JP2011073896A - カルシウムシアナミドを含む粉体、該粉体の製造方法及びその装置 - Google Patents

カルシウムシアナミドを含む粉体、該粉体の製造方法及びその装置 Download PDF

Info

Publication number
JP2011073896A
JP2011073896A JP2009224359A JP2009224359A JP2011073896A JP 2011073896 A JP2011073896 A JP 2011073896A JP 2009224359 A JP2009224359 A JP 2009224359A JP 2009224359 A JP2009224359 A JP 2009224359A JP 2011073896 A JP2011073896 A JP 2011073896A
Authority
JP
Japan
Prior art keywords
powder
gas
low
raw material
low vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009224359A
Other languages
English (en)
Other versions
JP5075899B2 (ja
Inventor
Akira Yokota
章 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009224359A priority Critical patent/JP5075899B2/ja
Publication of JP2011073896A publication Critical patent/JP2011073896A/ja
Application granted granted Critical
Publication of JP5075899B2 publication Critical patent/JP5075899B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】反応装置内の平均温度が外気温度程度という低い温度でカルシウムカーバイドを含む粉体をつくり、同様にしてカルシウムシアナミドを含む粉体を製造する方法及び装置、並びに上記粉体を提供する。
【解決手段】酸化カルシウム粉体、炭酸カルシウム粉体、石灰石粉体、又は貝殻の粉体からなる処理対象粉体と炭素材種の粉体との混合粉体を、低真空容器本体02におけるアルゴンおよび/又は一酸化炭素の低真空条件下で、正負対電極023への直流パルス電圧の印加により非定常アークプラズマに曝露する処理によってカルシウムカーバイドを含む粉体を得る第1工程と、得られた粉体に対し、低真空容器本体12において窒素ガス雰囲気で正負対電極123への直流パルス電圧の印加により非定常アークプラズマに曝露し、カルシウムシアナミド粉体を製造する第2工程とからなる。
【選択図】図1

Description

本発明は、パルスアーク放電による非定常熱プラズマを利用して製造されたカルシウムシアナミドを含む粉体、該粉体の製造方法及びその装置に関する。
従来、カルシウムカーバイドは、グラファイト電極を備えた電炉に生石灰とコークスの混合物を装入し、これを定常的に約2000℃に加熱することにより得られる熔融状態の産物を高温の電炉から取り出して冷却し、得られた固体塊状の産物を粉砕し、カルシウムカーバイド粉と炭素粉との混合粉として製造されている。
熱プラズマを利用してカルシウムカーバイドを製造する技術としては、特許文献1が知られているが、この技術は定常熱プラズマを利用する技術であって、具体的には、粒子径が2mm以下の生石灰及び/あるいは石灰石の粉体と還元剤と搬送ガスとを、誘導結合式の定常熱プラズマとともに、還元材質の部材で内面が囲われている反応室に導いて定常的に加熱し、生石灰及び/あるいは石灰石の粉体を熔融体としてカルシウムカーバイドを製造する方法である。該特許文献のデータから、カルシウムカーバイドの製造消費電力量は27,720J/gと計算される。
カルシウムシアナミド粉体は、カルシウムカーバイドを1200℃の窒化炉で処理することにより、窒素ガスを吸化合させて製造されている。
以上のとおり、従来の技術は、高温の炉や反応器を使用する高温技術である。
本発明は、熱プラズマを利用するが、従来のような定常熱プラズマの定常高温を利用するのではなく、パルスアーク放電による非定常アークプラズマを利用するので、パルスアーク放電を化学反応や粉体合成に利用している従来技術について以下に記載する。
パルスアーク放電をガスとガスの反応促進に利用する例として、特許文献2が知られている。該特許文献は、炭化水素ガスと水蒸気の混合ガス中で正負極一対の電極にパルス状電圧を印加するとき、該電極間のグロー放電又はアーク放電のパルス状電圧のパルス周波数によって、炭化水素から水素への転化率がより一層高くなるパルス周波数領域が存在することに着目し、炭化水素系燃料を水素へ転化するパルス放電列の条件を1.1kHzから1.7kHzまでの周波数領域に適正化した炭化水素改質装置を開示している。該特許文献と本発明を対比するとき、該特許文献の開示内容中の最重要概念であるパルス放電列の周波数領域という概念は、本発明とは関係性を有しない。
パルスアーク放電をカーボンナノチューブの製造に利用する技術が特許文献3により知られている。該特許文献は、形状等の特性の制御された多層カーボンナノチューブを、高純度で製造することができる多層カーボンナノチューブの製造方法と製造装置並びにその精製方法およびその製造のためのパルス状高電圧大電流電源に関する発明であって、1200℃以上の不活性ガス雰囲気の電気炉内で、2層カーボンナノチューブの原料としての触媒金属混合炭素電極を蒸発させるために、パルス放電開始高電圧の印加時間の一部に、放電維持電圧の印加時間の一部が重なるように成しえるパルス状高電圧大電流電源によるパルスアーク放電が、1200℃以上の温度で、0.1ミリ秒〜5ミリ秒のパルス幅の範囲のパルスアーク放電、および1250℃〜1300℃の温度で、0.2ミリ秒〜1.5ミリ秒のパルス幅の範囲のパルスアーク放電を成すことを開示している。したがって該特許文献の発明は、1200℃以上の不活性ガス雰囲気の電気炉の中で、パルスアーク放電をさせるという高温技術に属する。
矩形パルス変調高周波アーク放電を、超微粒子の合成、非平衡物質の合成、溶射等に有用な熱プラズマのエネルギー制御法に用いる技術として特許文献4が公知であるが、該特許文献の矩形パルス変調高周波アーク放電は、無電極型の放電であるのに対して、本発明が利用するパルスアーク放電は、有電極型の直流放電であるので、該特許文献と本発明は対比関係にない。
米国特許4594236号明細書(要約、請求項1、請求項2、請求項7) 特開2004−345879号公報(請求項1、請求項2、請求項3) 特開2004−168647号公報(請求項1、請求項2、請求項3、請求項10、請求項22) 特開平10−340795号公報(請求項1、請求項2、請求項3)
EK/EIPPCB/LVIC-S_Final_Draft Version June 2006 Chapter 7、p.366
上述したように、従来、カルシウムシアナミドは、高温の電炉で製造したカルシウムカーバイドを高温の窒化炉で窒化することによって製造されている。本発明の課題は、反応器の温度が桁違いに低温である外気温度程度という低い温度でカルシウムカーバイド粉をつくり、そのカルシウムカーバイド粉を反応器の温度が外気温度程度という低い温度で窒化して製造するカルシウムシアナミドを含む粉体の製造方法及び製造装置を提供することにあり、更に、既に増量剤を含有している粉剤として製造できる上記カルシウムシアナミドを含む粉体を提供することにある。
更に具体的に説明すると、本発明は、以下に説明するような本発明者の先行研究に基づく知見により完成するに至ったものである。
反応器の温度が外気温度程度であり、酸素がガスとして存在していない条件下の反応器内に、酸化カルシウム粉体と炭素材種の粉体の混合粉体とアルゴンとの固・気混相体であって酸素ガスを含まない固・気混相体を反応器内に配置されている正負対の電極の間に導き、反応器内のアルゴンガス圧力が低真空域の圧力下で、該正負対の電極に直流パルス電圧を印加し、過渡応答時間が短い大電流アーク放電により高エネルギー状態の非定常アークプラズマを発生させ、固・気混相体を該非定常アークプラズマに曝露する処理を行った結果、処理された固・気混相体のガス中にCOガスが存在していることをCO検知管により確認し、処理された固・気混相体の粉体中にカルシウムカーバイドが存在していることを臭素水の脱色により確認した。このことは、上記の処理において、
Figure 2011073896
で示される化学反応がCaO粉体と炭素材種粉体間で生じ、カルシウムカーバイドが生成したことを示している。さらにこの処理におけるガスが、アルゴンとCOガスの混合ガスの場合、又はCOガス単独の場合においても処理された固・気混相体の粉体中にカルシウムカーバイドが生成したことが認められた。
上記非定常アークプラズマに曝露する処理と同様の処理を、炭酸カルシウム粉体、石灰石粉体、又は貝殻の粉体と炭素材種の粉体の混合粉体とアルゴン及び/又は一酸化炭素との固・気混相体に実施した場合においても、処理された固・気混相体の粉体中にカルシウムカーバイドの生成が認められた。
次に、上記のように炭酸カルシウム粉体、石灰石粉体、又は貝殻の粉体と炭素材種の粉体の混合粉体を処理して得た各粉体のそれぞれを原料粉体として用いて、上記の各原料粉体別の窒素ガス及び/又はアルゴンとの固・気混相体を、非定常アークプラズマに曝露処理したところ、得られた各粉体中にCaCN2 の存在が認められた。この確認の操作は、後述する実験例2と同様の方法で行なった。
本発明は、以上に記した先行研究による知見に基づいてなされたものである。
上記課題を解決するための本発明に係るカルシウムシアナミドを含む粉体の製造方法は、酸化カルシウム粉体、炭酸カルシウム粉体、石灰石粉体、及び貝殻の粉体の群から選ばれた1ないし複数の処理対象粉体と炭素材種の粉体との混合粉体からなる第一原料粉体を用いて、カルシウムカーバイドを含む第二原料粉体を製造する第1工程と、該第二原料粉体を用いてカルシウムシアナミドを含む粉体を製造する第2工程とを含むことを特徴とするものである。
上記第1工程は、第1の低真空容器本体の内部に間隔を置いて対設する第1の正負対の電極の少なくとも一方を、炭素鋼、鋳鉄、鉄・リン合金、ニッケル・リン合金の中から選ばれた1種又は2種により形成した上記第1の低真空容器本体に、アルゴン及び/又は一酸化炭素と上記第一原料粉体とからなる第1固・気混相体を導入し、上記正負対の電極に1000〜6000ボルト、パルス幅が2〜100マイクロ秒の直流パルス電圧を印加して、パルスアーク放電により上記第1の正負対の電極間に非定常アークプラズマを発生させ、上記第1の電極対間の空間に存在する上記第1固・気混相体を該非定常アークプラズマに曝露した後、上記第1の反応装置内部の粉体をガスと分離して上記第二原料粉体を得る工程である。
また、上記第2工程は、第2の低真空容器本体の内部に間隔を置いて対設する第2の正負対の電極の少なくとも一方を、モリブデン、ニッケル、鉄・リン合金、ニッケル・リン合金、炭素鋼、炭素の中から選ばれた1種又は2種により形成した上記第2の低真空容器本体に、上記第二原料粉体と窒素ガス、又はそれにアルゴンを加えた第2固・気混相体を導入し、上記第2の正負対の電極に、1000〜6000ボルト、パルス幅が2〜100マイクロ秒の直流パルス電圧を印加して、パルスアーク放電により上記第2の正負対の電極間に非定常アークプラズマを発生させ、上記第2の電極間の空間に存在する上記第二原料粉体を含む第2固・気混相体を該非定常アークプラズマに曝露した後、上記第2の反応装置内部の粉体をガスと分離してカルシウムシアナミドを含む粉体を得る工程である。
一方、上記課題を解決するための本発明に係る製造装置は、酸化カルシウム粉体、炭酸カルシウム粉体、石灰石粉体又は貝殻の粉体と、炭素材種の粉体との混合粉体からなる第一原料粉体を用いて、カルシウムカーバイドを含む第二原料粉体を製造する第1の反応装置と、該第二原料粉体を用いてカルシウムシアナミドを含む粉体を製造する第2の反応装置とを含むことを特徴とするものである。
上記第1の反応装置は、第1の低真空ホッパー本体、第1の低真空容器本体及び第1の低真空固・気分離回収手段によって形成される第一原料粉体の流動経路と、上記流動経路の系内のガスを吸引し同系内を低真空に減圧する第1の排気手段と、該排気手段から排出ガスの一部を上記低真空ホッパー本体に還流させる還流路とを備え、上記低真空ホッパー本体は、第一原料粉体を装入するための装入口、アルゴン及び/又は一酸化炭素を導入するためのガス導入口、排気手段からの還流ガスを導入する還流ガス入口、並びに、アルゴン及び/又は一酸化炭素と第一原料粉体からなる第1固・気混相体を低真空容器本体に送出する固・気混相体流出口を備え、上記低真空容器本体は、その内部に間隔を置いて対設された第1の正負対の電極を備え、該電極の材種は、少なくともその一方が、炭素鋼、鋳鉄、鉄・リン合金、ニッケル・リン合金の中から選ばれた1種又は2種により形成され、該正負対の電極には非定常アークプラズマを発生させる直流パルス電圧を、低真空容器本体内を通過する第1固・気混相体の全体に上記非定常アークプラズマを曝露するに要する時間間隔で繰り返し印加するように制御されるパルス大電流電源が接続され、上記低真空固・気分離回収手段は、上記低真空容器本体内での処理により得た第二原料粉体を排出ガスと分離し、分離された第二原料粉体を第2の反応装置における第2の低真空ホッパー本体に装入する粉体回収口を備えると共に、分離した排出ガスの一部を上記排気手段を通して上記第1の低真空ホッパー本体に還流させる還流路に接続されるガス回収口を備えるものである。
また、上記第2の反応装置は、第2の低真空ホッパー本体、第2の低真空容器本体及び第2の低真空固・気分離回収手段によって形成される第二原料粉体の流動経路と、上記流動経路の系内のガスを吸引し同系内を低真空に減圧する排気手段とを備え、第二原料粉体が装入される上記第2の低真空ホッパー本体は、窒素ガス又はそれにアルゴンを加えたガスを導入するためのガス導入口と、該ガスと第二原料粉体からなる第2固・気混相体を第2の低真空容器本体に送出する固・気混相体流出口を備え、上記第2の低真空容器本体は、その内部に間隔を置いて対設された第2の正負対の電極を備え、該電極の材種は、少なくとも一方が、モリブデン、ニッケル、鉄・リン合金、ニッケル・リン合金、炭素鋼、炭素の中から選ばれた1種又は2種により形成され、該正負対の電極には非定常アークプラズマを発生させる直流パルス電圧を、第2の低真空容器本体内を通過する第2固・気混相体の全体に上記非定常アークプラズマを曝露するに要する時間間隔で繰り返し印加するように制御されるパルス大電流電源が接続され、上記第2の低真空固・気分離回収手段は、上記第2の低真空容器本体内での処理により得たカルシウムシアナミドを含む粉体を排出ガスと分離して送出する粉体回収口を備えるものである。
更に、上記製造方法により製造される本発明のカルシウムシアナミドを含む粉体は、酸化カルシウム粉体、炭酸カルシウム粉体、石灰石粉体、及び貝殻の粉体の群から選ばれた1ないし複数の処理対象粉体と炭素材種の粉体との混合粉体を、非定常アークプラズマに曝露することにより上記処理対象粉体の表層にカルシウムカーバイドを生成させ、得られた粉体を窒素ガス雰囲気において非定常アークプラズマに曝露することにより、上記カルシウムカーバイドの全部又は一部にカルシウムシアナミドを生成させ、該カルシウムカーバイド及びカルシウムシアナミドに電極の消耗に由来する電極材料物質を含有させていることを特徴とするものである。
以上に詳述した本発明の方法によれば、高温炉や高温反応器を使用する従来の方式に比較し、桁違いに低温である外気温度程度の反応器の温度で、カルシウムカーバイド粉体、又はカルシウムシアナミド粉体の製造が可能となり、しかも、反応が従来の炉方式よりも桁違いに高速なので能率の良い生産が可能となる。
また、本発明の製造装置によれば、従来の高温炉方式に比較し、製造装置が相当に軽設備になる。
本発明が提供する粉体は、既に増量剤を含有し、しかも電極の消耗に由来する鉄成分やリン成分等の肥料成分として有用な電極材料物質を含有させた粉剤として提供できるものである。
本発明に係るカルシウムシアナミドを含む粉体の製造装置の実施例を模式的に示すブロック構成図である。 上記実施例における導電端子に、ワイヤー電極の送出手段を付加した構成例を示す断面図である。 本発明の効果確認に供したバッチ型実験装置の模式的断面図である。
本発明に係るカルシウムシアナミドを含む粉体の製造方法は、酸化カルシウム粉体、炭酸カルシウム粉体、石灰石粉体、及び貝殻の粉体の群から選ばれた1ないし複数の処理対象粉体と炭素材種の粉体との混合粉体からなる第一原料粉体を用いて、カルシウムカーバイドを含む第二原料粉体を製造する第1工程と、該第二原料粉体を用いてカルシウムシアナミドを含む粉体を製造する第2工程とを含む方法である。図1では、この方法を実施する装置の一例を示し、その装置は、上記第1工程のための第1の反応装置Aと上記第2工程のための第2の反応装置Bとを備えているが、それらの詳細については後述することとし、ここでは同図に示す反応装置A,Bを参照して本発明の方法について説明する。
上記第一原料粉体を処理してカルシウムカーバイドを含む第二原料粉体を製造する第1工程においては、第1の反応装置Aにおける低真空容器本体02内において第一原料粉体が処理される。該低真空容器本体02の内部には、間隔を置いて正負対の電極023が対設され、その電極023間の間隔は、通常10mm〜100mmに保持され、上記正負対の電極023の少なくとも一方が、炭素鋼、鋳鉄、鉄・リン合金、ニッケル・リン合金の中から選ばれた1種又は2種により形成される。
上記低真空容器本体02内においては、正負対の電極023の間に、アルゴンの分圧が10Pa〜200Pa、望ましくは50Pa〜100Paで、一酸化炭素の分圧が200Pa〜0.05MPaの範囲内において、望ましくは400Pa〜2KPaの気圧条件のアルゴン及び/又は一酸化炭素と上記第一原料粉体とからなる第1固・気混相体を導入存在させ、低真空容器本体02の温度は例えば外気温度程度で、1000volt〜6000volt、望ましくは2000volt〜4000volt、パルス幅が2〜100マイクロ秒の直流パルス電圧を第1の正負対の電極023に導通している導電端子024に印加して、上記第1の正負対の電極023の間にパルスアーク放電により非定常アークプラズマを発生させて、前記の第1固・気混相体を非定常アークプラズマに曝露する処理を行った後、第1の反応装置Aの低真空容器本体02の内部の粉体とガスを、低真空固・気分離回収手段03において第1の反応装置Aから分離回収し、カルシウムカーバイドを含む第二原料粉体を得る。
次に、第一原料粉体における酸化カルシウム粉体、炭酸カルシウム粉体、及び貝殻の粉体と炭素材種の粉体との混合割合と粉体粒度について説明する。
酸化カルシウムの粉体と炭素材種の粉体との混合粉体の場合、この混合粉体の粒度は10μm網下であることが望ましく、この混合粉体の混合割合を、単位質量の酸化カルシウムの粉体に添加する炭素質の材種の粉体の添加質量M1とすると、M1は下記式(1)によって計算した値とすることが望ましい。
Figure 2011073896
である。
炭酸カルシウムの粉体と炭素材種の粉体との混合粉体の場合、この混合粉体の粒度は10μm網下であることが望ましく、この混合粉体の混合割合を、単位質量の炭酸カルシウムの粉体に添加する炭素質の材種の粉体の添加質量M2とすると、M2は下記式(2)によって計算した値とすることが望ましい。
Figure 2011073896
である。
貝殻の粉体と炭素材種の粉体との混合粉体の場合、この混合粉体の粒度は10μm網下であることが望ましく、この混合粉体の混合割合を、単位質量の貝殻の粉体に添加する炭素質の材種の粉体の添加質量M3とすると、M3は下記式(3)によって計算した値とすることが望ましい。
Figure 2011073896
である。
以上に、第一原料粉体における酸化カルシウム粉体、炭酸カルシウム粉体、及び貝殻の粉体と炭素材種の粉体との粉体混合割合、及び粒度を例示したが、これらの例示に限定されるものではない。また、石灰石粉体の場合は、ドロマイトもその範疇に含まれる。
また、上記炭素材種としては、コークス粉、天然黒鉛粉、木炭粉などを用いることができる。
次に、第二原料粉体である前記カルシウムカーバイドを含む粉体を処理して、カルシウムシアナミドを含む粉体を得る第2工程について説明する。
この第2工程においては、図1の第2の反応装置Bにおける低真空容器本体12内において第二原料粉体が処理される。該低真空容器本体12では、その内部に間隔を置いて対設する第2の正負対の電極123の間隔は、通常10mm〜100mmであり、その正負対の電極123の少なくとも一方が、モリブデン、ニッケル、鉄・リン合金、ニッケル・リン合金、炭素鋼、炭素の中から選ばれた1種又は2種により形成される。
この第2の反応装置Bの低真空容器本体12においては、前記第2の正負対の電極123の間に、アルゴンの分圧が10Pa〜200Pa、望ましくは50Pa〜100Paの圧力、窒素の分圧が200Pa〜0.02MPa、望ましくは400Pa〜2KPaの気圧条件のアルゴンと窒素と第二原料粉体との固・気混相体を、又は窒素単体と第一原料粉体との固・気混相体を存在させて、第2の反応装置Bの低真空容器本体12の温度が例えば外気温度程度で、1000volt〜6000volt、望ましくは2000volt〜4000volt、パルス幅が2〜100マイクロ秒の直流パルス電圧を、正負対の電極123に導通している導電端子に印加して、正負対の電極123の間にパルスアーク放電により非定常アークプラズマを発生させて、前記の固・気混相体を該非定常アークプラズマに曝露する処理を行なった後、前記第2の反応装置Bの内部の粉体とガスを、第2の反応装置Bから分離回収し、カルシウムシアナミドを含む粉体を得る。
ここで、本発明が促進を目ろむ反応における温度について説明する。古典化学熱力学に属する普通の化学反応で利用されるエネルギーは1eV程度以下であるのに対して、アークプラズマ中の電子のエネルギーは、エネルギー分布の高いほうでは、数十eV(1eV=11600K)にも達するという桁違いの高エネルギーである。本発明においては、古典化学熱力学の高温度で固体・固体の反応を促進するのではなく、非定常アークパルス放電プラズマに固・気混相体をマイクロ秒のオーダーという短時間曝露して、固体・固体の反応を促進するという励起化学的手段を用いるから、本発明の反応過程に対して古典化学熱力学的な意味での温度制御をおこなう必然性がない。つまり、固・気混相体を非定常アークパルス放電プラズマに曝露する際、反応装置A,Bの低真空容器本体02,12内の温度を制御する必要性がない。要するに、低真空容器本体02,12内の平均温度が外気温程度であっても、又は例えば数百度程度の高温であっても、本発明の反応促進には無関係である。
また、一般的に、上記低真空容器本体02,12内を反応対象である固・気混相体は平均流速が0.2m/s〜1.0m/s程度で流動し、非定常アークプラズマに曝露する処理で発生した熱のほとんどは、処理された混相体が系外へ持ち去ってしまうため、低真空容器本体02,12の温度上昇は少なく、温度上昇に対する実用上の対策も容易である。例えば、低真空容器本体02,12の外側を大気送風で空冷すれば、それらの温度は大気温度程度に保持される。空冷しなければ、連続的稼動によって低真空容器本体02,12の温度は暫時大気の温度よりは上昇するが、自然空冷によって、通常、それらの温度上昇は50℃程度に留まるものである。
次に、図1及び図2を参照して、本発明に係るカルシウムシアナミドを含む粉体の製造装置の実施の形態について説明する。
図1は、本発明に係る製造装置の好ましい実施の形態を模式的に示すもので、酸化カルシウム粉体、炭酸カルシウム粉体、石灰石粉体又は貝殻の粉体からなる処理対象粉体と炭素材種の粉体との混合粉体からなる第一原料粉体を用いて、カルシウムカーバイドを含む第二原料粉体を製造する第1の反応装置Aと、該第二原料粉体を用いてカルシウムシアナミドを含む粉体を製造する第2の反応装置Bとを備え、概略的には、低真空下の製造装置内部の流動経路にある低真空容器本体02,12内を流動する反応対象の固・気混相体を、直流パルスアーク放電により電極023,123から生じるプルームをともなう非定常アークプラズマに曝露処理することにより、その目的を達成するものである。
なお、この明細書における低真空の表現は、JISに規定する100Pa以上の意味において用いている。
さらに具体的に説明すると、図1における第1の反応装置Aは、上記第一原料粉体からカルシウムカーバイドを含む粉体を製造する部分であって、低真空ホッパー本体01、低真空容器本体02、低真空固・気分離回収手段03によって形成される第一原料粉体の流動経路と、上記流動経路の系内のガスを吸引し同系内を低真空に減圧する排気手段04と、該排気手段04からの排出ガスの一部をガス還流手段05を介して低真空ホッパー本体01に還流させる還流路044とを備え、更に、上記低真空容器本体02に設けた正負対の電極023に導電端子024を介して接続されたパルス大電流電源06を備えている。
上記低真空ホッパー本体01は、第一原料粉体を装入するための装入口011の他に、上記流動経路の系内にアルゴンと一酸化炭素を供給するためのガス導入口012、排気手段04からの還流ガスを低真空ホッパー本体01に導入する還流ガス入口014、並びに、アルゴン及び/又は一酸化炭素と第一原料粉体からなる第1固・気混相体を低真空容器本体02に送出する固・気混相体流出口013等を備えるものである。
低真空容器本体02は、その入口021と出口022の間が管状であって、該低真空容器本体02の内部に間隔を置いて正負対の電極023を対設している。低真空容器本体02の配置に関しては、鉛直配置又は傾斜配置が望ましいが、傾斜配置の場合は、傾斜角度が第一原料粉体の安息角を十分に超えている必要がある。上記電極023の間隔は、通常10mm〜100mm、望ましくは20mm〜70mm、更に望ましくは20mm〜50mmである。正負対の電極023の直径は、いずれも1.6mm〜2.0mmであることが望ましく、その場合、管状の低真空容器本体02の直径は20mm〜30mmが望ましい。
正負対の電極023の材種は、少なくともその一方が、炭素鋼、鋳鉄、鉄・リン合金、ニッケル・リン合金の中から選ばれた1種又は2種である。
低真空容器本体02内の圧力は、アルゴンの分圧が10Pa〜200Pa、望ましくは50Pa〜100Pa、一酸化炭素の分圧が200Pa〜0.05MPa、望ましくは400Pa〜2KPaであり、低真空容器本体02の温度は例えば外気温度程度であり、正負対の電極023への印加直流電圧は、1000volt〜6000volt、望ましくは2000volt〜4000voltである。印加直流電圧のパルス幅は狭いほど高エネルギープラズマが発生し好都合であるが、パルス幅を決める回路定数値の一つであるプラズマ抵抗値が、電極間の距離、電圧、ガス圧力、ガスの種類によって変化し、適切なパルス幅を一義的には決めがたいが、パルス幅は2〜100マイクロ秒、望ましくは2〜50マイクロ秒である。
低真空容器本体02内を流れる第1固・気混相体を、上記正負対の電極023間で発生する非定常アークプラズマに確実に曝露するため、パルス大電流電源06には、〔正負対の電極023間の間隔距離〕を〔該正負対の電極023間を流動する固・気混相体の空間平均流速〕で除して得られる数値に0.85〜0.95を乗じた値の時間間隔で、上記導電端子024を介して正負対の電極023に直流パルス電圧を印加するのを繰り返す制御手段を備えている。
一方、上記排気手段04は、低真空ホッパー本体01から低真空容器本体02、低真空固・気分離回収手段03に至る系内のガスを吸引して同系内を低真空に減圧する源であって、真空度が最も低い低真空ホッパー本体01から真空度が最も高い排気手段04のガス吸引口041に至る系内に圧力勾配を生じさせる手段であり、この圧力勾配が、低真空ホッパー本体01内のアルゴン及び/又は一酸化炭素と第一原料粉体とを、低真空容器本体02を通して低真空固・気分離回収手段03まで流動させる駆動因になる。第1の反応装置Aでは、これによって低真空容器本体02内を流れる第1原料粉体は、その粉体空隙率ができるだけ小さくなるようにすることが望まれる。低真空固・気分離回収手段03における粉体とガスの分離もこの駆動因による流動運動によってなされる。
なお、上記系内のガス圧力の制御は、図1では省略しているガス圧力制御手段によって行い、具体的には、ガス導入口012から低真空ホッパー本体01に供給するアルゴンと一酸化炭素の供給流量と、還流ガス入口014から低真空ホッパー本体01に供給する還流ガスの還流流量を調節することによりなされる。
第1の反応装置Aの稼働に際しては、まず、第一原料粉体を装入口011から低真空ホッパー本体01に装入し、図1では省略されている空気除去手段によって低真空ホッパー本体01内の空気を除去したのち、ガス導入口012からアルゴン及び/又は一酸化炭素を導入し、低真空ホッパー本体01内にアルゴン及び/又は一酸化炭素と第一原料粉体とからなる第1固・気混相体が貯留される。
次いで、低真空ホッパー本体01の固・気混相体流出口013から低真空容器本体02に第1固・気混相体を流入させるが、この第1固・気混相体が低真空容器本体02内を流動中に、低真空容器本体02内の正負対の電極023にパルス大電流電源06から直流パルス電圧を印加することにより、該正負対の電極023間に直流アーク放電による非定常アークプラズマを発生させ、アルゴン及び/又は一酸化炭素と第一原料粉体とからなる第1固・気混相体を該非定常アークプラズマに曝露させる。
低真空容器本体02で上記非定常アークプラズマに曝露処理されたアルゴン及び/又は一酸化炭素と第一原料粉体との固・気混相流は、低真空容器本体02の出口022を出て、固・気混相流吸入口031から低真空固・気分離回収手段03に流入し、粉体とガスに分離される。この低真空固・気分離回収手段03における固・気分離は、従来から知られている任意手段を用いることができる。ここで分離されたガスは、ガス回収口032を出て、排気手段04のガス吸引口041から該排気手段04に吸い込まれる。一方、分離された粉体は、カルシウムカーバイドを含む粉体であって、低真空固・気分離回収手段03の粉体回収口033から回収され、第二原料粉体としてカルシウムシアナミドを含む粉体を製造するための第2の反応装置Bに送られる。
排気手段04は、上記ガス吸引口041と、ガス排出口042及び還流用ガス出口043とを備え、ガス排出口042からは低真空容器本体02における反応で生成した過剰の一酸化炭素が排出される。一方、還流用ガス出口043から還流ガス吸引口051を経てガス還流手段05に入ったガスは、還流ガス入口014を経て低真空ホッパー本体01に還流される。
ガス還流手段05は、低真空容器本体02における反応で副生する炭酸ガスが、還流するガス中に含まれないようにするため、炭酸ガス吸収手段を内蔵することが望ましい。
図1に示す第2の反応装置Bは、上記第1の反応装置Aにおいて生成されたカルシウムカーバイドを含む粉体を第二原料粉体として、カルシウムシアナミドを含む粉体を製造する部分であって、低真空ホッパー本体11、低真空容器本体12、低真空固・気分離回収手段13とによって形成される第二原料粉体の流動経路と、上記流動経路の系内のガスを吸引し同系内を低真空に減圧する排気手段14とを備え、さらに、上記低真空容器本体12に設けた第2の正負対の電極123に導電端子124を介して接続されたパルス大電流電源16を備えている。
上記第2の反応装置Bの低真空ホッパー本体11は、第二原料粉体を装入するための装入口111と、上記第二原料粉体の流動経路の系内に窒素ガス又は窒素とアルゴンの混合ガスを供給するためのガス導入口112、及び、上記窒素又は窒素とアルゴンの混合ガスと第二原料粉体からなる第2固・気混相体を低真空容器本体12に送出する固・気混相体流出口113等を備えるものである。
第2の反応装置Bの低真空容器本体12は、その入口121と出口122の間が管状であって、該低真空容器本体12の内部に間隔を置いて第2の正負対の電極123を対設している。低真空容器本体12の配置、上記電極123の間隔、及び正負対の電極123の直径と管状の低真空容器本体12の直径との関係については、第1の反応装置Aにおける低真空容器本体02の場合と変わるところがない。しかし、第2の正負対の電極123の材種は、少なくともその一方が、モリブデン、ニッケル、鉄・リン合金、ニッケル・リン合金、炭素鋼、炭素の中から選ばれた1種又は2種である。
低真空容器本体12内の圧力は、アルゴンの分圧が10Pa〜200Pa、望ましくは50Pa〜100Pa、一酸化炭素の分圧が200Pa〜0.05MPa、望ましくは400Pa〜2KPaであり、低真空容器本体12の温度は例えば外気温度程度の温度であり、印加直流パルス電圧は、1000volt〜6000volt、望ましくは2000volt〜4000voltである。印加直流電圧のパルス幅は狭いほど高エネルギープラズマが発生し好都合であるが、パルス幅を決める回路定数値の一つであるプラズマ抵抗値が、電極間の距離、電圧、ガス圧力、ガスの種類によって変化し、適切なパルス幅を一義的には決めがたいが、パルス幅は2〜100マイクロ秒、望ましくは2〜50マイクロ秒である。
低真空容器本体12を流れる第2固・気混相体を、上記正負対の電極123間で発生する非定常プラズマに、確実に曝露処理するため、パルス大電流電源16には、第1の反応装置Aにおけるパルス大電流電源06と同様に、〔正負対の電極123間の間隔距離〕を〔該正負対の電極123間を流動する固・気混相体の空間平均流速〕で除して得られる数値に0.85〜0.95を乗じた値の時間間隔で、上記導電端子124を介して正負対の電極123に直流パルス電圧を印加するのを繰り返す制御手段を備えている。
一方、上記排気手段14は、低真空ホッパー本体11から低真空容器本体12、低真空固・気分離回収手段13に至る系内のガスを吸引して同系内を低真空に減圧する源であって、真空度が最も低い低真空ホッパー本体11から真空度が最も高い排気手段14のガス吸引口141に至る系内に圧力勾配を生じさせる手段であり、この圧力勾配が、低真空ホッパー本体11内の窒素とアルゴンと第二原料粉体との第2固・気混相体を、低真空容器本体12を通して低真空固・気分離回収手段13まで流動させる駆動因になる。低真空固・気分離回収手段13における粉体とガスの分離もこの駆動因による流動運動によってなされる。
第2の反応装置Bの稼働に際しては、第1の反応装置Aにおける粉体回収口033から回収された第二原料粉体を、第二原料粉体装入用の装入口111から低真空ホッパー本体11に装入し、図1では省略されている空気除去手段によって低真空ホッパー本体11内のガスを除去したのち、ガス導入口112から窒素ガス又はそれとアルゴンの混合ガスを導入して、低真空ホッパー本体11内に、窒素ガス又はそれアルゴンとの混合ガスと上記第二原料粉体とからなる第2の固・気混相体を貯留する。
次いで、低真空ホッパー本体11から低真空容器本体12に流入させた第2の固・気混相体が低真空容器本体12内を流動中に、低真空容器本体12内の正負対の電極123に接続されているパルス大電流電源16から直流パルス電圧を印加し、正負対の電極123間に放電による非定常アークプラズマを発生させ、第2の固・気混相体を該非定常アークプラズマに曝露させる処理を行なう。
低真空容器本体12で非定常プラズマに曝露処理された第2の固・気混相体は、出口122を出て、低真空固・気分離回収手段13にその吸入口131から流入し、粉体とガスに分離される。分離されたガスはガス回収口132を出て、排気手段14にそのガス吸引口141からに吸い込まれ、ガス排出弁142から排出される。一方、分離された粉体は、カルシウムシアナミドを含む粉体であって、粉体回収口133から回収される。
なお、この第2の反応装置Bの系内のガス圧力の制御は、窒素又はそれとアルゴンの混合ガスのガス導入口112における弁の開度とガス排出弁142の開度の調節により成される。
以上では、低真空容器本体02,12がもつ正負対の電極023,123が各1対の実施例について説明したが、低真空容器本体02,12がもつ正負対の電極023,123の対の数を、流れの向きに縦列に2対以上配設することもできる。
上記方法又は装置により製造される粉体は、酸化カルシウム粉体、炭酸カルシウム粉体、石灰石粉体、又は貝殻の粉体からなる処理対象粉体と炭素材種の粉体との混合粉体を、非定常アークプラズマに曝露することにより上記処理対象粉体の表層にカルシウムカーバイドを生成させ、得られた粉体を窒素ガス雰囲気において非定常アークプラズマに曝露することにより、上記カルシウムカーバイドの全部又は一部にカルシウムシアナミドを生成させるものであるが、その生成過程においてはアーク放電により電極材料の一部を積極的に蒸発させた高エネルギー状態のプルームを、反応促進に利用しているとともに、カルシウムカーバイド及びカルシウムシアナミドには、上記プルームに由来する電極材料の成分が含まれることになる。
従来の熱プラズマ化学の直流アーク放電分野における放電電極に対する対応は、電極の消耗を極力少なくすることに腐心していて、高融点金属または高融点合金の電極を使うことが慣習となっているが、それとは異なり、本発明では、パルス大電流放電によって電極を積極的にプルーム化させて、高エネルギーをもつプルームを含むプラズマを反応促進に利用するとともに、プルーム由来の粉体になった粉体を、製造粉体に残して肥料成分とするものである。したがって、プルーム化による電極の消耗分を随時に放電部分として追加補充しなければならないため、低真空容器本体02,12の導電端子024,124のそれぞれに、図2に示すような電極の消耗分を送り出す電極送出手段200を付加することが望ましい。
図2に示す電極送出手段200は、図1の反応装置A,Bにおける低真空容器本体02,12の側壁203に設ける導電端子024,124の構成を例示するもので、上記側壁203に一端を気密に接合した端子ステム201は、その中心線に沿って正負対の電極023,123を構成するワイヤー電極207の通し孔202を有し、該端子ステム201の他端は、Oリング206を介して外筒204と接合ネジ205で固定し、該外筒204の先端にワイヤー電極送出装置209を気密性を持って固定している。
ワイヤー電極送出手段209から出たワイヤー電極207は、上記通し孔202を通って低真空容器本体02,12内に送出されるもので、ワイヤー電極207の露出部分が消耗すれば、その消耗分だけワイヤー電極207が電極送出装置209から低真空容器本体02,12の内部に押し出される。低真空である低真空容器本体02,12の内部に大気が侵入するのを防ぐため、上記外筒204に設けたアルゴン導入孔208は、大気圧より高い圧力のアルゴンの供給源に接続され、アルゴン導入孔208から上記通し孔202とワイヤー電極207のアニュラー空隙を通して低真空容器本体02,12にアルゴンが送られるが、そのアルゴンは少量であるため、粉体の反応促進にとって支障はない。
次に、図3に模式的に示すバッチ型実験装置を参照して、本発明の方法における単位質量のカルシウムカーバイドを生成するに要するエネルギー量を調べた実験例を記す。
[実験例1]
図3は、実験に供した反応器301をその軸を含む平面で切った断面形状の概略と、直流パルス電源309の構成の概略を示している。なお、ガスの供給系、真空排気系、ガスの圧力と温度測定系は、特に図で示すまでもないので省略している。
反応器301は、円錐形の内容積が200mlのガラス製真空容器で、円錐形の軸を鉛直に立てて円錐形の頂点を下に向けて使用するように構成し、反応器301の下端部には軸に沿って直径1.6mmの負電極302を差し込んで密封固定し、反応器301の上端部には摺り合わせ口303を設け、該摺り合わせ口303に嵌め込まれる摺り合わせ栓304には、軸に沿って気密に貫通する正電極305を固定している。摺り合わせ口303に摺り合わせ栓304を嵌め込むときは、摺り合わせ面に真空グリースを塗布して、摺り合わせ面から反応器301内に大気の侵入を防いでいる。反応器301内における負電極302の先端と正電極305の先端との間隔Lは35mmであり、電極の材質は、正電極305と負電極302ともに軟鋼である。
図示を省略したガスボンベの減圧レギュレータのガス出口に連通しているガス装入管306は、ガラス製真空バルブ付ガラス管であって、反応器301にガラス溶着して挿入されている。ガス排気管307は、ガラス製真空バルブ付ガラス管であって、図示しない真空ポンプに接続した粉体フィルターの吸引口に接続している。反応器301に対するガス排気管307の接合もガラス溶着である。ガスサンプリング管308もガラス製真空バルブ付ガラス管であって、反応器301に対してガラス溶着で接合している。
直流パルス電源309の負端子310は負電極302に接続し、正端子311は正電極305に接続している。負端子310は接地されている。なお、図中の320は高圧直流電源である。高電圧大電流スイッチ312をオンにすると、正電極305と負電極302に直流電圧印加による非定常アーク放電を発生し、キャパシターバンク313の電荷の急開放がなされる。なお、キャパシターバンク313の容量は12μFである。
使用した原料粉体は、75μm網下の酸化カルシウムの粉体と75μm網下の合成黒鉛粉体とを、酸化カルシウムの粉体1.00gに対し合成黒鉛粉体0.65gの割合で乳鉢に分取し、摺砕混合した混合粉体である。
この混合粉体1.0gを上記反応器301にその摺り合わせ口303から装入し、摺り合わせ面に真空グリースを塗布して、摺り合わせ栓304を嵌め込んだ。
実験に際しては、ガス装入管306のバルブと、ガスサンプリング管308のバルブを閉じ、ガス排気管307のバルブを開いて反応器301内の大気を2Paまで排気した。次いで、ガス排気管307のバルブを閉じ、ガス装入管306のバルブを開いて、アルゴンを反応器301内に圧力が大気圧になるまで導入したのち、ガス装入管306のバルブを閉じ、ガス排気管307のバルブを開いて反応器301内のアルゴンを、2Paまで排気し、このようなアルゴンの導入と排気を3回繰り返して、反応器301内の大気残留を排除し、ガス排気管307のバルブを閉じた。
次いで、ガス装入管306のバルブを開いて反応器301内にアルゴンを導入し、反応器301内のアルゴン圧力を500Paとしてガス装入管306のバルブを閉じることにより、反応器301内を密閉条件下においた。反応器301の温度は24℃であった。正電極305と負電極302に直流パルス電圧3,500Vを印加すると、非定常アーク放電が発生し、装入されていた混合粉体は非定常プラズマに曝露されるとともに反応器301内で爆発的に飛び散り、次いで、反応器301内を落下して反応器301内の底部に戻った。この直流電圧3,500Vの印加操作を2回繰りかえして行なった。放電電流波形の波尾長は約4マイクロ秒であった。次にガス装入管306のバルブを開いて、アルゴンを反応器301内に圧力が大気圧になるまで導入した。反応器301の温度上昇は認められなかった。
反応器301内の酸素源は、酸化カルシウムの粉体と合成黒鉛粉体との反応式、
Figure 2011073896
によりCaOだけである。上記(4)式に基づき、一酸化炭素を測定することによって、カルシウムカーバイドの生成量を測定した。ガスサンプリング管308の出口に接続した気体採取器で反応器301内のガスを吸引する方法により、一酸化炭素ガス検知管で、反応器301内のガス量200mmlに含まれる一酸化炭素ガス濃度を測定した結果、一酸化炭素ガス濃度は2.0%であった。上記(4)式から、一酸化炭素のモル量と等しいモル量のカルシウムカーバイドが生成するから、カルシウムカーバイドの生成量は0.0105g と計算される。一方、この非定常アーク放電で投入したエネルギーは147Jであるから、単位質量のカルシウムカーバイドを生成するに要するエネルギーは14,000J/gである。
非特許文献1によれば、カルシウムカーバイドの製造における電気炉の消費電力量は11,520J/gであり、これと上記実験例1の結果を比較すると、実験例1の結果は約1.2倍の消費電力量である。しかしながら、上記実験例1は反応器内温度が約30℃でおこなわれていること、反応物が反応場に滞在する時間は、従来の熱的方法に比べ、桁違いに短時間であるという大きな利点がある。なお、特許文献1の消費電力量27,720J/gと比較すれば、本発明の消費電力量は半分の消費電力量である。
[実験例2]
75μm網下の炭酸カルシウム粉体を用いて実施例1と同様の要領でつくったカルシウムカーバイドを含む粉体を用いて、図3に示す装置によってカルシウムシアナミドを含む粉体を得る実験を行なった。電極の材質は、負電極302は鉄・リン合金、正電極305は軟鋼であり、負電極302の先端と正電極305の先端との間隔Lは30mmであり、キャパシターバンク013の容量は12μFである。
反応器301に得られたカルシウムカーバイドを含む粉体1.0g装入し、実験例1と同様にアルゴン置換により、反応器301内の空気を十分に脱氣したのち、反応器301内にアルゴンを10Paまで導入し、次いで窒素を導入して500Paとしてバルブを閉じ、反応器301内を密閉条件下においた。反応器301の温度は24℃で、正電極305と負電極302に直流パルス電圧2,000Vの直流電圧を2回印加し、非定常アーク放電を発生させたのち、アルゴンを導入して反応器301内を大気圧とした。反応器301の温度上昇は認められなかった。
反応器301の摺り合わせ栓304を外し、処理した粉体を取出し、その粉体から0.3gの粉体を分取し、50mlの蒸留水に投入して撹拌したのち静置し、投入した粉体を沈降させ、その上澄液のアンモニウムイオン濃度を測定した結果、NH4+=3mg/Lであった。このことは、
Figure 2011073896
の反応の結果であり、カルシウムシアナミドが生成したことを示している。また同様の手続きによって得た上澄液を中和してPH=5.0に調製し、リン酸イオン濃度を測定した結果、PO4-P=0.02mg/Lであった。
本発明の方法及び装置によって、低温、軽設備により高速で増量剤を含むカルシウムシアナミドを得ることができ、肥料製造や土壌改良剤製造に適する可能性がある。
また、従来に比較し反応器の温度が外気温度程度、扱い安い低真空圧力、かつ高速で、炭酸カルシウム粉体、石灰石粉体、又は貝殻の粉体と炭素粉体との反応を促進できるので、石灰石や貝殻に対する新しい化学加工法を提供できる可能性がある。
A 反応装置
B 反応装置
01,11 低真空ホッパー本体
011,111 装入口
012,112 ガス導入口
013,133 固・気混相体流出口
014 還流ガス入口
02,12 低真空容器本体
023,123 電極
024,124 導電端子
03,13 低真空固・気分離回収手段
032 ガス回収口
033,133 粉体回収口
04,14 排気手段
044 還流路
06,16 パルス大電流電源

Claims (3)

  1. 酸化カルシウム粉体、炭酸カルシウム粉体、石灰石粉体、及び貝殻の粉体の群から選ばれた1ないし複数の処理対象粉体と炭素材種の粉体との混合粉体からなる第一原料粉体を用いて、カルシウムカーバイドを含む第二原料粉体を製造する第1工程と、該第二原料粉体を用いてカルシウムシアナミドを含む粉体を製造する第2工程とを含む製造方法であって、
    上記第1工程は、第1の低真空容器本体の内部に間隔を置いて対設する第1の正負対の電極の少なくとも一方を、炭素鋼、鋳鉄、鉄・リン合金、ニッケル・リン合金の中から選ばれた1種又は2種により形成した上記第1の低真空容器本体に、アルゴン及び/又は一酸化炭素と上記第一原料粉体とからなる第1固・気混相体を導入し、上記正負対の電極に1000〜6000ボルト、パルス幅が2〜100マイクロ秒の直流パルス電圧を印加して、パルスアーク放電により上記第1の正負対の電極間に非定常アークプラズマを発生させ、上記第1の電極間の空間に存在する上記第1固・気混相体を該非定常アークプラズマに曝露した後、上記第1の低真空容器本体の内部の粉体をガスと分離して上記第二原料粉体を得る工程であり、
    上記第2工程は、第2の低真空容器本体の内部に間隔を置いて対設する第2の正負対の電極の少なくとも一方を、モリブデン、ニッケル、鉄・リン合金、ニッケル・リン合金、炭素鋼、炭素の中から選ばれた1種又は2種により形成した上記第2の低真空容器本体に、上記第二原料粉体と窒素ガス、又はそれにアルゴンを加えた第2固・気混相体を導入し、上記第2の正負対の電極に、1000〜6000ボルト、パルス幅が2〜100マイクロ秒の直流パルス電圧を印加して、パルスアーク放電により上記第2の正負対の電極間に非定常アークプラズマを発生させ、上記第2の電極間の空間に存在する上記第二原料粉体を含む第2固・気混相体を該非定常アークプラズマに曝露した後、上記第2の低真空容器本体の内部の粉体をガスと分離してカルシウムシアナミドを含む粉体を得る工程である、
    ことを特徴とするカルシウムシアナミドを含む粉体の製造方法。
  2. 酸化カルシウム粉体、炭酸カルシウム粉体、石灰石粉体又は貝殻の粉体と、炭素材種の粉体との混合粉体からなる第一原料粉体を用いて、カルシウムカーバイドを含む第二原料粉体を製造する第1の反応装置と、該第二原料粉体を用いてカルシウムシアナミドを含む粉体を製造する第2の反応装置とを含む製造装置であって、
    上記第1の反応装置は、第1の低真空ホッパー本体、第1の低真空容器本体及び第1の低真空固・気分離回収手段によって形成される第一原料粉体の流動経路と、上記流動経路の系内のガスを吸引し同系内を低真空に減圧する第1の排気手段と、該排気手段から排出ガスの一部を上記低真空ホッパー本体に還流させる還流路とを備え、
    上記低真空ホッパー本体は、第一原料粉体を装入するための装入口、アルゴン及び/又は一酸化炭素を導入するためのガス導入口、排気手段からの還流ガスを導入する還流ガス入口、並びに、アルゴン及び/又は一酸化炭素と第一原料粉体からなる第1固・気混相体を低真空容器本体に送出する固・気混相体流出口を備え、
    上記低真空容器本体は、その内部に間隔を置いて対設された第1の正負対の電極を備え、該電極の材種は、少なくともその一方が、炭素鋼、鋳鉄、鉄・リン合金、ニッケル・リン合金の中から選ばれた1種又は2種により形成され、該第1の正負対の電極には、非定常アークプラズマを発生させる直流パルス電圧を、低真空容器本体内を通過する第1固・気混相体の全体に上記非定常アークプラズマを曝露するに要する時間間隔で繰り返し印加するように制御されるパルス大電流電源が接続され、
    上記低真空固・気分離回収手段は、上記低真空容器本体内での処理により得た第二原料粉体を排出ガスと分離し、分離された第二原料粉体を第2の反応装置における第2の低真空ホッパー本体に装入する粉体回収口を備えると共に、分離した排出ガスの一部を上記排気手段を通して上記第1の低真空ホッパー本体に還流させる還流路に接続されるガス回収口を備え、
    上記第2の反応装置は、第2の低真空ホッパー本体、第2の低真空容器本体及び第2の低真空固・気分離回収手段によって形成される第二原料粉体の流動経路と、上記流動経路の系内のガスを吸引し同系内を低真空に減圧する排気手段とを備え、
    第二原料粉体が装入される上記第2の低真空ホッパー本体は、窒素ガス又はそれにアルゴンを加えたガスを導入するためのガス導入口と、該ガスと第二原料粉体からなる第2固・気混相体を第2の低真空容器本体に送出する固・気混相体流出口を備え、
    上記第2の低真空容器本体は、その内部に間隔を置いて対設された第2の正負対の電極を備え、該電極の材種は、少なくとも一方が、モリブデン、ニッケル、鉄・リン合金、ニッケル・リン合金、炭素鋼、炭素の中から選ばれた1種又は2種により形成され、該第2の正負対の電極には、非定常アークプラズマを発生させる直流パルス電圧を、第2の低真空容器本体内を通過する第2固・気混相体の全体に上記非定常アークプラズマを曝露するに要する時間間隔で繰り返し印加するように制御されるパルス大電流電源が接続され、
    上記第2の低真空固・気分離回収手段は、上記第2の低真空容器本体内での処理により得たカルシウムシアナミドを含む粉体を排出ガスと分離して送出する粉体回収口を備えている、
    ことを特徴とするカルシウムシアナミドを含む粉体の製造装置。
  3. 請求項1に記載の製造方法により製造される粉体であって、
    酸化カルシウム粉体、炭酸カルシウム粉体、石灰石粉体、及び貝殻の粉体の群から選ばれた1ないし複数の処理対象粉体と炭素材種の粉体との混合粉体を、非定常アークプラズマに曝露することにより上記処理対象粉体の表層にカルシウムカーバイドを生成させ、得られた粉体を窒素ガス雰囲気において非定常アークプラズマに曝露することにより、上記カルシウムカーバイドの全部又は一部にカルシウムシアナミドを生成させ、
    該カルシウムカーバイド及びカルシウムシアナミドに電極の消耗に由来する電極材料物質を含有させている、
    ことを特徴とするカルシウムシアナミドを含む粉体。
JP2009224359A 2009-09-29 2009-09-29 カルシウムシアナミドを含む粉体、該粉体の製造方法及びその装置 Expired - Fee Related JP5075899B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009224359A JP5075899B2 (ja) 2009-09-29 2009-09-29 カルシウムシアナミドを含む粉体、該粉体の製造方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009224359A JP5075899B2 (ja) 2009-09-29 2009-09-29 カルシウムシアナミドを含む粉体、該粉体の製造方法及びその装置

Publications (2)

Publication Number Publication Date
JP2011073896A true JP2011073896A (ja) 2011-04-14
JP5075899B2 JP5075899B2 (ja) 2012-11-21

Family

ID=44018278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009224359A Expired - Fee Related JP5075899B2 (ja) 2009-09-29 2009-09-29 カルシウムシアナミドを含む粉体、該粉体の製造方法及びその装置

Country Status (1)

Country Link
JP (1) JP5075899B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862322A (zh) * 2018-06-25 2018-11-23 山东益丰生化环保股份有限公司 一种石灰氮的制备方法
CN110980767A (zh) * 2019-12-02 2020-04-10 山东益丰生化环保股份有限公司 一种氰氨化钙的合成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108975373A (zh) * 2018-08-09 2018-12-11 天津中科福源科技有限责任公司 一种用贝壳粉制备轻质碳酸钙的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288113A (ja) * 1986-06-03 1987-12-15 Kyowa Gas Chem Ind Co Ltd カルシウムジシアナミド水溶液の製造方法
JPS63206310A (ja) * 1987-02-18 1988-08-25 エス・カー・ウエー・トロストベルク・アクチエンゲゼルシヤフト 石灰窒素の製造方法
JPS6452608A (en) * 1987-08-24 1989-02-28 Kyowa Gas Chem Ind Co Ltd Production of aqueous solution of stable calcium dicyanamide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288113A (ja) * 1986-06-03 1987-12-15 Kyowa Gas Chem Ind Co Ltd カルシウムジシアナミド水溶液の製造方法
JPS63206310A (ja) * 1987-02-18 1988-08-25 エス・カー・ウエー・トロストベルク・アクチエンゲゼルシヤフト 石灰窒素の製造方法
JPS6452608A (en) * 1987-08-24 1989-02-28 Kyowa Gas Chem Ind Co Ltd Production of aqueous solution of stable calcium dicyanamide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108862322A (zh) * 2018-06-25 2018-11-23 山东益丰生化环保股份有限公司 一种石灰氮的制备方法
CN110980767A (zh) * 2019-12-02 2020-04-10 山东益丰生化环保股份有限公司 一种氰氨化钙的合成方法

Also Published As

Publication number Publication date
JP5075899B2 (ja) 2012-11-21

Similar Documents

Publication Publication Date Title
US9463429B2 (en) Device for producing nanocarbon
US11148116B2 (en) Methods and apparatus for synthesizing compounds by a low temperature plasma dual-electric field aided gas phase reaction
IL151114A0 (en) Plasma arc reactor for the production of fine powders
US3404078A (en) Method of generating a plasma arc with a fluidized bed as one electrode
CN102933490A (zh) 洋葱状碳的制作方法
RU2455119C2 (ru) Способ получения наночастиц
JP5075899B2 (ja) カルシウムシアナミドを含む粉体、該粉体の製造方法及びその装置
CN108101071A (zh) 氩氢热等离子体法制备高纯纳米硼粉的方法及其装置
CN104550903A (zh) 铬粉的氢等离子脱氧方法
CN112654580B (zh) 四氢硼酸盐的制造方法、四氢硼酸盐的制造装置和四氢硼酸盐
WO2011050437A1 (en) Carbon, nitrogen and oxygen separator and method of use thereof
JPH05116925A (ja) フラーレン類の製造装置
Vissokov et al. Plasma-chemical synthesis and regeneration of catalysts for reforming natural gas
RU2341451C1 (ru) Способ производства фуллеренсодержащей сажи и устройство для его осуществления
JP2002029718A (ja) フラーレンおよびカーボンナノチューブの製造法およびその装置
Shiryaeva et al. A study on the production of titanium carbide nano-powder in the nanostate and its properties
CN100595299C (zh) 一种TiCl4真空辉光放电制备金属钛的方法
JP5811002B2 (ja) 中空炭素電極を用いたSiOの製造方法及び装置
Subbotin et al. Plasma synthesis of Al2O3 from related nitrate
RU2747329C1 (ru) Способ получения порошка, содержащего нанокристаллический кубический карбид вольфрама
US9950317B2 (en) Large-scale composite synthesis system, reactor and composite synthesis method using the same
RU125991U1 (ru) Устройство плазмохимического получения кремния из кварца
JPS6351467A (ja) 高純度カ−ボンブラツクの製造方法
RU2756555C1 (ru) Способ получения нанопорошка карбида железа
WO2024070744A1 (ja) 硫化カルボニルの製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees