本発明の防眩フィルムについて図を用いて説明する。
図1に本発明の防眩フィルムの断面模式図を示した。
本発明の防眩フィルム(1)は、透明基材(11)上に防眩層(12)を備える。本発明の防眩フィルム(1)の防眩層(12)は、アクリル系材料からなるバインダマトリックス(120)と粒子(121)を含む。
なお、本発明のバインダマトリックスとは、防眩層に含まれる成分のうち、粒子を除いたものを指す。
また、本発明の防眩フィルムにあっては透明基材上に防眩層形成用塗液を塗布することにより形成されるが、本発明のバインダマトリックス形成材料とは、防眩層形成用塗液の固形分から粒子を除いたものを指す。
したがって、バインダマトリックス形成材料には、必要に応じてアクリル系材料の他に光重合開始剤や表面調整剤等の添加剤、熱可塑性樹脂等も含む。
本発明の防眩フィルムにあっては、透明基材上の表面に凹凸を有してなる防眩層を備える防眩フィルムであって、(a)前記防眩層のJIS−K7105−1981で規定されるヘイズ(Hz)が5%以下であること、(b)前記防眩層表面の、JIS−B0601−1994で規定される十点平均高さ(Rz)が0.15μm以上1.0μm以下であること、(c)前記防眩層表面の、JIS−B0601−1994で規定される凹凸の平均間隔(Sm)が10μm以上150μm以下であることを特徴とする。本発明の防眩フィルムは、(a)、(b)、(c)で規定された数値範囲をすべて満たすことを特徴とする。
また、防眩フィルムは、防眩層表面に凹凸構造を備えることにより、防眩フィルム表面に入射する外光を散乱させ、防眩フィルム表面に映りこむ外光の像を不鮮明とするものであり、防眩層がバインダマトリックスと粒子からなる場合、防眩層表面の凹凸は粒子が単独あるいは複数が凝集して表面から突出することによって形成される。
一方、ぎらつきを解消する方法としては、透過光を散乱させ、ぎらつきの原因であるレンズ効果を抑制する手法、つまり、内部散乱粒子を添加することにより内部ヘイズを大きくする手法が用いられてきた。
しかしながら、内部へイズを大きくすることは防眩フィルム全体のヘイズを大きくすることになり、コントラストの低下につながる。防眩フィルムにおいて、ぎらつき抑制と高コントラストは、トレードオフの関係にあり両者を両立することは困難であった。
上述の課題を達成すべく検討した結果、防眩層のJIS−K7105−1981で規定されるヘイズ(Hz)が5%以下であり、且つ防眩層表面の、JIS−B0601−1994で規定されるカットオフ波長(λc)が0.8mmのときの十点平均高さ(Rz)が0.15μm以上1.0μm以下であること、且つ前記防眩層表面の、JIS−B0601−1994で規定される凹凸の平均間隔(Sm)が10μm以上150μm以下にすることにより、高いコントラストであり、高い擦傷性能を有し、ぎらつきを強いレベルで抑制した防眩性を全て有することを見出した。
ヘイズ(Hz)が5%を超えるような場合、コントラストが低下する。また、ヘイズ(Hz)が5%以下であると、入射角5°での波長550nmにおける防眩層の透過率が高くなり、輝度向上、省エネにつながる。なお、より好ましくは透過率80%以上である。
なお、ここで示しているヘイズ(Hz)とは、トータルヘイズを示す。防眩フィルムの表面凹凸だけに起因するヘイズが表面ヘイズで、防眩層内部だけに起因するヘイズが内部ヘイズであり、表面ヘイズと、内部ヘイズを足した値が、防眩フィルムのトータルヘイズ(Hz)(または、全体ヘイズともいう。)を示す。
本発明の防眩フィルムにあっては、前記防眩層表面の、JIS−B0601−1994で規定されるカットオフ波長(λc)が0.8mmのときの十点平均高さ(Rz)が0.15μm以上1.0μm以下の範囲内である。十点平均高さ(Rz)が0.15μmを下回る場合にあっては、十分な防眩性を備える防眩フィルムとすることができなくなってしまう。一方、十点平均高さ(Rz)が1.0μmを上回る場合にあっては、防眩フィルム表面に入射する外光を高い凸部で散乱させることにより白茶け感の強い防眩フィルムとなってしまう。また、防眩層表面への突出が大きく耐擦傷性が弱くなってしまう。
また、前記防眩層表面の、JIS−B0601−1994で規定される凹凸の平均間隔(Sm)が10μm以上150μm以下の範囲内であることが好ましい。防眩層表面の凹凸の平均間隔(Sm)が10μmを下回る場合、十分な防眩性を備える防眩フィルムとすることができなくなってしまう。また防眩層表面の凹凸の平均間隔(Sm)が150μmを上回る場合にあっては、ぎらつきが発生してしまう。さらに防眩層表面の凹凸の平均間隔(Sm)が150μmを上回る場合にあっては、防眩層表面の凹凸間が大きく耐擦傷性が弱くなってしまう。
また、本発明の防眩フィルムにあっては、防眩層がバインダマトリックスと粒子を含み、前記粒子の屈折率(nA)と前記バインダマトリックスの屈折率(nM)の屈折率差(|nA−nM|)が0.00以上0.04以下であることが好ましく、|nA−nM|が0.04を超えるような場合、防眩層内部での散乱が大きく、ヘイズが高くなり、コントラストが低下してしまう。
また、本発明の防眩フィルムにあっては、バインダマトリックスに対する前記粒子の含有量が0.5重量部以上20重量部以下であることが好ましい。0.5重量部を下まわる場合は、防眩性が発現しにくく、20重量部を超えるような場合には、本発明の効果を十分に得ることができなくなることがある。
また、本発明のバインダマトリックス中に粒子を含む防眩層を備える防眩フィルムにあっては、バインダマトリックスが電離放射線硬化型アクリル系材料であり、且つ、前記粒子がスチレンとメタクリル酸メチルの共重合体からなる粒子またはメタクリル酸メチルからなる粒子であることが好ましい。
具体的には、防眩フィルムにあっては、バインダマトリックス形成材料としてアクリル系材料を用い、透明基材上に塗布された電離放射線硬化型アクリル系材料により防眩層を形成することにより、ディスプレイ表面に設けた際に十分な耐擦傷性を備える防眩フィルムとすることができる。
このとき、バインダマトリックス形成材料としては、電離放射線硬化型アクリル系材料を用いることができる。アクリル系材料としては、多価アルコールのアクリル酸またはメタクリル酸エステルのような多官能の(メタ)アクリレート化合物、ジイソシアネートと多価アルコール及びアクリル酸またはメタクリル酸のヒドロキシエステル等から合成されるような多官能のウレタン(メタ)アクリレート化合物を使用することができる。またこれらの他にも、電離放射線型材料として、アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等を使用することができる。
なお、本発明において「(メタ)アクリレート」とは「アクリレート」と「メタクリレート」の両方を示している。たとえば、「ウレタン(メタ)アクリレート」は「ウレタンアクリレート」と「ウレタンメタアクリレート」の両方を示している。
単官能の(メタ)アクリレート化合物としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、アクリロイルモルフォリン、N−ビニルピロリドン、テトラヒドロフルフリールアクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、3−メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、リン酸(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド変性フェノキシ(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−2−ヒドロキシプロピルフタレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−(メタ)アクリロイルオキシエチルハイドロゲンフタレート、2−(メタ)アクリロイルオキシプロピルハイドロゲンフタレート、2−(メタ)アクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート、2−(メタ)アクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート、ジメチルアミノエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、2−アダマンタンおよびアダマンタンジオールから誘導される1価のモノ(メタ)アクリレートを有するアダマンチルアクリレートなどのアダマンタン誘導体モノ(メタ)アクリレート等が挙げられる。
前記2官能の(メタ)アクリレート化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、エトキシ化ヘキサンジオールジ(メタ)アクリレート、プロポキシ化ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどのジ(メタ)アクリレート等が挙げられる。
前記3官能以上の(メタ)アクリレート化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、トリス2−ヒドロキシエチルイソシアヌレートトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等のトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート等の3官能の(メタ)アクリレート化合物や、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンヘキサ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレート化合物や、これら(メタ)アクリレートの一部をアルキル基やε−カプロラクトンで置換した多官能(メタ)アクリレート化合物等が挙げられる。
また、ウレタン(メタ)アクリレート化合物としては、多価アルコール、多価イソシアネート及び水酸基含有アクリレートを反応させることによって得られる化合物を用いることができるが、具体的には、共栄社化学社製、UA−306H、UA−306T、UA−306I等、日本合成化学社製、UV−1700B、UV−6300B、UV−7600B、UV−7605B、UV−7640B、UV−7650B等、新中村化学社製、U−4HA、U−6HA、UA−100H、U−6LPA、U−15HA、UA−32P、U−324A等、ダイセルユーシービー社製、Ebecryl−1290、Ebecryl−1290K、Ebecryl−5129等、根上工業社製、UN−3220HA、UN−3220HB、UN−3220HC、UN−3220HS等を用いることができる。
また、バインダマトリックス形成材料としては、電離放射線硬化型アクリル系材料の他に熱可塑性樹脂等を加えることもできる。熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニル及びその共重合体、塩化ビニル及びその共重合体、塩化ビニリデン及びその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール樹脂、アクリル樹脂及びその共重合体、メタクリル樹脂及びその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等を使用できる。熱可塑性樹脂を加えることにより、透明基材と防眩層との密着性を向上させることができる。また、熱可塑性樹脂を加えることにより、製造される防眩フィルムのカールを抑制することができる。
また、電離放射線として紫外線を用いる場合、防眩層形成用塗液に光重合開始剤が加えられる。光重合開始剤は、公知の光重合開始剤を用いることができるが、用いるバインダマトリックス形成材料にあったものを用いることが好ましい。光重合開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルメチルケタールなどのベンゾインとそのアルキルエーテル類等が用いられる。光重合開始剤の使用量は、バインダマトリックス形成材料に対して0.5重量部〜20重量部である。好ましくは2重量部〜8重量部である。
本発明に用いられる粒子としては、アクリル粒子(屈折率1.49)、アクリル・スチレン粒子(屈折率1.49〜1.59)、ポリスチレン粒子(屈折率1.59)、ポリカーボネート粒子(屈折率1.58)、メラミン粒子(屈折率1.66)、エポキシ粒子(屈折率1.58)、ポリウレタン粒子(屈折率1.55)、ナイロン粒子(屈折率1.50)、ポリエチレン粒子(1.50〜1.56)、ポリプロピレン粒子(屈折率1.49)、シリコーン粒子(屈折率1.43)、ポリテトラフルオロエチレン粒子(屈折率1.35)、ポリフッ化ビニリデン粒子(屈折率1.42)、ポリ塩化ビニル粒子(屈折率1.54)、ポリ塩化ビニリデン粒子(屈折率1.62)、ガラス粒子(屈折率1.48)、シリカ(屈折率1.43)等を用いることができる。なお、本発明にあっては、粒子は複数種の粒子であっても構わない。
特に、前記バインダマトリックス形成材料としてアクリル系材料を用いた際に、粒子としてはスチレンとメタクリル酸メチルの共重合体からなる粒子またはメタクリル酸メチルからなる粒子を用いることが好ましく、スチレンとメタクリル酸メチルの共重合体からなる粒子またはメタクリル酸メチルからなる粒子にあっては、バインダマトリックス形成材料との相性が良く、バインダマトリックス中における粒子の挙動を容易に制御することができ、ヘイズ(Hz)及び凹凸の平均間隔(Sm)が所定の範囲内にある防眩層を効率的に形成することができる。
また、本発明の防眩フィルムにあっては、防眩層の平均膜厚(H)が4μm以上9μm以下の範囲内であることが好ましい。防眩層の平均膜厚(H)が4μmを下回る場合、得られる防眩フィルムはディスプレイ表面に設けられるだけの十分な硬度を得ることができなくなってしまうことがある。一方、防眩層の平均膜厚(H)が9μmを超えるような場合、得られる防眩フィルムのカール(フィルムの反り)の度合いが大きくなってしまいディスプレイ表面に設けるための加工工程に適さないことがある。さらに、厚みが増えるほど、防眩層内のヘイズが増してくることから、防眩フィルム全体のヘイズが大きくなることより、コントラストの低下につながる。なお、より好ましい防眩層の平均膜厚(H)は5μm以上7μm以下の範囲内である。
また、本発明の防眩フィルムは、必要に応じて、反射防止性能、帯電防止性能、防汚性能、電磁波シールド性能、赤外線吸収性能、紫外線吸収性能、色補正性能等を有する機能層が設けられる。これらの機能層としては、反射防止層、帯電防止層、防汚層、電磁波遮蔽層、赤外線吸収層、紫外線吸収層、色補正層等が挙げられる。なお、これらの機能層は単層であってもかまわないし、複数の層であっても構わない。さらに、機能層は、防汚性能を有する反射防止層というように、1層で複数の機能を有していても構わない。また、これらの機能層は、透明基材と防眩層の間に設けても、防眩層上に設けても、各種層間の接着性向上のために、各層間にプライマー層や接着層等を設けても良い。
図2に本発明の防眩フィルムを用いた透過型液晶ディスプレイを示した。図2(a)の透過型液晶ディスプレイにおいては、防眩フィルム(1)を、一方の面に貼り合わせた第1の偏光板(2)を防眩層非形成面に備えた防眩性偏光板(200)、液晶セル(3)、第2の偏光板(4)、バックライトユニット(5)をこの順に備えている。このとき、防眩フィルム(1)側が観察側すなわちディスプレイ表面となる。
図2(a)にあっては、防眩フィルム(1)の透明基材(11)と第1の偏光板(2)の透明基材を別々に備える透過型液晶ディスプレイとなっている。
バックライトユニット(5)は、光源と光拡散板を備える。液晶セル(3)は、一方の透明基材に電極が設けられ、もう一方の透明基材に電極及びカラーフィルターを備えており、両電極間に液晶が封入された構造となっている。液晶セル(3)を挟むように設けられる第1、第2の偏光板にあっては、透明基材(21、22、41、42)間に偏光層(23、43)を挟持した構造となっている。
また、図2(b)にあっては、透明基材(11)の一方の面に防眩層(12)を備えた防眩フィルム(1)と、当該防眩フィルムの防眩層非形成面に、偏光層(23)、透明基材(22)を順に備えて、防眩性偏光板(210)を形成し、防眩性偏光板(210)、液晶セル(3)、第2の偏光板(4)、バックライトユニット(5)をこの順に備えている。このとき、防眩フィルム(1)の防眩層(12)側が観察側すなわちディスプレイ表面となる。
図2(b)にあっては、防眩フィルムの防眩層非形成面に、第1の偏光板として、偏光層(23)と透明基材(22)を、この順に備えた防眩性偏光板(210)を備えた透過型液晶ディスプレイとなっている。
図2(a)と同様に、バックライトユニット(5)は、光源と光拡散板を備える。液晶セルは、一方の透明基材に電極が設けられ、もう一方の透明基材に電極及びカラーフィルターを備えており、両電極間に液晶が封入された構造となっている。液晶セル(3)を挟むように設けられる第1、第2の偏光板にあっては、透明基材(11、22、41、42)間に偏光層(23、43)を挟持した構造となっている。
また、本発明の透過型液晶ディスプレイにあっては、他の機能性部材を備えても良い。他の機能性部材としては、例えば、バックライトから発せられる光を有効に使うための、拡散フィルム、プリズムシート、輝度向上フィルムや、液晶セルや偏光板の位相差を補償するための位相差フィルムが挙げられるが、本発明の透過型液晶ディスプレイはこれらに限定されるものではない。
次に、本発明の防眩フィルムの製造方法について示す。
本発明の防眩フィルムの製造方法にあっては、少なくとも電離放射線によって硬化するバインダマトリックス形成材料と粒子を含む防眩層形成用塗液を透明基材上に塗布し、透明基材上に塗膜を形成する工程と、バインダマトリックス形成材料を電離放射線により硬化させる硬化工程を備えることにより透明基材上に防眩層を形成することができる。
本発明に用いられる透明基材としては、ガラスやプラスチックフィルムなどを用いることができる。プラスチックフィルムとしては適度の透明性、機械強度を有していれば良い。例えば、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、ジアセチルセルロース、アセチルセルロースブチレート、ポリエチレンナフタレート(PEN)、シクロオレフィンポリマー、ポリイミド、ポリエーテルスルホン(PES)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)等のフィルムを用いることができる。中でも、トリアセチルセルロースフィルムは複屈折が少なく、透明性が良好であることから好適に用いることができ、特に、本発明の防眩フィルムを液晶ディスプレイ表面に設けるにあっては、透明基材としてトリアセチルセルロース(35μm以上80μm以下)を用いることが好ましい。
また、図2(b)で示したように、透明基材の防眩層が設けられる面の反対側の面に偏光層を設けることも可能である。このとき、偏光層としては、ヨウ素を加えた延伸ポリビニルアルコール(PVA)からなるものを例示することができる。このとき、偏光層は透明基材に狭持されている。
防眩層形成用塗液には、必要に応じて溶媒を加える。溶媒を加えることにより、粒子やバインダマトリックスを均一に分散させ、また、防眩層形成用塗液を透明基材上に塗布するに際し、塗液の粘度を適切な範囲に調整することが可能となる。
本発明においては、透明基材としてトリアセチルセルロースを用い、トリアセチルセルロースフィルム上に他の機能層を介さず直接防眩層を設ける場合には、防眩層形成用塗液の溶媒として、トリアセチルセルロースフィルムを溶解または膨潤させる溶媒とトリアセチルセルロースフィルムを溶解または膨潤させない溶媒の混合溶媒を用いることが好ましい。混合溶媒を用いることによりトリアセチルセルロースフィルムと防眩層界面において十分な密着性を有する防眩フィルムとすることができる。
このとき、トリアセチルセルロースフィルムを溶解または膨潤させる溶媒としては、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、ジオキサン、ジオキソラン、トリオキサン、テトラヒドロフラン、アニソールおよびフェネトール等のエーテル類、またアセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン、およびエチルシクロヘキサノン等の一部のケトン類、また蟻酸エチル、蟻酸プロピル、蟻酸n−ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酢酸n−ペンチル、およびγ−プチロラクトン等のエステル類、さらには、メチルセロソルブ、セロソルブ、ブチルセロソルブ、セロソルブアセテート等のセロソルブ類が挙げられる。これらは1種単独であるいは2種以上を組み合わせて用いることができる。
トリアセチルセルロースフィルムを溶解または膨潤させない溶媒としては、トルエン、キシレン、シクロヘキサン、シクロヘキシルベンゼンなどの芳香族炭化水素類、n−ヘキサンなどの炭化水素類、メチルイソブチルケトン、メチルブチルケトンなどの一部のケトン類などが挙げられる。これらは1種単独であるいは2種以上を組み合わせて用いることができる。
本発明にあっては、塗布、形成される防眩層(塗膜)においてハジキ、ムラといった塗膜欠陥の発生を防止するために、防眩層形成用塗液に表面調整剤と呼ばれる添加剤を加えても良い。表面調整剤は、その働きに応じて、レベリング剤、消泡剤、界面張力調整剤、表面張力調整剤とも呼ばれるが、いずれも形成される塗膜(防眩層)の表面張力を低下させる働きを備える。
表面調整剤として通常用いられる添加剤としては、シリコーン系添加剤、フッ素系添加剤、表面調整剤等が挙げられる。
シリコーン系添加剤にあっては、ポリジメチルシロキサンを基本構造とする誘導体であり、ポリジメチルシロキサン構造の側鎖を変性したものが用いられる。例えば、ポリエーテル変性ジメチルシロキサンがシリコーン添加剤として用いられる。
また、フッ素系添加剤としては、パーフルオロアルキル基を備えるフッ素含有化合物が用いられ。
また、表面調整剤としては、アクリルモノマーやメタクリルモノマーやスチレンモノマーを重合させた構造を基本構造とするものが用いられる。また、表面調整剤にあっては、アクリルモノマーやメタクリルモノマーやスチレンモノマーを重合させた構造を基本構造として、側鎖にアルキル基やポリエーテル基、ポリエステル基、水酸基、エポキシ基等の置換基を含有していても構わない。
また、本発明の防眩層形成用塗液においては、塗液中に先に述べた表面調整剤のほかにも、他の添加剤を加えても良い。ただし、これらの添加剤は形成される防眩層の透明性、光の拡散性などに影響を与えないほうが好ましい。
機能性添加剤としては、帯電防止剤、紫外線吸収剤、赤外線吸収剤、防汚剤、撥水剤、屈折率調整剤、密着性向上剤、硬化剤、などを使用でき、それにより、形成される防眩層に帯電防止機能、紫外線吸収機能、赤外線吸収機能、防汚機能、撥水機能といった、防眩機能以外の機能を持たせることができる。
防眩層形成用塗液は透明基材上に塗布され、塗膜を形成する。塗工方法としては、ロールコーター、リバースロールコーター、グラビアコーター、ナイフコーター、バーコーター、ダイコーターを用いた塗工方法を使用できる。中でも、ロール・ツー・ロール方式で高速で塗工することが可能なダイコーターを用いることが好ましい。また塗液の固形分濃度は、塗工方法により異なる。固形分濃度は、重量比で30〜70重量%であればよい。
次に、本発明のダイコーター塗布装置について説明する。図3に本発明のダイコーター塗布装置の模式図を示した。本発明のダイコーター塗布装置は、ダイヘッド(30)が塗液タンク(32)が配管(31)によって接続され、送液ポンプ(33)によって、塗液タンク(32)の防眩層形成用塗液がダイヘッド(30)内に送液される構造となっている。
また、ダイヘッド(30)に送液された防眩層形成用塗液はスリット間隙から塗液を吐出し、透明基材(11)上に塗膜が形成される。巻き取り式の透明基材(11)を用い回転ロール(35)を使用することにより、ロール・ツー・ロール方式により連続して透明基材上に塗膜を形成することができる。
塗液を透明基材上に塗布することにより得られる塗膜に対し、電離放射線を照射することにより、防眩層が形成される。電離放射線としては、紫外線、電子線を用いることができる。紫外線硬化の場合は、高圧水銀灯、低圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク、キセノンアーク等の光源が利用できる。また、電子線硬化の場合はコックロフトワルト型、バンデグラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される電子線が利用できる。電子線は、50〜1000KeVのエネルギーを有するのが好ましい。100〜300KeVのエネルギーを有する電子線がより好ましい。
なお、硬化により防眩層を形成する工程の前後に乾燥工程を設けてもよい。また、硬化と乾燥を同時におこなってもよい。特に、塗液がバインダマトリックス材料と粒子と溶媒を含む場合、形成された塗膜の溶媒を除去するために電離放射線を照射する前に乾燥工程を設ける必要がある。乾燥手段としては加熱、送風、熱風などが例示される。
以上により、本発明の防眩フィルムが製造される。
以下に実施例を示す。
(実施例1)
透明基材としてトリアセチルセルロースフィルム(富士写真フィルム製TD−80U)を用いた。バインダマトリックス形成材料として、アクリル系材料であるペンタエリスリトールトリアクリレート(94.5重量部、屈折率1.48)と、光重合開始剤(チバジャパン株式会社製 イルガキュア184)(5重量部)と、表面調整剤(ビックケミー社製 BYK350)(0.5重量部)を用意した。粒子として屈折率1.53のアクリル・スチレン共重合体を含む粒子を用意し、あわせて100重量部とした。また、溶媒として、トルエン(70重量部)とジオキソラン(30重量部)を用意し、バインダマトリックス形成材料と粒子と溶媒を混合し防眩層形成用塗液とした。
そして、ダイコーター塗布装置を用いトリアセチルセルロース上に防眩層塗液を塗布し塗膜を得た。得られた塗膜に対し、乾燥をおこない塗膜に含まれる溶媒を除去し、その後、高圧水銀灯を用いて酸素濃度が0.03%以下の雰囲気下で400mJ/cm2の紫外線照射することにより塗膜を硬化させ、透明基材上に防眩層を備える防眩フィルムを作製した。得られた防眩層の平均膜厚(H)は6.1μmであった。
(実施例1)の粒子の屈折率(nA):1.53、防眩層の平均膜厚(H):6.1μm、バインダマトリックス100重量部に対する粒子の含有量(重量部):8.0重量部、を基準として、それぞれの粒子屈折率(nA)、防眩層の平均膜厚(H)、粒子含有量(重量部)の値を変化させて(実施例2)〜(実施例3)及び、(比較例1)〜(比較例5)の防眩フィルムを作製した。具体的な内容について以下に説明する。
(実施例2)は、(実施例1)の防眩層について、粒子の屈折率(nA):1.57、バインダマトリックス100重量部に対して、粒子の含有量(重量部):3.5重量部に変化させた例である。
(実施例3)は、(実施例1)の防眩層について、平均膜厚(H):7.2μm、バインダマトリックス100重量部に対して、粒子の含有量(重量部):10重量部に変化させた例である。
(比較例4)は、(実施例1)の防眩層について、平均膜厚(H):9.5μm、バインダマトリックス100重量部に対して、粒子の含有量(重量部):4.0重量部に変化させた例である。
(比較例1)は、(実施例1)の防眩層について、平均膜厚(H):5.2μm、バインダマトリックス100重量部に対して、粒子の含有量(重量部):10重量部に変化させた例である。
(比較例2)は、(実施例1)の防眩層について、平均膜厚(H):6.8μm、バインダマトリックス100重量部に対して、粒子の屈折率(nA):1.57に変化させた例である。
(比較例3)は、(実施例1)の防眩層について、平均膜厚(H):6.4μm、バインダマトリックス100重量部に対して、粒子の屈折率(nA):1.49に変化させた例である。
(比較例4)は、(実施例1)の防眩層について、平均膜厚(H):5.5μm、バインダマトリックス100重量部に対して、粒子の含有量(重量部):1.0重量部に変化させた例である。
(比較例5)は、(実施例1)の防眩層について、平均膜厚(H):9.7μm、粒子の屈折率(nA):1.57に変化させた例である。
特に説明のないものには、(実施例1)の操作に準じるものとする。
なお、(実施例2)〜(実施例4)及び、(比較例1)〜(比較例5)にあっては、バインダマトリックス形成材料(アクリル材料、光重合開始剤、表面調整剤)、溶媒は(実施例1)と同一の材料を用いて(実施例1)と同一のダイコーター塗布装置により塗布する。また、乾燥条件、紫外線照射条件は(実施例1)と同じ条件で防眩フィルムを作製した。
(表1)に、(実施例1)〜(実施例4)及び、(比較例1)〜(比較例5)の防眩フィルムの粒子の屈折率(nA)、防眩層の平均膜厚(H)、粒子の含有量(重量部)を示す。
前記、「平均膜厚(H)」、「粒子の屈折率(nA)(バインダマトリックス(nM))」の測定について、以下にそれぞれを示す。
「平均膜厚(H)」
電子マイクロメーター(アンリツ製K351C)を用いJIS−K5600−1999に準じて、有効表面領域全体に一様に分布させた規定箇所の局所膜厚測定をおこない、平均して平均膜厚とする。なお、有効表面領域を0.1m四方、規定箇所数を10点とした。
「粒子の屈折率(nA)(バインダマトリックス(nM))」
微粒子の屈折率の測定方法としては、以下の3方法があり、微粒子の特性によりいずれかの方法により適用する。
一つ目の方法としては、外挿法と言われる方法で、微粒子が溶媒に溶解することを利用した方法で、粒子の溶解している濃度とその屈折率から外挿により粒子の屈折率を求めている。この方法は粒子が溶液に溶解しなければならないという前提がある。
二つ目の方法としては、ベッケ線法と言われる方法で、プレパラート上に微粒子をセットし、分散液を滴下した後、顕微鏡により微粒子の縁の内側と外側に生じるベッケ線を目視により観察する。この時、鏡筒を上下させ、ベッケ線が確認できるまで、分散液の屈折率を調節し、分散液の屈折率から求める方法である。粒子が非常に小さい場合、ベッケ線の確認が困難である。
三つ目の方法としては、液浸法と言われる方法で、ベッケ線法とよく類似しており、分散液の屈折率を変え、光を照射して分散液中の微粒子による散乱光が目視により見えなくなった時の屈折率を微粒子の屈折率としている。しかし、液浸法は目視により散乱光の変化を観察しているため、どうしても主観的な要素が入ってくる。
本発明の粒子の屈折率(nA)は、三つ目の方法である液浸法により測定した。
また、バインダマトリックスの屈折率(nM)は、粒子を除いたバインダマトリックス形成材料と溶媒からなる塗液を塗布、乾燥、紫外線硬化させたものを用い前記同様の液浸法により測定した。
(実施例1)〜(実施例4)及び(比較例1)〜(比較例5)で得られた防眩フィルムについて、「へイズ(Hz)」、「防眩層表面の十点平均高さ(Rz)」、「表面凹凸の平均間隔(Sm)」、「カール量(フィルム反り量)」、「コントラスト」、「擦傷性」、「ぎらつき」、「防眩性」の評価をおこなった。以下にそれぞれの評価方法を示す。
「ヘイズ(Hz)」
ヘイズメータ(日本電色工業製NDH2000)を用いJIS−K7105−1981に準じてヘイズ(Hz)を測定した。
「防眩層表面の十点平均高さ(Rz)」
高精度微細形状測定器(小坂研究所製サーフコーダーET4000A)を用い、JIS−B0601−1994に基づきを測定した(カットオフ=0.8mm、評価長さ=2.4mm、走査速度=0.2mm/sec)。
「表面凹凸の平均間隔(Sm)」
高精度微細形状測定器(小坂研究所製サーフコーダーET4000A)を用い、JIS−B0601−1994に基づきを測定した(カットオフ=0.8mm、評価長さ=2.4mm、走査速度=0.2mm/sec)。
「カール量(フィルム反り量)」
実施例及び比較例において得られた防眩フィルムを、50mm角の正方形にカットし、基準平面台の上に防眩層を上にして2辺を文鎮または固定冶具により固定する。前記処理後、5分間自然放置した後に、基準平面から防眩フィルム端までの浮き上がり距離を測定した。
「コントラスト」
液晶モニター(BUFFALO社製FTD−W2023ADSR)に防眩フィルムを粘着剤を介して貼り付け、輝度計(コニカミノルタ製LS−100)を用いて液晶モニターの白表示時の輝度(白輝度)、黒表示時の輝度(黒輝度)を測定し、白輝度を黒輝度で除した値をコントラストとした。測定環境下は暗室条件および測定部が200luxとなるように調光した明室条件それぞれで測定した。
このとき、防眩フィルムが無い状態で測定した値からの各防眩フィルムの低下率が、暗室条件下で1%以下かつ明室条件下で40%以下の場合を「○印」、この範囲外の場合を「×印」とした。
「擦傷性」
学振型摩擦堅牢度試験機(テスター産業株式会社製AB−301)を用いて、防眩フィルムに500g/cm2の荷重をかけたスチールウール(日本スチールウール製ボンスター#0000)を用い、10往復擦り、擦り跡やキズなどによる外観の変化を目視で評価した。
このとき、外観の変化が確認されないものを「○印」、外観の変化が目立つ場合を「×印」とした。
「ぎらつき」
蛍光灯を内蔵したライトテーブル上に80〜200ppiのパターンを有するブラックマトリックス(BM)ガラス基板を配置し、その上に、防眩性フィルムを貼り合わせたガラス基板を配置し、真上より目視にて防眩フィルムのぎらつきを評価した。
このとき、ぎらつきが気にならないBM解像度のうち、最大のものを対応解像度とし、対応解像度が150ppi以上の場合を「○印」、150ppi未満の場合を「×印」とした。
「防眩性」
実施例及び比較例において得られた防眩フィルムを黒色のプラスティック板に粘着剤を介して貼り付けた状態で、1m離れた地点から観察し目視評価した。
このとき、自らの顔が全く気にならない場合を「◎印」、自らの顔が確認されるものの許容される場合を「○印」、自らの顔が鮮明に写りこむ場合を「×印」とした。
(表2)に実施例及び比較例で得られた防眩フィルムの「へイズ(Hz)」、「防眩層表面の十点平均高さ(Rz)」、「表面凹凸の平均間隔(Sm)」、「平均膜厚(H)」、「コントラスト」、「擦傷性」、「ぎらつき」、「防眩性」の評価結果を示す。
全ての項目を満たすことができるのは、(実施例1)〜(実施例4)である。「へイズ(Hz)」、「防眩層表面の十点平均高さ(Rz)」、「表面凹凸の平均間隔(Sm)」、「屈折率差(|nA−nM|)」を満たしても、「平均膜厚(H)」が9μmより大きいと、防眩性がやや劣り、カール量(反り)が大きくなることがわかる。
よって、(実施例1)〜(実施例4)にあっては、(比較例1)〜(比較例5)の防眩フィルムと比較して、高いコントラストでありながら、高い擦傷性能を有し、ぎらつきを強いレベルで抑制した防眩性を有する防眩フィルムを得ることができた。さらに(実施例1)〜(実施例3)にあっては、カール量を抑えたより高い防眩性を備えた防眩フィルムとすることができた。