JP2011089799A - 水中探知装置及びその受信特性補正方法 - Google Patents

水中探知装置及びその受信特性補正方法 Download PDF

Info

Publication number
JP2011089799A
JP2011089799A JP2009241629A JP2009241629A JP2011089799A JP 2011089799 A JP2011089799 A JP 2011089799A JP 2009241629 A JP2009241629 A JP 2009241629A JP 2009241629 A JP2009241629 A JP 2009241629A JP 2011089799 A JP2011089799 A JP 2011089799A
Authority
JP
Japan
Prior art keywords
signal
reception
correction
channel
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009241629A
Other languages
English (en)
Other versions
JP5628508B2 (ja
Inventor
Toshi Kawanami
敏志 川浪
Kazuya Okimoto
和也 沖本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2009241629A priority Critical patent/JP5628508B2/ja
Publication of JP2011089799A publication Critical patent/JP2011089799A/ja
Application granted granted Critical
Publication of JP5628508B2 publication Critical patent/JP5628508B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

【課題】各チャンネルの受信回路の周波数特性のバラツキを抑制し、不要なサイドローブの少ない受信ビームを生成する。
【解決手段】水中探知装置は、テストモードにて、送受信の帯域幅内で複数個の互いに異なる周波数の正弦波を各チャンネルの受信アナログ回路9の入力側に供給する補正信号生成部6と、正弦波に対応する各受信アナログ回路9の出力信号に基づいて、各受信アナログ回路9における複数個の周波数毎の出力信号の振幅及び位相の周波数特性を補正する補正係数を得る補正演算部7及び制御部5と、各受信アナログ回路9へ出力される各周波数を含むエコー信号を対応する周波数の補正係数で補正する補正フィルタ10とを備える。
【選択図】図1

Description

本発明は、複数の超音波振動子から水中に送信された所定の帯域幅を有する超音波信号であって水中から帰来して各超音波振動子で受信されたエコー信号を増幅する複数の受信回路とを備えた、潮流計、船速計、ドップラーソナー及び魚群探知装置等の水中探知装置及びその受信特性補正方法に関する。
特許文献1には、9チャンネルを有し、水平面上の6方向への探知を可能とする超音波送受波器が記載されている。この超音波送受波器は、正三角形の各頂点、すなわち水平面上で120°毎の3方向に対して所定のピッチで配列された多数の振動子を有する正三角形格子構造を有し、ピッチ方向に順次所定の位相差を与えることで、水中の所定の俯角方向に所定指向性を有する超音波の送信ビームを送信するものである。また、受信に際しては、送信ビームに対応する所定の指向性を有する受信ビームを形成し、この受信ビーム内において水中から帰来するエコー信号を順次受信するようにしている。受信回路は、9チャンネル分で構成されており、各チャンネルで受信されたエコー信号に基づいて、例えばドップラー計測処理が実行される。
特開2006−17629号公報
ところで、特許文献1に記載の超音波送受波器で受信ビームを形成する場合、受信チャンネルを構成する受信回路間での周波数特性のばらつき、すなわち回路間の振幅差や位相差によって特定の方向に不要なサイドローブが発生し、結果的に水中探知精度を低減させる虞がある。
本発明は、上記に鑑みてなされたもので、各チャンネルの受信回路の周波数特性のバラツキを抑制し、不要なサイドローブの少ない受信ビームを生成する水中探知装置及びその受信特性補正方法を提供することを目的とするものである。
請求項1記載の発明は、複数の超音波振動子と、前記各超音波振動子から水中に送信された所定の帯域幅を有する超音波信号であって水中から帰来して各超音波振動子で受信されるエコー信号を増幅する複数の受信回路とを備えた水中探知装置において、テストモードにて、前記所定の帯域幅内で予め設定された数の互いに異なる周波数のテスト信号を前記各受信回路の入力側に供給するテスト信号供給手段と、前記テスト信号に対応する前記各受信回路の出力信号に基づいて、前記各受信回路における前記設定数の周波数毎の出力信号の振幅及び位相に関する特性を補正する補正情報を得る特性分析手段と、前記各受信回路へ出力される各周波数を含むエコー信号を対応する周波数の前記補正情報で補正する補正手段とを備えたものである。
請求項4記載の発明は、複数の超音波振動子から水中に送信された所定の帯域幅を有する超音波信号であって水中から帰来して各超音波振動子で受信されるエコー信号を増幅する複数の受信回路とを備えた水中探知装置における受信特性補正方法において、テストモードにて、前記所定の帯域幅内で予め設定された数の互いに異なる周波数のテスト信号を前記各受信回路の入力側に供給するテスト信号供給行程と、前記テスト信号に対応する前記各受信回路の出力信号に基づいて、前記各受信回路における前記設定数の周波数毎の出力信号の振幅及び位相に関する特性を補正する補正情報を得る特性分析行程と、前記各受信回路へ出力される各周波数を含むエコー信号を対応する周波数の前記補正情報で補正する補正行程とを有するものである。
これらの発明によれば、テストモードにおいて、所定の帯域幅内で予め設定された数の互いに異なる周波数のテスト信号が各受信回路の入力側に供給される。そして、テスト信号に対応する各受信回路の出力信号に基づいて、各受信回路における設定数の周波数毎の出力信号の振幅及び位相に関する特性を補正する補正情報が分析されて得られる。補正情報とは、受信回路の周波数特性間のバラツキを補正するための情報である。得られた補正情報は、水中探知に際して用いられる。すなわち、各受信回路へ出力される各周波数を含むエコー信号が対応する周波数の前記補正情報で補正される。従って、各チャンネルの受信回路の周波数特性のバラツキが抑制されて、不要なサイドローブの少ない受信ビームが生成される。
請求項2記載の発明は、請求項1記載の水中探知装置において、前記特性分析手段は、前記複数の受信回路のうちの1つを選定し、選定された受信回路の前記特性を基準にして他の受信回路の前記特性を変換するものであることを特徴とする。
請求項3記載の発明は、請求項1又は2に記載の水中探知装置において、前記テスト信号供給手段は、前記テスト信号を複数回前記各受信回路に供給し、前記特性分析手段は、前記補正情報を複数回の前記テスト信号に対応する出力信号の前記特性を平均して得るようにしたことを特徴とする。この構成によれば、補正精度の向上が図れる。
本発明によれば、各チャンネルの受信回路の周波数特性のバラツキを抑制し、不要なサイドローブの少ない受信ビームを生成することができる。
本発明に係る水中探知装置が適用されるドップラー速度計の概略構成の一実施形態を示す全体ブロック図である。 (a)は、送波面を示す平面図で、(b)は、(a)におけるA−A線断面図である。 図2(a)に示す各振動子の位置関係を示す図で、(a)は平面図、(b)は部分拡大平面図である。 図2(a)に示す各振動子の配線を説明する配線図である。 TD1の第1〜第3グループの構成パターンを示す構成図である。 (a)は、位相制御を示すブロック図であり、(b)は、(a)に示す位相制御を行った場合の水平方向に射影した送信ビームの進行方向を示す図である。 補正アルゴリズムの概要を説明するための図面である。
図1は、本発明に係る水中探知装置が適用されるドップラー速度計の概略構成の一実施形態を示す全体ブロック図である。水中探知装置は、超音波信号の送受信を行う超音波送受波器1と、超音波送受波器1の送受信動作を切り替える送受波切替器2と、超音波送受波器1を構成する複数の振動子に入力する送信信号(送信ビーム)を生成する送信駆動信号生成回路4と、送信駆動信号を増幅する送信アンプ3と超音波送受波器1の各振動子で受信されたエコー信号に所定の信号処理を施す受信アナログ回路9と、後述するように受信アナログ回路9のばらつきを補正する補正フィルタ10と、テスト動作を行う制御部5と、テスト信号を生成する補正信号生成部6と、超音波送受波器1からの受信信号とテスト信号とを切り替える切替器8と、テスト動作で得られた結果情報に所定の処理を施して補正フィルタ係数を算出する補正演算部7とを備えている。また、水中探知装置は、受信ビームを形成する受信ビーム形成回路11と、受信信号のドップラー成分から船体等の速度を算出し、表示部13に表示するドップラー処理部12とを備えている。
まず、超音波送受波器1について説明する。超音波送受波器1は、例えば水平面に平行な面を送波面とする複数の超音波振動子が所定チャンネル数、例えば9チャンネルに割り当てられてアレイ状に配列されている。超音波送受波器1は、例えば船底に装備され、送波面は水中に露出されている。
ここで、超音波送受波器1の詳細構造について、図2、図3、図4を用いて説明する。図2(a)は、送波面を示す平面図で、図2(b)は、図2(a)におけるA−A線断面図である。図3は、図2(a)に示す各振動子の位置関係を示す図で、図3(a)は平面図、図3(b)は部分拡大平面図である。図4は、図2(a)に示す各振動子の配線を説明する配線図である。なお、図3(a)、図4ではチャンネル番号を省略しているが、振動子の配置は、図2に示す配置と同一である。
超音波送受波器1は、船首−船尾方向に直交する辺を一辺とした正三角形の各頂点に振動子100が配置された正三角形格子構造を有する。振動子100の船首−船尾方向における配列ピッチ(振動子列間の間隔)をdとすると、正三角形の一辺の長さ、すなわち振動子100の中心間距離は(2/31/2)dである。なお、ピッチdは、送信信号の波長λと、水平方向と探知方向とのなす角である俯角θとにより予め設定されている。詳細は後述する。
超音波送受波器1は、図2(b)に示すように、強誘電体等からなる圧電効果を有する基板101と、この基板101の両面の対向する位置に形成された電極102とで形成される。すなわち、各振動子100は、圧電基板101の両面の対向する位置に電極102を形成することで形成される。圧電基板101は、両面の電極102間に所定電圧が印加されると基板特有の周波数で振動する。すなわち、圧電基板101の電極102で挟まれた部分が圧電振動子として機能する。
振動子100は、本実施形態では、9チャンネルに分けられており、各チャンネルの振動子100a〜100c、110e〜100g、100h〜100jは、図2、図3に示す位置関係を有して配置されている。なお、図2(a)、図3(b)では各チャンネルの代表する振動子にのみ記号を付し、他の振動子については、属するチャンネル番号のみを示した。
図3(b)に示すように、第1、第2、第3チャンネル振動子100a〜100cの中心をそれぞれ頂点として一辺の長さが(2/31/2)dの正三角形が形成されており、第2、第3チャンネル振動子100b,100cを結ぶ辺が船首−船尾方向に対して直角で、この辺に対して船首側に第1チャンネル振動子100aが配置されている。第4チャンネル振動子100eは、第3チャンネル振動子100cを挟んで第2チャンネル振動子100bの反対の位置に配置されており、第5チャンネル振動子100fは、第3チャンネル振動子100cを挟んで第1チャンネル振動子100aの反対の位置に配置されている。第6チャンネル振動子100gは、第4チャンネル振動子100eと第5チャンネル振動子100fとともに一辺の長さが(2/31/2)dの正三角形を構成する位置に配置されており、言い換えれば、第6チャンネル振動子100gは、第4、第5チャンネル振動子100e,100fを結ぶ線を線対称の基準として第3チャンネル振動子100cと対称の位置に配置されている。第7チャンネル振動子100hは、第6チャンネル振動子100gを挟んで第5チャンネル振動子100fの反対の位置に配置されており、第8チャンネル振動子100iは、第6チャンネル振動子100gを挟んで第4チャンネル振動子100eの反対の位置に配置されている。第9チャンネル振動子100jは、第7チャンネル振動子100hと第8チャンネル振動子100iと共に、一辺の長さが(2/31/2)dの正三角形を構成する位置に配置されており、言い換えれば、第9チャンネル振動子100jは、第7、第8チャンネル振動子100h,100iを結ぶ線を線対称の基準として第6チャンネル振動子100gと対称の位置に配置されている。また、第9チャンネル振動子100jは、第8チャンネル振動子100iの反対の位置にある第1チャンネル振動子100aとで一辺の長さが(2/31/2)dの正三角形を形成する位置に第2チャンネル振動子100bが配置されると共に、第2チャンネル振動子100bとで一辺の長さが(2/31/2)dの正三角形を形成する位置に第4チャンネル振動子100eが配置されている。そして、超音波送受波器1は、かかる9つのチャンネルの振動子の配列パターンが縦横に所定数だけ繰り返して形成されている。
このように形成された振動子100a〜100c,100e〜100g,100h〜100jは、図4に示す配線パターンで配線されている。船首−船尾方向に直角な方向に並ぶ第1チャンネル振動子100aは、それぞれ配線パターンL12,L13,L14,L15で並列接続されており、各配線パターンL12〜L15は、ポートP1に接続されている。同様に、第2チャンネル振動子100bは、それぞれ配線パターンL21,L22,L23,L24,L25でポートP2に並列接続され、第3チャンネル振動子100cは、それぞれ配線パターンL31,L32,L33,L34,L35でポートP3に並列接続されている。また、第4チャンネル振動子100eは、それぞれ配線パターンL41,L42,L43,L44,L45でポートP4に並列接続され、第5チャンネル振動子100fは、それぞれ配線パターンL51,L52,L53,L54,L55でポートP5に並列接続され、第6チャンネル振動子100gは、それぞれ配線パターンL61,L62,L63,L64,L65でポートP6に並列接続されている。さらに、第7チャンネル振動子100hは、それぞれ配線パターンL71,L72,L73,L74,L75でポートP7に並列接続され、第8チャンネル振動子100iは、それぞれ配線パターンL81,L82,L83,L84でポートP8に並列接続され、第9チャンネル振動子100jは、それぞれ配線パターンL91,L92,L93,L94でポートP9に並列接続されている。ポートP1〜P9は、送受波切替器2とのバスラインの各ラインにそれぞれ接続されている。なお、各振動子100a〜100c,100e〜100g,100h〜100jの他方の端子は、例えば、それぞれチャンネル毎に、あるいはコモンで接地されている。この結果、全ての振動子が第1チャンネル〜第9チャネルに分けて接続される。なお、前述の配線パターンとしては、圧電基板101の対向する両面に電極102を形成する構造の場合には圧電基板101の一方面に配線パターン電極を形成することにより実現され、単体の振動素子を用いる場合には絶縁基板表面に形成した配線パターン電極や導体線による振動素子の端子を接続することにより実現される。
超音波送受波器1は、本実施形態においては、9つのチャンネルの振動子100が3つのグループに分けられている。具体的には、第1チャンネル振動子100a〜第3チャンネル振動子100cが第1グループとされ、第4チャンネル振動子100e〜第6チャンネル振動子100gが第2グループとされ、第7チャンネル振動子100h〜第9チャンネル振動子100jが第3グループとされる。
図5は、超音波送受波器1の第1〜第3グループの配列パターンを示す平面図である。図5に示すように、第1グループ振動子110a、第2グループ振動子110b及び第3グループ振動子110cは、互いの中心間距離が2dで、正三角形格子状に配列した位置関係を有する。また、超音波送受波器1は、船首−船尾方向と平行な方向、及び船首−船尾方向に対して±π/6の方向に対して、各グループの振動子がピッチdで配列されている。詳細には、船首−船尾方向に平行な方向に、第1グループ振動子110a、第2グループ振動子110b、第3グループ振動子110cの順番でピッチdを有して配列され、船首−船尾方向に対して±π/6の方向に、第1グループ振動子110a、第3グループ振動子110c、第2グループ振動子110bの順番でピッチdを有して配列されている。
送信駆動信号生成回路4は、制御部5から入力された制御信号に従い、振動子が所望周波数の送信信号を送信するための送信用駆動信号を発生し、グループ毎に出力する送信駆動信号の位相制御を行う。本実施形態では、後述するように、互いに逆位相(位相差π)の送信用駆動信号を用いることから、送信駆動信号生成回路4からは1種類の送信用駆動信号が出力される。具体的には、図6(a)に示すように、所定の2つのグループを互いに逆位相にする位相制御を行う。所定の2つのグループは、ここでは、第2グループ振動子110bと第3グループ振動子110cである。なお、上記方法に代えて、送信駆動信号生成回路4が逆位相の送信用駆動信号をそれぞれ生成する態様としてもよい。
図6(a)は、位相制御を示すブロック図であり、図6(b)は、図6(a)に示す位相制御を行った場合の水平方向に射影した送信ビームの進行方向を示す図である。図6(a)に示すように、基準の送信駆動信号と、π(rad:ラジアン)だけ位相の異なる送信用駆動信号とが、第1グループ振動子110a、第2グループ振動子110b及び第3グループ振動子110cのいずれか2つのグループ振動子、本実施形態では、第2グループ振動子110bに基準の送信用駆動信号が入力され、第3グループ振動子110cに位相差π(rad)の送信用駆動信号が入力される。
位相差π(rad)を有する送信用駆動信号が第2グループ振動子110b、第3グループ振動子110cに入力されると、超音波信号は、図6(b)に示すように、船首方向、船尾方向、船首方向から左舷、右舷方向に±π/3(rad)回転した方向、及び船首方向から左舷、右舷方向に±2π/3(rad)回転した方向の計6方向に対して、所定の俯角θを有して送信される。すなわち、6つの送信ビームTxBeam1〜TxBeam3、TxBeam1’〜TxBeam3’が設定される。
送信駆動信号生成回路4の動作について説明する。前述したように、超音波送受波器1から送信される超音波信号は、所定波長範囲を有する広帯域の信号である。本実施形態においては、二相位相偏移変調方式(BPSK方式)で符号化された広帯域信号を複数連ねた送信信号を用いている。この方式は、例えば本出願人に係る特許出願(特開2007−292668号公報)に記載されている。
なお、各振動子100で受信されたエコー信号(受信信号)は、受信アナログ回路9によって取り込まれ、補正フィルタ回路10を経てドップラー処理部12に導かれる。なお、3方向への受信ビームは、第1グループ振動子110a、第2グループ振動子110b、第3グループ振動子110cに対して順次2π/3[rad]だけ位相差を与えるように受信することで形成される。残りの3方向に対する受信ビームは、必要に応じて移相方向を逆にすることで形成可能である。
補正信号生成部6は、制御部5から設定される周波数のテスト信号が生成可能な回路である。補正信号生成部6は、正弦波をデジタル的に生成する公知の集積回路を用いてもよい。
切替器8は、テストモード時には、補正信号生成部6から受信アナログ回路9の入力側に補正用の正弦波が供給可能にされるように信号パスを切り替える。
補正演算部7では補正フィルタ10から出力される信号に対してFFT処理を施し、フィルタ係数(周波数領域)を算出し、算出結果をIFFT(フーリエ逆変換)処理して補正フィルタ係数(時間領域)を算出するものである。
図7は、補正アルゴリズムの概要を説明するための図面である。図7において、行程Aは、テストモードで各チャンネルの受信アナログ回路におけるスペクトルを検出する行程である。行程Bは、基準チャンネルを選択する行程である。行程Cは、各受信回路の周波数特性、すなわち振幅比、位相差を検出する行程である。行程Dは、複数の測定結果に対して平均処理を施す工程である。行程Eは、フィルタ係数を算出する行程である。行程Fは、IFFTを実行する行程である。
本発明は、テストモードに移行すると、以下のようにして、補正アルゴリズムが実行される。テストモードへの移行は、水中探知装置が製造、出荷又は船体に装備された後、作業者からの指示により、あるいは装備された状態で、電源投入時に自動的に行われる。テストモードは、1回でもよいし、複数回であってもよい。
補正アルゴリズムは、以下の条件で実行される。すなわち、本実施形態では、前述したように、ch1〜ch9の9チャンネル分の受信系が設けられ(図7参照)、かつ探知用の超音波として広帯域の超音波信号が使用される。従って、テスト用信号である補正信号は、前記広帯域超音波信号の帯域範囲内でn個の周波数を等間隔で設定している。また、テストはN回(Nは1以上の整数)行い、平均処理する。
行程Aでは、まず、補正信号生成部6から補正信号(テスト信号)が受信アナログ回路に供給され、AD変換器でサンプリングされた後、補正フィルタ、FFTを経て、補正信号の周波数でのスペクトラムの検出を行う。但し、制御部5は、テストモードの初期設定として、補正フィルタに対して振幅“1”、位相“0”となる値を初期値として設定する。
行程Aでは、補正信号の周波数をf1からfnまで順次変更して生成し、受信アナログ回路に順番に供給される。そして、かかる処理がN回繰り返される。FFTでのスペクトル検出処理結果は、周波数fnについて、1回目からN回目の、1chから9chまでのデータが、1回目のch1(I,Q)〜N回目のch9(I,Q)として得られる(図7の[1]参照)。
補正信号の供給が全て終了すると、行程Bにおいて、補正演算部7により基準チャンネルの選択が実行される。すなわち、得られた信号中から、振幅比、位相差を求める際の基準となるチャンネルの選出が行われる。例えば、行程Aで取得したデータ中から振幅最大値を有するデータを抽出し、当該最大値を有するチャンネルを基準チャンネルとして選択する。
基準チャンネルの選択が終了すると、行程Cにおいて、補正演算部7により各チャンネルについて基準チャンネルに対する振幅比及び位相差を算出する。この算出処理は、全ての周波数f1〜fn及び測定回1〜Nについて行う。
具体的には以下のようにして行われる。なお、この例では、チャンネルch1を基準チャンネルとしている。ある周波数での対応するスペクトルを、a+jbとする(添え字iはチャンネル)。
今、ch_iの振幅をch_i_powとすると、
ch_i_pow=√(a+jb)×(a+jb ・・・(1)
となる。なお、(式1)中の符号*は、複素共役を示す。従って、ch1を基準としたch_iの振幅比pow_1iは、
pow_1i=(ch_i_pow)/(ch_1_pow) ・・・(2)
となる。
次に、ch1を基準とした位相差θ_1iは、
θ_1i=tan−1(Im[(a+jb)×(a+jb]/Re[(a+jb)×(a+jb]) ・・・(3)
から求まる。そして、pow_1iをVと置き換え、θ_1iをθと置き換えると、あるチャンネルにおける(pow_1i,θ_1i)は、f(V,θ)と表される。従って、各周波数に対応させて、かつ各測定回(1〜N回)のそれぞれについて、f1(V,θ)〜fn(V,θ)が得られる(図7の[2]参照)。
基準チャンネルに対する、各周波数かつ各測定回についての振幅比及び位相差が算出されると、行程Dにおいて、制御部5により平均処理が実行される。平均処理は、行程Cで求めたf1(V,θ)〜fn(V,θ)について、測定回の平均値を算出する。従って、図7の[3]に示すように、各チャンネルの周波数毎の平均値f1(Va,θa)〜fn(Va,θa)が得られる。なお、Va,θaは、V,θの測定回であるN回分の平均値を示す。
平均処理が終了すると、行程Eにおいて、補正演算部7によりフィルタ係数算出処理が実行される。フィルタ係数算出処理は、平均化されたVa,θaからフィルタ係数を算出するものである。すなわち、チャンネル毎にフィルタ係数f1(I,Q)〜fn(I,Q)が、以下の(4)式のようにして求められる。
I=(1/Va)×cos(−θa)
Q=(1/Va)×sin(−θa) ・・・(4)
フィルタ係数算出処理が終了すると、行程Fにおいて、補正演算部7でIFFTが実行される。IFFT処理は、逆フーリエ変換を行うもので、行程Eで算出された周波数領域のフィルタ係数を時間領域の係数に変換するものである。また、補正演算部7は、IFFT処理によって得られたフィルタ係数を補正フィルタ係数として補正フィルタに転送する。つまり、補正フィルタ係数は、FIRフィルタ(有限インパルス応答フィルタ)用に周波数サンプリング法で生成される。
このように、補正フィルタ係数の設定によって各チャンネルの受信アナログ回路間の周波数特性のバラツキを、抑制することが可能であり、さらに、値n、または値Nを大きく設定することで偏差をより抑制することが可能となる。
なお、本発明は、周波数特性の最大値を基準とする態様に代えて、所定値に近い値を有するチャンネルを基準としてもよく、あるいはチャンネルを基準とせず、予め設定された所定値を基準として、この所定値との比率、差分を振幅比、位相差としてもよい。
1 超音波送受波器
100,100a〜100c,100e〜100j チャンネル振動子
110a〜110c グループ振動子
2 送受波切替器
3 送信アンプ
4 送信駆動信号生成回路
5 制御部
6 補正信号生成部
7 補正演算部
8 切替器
9 受信アナログ回路
10 補正フィルタ
11 受信ビーム形成回路
12 ドップラー処理部
13 表示部

Claims (4)

  1. 複数の超音波振動子と、前記各超音波振動子から水中に送信された所定の帯域幅を有する超音波信号であって水中から帰来して各超音波振動子で受信されるエコー信号を増幅する複数の受信回路とを備えた水中探知装置において、
    テストモードにて、前記所定の帯域幅内で予め設定された数の互いに異なる周波数のテスト信号を前記各受信回路の入力側に供給するテスト信号供給手段と、
    前記テスト信号に対応する前記各受信回路の出力信号に基づいて、前記各受信回路における前記設定数の周波数毎の出力信号の振幅及び位相に関する特性を補正する補正情報を得る特性分析手段と、
    前記各受信回路へ出力される各周波数を含むエコー信号を対応する周波数の前記補正情報で補正する補正手段とを備えた水中探知装置。
  2. 前記特性分析手段は、前記複数の受信回路のうちの1つを選定し、選定された受信回路の前記特性を基準にして他の受信回路の前記特性を変換するものであることを特徴とする請求1記載の水中探知装置。
  3. 前記テスト信号供給手段は、前記テスト信号を複数回前記各受信回路に供給し、前記特性分析手段は、前記補正情報を複数回の前記テスト信号に対応する出力信号の前記特性を平均して得るようにしたことを特徴とする請求項1又は2記載の水中探知装置。
  4. 複数の超音波振動子から水中に送信された所定の帯域幅を有する超音波信号であって水中から帰来して各超音波振動子で受信されるエコー信号を増幅する複数の受信回路とを備えた水中探知装置における受信特性補正方法において、
    テストモードにて、前記所定の帯域幅内で予め設定された数の互いに異なる周波数のテスト信号を前記各受信回路の入力側に供給するテスト信号供給行程と、
    前記テスト信号に対応する前記各受信回路の出力信号に基づいて、前記各受信回路における前記設定数の周波数毎の出力信号の振幅及び位相に関する特性を補正する補正情報を得る特性分析行程と、
    前記各受信回路へ出力される各周波数を含むエコー信号を対応する周波数の前記補正情報で補正する補正行程とを有する水中探知装置における受信特性補正方法。
JP2009241629A 2009-10-20 2009-10-20 水中探知装置及びその受信特性補正方法 Active JP5628508B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009241629A JP5628508B2 (ja) 2009-10-20 2009-10-20 水中探知装置及びその受信特性補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009241629A JP5628508B2 (ja) 2009-10-20 2009-10-20 水中探知装置及びその受信特性補正方法

Publications (2)

Publication Number Publication Date
JP2011089799A true JP2011089799A (ja) 2011-05-06
JP5628508B2 JP5628508B2 (ja) 2014-11-19

Family

ID=44108195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241629A Active JP5628508B2 (ja) 2009-10-20 2009-10-20 水中探知装置及びその受信特性補正方法

Country Status (1)

Country Link
JP (1) JP5628508B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521473B1 (ko) * 2014-06-02 2015-05-21 한국지질자원연구원 수중탐지장치 및 수중탐지방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132915A (ja) * 1996-10-31 1998-05-22 Nec Corp パッシブソーナの補正データ作成装置
JP2003014839A (ja) * 2001-04-23 2003-01-15 Furuno Electric Co Ltd 水中探知装置および水中探知装置のテスト方法
JP2004251837A (ja) * 2003-02-21 2004-09-09 Toshiba Corp 受信システム
JP2005164295A (ja) * 2003-11-28 2005-06-23 Tektronix Japan Ltd 周波数変換回路の特性測定及び校正方法
JP2007292668A (ja) * 2006-04-26 2007-11-08 Furuno Electric Co Ltd ドップラー計測器および潮流計
JP2008164747A (ja) * 2006-12-27 2008-07-17 Toyota Motor Corp 音声認識ロボット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132915A (ja) * 1996-10-31 1998-05-22 Nec Corp パッシブソーナの補正データ作成装置
JP2003014839A (ja) * 2001-04-23 2003-01-15 Furuno Electric Co Ltd 水中探知装置および水中探知装置のテスト方法
JP2004251837A (ja) * 2003-02-21 2004-09-09 Toshiba Corp 受信システム
JP2005164295A (ja) * 2003-11-28 2005-06-23 Tektronix Japan Ltd 周波数変換回路の特性測定及び校正方法
JP2007292668A (ja) * 2006-04-26 2007-11-08 Furuno Electric Co Ltd ドップラー計測器および潮流計
JP2008164747A (ja) * 2006-12-27 2008-07-17 Toyota Motor Corp 音声認識ロボット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521473B1 (ko) * 2014-06-02 2015-05-21 한국지질자원연구원 수중탐지장치 및 수중탐지방법
WO2015186853A1 (ko) * 2014-06-02 2015-12-10 한국지질자원연구원 수중탐지장치 및 수중탐지방법
US9329296B2 (en) 2014-06-02 2016-05-03 Korea Institute Of Geoscience And Mineral Resources Underwater detector and method for underwater detection

Also Published As

Publication number Publication date
JP5628508B2 (ja) 2014-11-19

Similar Documents

Publication Publication Date Title
US10451758B2 (en) Multi-function broadband phased-array software defined sonar system and method
US9645118B2 (en) Ultrasonic imaging apparatus and ultrasonic imaging method
JP4430997B2 (ja) 超音波送受信装置
JP6369289B2 (ja) 超音波測定装置、超音波診断装置及び超音波測定方法
WO2014152032A1 (en) System and method for performing progressive beamforming
JP5469996B2 (ja) 超音波送波装置及びドップラー速度計
JP5628508B2 (ja) 水中探知装置及びその受信特性補正方法
JP5697863B2 (ja) ドップラー速度計
JP2006208110A (ja) 水中探知装置および水中探知装置の表示制御方法
JP4307223B2 (ja) 水中探知装置
JP4791011B2 (ja) 超音波送波器、超音波送受波器およびこれを用いた探知装置
JP6441740B2 (ja) ドップラシフト周波数測定装置、対水速度計、及び潮流計
JP4733446B2 (ja) 超音波診断装置
JP2015051037A5 (ja)
JP4968847B2 (ja) 超音波フェイズドアレイ送受波器
JP4114838B2 (ja) 超音波映像システム
JP2004313484A (ja) 超音波探触子
JP6088165B2 (ja) 探知装置、探知方法及び探知プログラム
JP5207335B2 (ja) 超音波フェイズドアレイ送受波器
CA2810932C (en) Defocusing beamformer method and system for a towed sonar array
JPS61246687A (ja) 速度測定装置
JP2002350541A (ja) アクティブソーナー装置
JPH02261435A (ja) 超音波診断装置
JPS6282352A (ja) 超音波撮像装置
JP2004093476A (ja) 超音波送受信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141002

R150 Certificate of patent or registration of utility model

Ref document number: 5628508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250