JP2011085414A - 振動試験装置 - Google Patents

振動試験装置 Download PDF

Info

Publication number
JP2011085414A
JP2011085414A JP2009236363A JP2009236363A JP2011085414A JP 2011085414 A JP2011085414 A JP 2011085414A JP 2009236363 A JP2009236363 A JP 2009236363A JP 2009236363 A JP2009236363 A JP 2009236363A JP 2011085414 A JP2011085414 A JP 2011085414A
Authority
JP
Japan
Prior art keywords
vibration
excitation
power
supplied
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009236363A
Other languages
English (en)
Other versions
JP5461140B2 (ja
Inventor
Sadayuki Yoneda
貞之 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKEN KK
Original Assignee
SHINKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKEN KK filed Critical SHINKEN KK
Priority to JP2009236363A priority Critical patent/JP5461140B2/ja
Publication of JP2011085414A publication Critical patent/JP2011085414A/ja
Application granted granted Critical
Publication of JP5461140B2 publication Critical patent/JP5461140B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

【課題】本発明は、加振手段を所定電力に励磁した状態で振動加速度を供給することにより振動を発生させる振動試験装置に関し、簡単な構成で、確実に振動の制御が可能であり、また、消費電力を低減できる振動試験装置を提供することを目的とする。
【解決手段】本発明は、試料が載置された試料台を振動させる振動発生機と、振動発生機に直流励磁電流を供給する励磁電源と、振動発生機による振動を検出する振動検出器と、振動検出器で検出された振動に応じた交流駆動電流を振動発生機に供給する振動制御回路とを備えた振動試験装置であって、振動制御回路から振動発生機に供給される交流駆動電流を検出する駆動電流検出部と、駆動電流検出部で検出された交流駆動電流に応じて励磁電源から振動発生機に供給する直流励磁電流を切り換える励磁電力切換制御部とを含む。
【選択図】図1

Description

本発明は振動試験装置に係り、特に、加振手段を所定電力に励磁した状態で振動加速度を供給することにより振動を発生させる振動試験装置に関する。
多くの技術分野で振動試験装置を用いた振動試験が実施されている。特に、製品開発を行う部門においては、試作品又は製品の耐久性や強度、信頼性等を調べるために振動試験が実施されている。このとき、試験は長時間に亘る。
図8は従来の一例のブロック構成図を示す。
従来の振動試験装置1は、振動発生機2、振動制御器3、電力増幅器4、励磁電源5、空圧源ユニット6、冷却用ブロア電源回路7、冷却用ブロア8を含む構成とされている。
振動発生機2は、励磁電源5から供給されるDC励磁電流及び電力増幅器4から供給されるAC駆動電流により、試料9を振動させる。
ここで、振動発生機2について詳細に説明する。
図9は従来の一例の振動発生機の断面図を示す。
振動発生機2は、本出願人が特願平10−327204号で提案した振動発生機と同一である。図9に示されるように、振動発生機2は、試料13が固定される振動テーブル(振動体)26と、振動テーブル26の筒状軸(被ガイド部)28を振動方向(A方向)に摺動可能に支持するガイド部30と、ガイド部30に設けられた空気軸受32と、振動テーブル26の外周端部に設けられた駆動コイル(駆動源)34と、駆動コイル34が上方位置に移動したとき外側で対向するように配置された上部励磁コイル36と、駆動コイル34が下方位置に移動したとき外側で対向するように配置された下部励磁コイル38とを有する。
また、筒状軸28の内周には、ガイド部30のガイド軸30aが挿入される筒状のシリンダ(被ガイド部)39が嵌合固定されている。駆動コイル34には、電力増幅器20からの交流(AC)の駆動電流が供給されているので、駆動コイル34からの磁束の方向が交番的に変化する。そのため、振動テーブル26は、電磁石を構成する上部励磁コイル36及び下部励磁コイル38からの磁界に対し、吸引又は反発して軸方向に振動する。
さらに、振動発生機2は、上部励磁コイル36及び下部励磁コイル38を収納する上部コイル収納室40a,下部コイル収納室40bを有するホルダ部材40と、上部励磁コイル36及び下部励磁コイル38の内周側に挿通された円筒部材42,44とを有する。そして、上記駆動コイル34は、薄い円筒状に形成されており、ホルダ部材40の内周と円筒部材42,44の外周との間に形成された隙間に挿通された状態で軸方向に駆動される。その際、駆動コイル34は、ホルダ部材40及び円筒部材42,44に非接触で移動するように設けられている。
また、ホルダ部材40は、上部カバー部材46により上部コイル収納室40aが閉塞され、下部コイル収納室40bが下部カバー部材48により閉塞される。そして、ホルダ部材40は、支持部材50により両側から支持されている。この支持部材50は、床面に設置されるベース50aと、ベース50aの両側より上方に延在する一対の腕部50b,50cとからなる。そして、腕部50b,50cの上端には、ホルダ部材40の両側面に固定された水平軸52が挿通されている。そのため、ホルダ部材40は、水平軸52を中心に回動することができる。これにより、振動発生機2は、振動方向を垂直方向だけでなく斜め方向あるいは水平方向に発生させることが可能となる。
また、円筒部材44の中央穴44aには、上記ガイド部30が挿通された状態で下部カバー部材48の底部に取付ボルト53aを介して固定された取付板53にボルト55及びナット57の締結により固着される。そして、円筒部材42の中央穴42aには、振動テーブル26の筒状軸28と、ガイド部30のガイド軸30aとが互いに摺動可能に嵌合された状態に収納されている。
尚、上記ホルダ部材40、円筒部材42,44、上部カバー部材46、下部カバー部材48は、電磁石のヨーク(鉄心)を構成している。ガイド部30は、軸方向に延在するように形成された軸方向空気供給通路54と、一端が軸方向空気供給通路54に連通され他端がガイド部30の半径方向に延在する複数の水平方向空気供給通路56と、水平方向空気供給通路56に連通されガイド部30の外周に開口する複数の空気吹き出し口58とを有する。
複数の水平方向空気供給通路56は、軸方向に所定間隔で平行に配置されると共に、周方向にも所定角度間隔で放射状に配設されている。そして、ガイド部30の外周面と振動テーブル26のシリンダ39の内周面との間は微小な隙間で対向しており、ガイド部30の外周面には複数の空気吹き出し口58が所定間隔で設けられているため、ガイド部30とシリンダ39との間の全周に均一な空気圧層が形成され、シリンダ39はガイド部30に対し空気圧層を介して非接触状態で摺動可能にガイドされる。
ガイド部30の軸方向の上端部30bとシリンダ39との間には、空気ばね室60が形成されている。この空気ばね室60は、上記複数の空気吹き出し口58から吹き出された空気圧が溜まるため、空気ばねとして機能する。そのため、振動テーブル26の軸方向の静的荷重は、空気ばね室60の空気圧により弾力的に支持される。
また、ガイド部30は、軸方向に貫通する排気通路62(図2中破線で示す)が設けられている。すなわち、排気通路62は上端がガイド部30の上端部30bに開口して空気ばね室60に連通されており、下端が中央穴44aに開口している。そして、中央穴44aには、上記空圧源ユニット16からの空気供給管路64と、排気管路66が挿入されている。空気供給管路64は上記軸方向空気供給通路54に接続され、排気管路66は排気通路62に接続されている。
この空気供給管路64、排気管路66は空圧源ユニット6に供給される。振動発生機2の振動テーブル26の振動及び試料9の振動は、加速度センサにより検出される。加速度センサで検出された検出信号は振動制御器3に供給される。振動制御器3は、試料9の振動検出信値と予め設定された目標値とを比較して、目標の振動になるように振動発生機を制御する。
振動制御器3で生成された加振信号は、電力増幅器4に供給される。電力増幅器4は、振動制御器3から供給された加振信号を電力増幅する。電力増幅器4で電力増幅された加振信号は、振動発生機2に設けられた駆動コイル34に供給される。また、振動発生機2の励磁コイル36,38には励磁電源5から直流電流が供給される。振動発生機2は励磁電源5から供給される直流電流により励磁され、電力増幅器4から供給される加振信号により振動テーブル部10を矢印A方向に振動させる。
空圧源ユニット6は振動発生機2のシリンダに圧縮空気を供給する。空圧源ユニット6から供給された圧縮空気はシリンダに供給され、空気バネとして用いられるとともに、軸受けの側面から排出され、空気ベアリングとして機能する。また、振動発生機2は、長時間振動を行うため、高温になる。よって、冷却用ブロア8により外部からフレッシュエアが送風され、冷却される。冷却用ブロア電源回路7は、冷却用ブロア8に駆動電力を供給する。
このとき、振動発生機2の励磁の大きさは最大振動能力で振動させたときに必要な励磁レベルに設定されていた。また、冷却用ブロア8の冷却能力も同様に最大振動能力で振動させたときの耐えうる最大の冷却能力で常に駆動されていた。
近年の省電力化の動きに伴い、振動試験装置の分野においても省電力化が求められている。
このため、例えば、加振力に応じて最適な励磁電流及び駆動電流を算出し、励磁コイル及び駆動コイルを駆動することにより省電力化を図った振動発生機が提案されていた(例えば、特許文献1参照)。
また、加速度検出結果に応じて励磁電流を制御するとともに、ブロア電源を制御し、省電力化を図った振動試験装置が提案されていた(例えば、特許文献2参照)。
特願2008−164493号 特開2001−13033号公報
しかるに、特許文献1に記載の振動発生機は、励磁コイルに供給する励磁電流、駆動コイルに供給する駆動電流に基づいて最適な励磁電流及び駆動電流を算出する構成であり、処理、あるいは、構成が非常に煩雑であった。
また、特許文献2の記載の振動試験装置では、加速度検出結果に応じて励磁電流を制御する構成であったため、駆動電流との直接的関係が考慮されておらず、処理が煩雑であった。
本発明は上記の点に鑑みてなされたもので、簡単な構成で、確実に振動の制御が可能であり、また、消費電力を低減できる振動試験装置を提供することを目的とする。
本発明は、試料が載置された試料台を振動させる振動発生機と、振動発生機に直流励磁電流を供給する励磁電源と、振動発生機による振動を検出する振動検出器と、振動検出器で検出された振動に応じた交流駆動電流を振動発生機に供給する振動制御回路とを備えた振動試験装置であって、振動制御回路から振動発生機に供給される交流駆動電流を検出する駆動電流検出部と、駆動電流検出部で検出された交流駆動電流に応じて励磁電源から振動発生機に供給する直流励磁電流を切り換える励磁電力切換制御部とを含む。
振動発生機は、励磁コイルと、励磁コイルにより発生する磁界に作用して、試料台を振動させる駆動コイルとを含み、励磁コイルには、励磁電源から前記直流励磁電流が供給され、駆動コイルには、振動制御回路から交流電流が供給される構成とされ、更に励磁コイルの温度を検出する第1温度センサと、駆動コイルの温度を検出する第2温度センサと、第1温度センサの検出信号又は第2温度センサの検出信号が所定温度を示すレベルとなったときに、警報を出力する保護回路を含む構成とされている。
励磁電力切換制御部は、駆動電流検出部で検出された交流駆動電流が所定の駆動電流になったときに、励磁電源から振動発生機に供給される直流励磁電流を停止させる。
消費される瞬間電力及び/又は積算電力を表示する電力計を含む。
振動発生機を冷却する冷却装置と、冷却装置に電力を供給する冷却装置電源と、駆動電流検出部で検出された駆動電流に応じて冷却装置電源から冷却装置に供給される電力を切り換える冷却切換制御部とを含む。
本発明によれば、振動制御回路から振動発生機に供給される交流駆動電流を検出する駆動電流検出部により検出された交流駆動電流に応じて励磁電源から振動発生機に供給する直流励磁電流を切り換えることにより、簡単な構成で、消費電力を低減できる。
本発明の一実施例のブロック構成図である。 駆動電流検出器124の斜視図である。 加振力算出ユニット125の回路構成図である。 励磁電源126の回路構成図である。 振動試験装置の加振力に応じた主要部の電力消費の特性図である。 振動試験装置の加振力に応じた主要部の電力消費の特性図である。 最大加振力に対する消費電力、省エネ率、CO2削減量を示す図である。 従来の一例のブロック構成図である。 従来の一例の振動発生機の断面図である。
図1は本発明の一実施例のブロック構成図を示す。同図中、図8、図9と同一構成部分には同一符号を付し、その説明は省略する。
本実施例の振動試験装置100は、駆動装置120の構成が振動試験装置1と相違する。
本実施例の駆動装置120は、デジタル振動制御装置121、マスタユニット122、電力増幅器ユニット123、駆動電流検出器124、加振力算出ユニット125、励磁電源126、周波数変換器127、電力計128を含む構成とされている。
デジタル振動制御装置121には、加速度センサ170から試料9の振動に応じた加速度信号が供給され、振動検出センサ180から振動テーブル26の振動に応じた加速度信号が供給される。
マスタユニット122には、位置センサ190から振動テーブル26の位置を検出するための位置信号が供給される。マスタユニット122は、デジタル振動制御装置152から供給される振動制御信号及び位置センサ190から供給される位置信号に基づいて交流駆動信号を生成する。マスタユニット122で生成された交流駆動信号は、電力増幅器ユニット123に供給される。
電力増幅器ユニット123には、マスタユニット122から交流駆動信号が供給される。電力増幅器ユニット123は、マスタユニット122から供給される交流駆動信号を電力増幅して、交流駆動電流を振動発生機2の駆動コイル34に供給する。
ここで、振動発生機2で発生する加振力について説明する。
振動発生機2で発生する加振力F〔kgf〕は、定数をk、励磁コイル38による励磁磁力の磁束密度をB、駆動コイル34の巻き線の長さをL、駆動コイル34に流れる駆動電流をiとすると、
F=k×B×L×i
で求められる。ここで、k、B、Lは、決まっているため、加振力Fは、駆動電流iに比例することがわかる。
よって、駆動電流iを検出することにより、加振力を検出できる。
本実施例では、駆動電流iを駆動電流検出器124により検出する。
図2は駆動電流検出器124の斜視図を示す。
駆動電流検出器124は、電力増幅ユニット123から振動発生機2の駆動コイル34に供給される交流駆動電流を検出する。駆動電流検出装置124は、ホール素子を利用した電流センサであり、例えば、環状をなし、途中にギャップGを有するコア124a、及び、コア124aのギャップGに挿入されるホール素子124bを含む構成とされており、コア124aの内周側に電力増幅ユニット123と振動発生機2の駆動コイル34とを接続する接続線L11を挿入した構成とされている。電力増幅ユニット123と振動発生機2の駆動コイル34とを接続する接続線L11に電流Iacdが流れると、電流Iacdに応じた磁束φ11がコア124aに流れる。コア124aに流れる磁束φ11は、ギャップGでホール素子124bを貫通する。ホール素子124aは、貫通する磁束により電気抵抗が変化する素子であり、バイアス電圧Vbiasが印加されており、磁束φ11に応じて電気抵抗が変化し、バイアス電圧Vbiasの印加方向に直交する方向に流れる電流Icが変化する。駆動電流検出器124は、電流Icを電流検出信号として出力する。駆動電流検出器124から出力される電流検出信号は、加振力算出ユニット125に供給される。
図3は加振力算出ユニット125の回路構成図を示す。
加振力算出ユニット125は、抵抗R11〜R21、基準電圧源131、コンパレータ132−1〜132−4、バッファアンプ133、メモリ134、EXORゲート135−1〜135−3、トランジスタQ1〜Q4、リレー136−1〜136−4、表示部137などを含む構成とされている。
駆動電流検出器124からの電流検出信号は、端子T11に供給される。端子T11に供給された電流検出信号は、抵抗R11、R12により分圧される。抵抗R11、R12により分圧された信号は、コンパレータ132−1〜132−4の非反転入力端子に供給される。
コンパレータ132−1の反転入力端子には、第1基準電圧Vref11が印加される。コンパレータ132−2の反転入力端子には、第2基準電圧Vref12が印加される。コンパレータ132−3の反転入力端子には、第3基準電圧Vref13が印加される。コンパレータ132−4の反転入力端子には、第4基準電圧Vref14が印加される。
第1基準電圧Vref11、第2基準電圧Vref12、第3基準電圧Vref13、第4基準電圧Vref14は、基準電圧源131から供給される基準電圧Vref0を抵抗R13〜R16により分圧して得られる。なお、基準電圧Vref0、第1基準電圧Vref11、第2基準電圧Vref12、第3基準電圧Vref13、第4基準電圧Vref14は、例えば、
Vref0>Vref11>Vref12>Vref13>Vref14
の関係となるように設定されている。
コンパレータ132−1は、検出信号を分圧した信号が第1基準電圧Vref11に等しい又は大きい状態では出力をハイレベルとし、検出信号を分圧した信号が第1基準電圧Vref11より小さい状態では出力をローレベルとする。コンパレータ132−2は、検出信号を分圧した信号が第2基準電圧Vref12に等しい又は大きい状態では出力をハイレベルとし、検出信号を分圧した信号が第2基準電圧Vref12より小さい状態では出力をローレベルとする。
コンパレータ132−3は、検出信号を分圧した信号が第3基準電圧Vref13に等しい又は大きい状態では出力をハイレベルとし、検出信号を分圧した信号が第3基準電圧Vref13より小さい状態では出力をローレベルとする。コンパレータ132−4は、検出信号を分圧した信号が第4基準電圧Vref14に等しい又は大きい状態では出力をハイレベルとし、検出信号を分圧した信号が第4基準電圧Vref14より小さい状態では出力をローレベルとする。
コンパレータ132−1〜132−4の出力は、メモリ134に供給される。
メモリ134は、コンパレータ132−1〜132−4の出力を一定時間毎に保持し、4ビットデータとして出力する。メモリ134から出力される4ビットデータは、EXORゲート135−1〜135−3に供給される。メモリ134は、端子T16、T17を通してスイッチSW1に接続されている。メモリ134は、スイッチSW1がオフのときには、コンパレータ132−1〜132−4の出力を保持し、出力し、スイッチSW1をオンすると、最上位ビットである第1ビットを"1"、下位ビットである第2〜第4ビットを"0"に固定する。これにより、励磁電源126の出力は駆動コイル34に供給される駆動電流によらず最大電力に保持される。
また、メモリ134から出力される4ビットデータのうち最上位ビットである第1ビットは、表示部137、及び、抵抗R18を介してトランジスタQ1のベースに供給される。
EXORゲート135−1は、メモリ134から出力される4ビットデータのうち上位の第1、第2ビットの排他的論理和(EXOR)を出力する。EXORゲート135−1の出力は、表示部137、及び、抵抗R19を介してトランジスタQ2のベースに供給される。
EXORゲート135−2は、メモリ134から出力される4ビットデータのうち第2、第3ビットの排他的論理和(EXOR)を出力する。EXORゲート135−2の出力は、表示部137、及び、抵抗R20を介してトランジスタQ3のベースに供給される。
EXORゲート135−3は、メモリ134から出力される4ビットデータのうち下位の第3、第4ビットの排他的論理和(EXOR)を出力する。EXORゲート135−3の出力は、表示部137、及び、抵抗R21を介してトランジスタQ4のベースに供給される。
EXORゲート135−1は、第1及び第2ビットの論理値が共に"0"及び共に"1"のときに出力論理を"1"とし、第1ビットの論理値が"1"で第2のビットの論理値が"0"、又は、第1ビットの論理値が"0"で第2のビットの論理値が"1"のときには出力論理を"1"とする。
EXORゲート135−2は、第2及び第3ビットの論理値が共に"0"及び共に"1"のときに出力論理を"1"とし、第2ビットの論理値が"1"で第3のビットの論理値が"0"、又は、第2ビットの論理値が"0"で第3のビットの論理値が"1"のときには出力論理を"1"とする。
EXORゲート135−3は、第3及び第4ビットの論理値が共に"0"及び共に"1"のときに出力論理を"1"とし、第3ビットの論理値が"1"で第4のビットの論理値が"0"、又は、第3ビットの論理値が"0"で第4のビットの論理値が"1"のときには出力論理を"1"とする。
表示部137は、LEDなどにより供給電力の状態、例えば、極大、大、中、小などを指示するものである。ユーザは表示137の表示を参照することにより供給電力の状態を認識できる。
トランジスタQ1〜Q4は、例えば、NPNトランジスタから構成され、リレー136−1〜136−4を駆動する。
トランジスタQ1は、エミッタが接地され、コレクタがリレー136−1に接続されている。トランジスタQ2は、エミッタが接地され、コレクタがリレー136−2に接続されている。トランジスタQ3は、エミッタが接地され、コレクタがリレー136−3に接続されている。トランジスタQ4は、エミッタが接地され、コレクタがリレー136−4に接続されている。
トランジスタQ1は、メモリ134の第1ビットがハイレベルのときにオンし、ローレベルのときにオフする。トランジスタQ1がオンすると、リレー136−1がオンする。リレー136−1は、励磁電源126に接続されている。トランジスタQ2は、メモリ134の第2ビットがハイレベルのときにオンし、ローレベルのときにオフする。トランジスタQ2がオンすると、リレー136−2がオンする。リレー136−2は、励磁電源126に接続されている。
トランジスタQ3は、メモリ134の第3ビットがハイレベルのときにオンし、ローレベルのときにオフする。トランジスタQ3がオンすると、リレー136−3がオンする。リレー136−3は、励磁電源126に接続されている。トランジスタQ4は、メモリ134の第4ビットがハイレベルのときにオンし、ローレベルのときにオフする。トランジスタQ4がオンすると、リレー136−4がオンする。リレー136−4は、励磁電源126に接続されている。
なお、バッファアンプ133は、検出信号を抵抗R11と抵抗R12とで分圧した信号をアナログ的に増幅して、端子T15に供給する。端子T15は、励磁電源126に接続されている。
図4は励磁電源126の回路構成図を示す。
励磁電源126は、サーキットプロテクタ141、三相ノイズフィルタ142、遮断スイッチ143、整流回路144、スイッチング回路145、PWM制御回路146、トランス147、全波整流回路148、平滑回路149、保護回路200などを含む構成とされている。
サーキットプロテクタ141は、三相電源が接続される端子T51、T52、T53に接続されており、過負荷、過電流状態になると、自動的に三相電源との接続を遮断するデバイスである。サーキットプロテクタ141を通過した電源は、三相ノイズフィルタ142に供給される。
三相ノイズフィルタ142は、コンデンサ、コンデンサなどを含み、サーキットプロテクタ141を通過した三相電源からノイズ成分を除去し、出力側に伝送する。三相ノイズフィルタ142を通過した三相電源は、マグネットスイッチ143を介して整流回路144に供給される。
遮断スイッチ143は、例えば、マグネットスイッチなどから構成されており、三相ノイズフィルタ142と整流回路144との間に接続されて、保護回路200からの遮断信号により三相ノイズフィルタ142と整流回路144との接続を遮断する。
保護回路200には、例えば、励磁コイル38及び駆動コイル34に取り付けられた温度センサ161、162が接続されている。
温度センサ161、162は、例えば、熱電対あるは半導体素子などからなる温度検出素子から構成され、励磁電源126の保護回路200に接続された端子T41、T42に接続されている。保護回路200は、温度センサ161、162のいずれかの温度検出信号が第1の温度に対応した第1のレベルになると、警報を出力する。また、更に、温度が上昇し、第2の温度に対応した第2のレベルになると、遮断スイッチ143をオフし、励磁コイル38への電力の供給を停止するとともに、電力増幅器ユニット123の動作を停止させる。これにより、励磁コイル38及び駆動コイル34への電流の供給が停止され、励磁コイル38及び駆動コイル34の過熱は停止する。また、このとき、振動試験装置100は、過熱状態にあるので、冷却用ブロア8は動作させておく。
整流回路144は、同一極性で直列接続された一対のダイオードを、各相毎に設け、整流する構成とされている。整流回路144で整流された電源は、ACコンデンサC11、C12によりノイズを除去され、スイッチング回路145に供給される。スイッチング回路145は、例えば、極性の異なる1対のFETから構成されており、PWM制御回路146から供給されるPWM信号により相補的にスイッチングされる。なお、スイッチング回路145に用いられるスイッチング素子は、FETに限定されるものではなく、IGBTなどの他のスイッチング素子であってもよい。
スイッチング回路145は、整流回路144で整流された電流をPWM制御回路146からのPWM信号に基づいてスイッチングして、トランス147の1次コイルに供給する。PWM制御回路146には、加振算出ユニット125の端子T11〜T15から供給される電力制御信号が供給される。
PWM制御回路146は、端子T11からの信号がハイレベルのときには、出力電力が極大レベルP11となるようにPWM信号を制御し、端子T12からの信号がハイレベルのときには、出力電力が大レベルP12となるようにPWM信号を制御し、端子T13からの信号がハイレベルのときには、出力電力が中レベルP13となるようにPWM信号を制御し、端子T14からの信号がハイレベルのときには、出力電力が小レベルP14となるようにPWM信号を制御する。
出力電力のレベルは、例えば、PWM信号のデューティー比、周波数などを変更することにより変更される。
なお、励磁電源126の出力電力は、
P11>P12>P13>P14
に設定されている。
トランス147は、1次コイルに供給される交流電流に応じた交流電流を2次コイルに発生させる。このとき、1次コイルと2次コイルとの巻き数などにより、1次コイルに印加される電圧を昇圧又は減圧した電圧を2次コイルに発生させる。トランス147の2次コイルに発生した交流電圧は、全波整流回路148に供給される。
全波整流回路148は、ブリッジ接続されたダイオードから構成され、トランス147の2次コイルに発生する交流を全波整流する。全波整流回路148で全波整流された電流は、平滑回路149により平滑される。
平滑回路149は、例えば、電界コンデンサから構成され、全波整流回路148の両端に接続され、全波整流回路148から供給される電流を平滑化する。平滑回路149で平滑された電流は、ACコンデンサC21、C22によりノイズを除去され、出力端子T21、T22から出力される。出力端子T21、T22は、振動発生機2の励磁コイル38に接続される。
周波数変換器127は、いわゆる、インバータなどから構成されており、加振力算出ユニット123の端子T11、T12、T13、T14、T15などが制御入力信号として供給される。周波数変換器127に用いられるインバータは、一般に販売されているインバータと同様な構成のインバータであり、制御入力信号により出力周波数が段階的、あるは、連続して変化可能な構成とされている。周波数変換器127は、加振力算出ユニット123からの制御入力信号により出力周波数を段階的、あるは、連続して変化させる。
三相電源150は、電力計128を介して各部に電源を供給する構成とされている。電力計128は、例えば、三相電源150から装置に供給される積算電力及び/又は瞬間(瞬時)電力を表示可能な電力計から構成される。なお、積算電力は、振動試験で消費されている電力を積算値であり、瞬間電力は、振動試験中の各時刻に消費されている瞬間的な電力である。また、電力計128は、例えば、表示部が一つであり、電力計128に設けられた切換ボタンなどの操作により、積算電力と瞬間電力とのいずれかを表示部に表示することができる構成とされていてもよい。また、電力計128は、積算電力と瞬間電力との両方を同時に表示部に表示できる構成であってもよい。ユーザは、電力計128を参照することにより装置で消費されている積算電力及び/又は瞬間電力を認識できる。ユーザが瞬間電力又は積算電力を参照することにより、ユーザに対して省電力への意識を徹底することができる。
次に、本実施例の動作を説明する。
図5は、励磁電力に対する加振力の特性図を示す。
図5に示すように最大加振力Fmax〔Kgf〕の発生時の励磁電力をPmax〔KVA〕とする。このとき、最大加振力Fmaxの半分"Fmax/2"の加振力を得る場合に必要な励磁電力は略"Pmax/3"で済むことが実験的に分かっている。
このため、最大加振力Fmaxで駆動しない場合には、励磁電力を最大値Pmaxとする必要はない。
図6は、振動試験装置の加振力に応じた主要部の電力消費の特性図を示す。図6(A)は、励磁コイル38及び冷却用ブロア8を加振力によらず常に、最大電力で駆動したときの特性、図6(B)は、端子T11〜T14の出力を用いて励磁電源126を制御したときの特性、図6(C)は、端子T15の出力を用いて励磁電源126を制御したときの特性を示す。
励磁電源126及び冷却用ブロア8を最大電力では駆動した場合には、図6(A)に示すように励磁電力、冷却用ブロア8の電力は、加振力によらず、常に最大となり、非常に大きな電力を消費していた。
図6(B)は、加振力が0−35%、35−60%、60−100%で励磁コイル38及び冷却用ブロア8への電力供給を段階的に切り換えた場合の特性を示しており、加振力60−100%で励磁コイル38及び冷却用ブロア8を最大電力で駆動している。
加振力が0−35%、及び、35−60%において消費電力が大幅に低減していることがわかる。
また、図6(C)に示すように、従来の振動試験装置1のように励磁コイル38及び冷却用ブロア8への電力供給を加振力に対応して連続的に制御することにより、更に、消費電力を低減できることがわかる。
図7は最大加振力に対する消費電力、省エネ率、CO2削減量を示す図である。
図7に示すように、最大加振力6.0KNで駆動した場合、従来の振動試験装置1のように励磁コイル38及び冷却用ブロア8を常時最大電力で駆動した場合の消費電力が4.3KWであるのに対し、本実施例の振動試験装置100の消費電力は、2.9KWで済み、省エネ率は32.9%となり、1年間のCO2削減量は、3.2tとなる。
また、最大加振力10.0KNで駆動した場合、従来の振動試験装置1のように励磁コイル38及び冷却用ブロア8を常時最大電力で駆動した場合の消費電力が6.2KWであるのに対し、本実施例の振動試験装置100の消費電力は、3.9KWで済み、省エネ率は37.0%となり、1年間のCO2削減量は、3.0tとなる。
さらに、最大加振力20.0KNで駆動した場合、従来の振動試験装置1のように励磁コイル38及び冷却用ブロア8を常時最大電力で駆動した場合の消費電力が15.5KWであるのに対し、本実施例の振動試験装置100の消費電力は、10.3KWで済み、省エネ率は33.5%となり、1年間のCO2削減量は、12.0tとなる。
また、最大加振力30.0KNで駆動した場合、従来の振動試験装置1のように励磁コイル38及び冷却用ブロア8を常時最大電力で駆動した場合の消費電力が22.4KWであるのに対し、本実施例の振動試験装置100の消費電力は、13.3KWで済み、省エネ率は40.6%となり、1年間のCO2削減量は、21.0tとなる。
このように、本実施例の振動試験装置100によれば、従来の振動試験装置1に比べて大幅に消費電力を低減できることがわかる。
本実施例の振動試験装置100によれば、駆動コイル34に流れる駆動電流を検出し、閾値と比較して、比較結果に基づいて励磁電源を切り換え、励磁コイル38に供給する励磁電力を制御する構成であり、よって、非常に処理、構成を簡単にできる。
本発明は上記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変形例が考えられることは言うまでもない。
1、100 振動試験装置
2 振動発生機
26 振動テーブル
34 駆動コイル
38 励磁コイル
120 駆動装置
121 デジタル振動制御装置
122 マスタユニット
123 電力増幅器ユニット
123 加振力算出ユニット
124 駆動電流検出器
124a コア、124b ホール素子、G ギャップ
125 加振力算出ユニット
126 励磁電源
127 周波数変換器
128 積算電力計
131 基準電圧源
132−1〜132−4 コンパレータ
133 バッファ回路
141 サーキットプロテクタ
142 三相ノイズフィルタ
143 遮断スイッチ
144 整流回路
145 スイッチング回路
146 PWM制御回路
147 トランス
148 全波整流器
149 平滑回路
150 三相電源
161、162 温度センサ
170、180 加速度センサ
190 位置センサ

Claims (5)

  1. 試料が載置された試料台を振動させる振動発生機と、
    前記振動発生機に直流励磁電流を供給する励磁電源と、
    前記振動発生機による振動を検出する振動検出器と、
    前記振動検出器で検出された振動に応じた交流駆動電流を前記振動発生機に供給する振動制御回路とを備えた振動試験装置であって、
    前記振動制御回路から前記振動発生機に供給される前記交流駆動電流を検出する駆動電流検出部と、
    前記駆動電流検出部で検出された前記交流駆動電流に応じて前記励磁電源から前記振動発生機に供給する前記直流励磁電流を切り換える励磁電力切換制御部とを含む振動試験装置。
  2. 前記振動発生機は、励磁コイルと、
    前記励磁コイルにより発生する磁界に作用して、前記試料台を振動させる駆動コイルとを含み、
    前記励磁コイルには、前記励磁電源から前記直流励磁電流が供給され、
    前記駆動コイルには、前記振動制御回路から前記交流駆動電流が供給される構成とされ、
    更に、前記励磁コイルの温度を検出する第1温度センサと、
    前記駆動コイルの温度を検出する第2温度センサと、
    前記第1温度センサの検出信号又は前記第2温度センサの検出信号が所定温度を示すレベルとなったときに、警報を出力する保護回路を含む請求項1記載の振動試験装置。
  3. 前記励磁電力切換制御部は、前記駆動電流検出部で検出された前記交流駆動電流が所定の駆動電流になったときに、前記励磁電源から前記振動発生機に供給される前記直流励磁電流を停止させる請求項1又は2記載の振動試験装置。
  4. 消費される瞬間電力及び/又は積算電力を表示する電力計を含む請求項1乃至3のいずれか一項記載の振動試験装置。
  5. 前記振動発生機を冷却する冷却装置と、
    前記冷却装置に電力を供給する冷却装置電源と、
    前記駆動電流検出部で検出された前記駆動電流に応じて前記冷却装置電源から前記冷却装置に供給される電力を切り換える冷却切換制御部とを含む請求項1乃至4のいずれか一項記載の振動試験装置。
JP2009236363A 2009-10-13 2009-10-13 振動試験装置 Active JP5461140B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009236363A JP5461140B2 (ja) 2009-10-13 2009-10-13 振動試験装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009236363A JP5461140B2 (ja) 2009-10-13 2009-10-13 振動試験装置

Publications (2)

Publication Number Publication Date
JP2011085414A true JP2011085414A (ja) 2011-04-28
JP5461140B2 JP5461140B2 (ja) 2014-04-02

Family

ID=44078470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009236363A Active JP5461140B2 (ja) 2009-10-13 2009-10-13 振動試験装置

Country Status (1)

Country Link
JP (1) JP5461140B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905597A4 (en) * 2012-10-03 2016-03-02 Emic Corp VIBRATION GENERATOR
CN105715599A (zh) * 2016-02-02 2016-06-29 北京苏试创博环境可靠性技术有限公司 一种力学结构抗振性能仿真实验平台的自平衡油路系统
CN113702795A (zh) * 2021-09-06 2021-11-26 品为众创(苏州)试验设备有限公司 一种新型功率放大器
CN113702892A (zh) * 2021-08-27 2021-11-26 国网江苏省电力有限公司营销服务中心 一种连续式电子式电流互感器振动试验装置及其使用方法
CN114739613A (zh) * 2022-05-17 2022-07-12 湖南盈晟电子科技有限公司 一种振动台台体温度调节方法及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197395A (ja) * 1997-01-13 1998-07-31 Mitsubishi Heavy Ind Ltd 加振装置の油圧制御装置
JP2000121490A (ja) * 1998-10-09 2000-04-28 Akashi Corp 振動試験装置及び振動試験装置制御方法
JP2001013033A (ja) * 1999-06-28 2001-01-19 Tabai Espec Corp 振動試験装置
JP2009222699A (ja) * 2008-02-20 2009-10-01 Imv Corp 運転条件決定装置および方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197395A (ja) * 1997-01-13 1998-07-31 Mitsubishi Heavy Ind Ltd 加振装置の油圧制御装置
JP2000121490A (ja) * 1998-10-09 2000-04-28 Akashi Corp 振動試験装置及び振動試験装置制御方法
JP2001013033A (ja) * 1999-06-28 2001-01-19 Tabai Espec Corp 振動試験装置
JP2009222699A (ja) * 2008-02-20 2009-10-01 Imv Corp 運転条件決定装置および方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905597A4 (en) * 2012-10-03 2016-03-02 Emic Corp VIBRATION GENERATOR
CN105715599A (zh) * 2016-02-02 2016-06-29 北京苏试创博环境可靠性技术有限公司 一种力学结构抗振性能仿真实验平台的自平衡油路系统
CN113702892A (zh) * 2021-08-27 2021-11-26 国网江苏省电力有限公司营销服务中心 一种连续式电子式电流互感器振动试验装置及其使用方法
CN113702795A (zh) * 2021-09-06 2021-11-26 品为众创(苏州)试验设备有限公司 一种新型功率放大器
CN114739613A (zh) * 2022-05-17 2022-07-12 湖南盈晟电子科技有限公司 一种振动台台体温度调节方法及制备方法

Also Published As

Publication number Publication date
JP5461140B2 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5461140B2 (ja) 振動試験装置
US10330743B2 (en) Noncontact power transmission system to detect presence of a metallic foreign matter
JP5529263B2 (ja) 温度制御式冷却ブロワを有する試験台
WO2007004656A1 (ja) 磁気軸受装置および磁気軸受方法
JPWO2009095949A1 (ja) 磁気浮上モータおよびポンプ
JP2011174741A (ja) 電流センサ
JP6077286B2 (ja) 電磁回転装置及び該電磁回転装置を備えた真空ポンプ
EP1774346A1 (en) Dc current sensor
JP2020043630A (ja) 振動試験装置及びその制御方法
TW201425899A (zh) 振動產生機
JP3273034B2 (ja) 振動試験装置
CA2374283A1 (en) Magnetic flux detector
JP2005031089A (ja) 開ループ電流センサとそのセンサを備えた電源回路
US6608473B2 (en) Electrical machine, especially a three-phase generator
JP2020165484A (ja) 磁気軸受装置およびターボ圧縮機
JP3895479B2 (ja) 振動試験装置及び振動試験装置制御方法
JP3380809B2 (ja) 振動試験装置
JP2002333467A (ja) 磁界検出装置
JP2011146550A (ja) 非接触励磁超電導磁石装置
WO2005045266A1 (ja) 電力増幅装置および磁気軸受
JP2019132140A (ja) 回転機
JP3208726U (ja) ワイヤレス給電システム
JP3187982B2 (ja) 磁気浮上装置
TW200828774A (en) Driver apparatus for single-phase brushless motor
JP2008265997A (ja) リフティングマグネット駆動回路及びリフティングマグネット装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5461140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250