ja) 光ヘッド装置、光情報装置および回折素子
JP4384248B2 (ja) 光ピックアップおよびそれを用いた光学的情報記録装置または再生装置
JP2006216233A (ja) 光ピックアップおよびそれを用いた光学的情報記録装置または再生装置
KR20080017690A (ko) 광 픽업
JP2007226866A (ja) 光検出器、回折格子、光ピックアップ、光ディスク装置
JP2009158042A (ja) 光ピックアップ装置及び光検出器
JP2012094218A (ja) 光ピックアップ装置及び光ディスク装置
JP2009259401A (ja) 光ピックアップおよびそれを用いた光学的情報記録装置または再生装置