JP2011066800A - 画像処理装置及び撮像システム - Google Patents

画像処理装置及び撮像システム Download PDF

Info

Publication number
JP2011066800A
JP2011066800A JP2009217379A JP2009217379A JP2011066800A JP 2011066800 A JP2011066800 A JP 2011066800A JP 2009217379 A JP2009217379 A JP 2009217379A JP 2009217379 A JP2009217379 A JP 2009217379A JP 2011066800 A JP2011066800 A JP 2011066800A
Authority
JP
Japan
Prior art keywords
pixel
correction
signal
light
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009217379A
Other languages
English (en)
Other versions
JP5460202B2 (ja
Inventor
Masanori Ogura
正徳 小倉
Toru Koizumi
徹 小泉
Tadashi Koizumi
理 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009217379A priority Critical patent/JP5460202B2/ja
Priority to US12/874,119 priority patent/US8619163B2/en
Publication of JP2011066800A publication Critical patent/JP2011066800A/ja
Application granted granted Critical
Publication of JP5460202B2 publication Critical patent/JP5460202B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

【課題】撮像領域の全域に渡って、適切な混色補正を実現することができる画像処理装置を提供することを課題とする。
【解決手段】光電変換素子を含む画素が行列状に2次元配置され、複数色のカラーフィルタが前記画素の表面上に配置される固体撮像装置の隣接画素間の混色を補正する画像処理装置であって、隣接画素から注目画素へ漏れ込む混色信号を除去するための補正パラメータであって、前記注目画素の位置に応じた補正パラメータを記憶する記憶部(120)と、前記記憶部に記憶される補正パラメータを用いて、画素の位置に応じて前記固体撮像装置の画素信号から前記混色信号を減算する補正部(121)とを有し、前記注目画素は少なくとも2つあり、前記少なくとも2つの注目画素は相互に水平方向のアドレス及び垂直方向のアドレスの両者が異なることを特徴とする画像処理装置が提供される。
【選択図】図3

Description

本発明は、画像処理装置及び撮像システムに関する。
CMOSイメージセンサやCCDイメージセンサ等の固体撮像装置は、光電変換素子を含む画素セルの上方に色分解カラーフィルタ、さらにその上に集光用のマイクロレンズが積層された構造となっている。CMOSはComplementary Metal Oxide Semiconductor、CCDはCharge Coupled Deviceである。上記の構造により構成されたカラー用の固体撮像装置は、光電変換素子とマイクロレンズがカラーフィルタ及び複数の絶縁膜で隔てられる。特にCMOSイメージセンサでは、画素上に複数の配線層を有するため、光電変換素子とマイクロレンズ間の距離はCCDイメージセンサより更に大きくなる。そのため、カラーフィルタを通過した光が光電変換素子に到達するまでの経路で、光が隣接する別の色の光電変換素子に入射する成分が無視できない。この成分は混色と呼ばれる。混色は光学的な理由だけでなく、例えばある画素の光電変換素子を通過し、シリコン内部で隣接する画素に漏れ込む成分もある。更に、光がある画素の光電変換素子で吸収され電荷に変換されたとしても、電荷がシリコン内部で拡散、ドリフトし隣接画素へと漏れる成分もある。いずれの成分も、1画素の寸法が小さくなるにつれ増大するという性質がある。混色成分を信号処理で補正するために当該特定色画素と隣接する特定色以外の画素の信号より算出した一定割合の信号成分を減算する技術が知られている(例えば、特許文献1参照)。また、画素の配線等のレイアウトによる非対称性を考慮し、色の異なる画素に応じて減算する量を変えたりすることで混色を低減する技術が知られている(例えば、特許文献2参照)。
特開2004−135206号公報 特開2007−142697号公報
上記特許文献1及び2の技術は、画素寸法が比較的大きい場合には効果的に機能する。しかしながら、画素寸法が縮小すると、撮像領域上の位置により混色量が異なることが問題となってきている。撮像領域の中心では入射光は垂直に入射するのに対し、撮像領域の端に近づくにつれ、入射光は撮像面に対し傾斜して入射する。傾斜の方向も撮像領域上の位置により異なる。画素寸法が縮小すると混色は増大するが、当該画素の上下左右のどの色の画素からどれだけ混色信号が重畳するかは、画素の構造やレイアウトにより大きく左右される。特許文献1,2とも、撮像領域上の位置によらず補正量を一定としている。従って、撮像面上の全ての位置で満足のゆく補正を行うことが困難となってきている。
本発明は、撮像領域の全域に渡って、適切な混色補正を実現することができる画像処理装置及び撮像システムを提供することを目的とする。
本発明の画像処理装置は、光電変換素子を含む画素が行列状に2次元配置され、複数色のカラーフィルタが前記画素の表面上に配置される固体撮像装置の隣接画素間の混色を補正する画像処理装置であって、隣接画素から注目画素へ漏れ込む混色信号を除去するための補正パラメータであって、前記注目画素の位置に応じた補正パラメータを記憶する記憶部と、前記記憶部に記憶される補正パラメータを用いて、画素の位置に応じて前記固体撮像装置の画素信号から前記混色信号を減算する補正部とを有し、前記注目画素は少なくとも2つあり、前記少なくとも2つの注目画素は相互に水平方向のアドレス及び垂直方向のアドレスの両者が異なることを特徴とする。
本発明によれば、注目画素の位置に応じた補正パラメータを用いることにより、撮像領域の全域に渡って、精度の高い混色補正を行うことができる。
撮像システム及び固体撮像装置の構成例を示すブロック図である。 第1の実施形態の固体撮像装置の画素色配列と混色を示す図である。 第1の実施形態の混色補正装置の概要を示す図である。 画素色配列と混色補正パラメータの使い分け領域を示す図である。 第2の実施形態の固体撮像装置の画素色配列を示す図である。 第2の実施形態の混色補正装置の概要を示す図である。 第3の実施形態の固体撮像装置の画素色配列を示す図である。 第3の実施形態の混色補正装置の概要を示す図である。 固体撮像装置の画素色配列の他の例を示す図である。 第4の実施形態の固体撮像装置の画素色配列を示す図である。 第4の実施形態の混色補正装置の概要を示す図である。
(第1の実施形態)
図1(a)は本発明の第1の実施形態による撮像システムの構成例を示すブロック図であり、図1(b)は本発明の第1の実施形態による固体撮像装置の構成例を示す図である。撮像システムは、デジタル一眼レフカメラ、コンパクトデジタルカメラ、ビデオカメラ、携帯用デジタルカメラ、放送用デジタルカメラ等である。図1(a)の撮像システムの構成及び図1(b)の固体撮像装置の構成は全ての実施形態で共通である。図1(a)の撮像システムは、固体撮像装置が例えばデジタル一眼レフカメラの一部として構成される。この構成はデジタル一眼レフカメラの適用に限られるものではなく、ビデオカメラ、デジタルコンパクトカメラ等の撮像装置全般に対して適用できる。図1(a)の撮像システムは、光学系101、固体撮像装置102、AFE103、DFE104、画像エンジン105、タイミングジェネレータ106、レンズ制御部107、カメラ制御部108、インターフェース109等を有する。AFE103はアナログフロントエンド、DFE104はデジタルフロントエンドである。光学系101は、被写体からの入射光を固体撮像装置102の撮像面上に結像するレンズ101aと、当該レンズ101a、シャッタ101cを経た入射光の光量を制御する絞り101bと、固体撮像装置102への光入射時間を制御するシャッタ101cを有する。固体撮像装置102は、光学系101を通して入射した光を画素単位で光電変換して電気信号として出力する。固体撮像装置102の具体的な構成は後述する。AFE103は、アナログ信号処理回路であり、固体撮像装置102から出力されるアナログ信号に対して、サンプルホールドし、ゲイン調整、オフセット調整をした後、A/D(アナログ/デジタル)変換する。DFE104はデジタル処理でのゲイン微調整や、オフセットの微調整、デジタル信号の並べ替えや、デジタル信号のマルチプレクス処理を行う。DFE104は、混色補正装置(画像処理装置)110を有する。画像エンジン105は、ホワイトバランス処理や、明るさ、コントラスト、色合い等の画像処理を行う。タイミングジェネレータ106は、カメラ制御部108の指示に応じて固体撮像装置102に適切な駆動信号を与える。レンズ制御部107は、カメラ制御部108の指示に応じて、被写体からの光を固体撮像装置102の撮像面上に結像させるように、レンズ101aの位置を調整し、被写界深度、明るさを調整する為に絞り101bを調整する。カメラ制御部108は、一般的にマイクロコンピュータにより主に構成され、ユーザの設定している撮影モードや、絞り、シャッタスピード・ISO感度を検知し、レンズ制御部107を介して光学系101を制御、AFE3・DFE104でゲインを制御する。そして、カメラ制御部108は、タイミングジェネレータ106を介して固体撮像装置102の蓄積時間を制御、AFE103、DFE104のゲインを制御、画像エンジン105での色あいを制御する。逆に、カメラ制御部108は、画像エンジン105から送られてくる信号を基に、撮影画像の信号をインターフェース109を介してユーザの表示装置に表示する。なお、混色補正装置110はDFE104に限らず、画素エンジン105の中にあってもよいし、独立して混色補正装置110があってもよい。
図1(b)は、CMOSイメージセンサを用いた固体撮像装置102の構成図である。固体撮像装置102は、光電変換素子及びカラーフィルタを有する複数の画素201が2次元状に配列された撮像領域202を有する。撮像領域202は、光電変換素子を含む画素201が行列状に2次元配置され、複数色のカラーフィルタが画素201の表面上に配置される。垂直走査回路203は画素201の信号を読み出すための駆動信号を生成する。水平共通制御線204は垂直走査回路203からの駆動信号を画素201に伝達する。垂直共通信号線205は、画素201の信号を列信号読み出し回路206に伝達する。列信号読み出し回路206は、画素201の信号を信号処理した後、サンプルホールドし水平走査回路208からの信号を待つ。水平読み出しスイッチ207は、水平走査回路208からの水平走査信号を受け取り、列信号読み出し回路206にサンプルホールドされた信号を水平共通信号線209a、209bに伝達する。ここでは、例として、固体撮像装置102は、水平共通信号線209a、209bの2チャンネルを有する。なお、水平共通信号線が単数でも複数チャンネルでも、列信号読み出し回路206の構成にかかわらず、複数のカラーフィルタを有する画素201が2次元状に配列されていれば、本実施形態は適用できる。
次に、全画素を補正対象とする場合の補正方法について例示する。図2は、図1(b)の撮像領域202を表したものである。ここでは、G1及びG2(グリーン)、B(ブルー)、R(レッド)の3種類のカラーフィルタが画素201の表面上に形成されている場合を示すが、カラーフィルタは何種類でも本実施形態は適用できる。注目画素であるB、R画素は平面上で任意に選んでいる。両者の位置関係に制約事項があるわけではない。簡略のため8列11行の画素配列としているが、実際は数百万〜数千万画素に及ぶ。混色の補正対象となる注目画素をRとして説明する。注目画素Rの左上からの画素Bのカラーフィルタを通過した光が、隣接するRの光電変換部へ漏れ込んでしまう電荷について、本来のBの信号のうちR信号への混色信号となっている割合を表わすパラメータをαR_UL(0)とする。同様に、上からの画素G1のカラーフィルタを通過した光が、Rの光電変換部へ漏れ込んでしまう電荷について、本来のG1の信号のうちR信号への混色信号となっている割合を表すパラメータをαR_UU(0)とする。注目画素Rの右上からの画素Bからの混色の割合を表わすパラメータをαR_UR(0)、注目画素Rの右からの画素G2からの混色の割合を表わすパラメータをαR_RR(0)とする。注目画素Rの右下からの画素Bからの混色割合を表わすパラメータをαR_BR(0)、注目画素Rの下からの画素G1からの混色割合を表わすパラメータをαR_BB(0)とする。注目画素Rの左下からの画素Bからの混色割合を表わすパラメータをαR_BL(0)、注目画素Rの左からの画素G2からの混色割合を表わすパラメータをαR_LL(0)とする。図2の撮像領域の右上の、注目画素Rに対して、上述の注目画素とは異なるパラメータ群を定義する。こららを、αR_UL(1)、αR_UU(1)、αR_UR(1)、αR_RR(1)、αR_BR(1)、αR_BB(1)、αR_BL(1)、αR_LL(1)とする。
注目画素はRに限らず、その他の色G1、B、G2についても、以下のようにパラメータを定義する。注目画素G1に対して、αG1_UL(n)、αG1_UU(n)、αG1_UR(n)、αG1_RR(n)、αG1_BR(n)、αG1_BB(n)、αG1_BL(n)、αG1_LL(n)、n=1,2,3・・・のパラメータを定義する。注目画素Bに対して、αB_UL(n)、αB_UU(n)、αB_UR(n)、αB_RR(n)、αB_BR(n)、αB_BB(n)、αB_BL(n)、αB_LL(n)、n=1,2,3・・・のパラメータを定義する。注目画素G2に対して、αG2_UL(n)、αG2_UU(n)、αG2_UR(n)、αG2_RR(n)、αG2_BR(n)、αG2_BB(n)、αG2_BL(n)、αG2_LL(n)、n=1,2,3・・・のパラメータを定義する。
注目画素Rに対する補正式を説明する。撮像領域中央のR画素を補正する場合、補正後の画素Rの信号出力をR(0)sig'とし、補正前の画素Rの信号出力R(0)sigとする。その他、注目画素の周辺の画素信号に関しても、補正前の信号出力を、G1(0)sig、B(0)sig、G2(0)sigとする。混色の補正の式は次式となる。
R(0)sig'= R(0)sig -{B×αR_UL(0) + G1×αR_UU(0) + B×αR_UR(0)
+ G2×αR_RR(0)+ B×αR_BR(0) + G1×αR_BB(0)
+ B×αR_BL(0) + G2×αR_LL(0) } 式(1.1)
注目画素がG1(0)の場合、以下の補正式となる。
G1(0)sig'= G1(0)sig -{G2×αG1_UL(0) + R×αG1_UU(0) + G2×αG1_UR(0)
+ B×αG1_RR(0)+ G2×αG1_BR(0) + R×αG1_BB(0)
+ G2×αG1_BL(0) + B×αG1_LL(0) } 式(1.2)
注目画素がB(0)の場合、以下の補正式となる。
B(0)sig'= B(0)sig - R×αB_UL(0) + G2×αB_UU(0) + R×αB_UR(0)
+ G1×αB_RR(0)+ R×αB_BR(0) + G2×αB_BB(0)
+ R×αB_BL(0) + G1×αB_LL(0) } 式(1.3)
注目画素がG2(0)の場合、以下の補正式となる。
G2(0)sig'= G2(0)sig -{G1×αG2_UL(0) + B×αG2_UU(0) + G1×αG2_UR(0)
+ R×αG2_RR(0)+ G1×αG2_BR(0) + B×αG2_BB(0)
+ G1×αG2_BL(0) + R×αG2_LL(0) } 式(1.4)
なお、撮像領域202上の画素201では、パラメータは変わるが、注目画素と周囲画素との演算の関係は変わらない。
図3に、図1(a)の混色補正装置110の構成例を示す。混色補正装置110は、混色補正パラメータの記憶部であるメモリ120、補正部121を有し、固体撮像装置102の隣接画素間の混色を補正する。メモリ120は混色補正装置110の中にあってもよいし、混色補正装置110の外部にあってもよい。AFE103から受け取った信号をDFE104で適切な処理をされたデジタル信号が補正の対象となる注目画素となる。補正部121は、カメラ制御部108から、注目画素の色情報や、撮像領域202の位置情報(ここでは、n)を受け取り、それに対応する補正パラメータをメモリ120から読み出し、式(1.1)〜(1.4)に基づいた演算処理をする。また、補正パラメータについて、注目画素と周囲画素の色関係が異なると、例えば左上(UL)からのパラメータは同一になるとは限らない。例えば、αR_UL(n)≠αG1_UL(n)である。それは、カラーフィルタの色の違いによって光電変換素子に入射する光の波長が異なるため、電荷に変換されるシリコン単結晶の深さが異なる為である。例として、注目画素の画素Rに対して左上(UL)の画素B(ブルー)の短い波長の光はシリコン半導体表面から浅い位置で光電変換された場合は、容易に画素Bのフォトダイオード(光電変換素子)に電荷が収集されやすい。従って、該電荷は隣接する画素のフォトダイオードに収集される確率は低い。すなわち、短い波長の光はシリコン半導体表面から浅い位置で大部分が光電変換されるので、光電変換素子を通過して隣接する画素へ到達する確率は低い。一方、注目画素の画素Bに対して左上(UL)の画素R(レッド)の長い波長の光は画素Bの光電変換素子を通過し隣接する異なる色の画素の光電変換素子で捕捉される確率が、短い波長の光と比較して高くなる。すなわち、長い波長の光はシリコン半導体表面から深い位置で大部分が光電変換されるので、隣接画素へ漏れこむ確率が短い波長の光と比較して高くなる。このような理由で、注目画素と周囲画素の色関係が異なると、例えば左上(UL)からのパラメータは同一になるとは限らない。また、この例では、画素Bと画素Rは、カラーフィルタ以外の構成が同一、もしくは同等の構造の条件下で、カラーフィルタのみ異なる場合を想定したものである。カラーフィルタ以外の画素構成、例えばレイアウトや、光電変換素子のデバイス構造が異なると、波長と隣接画素の混色との大小関係は異なる場合もある。撮像領域202の中央から撮像領域202の周辺に行くにしたがって画素に対して光の入射角度が大きくなる。そのため、撮像領域202の中央部の画素R(0)と周辺部の画素R(1)では、周辺部の画素R(1)の方が、カラーフィルタを通過した光もしくは、光電変換された電荷が隣接画素の画素G1、画素B、画素G2に進入しやすくなる。従って、他のカラーフィルタを有する画素と比較して混色の程度が悪化する。
以上のように、混色補正装置110は、メモリ120と、補正部121とを有する。メモリ120は、隣接画素から注目画素へ漏れ込む混色信号を除去するための補正パラメータであって、注目画素の位置に応じた補正パラメータを記憶する。補正部121は、メモリ120に記憶される補正パラメータを用いて、画素の位置に応じて固体撮像装置102の画素信号から混色信号を減算する。本実施形態では、撮像領域202の中央部と周辺部の混色補正パラメータを使い分けることで、撮像領域202の全域に渡ってより正確に混色を補正することができる。中央部の画素の補正パラメータ及び周辺部の画素の補正パラメータは相互に異なる。補正処理に要する時間を考えると、図4のように撮像領域202を幾つかの領域A〜Iに分けて、同一領域内で混色補正パラメーを共通化してもよい。メモリ120は、画素の領域202を複数領域A〜Iに分割した領域毎の補正パラメータを記憶する。補正部121は、画素が属する領域の補正パラメータを用いて、固体撮像装置102の画素信号から上記の混色信号を減算する。2次元行列状の画素では注目画素が2次元に存在する。注目画素は少なくとも2つあり、少なくとも2つの注目画素は相互に水平方向のアドレス及び垂直方向のアドレスの両者が異なる。なお、図4の撮像領域の区切りはこの限りではない。また、ここでは注目画素の周囲画素8画素について補正処理を行ったが、用途によって要求される画質に応じて、比較的混色が少ない左上、右上、左下、右下の混色補正パラメータを使用した補正処理を省略しても構わない。斜め方向は、縦又は横方向の画素間の距離に比べて√2倍長くなるので、混色の程度が少ないからである。また、さらに画質を優先させるのであれば、さらに、もう一つ外の外周の周囲画素のパラメータを用いて混色補正処理をしてもよい。動画撮影の場合のようにフレームレートが高いために信号処理に時間が取れない場合、例えば、注目画素の斜め方向の混色補正処理を省略する手法や、前述のように撮像領域202を複数の領域に区切る等の手法等をとる。また、光学系101の絞り101bに応じて固体撮像装置102に入射する光線の入射角が異なることから、絞り101bに応じて混色補正パラメータを使い分けて補正すると、より混色の補正が有効になる。また、レンズ瞳距離に応じて固体撮像装置102に入射する光線の入射角が異なることから、瞳距離に応じて混色補正パラメータを使い分けて補正すると、より混色の補正が有効になる。この場合の、混色補正装置110の構成は図3と同じであるが、混色補正装置110の中のメモリ120に、光学系101の瞳距離、絞り値に応じた補正パラメータも有する点が異なる。補正部121は、カメラ制御部108から光学系101の瞳距離、絞り値の情報を受け取り、それに対応した補正パラメータをメモリ120から読み込み、式(1.1)、(1.2)、(1.3)、(1.4)によって演算処理する。すなわち、補正部121は、固体撮像装置102に使用される光学系101の絞り値及び/又は瞳距離に応じて、固体撮像装置102の画素信号から上記の混色信号を減算する。
(第2の実施形態)
図5(a)及び(b)は、本発明の第2の実施形態の固体撮像装置の色配置を示す図である。遮光画素領域602は、撮像領域601の中に複数箇所設けられる。遮光画素とは光が光電変換素子に入射しないようにした金属層等で遮光した画素のことである。カラーフィルタを遮光材料で形成しても同様に遮光画素となる。本実施形態は、固体撮像装置102上に遮光画素で囲まれた開口画素を形成し、この開口画素の信号を評価することで混色量を評価できる構造を作り込んだ固体撮像装置102の例である。図5(b)に示すように遮光画素領域602の詳細は、1つの開口画素(白色部)701の周囲画素を遮光画素(ハッチ部)702で囲ったものである。被写体からの入射光は開口画素R701にて光電変換される。開口画素Rのカラーフィルタを通過した光又は光電変換された電荷が開口画素R701の周囲画素に混色として漏れ込む。左上の遮光画素Bに現れる混色信号Bの信号Bsigと開口画素Rの信号Rsigの比、すなわちαB_BR(n)を求めることができる。同様に、開口画素Rの他の周辺の遮光画素に同様の手法で、αG1_BB(n)、αB_BL(n)、αG2_LL(n)、αB_UL(n)、αG1_UU(n)、αB_UR(n)、αG2_RR(n)、を計算することができる。ここで、n=1,2,3・・・である。開口画素G2の周辺画素についても、αG1_BR(n)、αB_BB(n)、αG1_BL(n)、αR_LL(n)、αG1_UL(n)、αB_UU(n)、αG1_UR(n)、αR_RR(n)が計算できる。以下同様に、開口画素Bについて、αR_BR(n)、αG2_BB(n)、αR_BL(n)、αG1_LL(n)、αR_UL(n)、αG2_UU(n)、αR_UR(n)、αG1_RR(n)が計算できる。開口画素G2について、αG2_BR(n)、αR_BB(n)、αG2_BL(n)、αB_LL(n)、αG2_UL(n)、αR_UU(n)、αG2_UR(n)、αB_RR(n)が計算できる。図5(a)で複数箇所に設けられている遮光画素領域602の各々で、補正パラメータを求める。ある画素の混色を補正する際には、例えば補正パラメータが計算されているいくつかの開口画素のうち最も近いパラメータを使用する。そして、第1の実施形態に記載の式(1.1)、(1.2)、(1.3)、(1.4)を用いて混色の補正処理を行う。
図6は、本実施形態の混色補正装置110の構成例を示す。混色補正装置110は、混色補正パラメータの記憶部であるメモリ120、補正部121、撮影毎の画素信号を一時保存するメモリ130、補正パラメータを算出する演算部131を有する。メモリ120及び130は混色補正装置110の中にあってもよいし、混色補正装置110の外部にあってもよい。DFE104は、AFE103から受け取った信号を処理する。メモリ130は、DFE104で処理されたデジタル信号を格納する。補正パラメータ演算部131は、メモリ130の中から遮光画素領域602の信号を読み出し、補正パラメータを算出する。例えば、補正パラメータ演算部131は、αB_BR(n)=Bsig/Rsigにより、補正パラメータαB_BR(n)を算出する。算出した補正パラメータはメモリ120に格納される。補正部121は、メモリ130から画素信号、メモリ120から補正パラメータを読み出し、式(1.1)、(1.2)、(1.3)、(1.4)によって演算処理する。すなわち、固体撮像装置102は、開口画素及びそれに隣接する遮光画素を有する。補正パラメータ演算部131は、開口画素の信号及び遮光画素の信号を基に補正パラメータを演算し、メモリ120に補正パラメータを記憶する。メモリ120は、複数の画素位置の補正パラメータを記憶する。補正部121は、最も近い画素位置の補正パラメータを用いて、固体撮像装置102の画素信号から上記の混色信号を減算する。
本実施形態では、撮像領域601内に遮光画素領域602を複数設けることで、被写体の撮影画像そのものから、リアルタイムに補正パラメータを得ることができる。そのため、撮影時の光学系101の絞り101b、光学系101の瞳距離に応じて、固体撮像装置への光の入射角度が変わることで変化する混色に対しての補正パラメータを得ることができ、その結果、混色補正の精度を向上させることができる。撮像領域601内の遮光画素領域602の撮像信号は遮光領域602の近くの画素信号を用いて補正又は代用する。撮像領域601の各画素の補正は、複数の遮光画素領域602から得られた、複数の混色量を使用して計算する。混色量の計算方法は、いくつかの方法が可能である。第1の方法は、平面的にも最も近い画素の混色量を用いて補正する方法である。第2の方法は、画素をいくつかの領域に区切りその領域で同じ混色パラメータを使用する方法である。第3の方法は、複数の遮光画素領域602から、x方向、y方向の1画素当たりの混色量の変化を求め、画素の位置に応じて混色量を計算する方法である。
(第3の実施形態)
図7は本発明の第3の実施形態の固体撮像装置の撮像領域を含む画素配列を示し、図8は本実施形態の混色補正装置110の構成例を示す図である。以下、本実施形態が第2の実施形態と異なる点を説明する。画素配列は、撮像領域801と遮光画素領域802から構成され、撮像領域801の中に遮光画素は設けられていない。本実施形態では、遮光画素領域802中に設けられた複数の混色パラメータを用いて、撮像領域801内の画素の補正量を、線形補間法で計算する。本実施形態の混色補正パラメータの求め方と混色補正処理について、例をあげて説明する。撮像領域801の中央部の画素B(0)803を注目画素とした場合の、混色補正パラメータを、αB_UL(0)、αB_UU(0)、αB_UR(0)、αB_RR(0)、αB_BR(0)、αB_BB(0)、αB_BL(0)、αB_LL(0)、とする。これは事前に実験あるいはシミュレーションにより求めておく。同様に、遮光画素領域802内の画素B(1)804から求められる混色補正パラメータをαB_UL(1)、αB_UU(1)、αB_UR(1)、αB_RR(1)、αB_BR(1)、αB_BB(1)、αB_BL(1)、αB_LL(1)、とする。
同様に、画素B(2)804について、αB_UL(2)、αB_UU(2)、αB_UR(2)、αB_RR(2)、αB_BR(2)、αB_BB(2)、αB_BL(2)、αB_LL(2)、とする。同様に、画素B(3)805について、αB_UL(3)、αB_UU(3)、αB_UR(3)、αB_RR(3)、αB_BR(3)、αB_BB(3)、αB_BL(3)、αB_LL(3)、とする。同様に、画素B(4)806について、αB_UL(4)、αB_UU(4)、αB_UR(4)、αB_RR(4)、αB_BR(4)、αB_BB(4)、αB_BL(4)、αB_LL(4)、とする。同様に、画素B(5)807について、αB_UL(5)、αB_UU(5)、αB_UR(5)、αB_RR(5)、αB_BR(5)、αB_BB(5)、αB_BL(5)、αB_LL(5)、とする。同様に、画素B(6)808について、αB_UL(6)、αB_UU(6)、αB_UR(6)、αB_RR(6)、αB_BR(6)、αB_BB(6)、αB_BL(6)、αB_LL(6)、とする。
中心画素B(0)803と画素B(6)808の位置座標の差を(X,Y)とすると、遮光画素B(2)804と遮光画素(3)B805の位置座標の差は(X,0)、遮光画素B(4)806と遮光画素B(5)807の位置座標の差は(0,Y)である。光の入射角度は位置座標に略比例して変化するので、開口画素B(6)808と開口画素B(0)803の混色パラメータの水平方向Xの差は、遮光画素805と804の混色パラメータの差と等しいと近似できる。同様に、開口画素B(6)808と開口画素B(0)803の混色パラメータの垂直方法Yの差は、遮光画素807と806の混色パラメータの差と等しいと近似できる。以上より、補正部121は、画素B(5)808の補正パラメータを以下の式(3.1)〜(3.8)で求める。
αB_UL(6) =αB_UL(0) + [ αB_UL(3) −αB_UL(2)] + [ αB_UL(5) −αB_UL(4)]
αB_UU(6) =αB_UU(0) + [ αB_UU(3) −αB_UU(2)] + [ αB_UU(5) −αB_UU(4)]
αB_UR(6) =αB_UR(0) + [ αB_UR(3) −αB_UR(2)] + [ αB_UR(5) −αB_UR(4)]
αB_RR(6) =αB_RR(0) + [ αB_RR(3) −αB_RR(2)] + [ αB_RR(5) −αB_RR(4)]
αB_BR(6) =αB_BR(0) + [ αB_BR(3) −αB_BR(2)] + [ αB_BR(5) −αB_BR(4)]
αB_BB(6) =αB_BB(0) + [ αB_BB(3) −αB_BB(2)] + [ αB_BB(5) −αB_BB(4)]
αB_BL(6) =αB_BL(0) + [ αB_BL(3) −αB_BL(2)] + [ αB_BL(5) −αB_BL(4)]
αB_LL(6) =αB_LL(0) + [ αB_LL(3) −αB_LL(2)] + [ αB_LL(5) −αB_LL(4)]
…式(3.1)〜(3.8)
同様に、補正部121は、他の開口画素についても遮光画素領域802の混色パラメータを用いて混色補正パラメータを計算する。そして、補正部121は、計算した混色パラメータを用いて、第1の実施形態に記載の式(1.1)、(1.2)、(1.3)、(1.4)を用いて混色の補正処理を行う。すなわち、固体撮像装置102は、第1の開口画素803、第2の開口画素808、第1の遮光画素806、第2の遮光画素804、第3の遮光画素807、及び第4の遮光画素805を有する。第1の遮光画素806は、第1の開口画素803と同じ行の遮光画素である。第2の遮光画素804は、第1の開口画素803と同じ列の遮光画素804である。第3の遮光画素807は、第2の開口画素808と同じ行の遮光画素である。第4の遮光画素805は、第2の開口画素808と同じ列の遮光画素である。メモリ120は、第1の開口画素803の補正パラメータ及び第1〜第4の遮光画素806,804,807,805の補正パラメータを記憶する。補正部121は、第1の開口画素803の補正パラメータ及び第1〜第4の遮光画素806,804,807,805の補正パラメータを基に第2の開口画素808の補正パラメータを演算する。そして、補正部121は、第2の開口画素808の補正パラメータを用いて第2の開口画素808の信号から上記の混色信号を減算する。このことにより、本実施形態では、撮像領域801の中に遮光画素領域を設けずに、撮像領域801全域にわたって、混色を低減することができる。また、図9(a)のように、遮光画素領域802を撮像領域801の四辺に設けて、平行に位置する2つの遮光画素領域802から求められる補正パラメータの平均を用いれば、補正パラメータ算出の精度が上がり、なお良い。また図9(b)のように、撮像領域801の中に遮光画素領域803を設けて、かつ、撮像領域801の周辺に遮光画素領域802を設けるハイブリット型で、補正パラメータ算出の精度を上がるとなお良い。
(第4の実施形態)
図11は、本発明の第4の実施形態による混色補正装置110の構成例を示す図である。混色補正装置110は、メモリ120及び補正部121を有する。本実施形態は第1の実施形態の補正精度を更に向上させるものである。以下、本実施形態が第1の実施形態と異なる点を説明する。本実施形態では、注目画素から隣接画素への混色量を、注目画素の出力に足し戻すことで混色補正の精度を向上するものである。第1の実施形態で示した式(1.1)、(1.2)、(1.3)、(1.4)の補正処理の後に以下の式によって補正処理をすることでさらに混色の低減が可能となる。例として、画素Rに処理を施す場合をあげる。図10(a)は画素Rから漏れ出る光及び電荷を補正パラメータで示したものである。同様に、図10(b)は画素G2から漏れ出る光及び電荷を補正パラメータで示したものである。図を省略するが、画素B、画素G2についても同様の図を描くことができる。補正パラメータは第1〜第3の実施形態で示したものを使用する。また、第1〜第3の実施形態と同様にして、補正パラメータ(例えばαR_UU(n))を撮像領域によって使い分ける。補正部121は、画素G1、R、B、G2から漏れ出した光及び電荷をそれぞれ式(4.1)〜(4.4)により補正処理する。本実施形態では、補正対象となる注目画素は、光及び電荷が漏れ出す画素となる。ここでの画素G1の補正前の信号をG1(n)sig'とし、補正後の信号をG1(n)sig'’とする。同様に、画素Rの補正前の信号をR(n)sig'とし、補正後の信号をR(n)sig'’とする。同様に、画素Bの補正前の信号をB(n)sig'とし、補正後の信号をB(n)sig'’とする。同様に、画素G2の補正前の信号をG2(n)sig'とし、補正後の信号をG2(n)sig'’とする。すなわち、補正部121は、補正前の信号G1(n)sig'、R(n)sig'、B(n)sig'、G2(n)sig'を入力し、メモリ120内の補正パラメータを読み出す。そして、補正部121は、補正後の信号G1(n)sig'’、R(n)sig'’、B(n)sig'’、G2(n)sig'’を演算及び出力する。
G1(n)sig'’= G1(n)sig' ×{1+ αG2_BR(n) + αR_BB(n) + αG2_BL(n)
+ αB_LL(n)+ αG2_UL(n) + αR_UU(n)
+ αG2_UR(n) +αG1_LL(n) } 式(4.1)
R(n)sig'’= R(n)sig' ×{1+ αB_BR(n) + αG1_BB(n) + αB_BL(n)
+ αG2_LL(n)+ αB_UL(n) + αG1_UU(n)
+ αB_UR(n) +αG2_LL(n) } 式(4.2)
B(n)sig'’= B(n)sig' ×{1+ αR_BR(n) + αG2_BB(n) + αR_BL(n)
+ αG1_LL(n)+ αR_UL(n) + αG2_UU(n)
+ αR_UR(n) +αG1_LL(n) } 式(4.3)
G2(n)sig'’= G2(n)sig' ×{1+ αG1_BR(n) + αB_BB(n) + αG1_BL(n)
+ αR_LL(n)+ αG1_UL(n) + αB_UU(n)
+ αG1_UR(n) +αR_LL(n) } 式(4.4)
以上のように、補正部121は、注目画素から隣接画素へ漏れ出す混色信号を注目画素の信号に加算することにより、補正後の信号G1(n)sig'’、R(n)sig'’、B(n)sig'’、G2(n)sig'’を生成する。本実施形態では、撮像領域中央部と周辺部の混色補正パラメータを使い分けることで撮像領域の全域に渡って混色を低減することができる。補正処理に要する時間を考慮し、図4のように撮像領域を幾つかの領域A〜Iに分けて、混色補正パラメータを使い分けてもよい。用途によって比較的混色が少ない左上、右上、左下、右下の混色補正パラメータを使用した補正処理を省略することができるのは第1の実施形態と同じである。フレームレートが高い場合に図4のように撮像領域を大まかに領域A〜Iに区切る手法も第1の実施形態と同じ効果の下、使用可能である。
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
102 固体撮像装置、104 DFE、110 混色補正装置、120 メモリ、121 補正部、130 メモリ、131 混色補正パラメータ演算部

Claims (9)

  1. 光電変換素子を含む画素が行列状に2次元配置され、複数色のカラーフィルタが前記画素の表面上に配置される固体撮像装置の隣接画素間の混色を補正する画像処理装置であって、
    隣接画素から注目画素へ漏れ込む混色信号を除去するための補正パラメータであって、前記注目画素の位置に応じた補正パラメータを記憶する記憶部と、
    前記記憶部に記憶される補正パラメータを用いて、画素の位置に応じて前記固体撮像装置の画素信号から前記混色信号を減算する補正部とを有し、
    前記注目画素は少なくとも2つあり、前記少なくとも2つの注目画素は相互に水平方向のアドレス及び垂直方向のアドレスの両者が異なることを特徴とする画像処理装置。
  2. 中央部の画素の前記補正パラメータ及び周辺部の画素の前記補正パラメータは相互に異なることを特徴とする請求項1記載の画像処理装置。
  3. 前記記憶部は、前記画素の領域を複数領域に分割した領域毎の補正パラメータを記憶し、
    前記補正部は、前記画素が属する領域の補正パラメータを用いて、前記画素信号から前記混色信号を減算することを特徴とする請求項1又は2記載の画像処理装置。
  4. 前記記憶部は、複数の画素位置の補正パラメータを記憶し、
    前記補正部は、最も近い画素位置の補正パラメータを用いて、前記画素信号から前記混色信号を減算することを特徴とする請求項1又は2記載の画像処理装置。
  5. 前記固体撮像装置は、開口画素及びそれに隣接する遮光画素を有し、
    さらに、前記開口画素の信号及び前記遮光画素の信号を基に補正パラメータを演算し、前記記憶部に前記補正パラメータを記憶する演算部を有することを特徴とする請求項1〜4のいずれか1項に記載の画像処理装置。
  6. 前記固体撮像装置は、第1の開口画素、第2の開口画素、前記第1の開口画素と同じ行の第1の遮光画素、前記第1の開口画素と同じ列の第2の遮光画素、前記第2の開口画素と同じ行の第3の遮光画素、及び前記第2の開口画素と同じ列の第4の遮光画素を有し、
    前記記憶部は、前記第1の開口画素の補正パラメータ及び第1〜第4の遮光画素の補正パラメータを記憶し、
    前記補正部は、前記第1の開口画素の補正パラメータ及び第1〜第4の遮光画素の補正パラメータを基に前記第2の開口画素の補正パラメータを演算し、前記第2の開口画素の補正パラメータを用いて前記第2の開口画素の信号から前記混色信号を減算することを特徴とする請求項1〜5のいずれか1項に記載の画像処理装置。
  7. 前記補正部は、前記固体撮像装置に使用される光学系の絞り値及び/又は瞳距離に応じて、前記画素信号から前記混色信号を減算することを特徴とする請求項1〜6のいずれか1項に記載の画像処理装置。
  8. 前記補正部は、注目画素から隣接画素へ漏れ出す混色信号を前記注目画素の信号に加算することを特徴とする請求項1〜7のいずれか1項に記載の画像処理装置。
  9. 請求項1〜8のいずれか1項に記載の画像処理装置と、
    光電変換素子を含む画素が行列状に2次元配置され、複数色のカラーフィルタが前記画素の表面上に配置される固体撮像装置と
    を有することを特徴とする撮像システム。
JP2009217379A 2009-09-18 2009-09-18 画像処理装置及び撮像システム Expired - Fee Related JP5460202B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009217379A JP5460202B2 (ja) 2009-09-18 2009-09-18 画像処理装置及び撮像システム
US12/874,119 US8619163B2 (en) 2009-09-18 2010-09-01 Solid state imaging using a correction parameter for correcting a cross talk between adjacent pixels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009217379A JP5460202B2 (ja) 2009-09-18 2009-09-18 画像処理装置及び撮像システム

Publications (2)

Publication Number Publication Date
JP2011066800A true JP2011066800A (ja) 2011-03-31
JP5460202B2 JP5460202B2 (ja) 2014-04-02

Family

ID=43952530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009217379A Expired - Fee Related JP5460202B2 (ja) 2009-09-18 2009-09-18 画像処理装置及び撮像システム

Country Status (1)

Country Link
JP (1) JP5460202B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034086A (ja) * 2011-08-02 2013-02-14 Sony Corp 撮像素子、並びに、撮像装置および方法
CN103685987A (zh) * 2012-09-24 2014-03-26 株式会社东芝 固体拍摄装置、相机模块以及数字相机
WO2014185209A1 (ja) * 2013-05-13 2014-11-20 富士フイルム株式会社 混色率算出装置及び方法並びに撮像装置
JPWO2016143139A1 (ja) * 2015-03-12 2017-12-21 オリンパス株式会社 画像処理装置、画像処理方法およびプログラム
JPWO2018062560A1 (ja) * 2016-09-30 2019-09-12 株式会社ニコン 撮像装置および撮像素子
WO2024034017A1 (ja) * 2022-08-09 2024-02-15 ソニーセミコンダクタソリューションズ株式会社 受光素子及び光検出装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6805766B2 (ja) 2016-02-26 2020-12-23 株式会社リコー 撮像装置及び撮像システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969617A (ja) * 1995-09-01 1997-03-11 Nikon Corp クロストーク検出方法、受光素子及びウエハ
JP2009100203A (ja) * 2007-10-16 2009-05-07 Sony Corp 固体撮像素子用の信号処理装置、信号処理装置を備えた撮像装置、信号処理方法、およびプログラム
JP2009188461A (ja) * 2008-02-01 2009-08-20 Ricoh Co Ltd 撮像装置
JP2010016419A (ja) * 2008-06-30 2010-01-21 Sony Corp 画像信号補正装置、撮像装置、画像信号補正方法、およびプログラム
JP2011029835A (ja) * 2009-07-23 2011-02-10 Sony Corp 固体撮像装置とその駆動方法、及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0969617A (ja) * 1995-09-01 1997-03-11 Nikon Corp クロストーク検出方法、受光素子及びウエハ
JP2009100203A (ja) * 2007-10-16 2009-05-07 Sony Corp 固体撮像素子用の信号処理装置、信号処理装置を備えた撮像装置、信号処理方法、およびプログラム
JP2009188461A (ja) * 2008-02-01 2009-08-20 Ricoh Co Ltd 撮像装置
JP2010016419A (ja) * 2008-06-30 2010-01-21 Sony Corp 画像信号補正装置、撮像装置、画像信号補正方法、およびプログラム
JP2011029835A (ja) * 2009-07-23 2011-02-10 Sony Corp 固体撮像装置とその駆動方法、及び電子機器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034086A (ja) * 2011-08-02 2013-02-14 Sony Corp 撮像素子、並びに、撮像装置および方法
CN103685987A (zh) * 2012-09-24 2014-03-26 株式会社东芝 固体拍摄装置、相机模块以及数字相机
JP2014063935A (ja) * 2012-09-24 2014-04-10 Toshiba Corp 固体撮像装置
US9106785B2 (en) 2012-09-24 2015-08-11 Kabushiki Kaisha Toshiba Solid state image pickup device having received light correction unit, camera module, and digital camera
WO2014185209A1 (ja) * 2013-05-13 2014-11-20 富士フイルム株式会社 混色率算出装置及び方法並びに撮像装置
JP5865555B2 (ja) * 2013-05-13 2016-02-17 富士フイルム株式会社 混色率算出装置及び方法並びに撮像装置
JPWO2016143139A1 (ja) * 2015-03-12 2017-12-21 オリンパス株式会社 画像処理装置、画像処理方法およびプログラム
JPWO2018062560A1 (ja) * 2016-09-30 2019-09-12 株式会社ニコン 撮像装置および撮像素子
JP7283079B2 (ja) 2016-09-30 2023-05-30 株式会社ニコン 撮像装置および撮像素子
US11705468B2 (en) 2016-09-30 2023-07-18 Nikon Corporation Image-capturing device and image sensor
WO2024034017A1 (ja) * 2022-08-09 2024-02-15 ソニーセミコンダクタソリューションズ株式会社 受光素子及び光検出装置

Also Published As

Publication number Publication date
JP5460202B2 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
US8619163B2 (en) Solid state imaging using a correction parameter for correcting a cross talk between adjacent pixels
US8063978B2 (en) Image pickup device, focus detection device, image pickup apparatus, method for manufacturing image pickup device, method for manufacturing focus detection device, and method for manufacturing image pickup apparatus
KR101353778B1 (ko) 고체 촬상 장치 및 카메라 모듈
JP5460202B2 (ja) 画像処理装置及び撮像システム
US20240214689A1 (en) Image-capturing device and image processing device
US11637975B2 (en) Solid state image sensor and electronic equipment
JP2022174185A (ja) 撮像装置
JP5436114B2 (ja) 撮像システム
JP2007155929A (ja) 固体撮像素子及びこれを用いた撮像装置
KR20090049540A (ko) 촬상장치 및 촬상 데이터 보정 방법과 프로그램
US20240089629A1 (en) Image sensor and imaging device
WO2012127701A1 (ja) カラー撮像素子、撮像装置、及び撮像プログラム
JP2008113236A (ja) 撮像装置におけるシェーディング補正方法と装置
WO2013069445A1 (ja) 立体撮像装置及び画像処理方法
JP2006157882A (ja) 固体撮像装置
US11705468B2 (en) Image-capturing device and image sensor
JP5634614B2 (ja) 撮像素子及び撮像装置
JP2009004605A (ja) 撮像素子及び撮像装置
JP2008252397A (ja) 撮像データの処理方法及び撮像装置
JP2010239192A (ja) 固体撮像素子及び撮像装置及び画像信号処理方法
JP7381067B2 (ja) 撮像素子及び撮像装置
JP6992877B2 (ja) 撮像素子および撮像装置
JP4682070B2 (ja) 画像信号処理装置
JP2017208651A (ja) 撮像装置
JP2022096535A (ja) 撮像素子、及び、撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R151 Written notification of patent or utility model registration

Ref document number: 5460202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees