JP2011041398A - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP2011041398A
JP2011041398A JP2009186472A JP2009186472A JP2011041398A JP 2011041398 A JP2011041398 A JP 2011041398A JP 2009186472 A JP2009186472 A JP 2009186472A JP 2009186472 A JP2009186472 A JP 2009186472A JP 2011041398 A JP2011041398 A JP 2011041398A
Authority
JP
Japan
Prior art keywords
voltage
short
current
distortion rate
cross point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009186472A
Other languages
English (en)
Inventor
Minoru Abe
実 阿部
Koji Sakamoto
幸治 坂本
Tadahiro Yanagisawa
忠洋 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2009186472A priority Critical patent/JP2011041398A/ja
Publication of JP2011041398A publication Critical patent/JP2011041398A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

【課題】商用電源に接続される電力変換装置の台数によらず、常に最適な高調波低減が可能な運転状態を実現できる電力変換装置を提供することである。
【解決手段】商用電源11から入力される交流電圧をリアクトル12を介して入力し整流回路13で整流し、さらに平滑コンデンサ14で平滑した直流電圧をインバータ15で交流電圧に変換して負荷に供給するとともに、整流回路13をバイパスして商用電源11をリアクトル12を介して短絡する短絡スイッチ16を有した電力変換装置であり、商用電源11から入力される交流電圧の電圧零クロス点を電圧零クロス点検出部18で検出し、交流電流の電流歪み率を電流歪み率検出部19で検出し、短絡スイッチ開閉制御部20は電圧零クロス点から次のタイミングの零クロス点までの間において電流歪み率が最小になるように短絡スイッチ16の開閉時間を制御する。
【選択図】 図1

Description

本発明は、商用電源から供給される交流電圧を整流平滑して直流電圧に変換し、変換された直流電圧を交流電圧に変換して負荷に供給する電力変換装置に関するものである。
例えば、家庭電気機器への電源として、商用電源から入力される交流電圧を一旦直流電圧に変換し、変換された直流電圧を再度交流電圧に変換して負荷に供給するようにした電力変換装置がある。これにより、負荷に供給する電力を負荷の大きさに応じて供給し、無駄な電力の消費を抑制し省エネルギーを図るようにしている。このような電力変換装置では、入力される交流電力の力率改善及び高調波低減を図るために、各種の工夫がなされている(例えば、非特許文献1参照)。
非特許文献1に示されるパッシブフィルタ方式は、交流電源からの交流電圧を直流電圧に変換する回路中にリアクトルを挿入し、交流電圧を直流電圧に変換する際の急激な電流変化を抑えることで、力率改善と高調波低減とを図っている。パッシブフィルタ方式では、交流電圧に対する入力電流が遅れるため、十分な力率改善や高調波低減が図れないことあり、用いるリアクトルが大きくなる。
また、アクティブフィルタ方式は、パッシブフィルタ方式のリアクトルの後段にリアクトルを介して交流電源を短絡する短絡スイッチを追加して設け、適切なタイミングで短絡スイッチを開閉し力率改善や高調波低減を図っている。このアクティブフィルタ方式では、数kHzの高頻度スイッチングを行うので、高頻度スイッチングによる損失及び発熱の増大を招くことになり、ノイズ抑制用の部品を多く必要とする。
一方、部分スイッチング方式は、アクティブフィルタ方式と同様の回路方式であり、短絡スイッチの開閉を少なくして、高頻度スイッチングによる損失及び発熱の増大を抑制し、力率改善や高調波電流の低減を図るものである。部分スイッチング方式の電力変換装置として、短絡スイッチの短絡通電時間を交流電源の電圧、リアクトルのインダクタンス、交流を直流変換する順変換部の回路構成及び入力電力のいずれか一つ又は複数の相違に応じて設定し、電源力率を向上させると共に電源高調波を十分に低減できるようにしたものがある(例えば、特許文献1参照)。
図8は、従来の部分スイッチング方式の電力変換装置の構成図である。商用電源11から入力された交流電圧は、リアクトル12を介して整流回路13に入力され、整流回路13で整流されて直流電圧に変換される。整流回路13で整流された直流電圧は平滑コンデンサ14で平滑され、平滑コンデンサ14で平滑された直流電圧は、インバータ15で交流電圧に変換され、図示省略の負荷に供給される。
短絡スイッチ16はリアクトル12を介して商用電源11を短絡するように整流回路13に並列に接続されている。短絡スイッチ16は駆動部17からのオンオフ指令信号により開閉する。すなわち、電圧零クロス点検出部18は、電圧検出器10で検出した交流電圧の電圧零クロス点のタイミングを検出し、駆動部17にオンオフ指令信号の発生のタイミングを与える。駆動部17は、交流電圧の電圧零クロス点のタイミング毎に所定時間T0経過後に予め定めた設定値Tsの時間幅のパルスを発生して、その設定値Tsの期間だけ短絡スイッチ16を閉させる。設定値Tsが短絡スイッチ16の短絡通電時間となる。この設定値Tsを調整して、力率改善や高調波低減を図ることになる。
図9は、従来の電力変換装置を1台運転したときの入力した交流電圧V、交流電流I及び交流電流の基本波成分I0の一例を示す波形図である。この一例では、リアクトル12が16mHで、交流電源11の電源インピーダンスが0.122Ω+0.2mHであり、交流電流Iの基本波成分I0が交流電圧Vと同相になるように、つまり、位相遅れが零となるように短絡通電時間Tsを設定し力率改善を図った場合を示している。
いま、交流電圧が時点t10で電圧零クロス点となったとすると、電圧零クロス点検出部18は、電圧零クロス点として時点t10を検出する。駆動部17は電圧零クロス点(時点t10)から所定時間T0経過後の時点t11において、予め定めた設定値Tsの時間幅のパルスを発生する。すなわち、時点t11で短絡スイッチを閉じ、その設定値Tsの期間を経過した時点t12で短絡スイッチ16を開く。これにより、短絡スイッチ16は予め定めた設定値(短絡通電時間)Tsだけ閉じた状態となる。
短絡スイッチ16が閉じた状態(t11〜t12)では、商用電源11、リアクトル12、短絡スイッチ16の閉回路が形成され、リアクトル12のインダクタンスの値に応じて交流電流Iが流れリアクトル12の両端に電圧が発生する。時点t12で短絡スイッチ16が開かれると、商用電源11の電圧Vとリアクトル12の電圧VLとの電圧和V+VLが整流回路13に印加されることになり、この電圧和V+VLが整流回路13の直流電圧より高い状態である限りは交流電流Iが流れ続ける。
時点t13で電圧和V+VLが整流回路13の直流電圧より低くなると、交流電流Iは流れなくなる。
そして、次のタイミングの時点t20で交流電圧が零クロス点となったとすると、同様に、駆動部17は電圧零クロス点(時点t20)から所定時間T0経過後の時点t21において、予め定めた設定値Tsの時間幅のパルスを時点t22まで発生し、以下同様の動作を繰り返し行う。
交流電流Iは、整流回路13の容量や商用電源11の電圧や整流回路13の直流電圧によって、所定時間T0、短絡通電時間Ts、リアクトル12のインピーダンスで決まる。従って、力率改善を図る場合には、交流電流Iの基本波成分I0が交流電圧Vと同相になるように短絡通電時間Tsを予め設定する。一方、高調波低減を図る場合には、交流電流Iの電流歪み率が最小になるように短絡通電時間Tsを予め設定することになる。
特開平11−164562号公報
東芝レビューVol.57 No.7(2002)
しかし、従来の電力変換装置では、リアクトル12のインピーダンスの値は固定であるので、複数台の電力変換装置が商用電源11に並列接続され、同時に運転されたときには、負荷である家庭電機器から見た場合の商用電源11の電源インピーダンスが変化し、交流電流Iの電流歪み率が最小になるように短絡通電時間Tsを予め設定していたとしても、交流電流Iの電流歪み率が最小になるとは限らない。
すなわち、商用電源11は低圧の配電線から家庭電機器に供給されるので、なにがしかの交流電源のインピーダンスが存在する。そのため、多数の部分スイッチング方式の電力変換装置が用いられた場合、家庭電機器から見た交流電源のインピーダンスが増大することになる。これは、電力変換装置のリアクトル12と直列に商用電源11の電源インピーダンスが接続されたことと等価であり、部分スイッチング方式の電力変換装置が適切なリアクトルの値からずれた状態で運転することを意味する。
従って、電力変換装置の単体特性では適切な値のリアクトル12を用いた電力変換装置であっても、複数台が並列運転される場合には、最適な状態ではない運転が強いられることになり、高調波低減が阻害されるという問題が発生する。
本発明の目的は、商用電源に接続される電力変換装置の台数によらず、常に最適な高調波低減が可能な運転状態を実現できる電力変換装置を提供することである。
請求項1の発明に係わる電力変換装置は、商用電源から入力される交流電圧をリアクトルを介して入力し整流する整流回路と、前記整流回路で整流された直流電圧を平滑する平滑コンデンサと、前記平滑コンデンサで平滑された直流電圧を交流電圧に変換して負荷に供給するインバータと、前記整流回路をバイパスして前記商用電源を前記リアクトルを介して短絡する短絡スイッチとを備えた電力変換装置において、前記商用電源から入力される交流電圧の電圧零クロス点を検出する電圧零クロス点検出部と、前記商用電源から入力される交流電流の電流歪み率を検出する電流歪み率検出部と、前記電圧零クロス点検出部で検出された電圧零クロス点から次のタイミングの零クロス点までの間において前記電流歪み率が最小になるように前記短絡スイッチの開閉時間を制御する短絡スイッチ開閉制御部とを備えたことを特徴とする。
請求項2の発明に係わる電力変換装置は、請求項1の発明において、前記電流歪み率検出部に代えて、前記商用電源から入力される交流電圧の電圧歪み率を検出する電圧歪み率検出部を設け、前記短絡スイッチ開閉制御部は、前記電圧零クロス点検出部で検出された電圧零クロス点から次のタイミングの零クロス点までの間において前記電圧歪み率が最小になるように前記短絡スイッチの開閉時間を制御することを特徴とする。
請求項3の発明に係わる電力変換装置は、商用電源から入力される交流電圧をリアクトルを介して入力し整流する整流回路と、前記整流回路で整流された直流電圧を平滑する平滑コンデンサと、前記平滑コンデンサで平滑された直流電圧を交流電圧に変換して負荷に供給するインバータと、前記整流回路をバイパスして前記商用電源を前記リアクトルを介して短絡する短絡スイッチとを備えた電力変換装置において、前記商用電源から入力される交流電圧の電圧零クロス点を検出する電圧零クロス点検出部と、前記商用電源から入力される交流電流または交流電圧の代表高調波成分に基づいて代表高調波含有率を求める代表高調波含有率検出部と、前記電圧零クロス点検出部で検出された電圧零クロス点から次のタイミングの零クロス点までの間において前記代表高調波含有率が最小になるように前記短絡スイッチの開閉時間を制御する短絡スイッチ開閉制御部とを備えたことを特徴とする。
本発明によれば、商用電源から入力される交流電圧の電圧零クロス点から次のタイミングの零クロス点までの間において、電力変換装置に入力される交流電流の電流歪み率または交流電圧の電圧歪み率が最小になるように短絡スイッチの開閉時間を制御するので、商用電源の変化や同時に運転される電力変換装置の台数にかかわらず、電力変換装置の高周波低減を図ることができる。
また、電力変換装置に入力される交流電流または交流電圧の代表高調波含有率を用いた場合には、電力変換装置の高周波低減を図ることができ、しかも演算負荷が軽減される。
本発明の第1の実施の形態に係わる電力変換装置の構成図。 本発明の第1の実施の形態における電流歪み率Dと短絡スイッチの短絡通電時間Tsとの関係の一例を示す特性図。 本発明の第1の実施の形態における短絡スイッチ開閉制御部の制御内容を示すフローチャート。 本発明の第1の実施の形態の電力変換装置と従来例と対比した交流電流の高調波分析結果の分布図。 本発明の第2の実施の形態に係わる電力変換装置の構成図。 本発明の第2の実施の形態における3次5次高調波検出部の一例を示す構成図。 本発明の第2の実施の形態における3次5次高調波含有率E及び電流歪み率Dと短絡スイッチの短絡通電時間Tsとの関係の一例を示す特性図。 従来の部分スイッチング方式の電力変換装置の構成図。 従来の電力変換装置を1台運転したときの入力した交流電圧V、交流電流I及び交流電流の基本波成分I0の一例を示す波形図。
以下本発明の実施の形態を説明する。図1は本発明の第1の実施の形態に係わる電力変換装置の構成図である。この第1の実施の形態は、図8に示した従来例に対し、商用電源11から入力される交流電流の電流歪み率を検出する電流歪み率検出部19と、電流歪み率検出部19で検出された電流歪み率が最小になるように短絡スイッチ16の開閉時間を制御する短絡スイッチ開閉制御部20とを追加して設け、商用電源の変化や同時に運転される電力変換装置の台数にかかわらず、電力変換装置の高周波低減を図ることができるようにしたものである。図8と同一要素には同一符号を付し重複する説明は省略する。
商用電源11から電力変換装置に入力される交流電流は電流検出器21で検出され、電流歪み率検出部19に入力される。電流歪み率検出部19は、電流検出器21から入力された交流電流の電流歪み率を検出して短絡スイッチ開閉制御部20に出力するものであり、短絡スイッチ開閉制御部20は、交流電流の電流歪み率が最小になるように、短絡スイッチ16の開閉時間(短絡通電時間)を可変に制御する。
電流歪み率検出部19は、交流電流の高調波成分の振幅値二乗和を基本波成分の振幅値二乗で除算し、その平方根をとって電流歪み率を求めるものである。まず、交流電流をフーリエ展開して各次数の高調波電流の振幅値を求め、その高調波電流の振幅値の二乗和を加算し、交流電流の高調波成分の振幅値二乗和を求める。一方、交流電流の基本波の振幅値を求め、その基本波の振幅値二乗を求める。そして、高調波成分の振幅値二乗和を基本波成分の振幅値二乗で除算してその平方根をとって電流歪み率を求める。この電流歪み率検出部19は、市販されている製品を用いることが可能である。
短絡スイッチ開閉制御部20は、電流歪み率検出部19で検出された電流歪み率が小さくなる方向に短絡通電時間を変化させる制御を行い、最終的には交流電流の電流歪み率が最小になるように短絡スイッチ16の短絡通電時間を制御する。
図2は、電流歪み率Dと短絡スイッチ16の短絡通電時間Tsとの関係の一例を示す特性図である。図2に示すように、電流歪み率Dは短絡通電時間Tsの下に凸の関数で示され、Ts=Tsmのときに極小値Dmを有する。短絡通電時間TsがTs<Tsmの領域では短絡通電時間Tsを増やすと電流歪み率が減少し、短絡通電時間TsがTs>Tsmの領域では短絡通電時間Tsを増やすと電流歪み率が増大する特性を有する。従って、短絡スイッチ開閉制御部20は、制御方向と制御結果とを照合しながら、電流歪み率Dが最小となるように短絡通電時間Tsを制御することになる。
図3は短絡スイッチ開閉制御部20の制御内容を示すフローチャートである。まず、電流歪み率検出部19で検出した電流歪み率Dを入力し(S1)、前回の電流歪み率D1と今回検出した電流歪み率Dとの差Eを求める(S2)。そして、前回の制御出力C1と前々回の制御出力C2との差分の極性Pcを求める(S3)。これは、短絡通電時間TsがTs<Tsmの領域であるのか、Ts>Tsmの領域であるのかを判定するためである。前回の制御出力C1が前々回の制御出力C2よりも大きい場合は極性Pcを−1とし、小さい場合は極性Pcを+1とする。
次に、制御出力の増分ΔCをΔC=Pc×Eとして求めて、前回の制御出力C1にΔCを加算して、今回出力する制御出力CをC=C1+ΔCとして求めて駆動部17に出力する(S4)。そして、次回の制御に備えて、今回検出した電流歪み率Dを前回歪み率D1とし、前回制御出力C1を前々回の制御出力C2とし、今回の制御出力Cを前回制御出力C1として保存する(S5)。電力変換装置は運転停止か否かを判定し(S6)、運転停止の場合には処理を終了し、運転停止でない場合には規定時間待機して(S7)、規定時間が経過したら、ステップS1に戻り以下同様の動作を繰り返す。これにより、短絡スイッチ16の短絡通電時間Tsは、制御出力の増分ΔCが零になる即ち電流歪み率Dが最小となるように制御されることになる。
第1の実施の形態の場合は、電力変換装置の運転台数によらず、その時の運転状態で得られる最小の電流歪み率Dになるように制御されるので、高調波の低減を図ることができる。
図4は、本発明の第1の実施の形態の電力変換装置と従来例と対比した交流電流の高調波分析結果の分布図である。図4において、特性A1は電力変換装置の1台運転時に交流電流の位相遅れを零に制御した場合の高調波分布特性、特性A2は電力変換装置の1台運転時に電流歪み率Dが最小となる設定(固定設定)をして1台運転をした場合の高調波分布特性、特性A3は各々の電力変換装置の電流歪み率Dを最小となる設定(固定設定)をして10台運転をした場合の高調波分布特性、特性A4は各々の電力変換装置の電流歪み率Dを最小となるように制御して10台運転をした場合(本発明の場合)の高調波分布特性である。電流歪み率Dを大きくしている5次調波成分が、A4の場合は小さくなっている。
各次数の高調波を加算した総合電流歪み率は、特性A1の場合は20.8%、特性A2の場合は17.3%、特性A3は14.5%、特性A4は13.8%であり、本発明の特性A4の場合が総合電流歪み率は最も低減されている。すなわち、交流電流の位相遅れを零に制御した場合(特性A1の場合)は、交流電流の電流歪み率Dは最小にならないことが分かる。また、交流電流の電流歪み率Dが最小になるように固定設定した場合(A2の場合、A3の場合)は、運転台数が変わると交流電流の電流歪み率Dが変動し必ずしも最小にならないことが分かる。
なお、電力変換装置の運転台数が増えると、電源回路を含めた等価的な電源インピーダンスが増えることにより、同一の調整でも電流歪み率は小さくなる。一方、電圧歪み率は運転台数分増えるので、運転台数が増えた場合は、電圧歪み率を低減するためには、僅かな電流歪み率の低減でも電圧歪み率を低減する効果は大きい。
以上の説明では、電力変換装置に入力される交流電流の電流歪み率Dを検出し、その電流歪み率Dを最小にするように短絡スイッチ16の短絡通電時間Tsを可変制御する場合について説明したが、電力変換装置に入力される交流電圧を検出して、交流電圧の電圧歪み率を検出し、その電圧歪み率を最小にするように短絡スイッチ16の短絡通電時間Tsを可変制御するようにしても同等の効果が得られる。これは、高調波電流による電源インピーダンスでの電圧降下が、入力される交流電圧の歪みとなるからである。このため、電流歪み率と入力される交流電圧の電圧歪み率には強い相関関係があり、電流歪み率の代わりに交流電圧の電圧歪み率を用いてもよいことは明らかである。
第1の実施の形態によれば、商用電源11から入力される交流電圧の電圧零クロス点から次のタイミングの零クロス点までの間において、電力変換器装置に入力された交流電流の電流歪み率または交流電圧の電圧歪み率に基づいて、その歪み率が最小になるように短絡スイッチの開閉時間を制御するので、商用電源11の変化や同時に運転される電力変換装置の台数にかかわらず、電力変換装置の高周波低減を図ることができる。
次に、本発明の第2の実施の形態を説明する。図5は本発明の第2の実施の形態に係わる電力変換装置の構成図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、電流歪み率検出部19に代えて、商用電源11から入力される交流電流の代表高調波含有率を求める代表高調波含有率検出部22を設け、短絡スイッチ開閉制御部20は、代表高調波含有率が最小になるように短絡スイッチ16の開閉時間を制御するようにしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。
電流検出器21は商用電源11から入力される交流電流を入力し、電流検出器21で検出された交流電流は代表高調波含有率検出部22に入力される。代表高調波含有率検出部22は、入力した交流電流の代表高調波成分に基づいて代表高調波含有率を求め、求めた代表高調波含有率を短絡スイッチ開閉制御部20に出力する。短絡スイッチ開閉制御部20は、電圧零クロス点検出部18で検出された電圧零クロス点から次のタイミングの零クロス点までの間において、代表高調波含有率が最小になるように短絡スイッチ16の開閉時間(短絡通電時間Ts)を制御する。
図6は代表高調波検出部22の一例を示す構成図であり、代表高調波を3次5次高調波とした場合を例にして図示している。代表高調波検出部22は、3次高調波の正弦波信号sin3ωt及び余弦波信号cos3ωtを発生する3次高調波基準波形発生部23と、3次高調波成分振幅値二乗I3 2を算出する3次高調波成分振幅値二乗算出部24と、5次高調波の正弦波信号sin5ωt及び余弦波信号cos5ωtを発生する5次高調波基準波形発生部25と、5次高調波成分振幅値二乗I5 2を算出する5次高調波成分振幅値二乗算出部26と、3次高調波成分振幅値二乗I と5次高調波成分振幅値二乗I とを加算して3次5次高調波成分振幅値二乗(I +I )を求める加算器27と、交流電流の基本波を検出する基本波成分検出部28と、交流電流の基本波成分振幅値二乗I を算出する基本波成分振幅値二乗算出部29と、3次5次高調波成分振幅値二乗(I +I )を交流電流の基本波成分振幅値二乗I で除算しその平方根をとって3次5次高調波含有率を求める演算部30とから構成される。
3次高調波基準波形発生部23の正弦波基準波形発生部31は、3次高調波周波数の正弦波信号sin3ωtを発生し、3次高調波成分振幅値二乗算出部24の乗算部32に出力する。乗算部32は交流電流と正弦波信号sin3ωtとを乗算する。乗算部32の出力のうち、3次高調波電流の項は下記の(1)式のようになる。但し、交流電流に含まれる3次高調波電流はIsin(3ωt+θ)で表されるとする。Iは振幅、θは3次高調波電流の正弦波基準波形sin3ωtとの位相差、ωは基本角周波数である。
sin(3ωt+θ)・sin3ωt
=I(sin3ωt・cosθ+cos3ωt・sinθ)・sin3ωt
=I(sin3ωt・cosθ+cos3ωt・sin3ωt・sinθ)
=(1/2)・I{(1−cos6ωt)・cosθ+sin6ωt・sinθ}
=(1/2)・I{−cos(6ωt+θ)+cosθ} …(1)
一方、乗算部32の出力のうち、3次高調波以外の電流の項は下記の(2)式のようになる。但し、交流電流に含まれる3次以外のN次高調波電流はIsin(Nωt+θ)で表されるとする。Iは振幅、θは3次高調波電流の正弦波基準波形sin3ωtとの位相差である。
sin(Nωt+θ)・sin3ωt
=(1/2)・I{−cos(N’ωt+θ)+cos(N”ωt+θ)} …(2)
但し、N’=N+3,N”=N−3
乗算部32の出力は、(1)式と(2)式との和となり、乗算部32の出力には、(1)式に示すように、直流化された3次高調波成分Icosθが含まれる。そこで、ローパスフィルタ33を介して3次高調波成分Icosθのみを抽出し、二乗演算部34で二乗して3次高調波成分の二乗(1/4)・(Icosθ)を得る。
同様に、3次高調波基準波形発生部23の余弦波基準波形発生部35は、3次高調波周波数の余弦波信号cos3ωtを発生し、3次高調波成分振幅値二乗算出部24の乗算部36に出力する。乗算部36は交流電流と正弦波信号cos3ωtとを乗算する。乗算部36の出力のうち、3次高調波電流の項は下記の(3)式のようになる。
sin(3ωt+θ)・cos3ωt
=I(sin3ωt・cosθ+cos3ωt・sinθ)・cos3ωt
=I(sin3ωt・cos3ωt・cosθ+cos3ωt・sinθ)
=(1/2)・I{sin6ωt・cosθ+(1+cos6ωt)・sinθ}
=(1/2)・I{sin(6ωt+θ)+sinθ} …(3)
一方、乗算部36の出力のうち、3次以外高調波の電流の項は下記の(4)式のようになる。
sin(Nωt+θ)・cos3ωt
=(1/2)・I{sin(N’ωt+θ)+sin(N”ωt+θ)} …(4)
乗算部32の出力は、(3)式と(4)式との和となり、乗算部36の出力には、(3)式に示すように、直流化された3次高調波成分Isinθが含まれる。そこで、ローパスフィルタ37を介して3次高調波成分Isinθのみを抽出し、二乗演算部38で二乗して3次高調波成分の二乗(1/4)・(Isinθ)を得る。
二乗演算部34の出力(1/4)・(Icosθ) と二乗演算部38の出力(1/4)・(Isinθ)とを加算器39で加算すると、加算器39の出力は(1/4)・I となり、係数器49で4倍されて3次高調波電流の振幅の二乗値I となる。
一方、5次高調波電流の振幅の二乗値I も同様にして求められる。5次高調波基準波形発生部25の正弦波基準波形発生部40は、5次高調波周波数の正弦波信号sin5ωtを発生し、5次高調波成分振幅値二乗算出部26の乗算部41に出力する。乗算部41は交流電流と正弦波信号sin5ωtとを乗算する。乗算部41の出力のうち、5次高調波電流の項は下記の(5)式のようになる。但し、交流電流に含まれる5次高調波電流はIsin(5ωt+θ)で表されるとする。Iは振幅、θは5次高調波電流の正弦波基準波形sin5ωtとの位相差、ωは基本角周波数である。
sin(5ωt+θ)・sin5ωt
=(1/2)・I(−cos(10ωt+θ)+cosθ) …(5)
一方、乗算部41の出力のうち、5次以外高調波の電流の項は下記の(6)式のようになる。
sin(Nωt+θ)・sin5ωt
=(1/2)・I{−cos(N’ωt+θ)+cos(N”ωt+θ)} …(6)
但し、N’=N+5,N”=N−5
乗算部41の出力は、(5)式と(6)式との和となり、乗算部41の出力には、(5)式に示すように、直流化された5次高調波成分Icosθが含まれるので、ローパスフィルタ42を介して3次高調波成分Icosθのみを抽出し、二乗演算部43で二乗して5次高調波成分の二乗(1/4)・(Icosθ)を得る。
同様に、5次高調波基準波形発生部25の余弦波基準波形発生部44は、5次高調波周波数の余弦波信号cos5ωtを発生し、5次高調波成分振幅値二乗算出部26の乗算部45に出力する。乗算部45は交流電流と余弦波信号cos5ωtとを乗算する。乗算部45の出力のうち、5次高調波電流の項は下記の(7)式のようになる。
sin(5ωt+θ)・cos5ωt
=(1/2)・I{sin(10ωt+θ)+sinθ) …(7)
一方、乗算部45の出力のうち、5次以外高調波の電流の項は下記の(8)式のようになる。
sin(Nωt+θ)・cos5ωt
=(1/2)・I{sin(N’ωt+θ)+sin(N”ωt+θ)} …(8)
乗算部45の出力は、(7)式と(8)式との和となり、乗算部45の出力には、(7)式に示すように、直流化された5次高調波成分Isinθが含まれる。そこで、ローパスフィルタ46を介して5次高調波成分Isinθのみを抽出し、二乗演算部47で二乗して5次高調波成分の二乗(1/4)・(Isinθ)を得る。
二乗演算部43の出力(1/4)・(Icosθ) と二乗演算部47の出力(1/4)・(Isinθ)とを加算器48で加算すると、加算器48の出力は(1/4)・I となり、係数器50で4倍されて5次高調波電流の振幅の二乗値I となる。
加算器27は、3次高調波成分振幅値二乗算出部24で算出された3次高調波成分振幅値二乗I と、5次高調波成分振幅値二乗算出部26で算出された5次高調波成分振幅値二乗I とを加算して、3次5次高調波成分振幅値二乗(I +I )を求め演算部30に出力する。一方、基本波成分振幅値二乗算出部29は、基本波成分検出部28で検出された交流電流の基本波の基本波成分振幅値二乗I を算出し演算部30に出力する。そして、演算部30は、3次5次高調波成分振幅値二乗(I +I )を交流電流の基本波成分振幅値二乗I で除算し3次5次高調波含有率の二乗値を求め、平方根をとって高調波含有率を求める。なお、演算部30での演算で平方根をとる開平演算を省略してもよい。これは、高調波含有率は正の値であり、高調波含有率が最小になる場合に高調波含有率の二乗値も最小になるので、演算を簡略化するために開平演算を省略しても差し支えないからである。
電流歪み率に占める割合は、3次高調波成分Iと5次高調波成分Iとが大きいので、3次5次高調波含有率は電流歪み率に近い値となる。
図7は、3次5次高調波含有率F及び電流歪み率Dと短絡スイッチ16の短絡通電時間Tsとの関係の一例を示す特性図である。スケールを合わせるため、3次5次高調波含有率Fは、二乗値ではなく高調波含有率で表している。
図7に示すように、3次5次高調波含有率Fは、電流歪み率Dと同様に短絡通電時間Tsの下に凸の関数で示され、Ts=Tsnのときに極小値Fnを有し、電流歪み率Dが最小値となる短絡通電時間Tsmとほぼ一致している。
従って、交流電流の電流歪み率Dに代えて、3次5次高調波含有率Fの場合であっても第1の実施の形態と同等の効果が得られる。また、第1の実施の形態に比較して、多くの高調波のうち3次5次高調波だけを処理すればよいので処理が容易となる。
以上は、3次5次高調波を代表高調波とした場合で説明したが、代表高調波は3次5次高調波に限定されるものではなく、5次高調波のみとか、3次5次7次高調波とか、他の高調波を代表高調波としても同様の効果が期待できる。例えば、商用電源側のインピーダンスが6次近傍の共振特性がある場合には、5次7次高調波を代表高調波とすることが望ましい。
10…電圧検出器、11…商用電源、12…リアクトル、13…整流回路、14…平滑コンデンサ、15…インバータ、16…短絡スイッチ、17…駆動部、18…電圧零クロス点検出部、19…電流歪み率検出部、20…短絡スイッチ開閉制御部、21…電流検出器、22…3次5次高調波含有率検出部、23…3次高調波基準波形発生部、24…3次高調波成分振幅値二乗算出部、25…5次高調波基準波形発生部、26…5次高調波成分振幅値二乗算出部、27…加算器、28…基本波成分検出部、29…基本波成分振幅値二乗算出部、30…演算部、31…正弦波基準波形発生部、32…乗算部、33…ローパスフィルタ、34…二乗演算部、35…余弦波基準波形発生部、36…乗算部、37…ローパスフィルタ、38…二乗演算部、39…加算器、40…正弦波基準波形発生部、41…乗算部、42…ローパスフィルタ、43…二乗演算部、44…余弦波基準波形発生部、45…乗算部、46…ローパスフィルタ、47…二乗演算部、48…加算器、49…係数器、50…係数器

Claims (3)

  1. 商用電源から入力される交流電圧をリアクトルを介して入力し整流する整流回路と、前記整流回路で整流された直流電圧を平滑する平滑コンデンサと、前記平滑コンデンサで平滑された直流電圧を交流電圧に変換して負荷に供給するインバータと、前記整流回路をバイパスして前記商用電源を前記リアクトルを介して短絡する短絡スイッチとを備えた電力変換装置において、前記商用電源から入力される交流電圧の電圧零クロス点を検出する電圧零クロス点検出部と、前記商用電源から入力される交流電流の電流歪み率を検出する電流歪み率検出部と、前記電圧零クロス点検出部で検出された電圧零クロス点から次のタイミングの零クロス点までの間において前記電流歪み率に基づいて電流歪み率が最小になるように前記短絡スイッチの開閉時間を制御する短絡スイッチ開閉制御部とを備えたことを特徴とする電力変換装置。
  2. 前記電流歪み率検出部に代えて、前記商用電源から入力される交流電圧の電圧歪み率を検出する電圧歪み率検出部を設け、前記短絡スイッチ開閉制御部は、前記電圧零クロス点検出部で検出された電圧零クロス点から次のタイミングの零クロス点までの間において前記電圧歪み率が最小になるように前記短絡スイッチの開閉時間を制御することを特徴とする請求項1記載の電力変換装置。
  3. 商用電源から入力される交流電圧をリアクトルを介して入力し整流する整流回路と、前記整流回路で整流された直流電圧を平滑する平滑コンデンサと、前記平滑コンデンサで平滑された直流電圧を交流電圧に変換して負荷に供給するインバータと、前記整流回路をバイパスして前記商用電源を前記リアクトルを介して短絡する短絡スイッチとを備えた電力変換装置において、前記商用電源から入力される交流電圧の電圧零クロス点を検出する電圧零クロス点検出部と、前記商用電源から入力される交流電流または交流電圧の代表高調波成分に基づいて代表高調波含有率を求める代表高調波含有率検出部と、前記電圧零クロス点検出部で検出された電圧零クロス点から次のタイミングの零クロス点までの間において前記代表高調波含有率が最小になるように前記短絡スイッチの開閉時間を制御する短絡スイッチ開閉制御部とを備えたことを特徴とする電力変換装置。
JP2009186472A 2009-08-11 2009-08-11 電力変換装置 Pending JP2011041398A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186472A JP2011041398A (ja) 2009-08-11 2009-08-11 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186472A JP2011041398A (ja) 2009-08-11 2009-08-11 電力変換装置

Publications (1)

Publication Number Publication Date
JP2011041398A true JP2011041398A (ja) 2011-02-24

Family

ID=43768560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186472A Pending JP2011041398A (ja) 2009-08-11 2009-08-11 電力変換装置

Country Status (1)

Country Link
JP (1) JP2011041398A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026183A (ja) * 2011-07-26 2013-02-04 Mitsubishi Electric Corp 電磁石用直流電源装置および粒子線治療装置
JP2019118199A (ja) * 2017-12-27 2019-07-18 三菱重工サーマルシステムズ株式会社 制御装置、補正方法及びプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026183A (ja) * 2011-07-26 2013-02-04 Mitsubishi Electric Corp 電磁石用直流電源装置および粒子線治療装置
JP2019118199A (ja) * 2017-12-27 2019-07-18 三菱重工サーマルシステムズ株式会社 制御装置、補正方法及びプログラム
JP7451075B2 (ja) 2017-12-27 2024-03-18 三菱重工サーマルシステムズ株式会社 制御装置、補正方法及びプログラム

Similar Documents

Publication Publication Date Title
JP5355570B2 (ja) 交流直流変換装置
JP6041866B2 (ja) 電力変換装置、その電力変換装置を備えたモータ駆動制御装置、そのモータ駆動制御装置を備えた送風機および圧縮機、ならびに、その送風機あるいは圧縮機を備えた空気調和機
JP5279797B2 (ja) 電力変換装置
JP5304937B2 (ja) 電力変換装置
JP6651795B2 (ja) 力率改善装置、双方向ac/dc変換装置及びコンピュータプログラム
JP6151034B2 (ja) コンバータ装置及び空気調和機
WO2014199796A1 (ja) インバータ装置
WO2019153308A1 (zh) Pfc电路输出电压的纹波优化控制方法及相关电路
US8503205B2 (en) AC/DC converter with a PFC and a DC/DC converter
US20090168476A1 (en) Bridgeless power factor correction circuit
JP6647416B2 (ja) 電力変換装置、モータ駆動制御装置、送風機、圧縮機及び空気調和機
JP6147209B2 (ja) 電力変換装置
JP6196949B2 (ja) 電力変換装置
JP6379730B2 (ja) 電力変換装置
JP2013240274A (ja) 交流直流変換装置、電動機駆動装置、圧縮機駆動装置、空気調和機、ヒートポンプ式給湯機
JP7331144B2 (ja) 駆動制御方法、駆動制御装置、家電機器及びコンピュータ読み取り可能な記憶媒体
JPWO2011128962A1 (ja) 電力変換装置
JP2014007827A (ja) 電力変換装置、モーター駆動制御装置、送風機、圧縮機および冷凍空気調和装置
JP2011041398A (ja) 電力変換装置
WO2014034003A1 (ja) 整流回路装置の制御装置および整流回路装置
JP6361539B2 (ja) 変換装置
US10033182B2 (en) Bidirectional electrical signal converter
Suhara et al. Novel adaptive hysteresis current control of bidirectional three phase PWM converter under reduced switching scheme
JP2011024394A (ja) 電力変換装置
WO2021028972A1 (ja) 電力変換装置の制御回路