JP2011039074A - 機械式センサとこれを含む機械式レートジャイロスコープとその操作方法 - Google Patents

機械式センサとこれを含む機械式レートジャイロスコープとその操作方法 Download PDF

Info

Publication number
JP2011039074A
JP2011039074A JP2010229399A JP2010229399A JP2011039074A JP 2011039074 A JP2011039074 A JP 2011039074A JP 2010229399 A JP2010229399 A JP 2010229399A JP 2010229399 A JP2010229399 A JP 2010229399A JP 2011039074 A JP2011039074 A JP 2011039074A
Authority
JP
Japan
Prior art keywords
drive system
segment
transverse
mechanical
segment drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010229399A
Other languages
English (en)
Other versions
JP4971490B2 (ja
Inventor
John A Geen
ジーン,ジョン,エー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices Inc
Original Assignee
Analog Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Analog Devices Inc filed Critical Analog Devices Inc
Publication of JP2011039074A publication Critical patent/JP2011039074A/ja
Application granted granted Critical
Publication of JP4971490B2 publication Critical patent/JP4971490B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis

Abstract

【課題】機械式レートジャイロスコープの感度に各種不確実性の影響を含むことを防止する。
【解決手段】質量を基板に対して振動させる駆動力Fdを発生させる第1駆動系114と、角速度に応じて発生したコリオリ力により生じた偏位を測定する変位センサ116と、コリオリ力を打ち消すフィードバック力Ffを発生する横断駆動系166,168とを含む機械式センサ102と、第1駆動系に駆動力Fdを発生させるための交流駆動を与え、フィードバック力Ffを発生させる交流駆動の完全サイクルのフィードバック信号を横断駆動系に与える制御回路とを有し、第1駆動系が第1数Ndのセグメントを含み、横断駆動系が第2数Nfのセグメントを含み、このセグメントが、第1駆動系のセグメントと同形態で、第1駆動系セグメントに対して横断する方向に向いており、Fd/FfがNd/Nfに比例するよう構成する。
【選択図】図1

Description

本出願は、1999年10月13日出願のレートジャイロスコープ用フィードバック機構と題する米国特許仮出願60/159,279号の優先権を主張する。
本発明は、一般的に機械的レートジャイロスコープに関し、詳細にはジャイロスコープの機械的及び電気的特性に対する感応度の小さい変換係数を有する機械式レートジャイロスコープに関する。
機械式レートジャイロスコープは、コリオリの効果を利用して、印加された角速度の測定値を与えることが知られている。在来の機械式レートジャイロスコープにおいては、質量、m、を有する本体を、堅固な加速度計枠から柔軟な懸架システムで支える。堅固な枠が本体速度に直交するレート感知軸の周りに、印加された角速度、ΩIN、で回転するとき、本体は、駆動力Fdにより、速度vで振動させられる。振動と角度変位の複合により、本体には、速度とレート感知軸の双方に直交する方向に、コリオリの加速度、Ac=2vΩIN、を生じる。したがって、コリオリの力、Fc=mAc、が本体に与えられ、それにより本体はコリオリの加速度の方向に変位する。
在来の機械式レートジャイロスコープにおいては、本体のこのような変位は、一般的に機械的又は電気的いずれかの抑制力、例えば、ばね常数、k、を有する機械式ばねなどにより、抑制される。したがって、コリオリの加速度の方向への本体の変位は、一般的に式、y=Fc/k、により定まる。さらに、本体の変位は、一般的に、コンデンサの平行板の間の距離の変化が起こす容量変化を測定する装置などの変位センサを用いて測定される。コンデンサの平行板のうち1つを本体に作動的に結合し他の板を堅固な枠に固定しておくと、板の間の距離の変化が本体の変位に比例する。このような変位センサは、印加された角速度、ΩIN、に比例する出力を生じるので、比例定数、k、は普通にレートジャイロスコープの感度と言われる。
在来の機械式レートジャイロスコープの感度、k、には、一般的に複数の変換係数が含まれる。これらは、機械的寸法、材料特性、及びジャイロスコープとそれに対する補助回路の電気的利得、並びにそれらに加わる電圧、電流、及び電磁場の関数である。在来の機械式レートジャイロスコープの出力は、したがって、これら変換係数の各種不確実性と不安定性の影響を受ける。このような不確実性と不安定性は、一般的に、製造工程中に変換係数を測定して釣り合わせ及び/又はジャイロスコープ出力に専用信号調整回路を設けて出来るだけ小さくする。しかし、このような余分の製造工程及び信号調整回路を付け加えることは、機械式レートジャイロスコープ、特に微細加工の機械式レートジャイロスコープのサイズと原価を著しく増加することがある。
したがって、ジャイロスコープの機械的及び電気的特性に対する感応度の小さい変換係数を有する改良機械式レートジャイロスコープを有するのが望ましい。このような改良機械式レートジャイロスコープはサイズが小さく簡単な製造工程を用いて加工され、それによりジャイロスコープの全体原価を引き下げる。在来のシリコン微細加工技術を用いて製造することの出来る改良機械式レートジャイロスコープを有することもまた望ましい。
本発明にしたがうと、ジャイロスコープの機械的及び電気的特性に対する感応度の小さい変換係数を有する機械式レートジャイロスコープが提供される。この機械式レートジャイロスコープは、質量に対して振動を与えるため使用される第1セグメント駆動系、及び同様のセグメントから形成されジャイロスコープが角度変位を受けたとき質量に加わるコリオリの力を相殺するフィードバック力を発生するため使用される横断セグメント駆動系を含む。
この機械式レートジャイロスコープはさらに、第1駆動系が利用する駆動信号の完全サイクル少なくも1つを横断駆動系に与えるため使用される力−フィードバック制御機構を含む。この力−フィードバック制御機構は、横断駆動系に与えられる駆動信号の完全サイクルの極性を制御するため使用されるフィードバック信号を発生する。このフィードバック信号は、印加された角速度に比例するパルス反復周波数を有する。印加された角速度をパルス反復周波数に関係付ける比例定数には、ジャイロスコープの機械的及び電気的特性に対する感応度の低い変換係数が含まれる。
本発明に従う機械式レートジャイロスコープの構成図である。 図1の機械式レートジャイロスコープの第1代替実施例の構成図である。 図1の機械式レートジャイロスコープの第2代替実施例の構成図である。
この機械式レートジャイロスコープの他の特性、機能、及び様相は、本発明に関する以下の詳細説明から明らかになるであろう。
図面との関連で以下の本発明の詳細説明を参照すると本発明がいっそう完全に理解されるであろう。
1999年10月13日申請の米国特許仮出願60/159,279号を参照によりここに合併する。
図1は、本発明にしたがう機械式レートジャイロスコープ100の説明的実施例の構成図である。図1に示すように、機械式レートジャイロスコープ100には機械式センサ102が含まれる。これは、上述の米国特許仮出願60/159,279号に記述するようにシリコン微細加工センサ構造から成る。明細に言うと、機械式センサ102には、堅固な加速度計枠から複数の撓み体により懸垂された本体106が含まれる。堅固な枠は、シリコン基板に対し複数のアンカー点で複数の横方向撓み体を用いてアンカー止めされている。堅固な枠、複数の撓み体、及び機械式センサ組立体を基板にアンカー止めするためのアンカーは、上記の米国特許仮出願60/159,279号に詳しく記述されている。
本体106は、静電式又は電磁式セグメント駆動系として実現されるセグメント駆動系114により、駆動軸、x、に沿って振動させられる。図示の実施例においては、駆動系114の各々は静電式セグメント駆動系であって、本体106に一体で結合された駆動セグメントの第1セット118(即ち、電極又は「指」)、及び基板にアンカー止めされ駆動セグメントの第1セット118と互いにかみ合う駆動セグメントの第2セット120(即ち、電極又は「指」)を含む。本体106は、駆動指の第1セット118と第2セット120との間に印加された静電駆動力、Fd、に反応して、駆動軸、x、に沿って速度、v、で振動する。静電駆動力、Fd、は、駆動系114に対しそれぞれの伝送路178と180の上で与えられる交流電圧からなる駆動信号を用いて発生される。代替実施例においては、磁場の存在下で交流電流を適切な電磁式駆動系に印加することにより電磁駆動力が発生される。
差動容量変位センサ116が、本体106の振動を感知してそれぞれの伝送路143と149の上に信号を与え、それらが振動する本体106の振動を持続させるのに用いられる。この例示的実施例において、変位センサ116は、本体106に一体で結合された少なくも1つの感知指と、それに対応して基板にアンカー止めされた少なくも1つの感知指を含む。振動する本体に持続振動を与えるため適切な静電式駆動系は、横方向駆動共鳴微細構造体と題する1991年6月18日付でTang等に発行された米国特許5,025,346に記述されており、それをここに参照により合併する。
当業者は、本体106が駆動軸、x、に沿って振動する一方で、堅固な枠が駆動x軸に直交するレート感知軸、z、の周りで回転すると、本体106は、駆動軸及びレート感知軸双方に直交する感知軸、y、に沿ってコリオリの加速度、Ac、を受けることを理解するであろう。その結果、堅固な枠が角度変位を受けたとき、明確なコリオリの力、Fc、が振動する本体106に印加され、それにより、振動する本体106が感知軸、y、に沿って偏る。
この例示的実施例においては、機械式センサ102の堅固な枠は、堅固な枠を基板から懸垂する横方向撓み体の少なくとも一部により、駆動軸、x、の方向に動かないようになっている。さらに、本体106の感知軸、y、の方向への偏位は、機械的ばねなど少なくも1つの横方向撓み体により抑制されている。好適実施例においては、振動する本体106は、堅固な枠に対し駆動軸、x、の方向にだけ動くよう束縛されており、堅固な枠は、基板に対し感知軸、y、の方向にだけ動くよう束縛されている。
振動する本体106の、感知軸、y、に沿う偏位は、差動容量変位センサ117を用いて測定する。この差動容量変位センサは、堅固な枠に一体で結合された感知指の第1セット142と、それに対応して基板に固定された感知指の第2セット144及び第3セット146を含む。堅固な枠と感知指の第1セット142は、振動する本体106が基板及び固定感知指の第2セット144と第3セット146に対して感知軸、y、の方向に偏位するとき、振動する本体106と共に運ばれることが認められる。変位センサ117は、感知軸、y、に沿う本体106の偏位を感知し、感知信号をぞれぞれの伝送路152と154の上に生じ、その大きさは偏位の大きさに比例する。
上述のように、変位センサ116は、信号を伝送路143及び149の上に生じ、それらは、機械式レートジャイロスコープ100が振動する本体106の振動を持続するため用いる。その行き先に、機械式レートジャイロスコープ100は、差動増幅器126と分路フィードバック抵抗器130及び132を含む相互抵抗増幅器125を有する。明細に言うと、変位センサ116は、伝送路143及び149の上で相互抵抗増幅器125のそれぞれの入力に対し信号を与える。相互抵抗増幅器は、これらから逆極性の信号を生じてコンパレータ160に送る。このコンパレータは、それぞれの伝送路178及び180の上で駆動系114に対し駆動信号を与える。
好適実施例においては、駆動信号が駆動系114に与えられて、本体106を機械的共鳴で振動させる。機械式センサ102,相互抵抗増幅器125,及びコンパレータ160はこうして発振回路を形成する。この発振回路では、共鳴する本体106が周波数決定要素であり、相互抵抗増幅器125が、機械的共鳴における本体106の振動の持続に必要な位相前進(即ち90度位相シフト)を与える。
また上述したように、変位センサ117は、感知軸、y、に沿う本体106の偏位の大きさに比例する大きさを有する感知信号を伝送路152と154の上に発生する。この感知信号は、差動増幅器128及び分路フィードバックコンデンサ134と136を含む増幅器127により増幅される。増幅器127は、それぞれの伝送路152と154の上の感知信号を、その位相を保ったまま増幅し、増幅感知信号をクロススイッチ138に与える。このクロススイッチは、図示の実施例では同期復調装置として働く。
明細に言うと、クロススイッチ138は、増幅感知信号を入力信号として、伝送路178と180の上の信号を基準信号として受信し、同期的に復調された信号を低域通過フィルタ140に与える。これが復調信号を平均する。好適実施例において、フィルタ140は、積分フィルタとして実現される。フィルタ140は、復調信号からオフセット及びリプルを除去し、復調/平均信号をコンパレータ156にそれぞれの伝送路186と188の上で与える。
当業者は、機械式レートジャイロスコープの感度は、ジャイロスコープの機械的寸法、材料特性、及び電気的利得、及び/又はジャイロスコープの各種構成部品に印加される電圧、電流、及び電磁場などの関数である複数の変換係数から成ることを理解するであろう。機械式レートジャイロスコープ100の説明的実施例においては、コンパレータ156、D−型フリップフロップ158、クロススイッチ164、及び横断駆動系166と168を含む力−フィードバック制御機構を用いて、変換係数がジャイロスコープの機械的及び電気的特性に対する感応度を小さくしている。
明細に言うと、コンパレータ156が復調/平均信号を入力信号として受信し、デジタル信号をD−型フリップフロップ158のD−入力に与える。このデジタル信号は、横断駆動系166と168が発生して振動する本体106に感知軸、y、に沿って印加される見掛け上のコリオリの力、Fc、とフィードバック力、Ff、との間の差の時間平均値をあらわす。その結果、D−型フリップフロップ158のラッチされた出力は、極性が交互に代わる(即ち、正と負の)複数のパルスから成る。このパルスは、機械式センサ102に印加された角速度、ΩIN、に比例するパルス反復周波数(PRF)を有する。上述の力−フィードバック制御機構を含む機械式レートジャイロスコープ100は、デルタ−シグマ復調器として働くことが認められる。
コンパレータ160は、相互抵抗増幅器125が発生した信号を、その差動入力に受信し、これら信号の基本周波数成分から成るデジタル出力を、伝送路178と180の上でクロススイッチ164に与える。コンパレータ160はまた、信号のこの基本周波数成分を伝送路178の上でD−型フリップフロップ158のクロックの入力に与える。
その結果、D−型フリップフロップ158は、駆動信号のD−入力サイクル毎にデジタル信号をラッチし、そのQ−出力にあるラッチされた信号を、クロススイッチ164に与える。D−型フリップフロップ158はまた、ラッチされた信号の逆転型、VOUT、をそのノットQ−出力に与える。クロススイッチ164は、このラッチされた信号を使用し、伝送路178と180の上で横断駆動系166と168に対する駆動信号の準備を制御する。明確には、クロススイッチ164は、横断駆動系166と168に対しそれぞれの伝送路182と184の上に作られる駆動信号の完全サイクルの極性を制御する。横断駆動系166と168は、この駆動信号を利用して、フィードバック力、Ff、を発生し、機械式センサ102が角度変位を受けたとき振動する本体106に印加されるコリオリの力の効果を相殺する。
コンパレータ156の発生するデジタル信号は、その値に限界はあるが機能的制限のないエラー信号の形を取ることが、認められる。さらに、D−型フリップフロップ158の出力は、その平均値と角速度との間の長期にわたる機能的マッピング、及び平均値と角速度との間の短期的な概略マッピングを有するフィードバック信号である。上記のエラー信号は、この近似の目安である。
駆動系114と同様に、横断駆動系166及び168は、静電式又は電磁式セグメント駆動系として実現されるセグメント駆動系である。図示の実施例において、横断駆動系166は、本体106に一体として結合された少なくも1つの駆動セグメント170(即ち、電極又は指)と、基板にアンカー止めされ、駆動セグメント170とかみ合う複数の駆動セグメント172(即ち、電極又は指)とを含む静電式セグメント駆動系である。同様に、横断駆動系168は、本体106に一体として結合された少なくとも1つの駆動指174と、基板にアンカー止めされ駆動指174とかみ合う複数の駆動指176を含む静電式セグメント駆動系である。機械式レートジャイロスコープ100の或る実施例においては、駆動系114に伴う周縁電磁場に整合させるため、横断駆動系166及び168の作動指170及び174の近くにそれぞれ不作動指を付け加える必要があることを認めなければならない。機械式レートジャイロスコープにおける周縁電磁場整合は、上に参照した米国特許仮出願60/159,279に記述されている。
機械式レートジャイロスコープ100の作動は、以下の解析を参照すると、さらに良く理解されるであろう。上述のように、機械式センサ102の本体106は、駆動系114が駆動軸、x、に沿って印加される駆動力、Fd、に応じ、速度、v、で振動する。明細に言うと、駆動力、Fd、と速度、v、との関係は、本体106の質量を“m”とし、本体106を有するシステムの特性周波数応答を“ω”とするとき、式
Fd = mvω (1)
にしたがう。2次システムの自然共鳴周波数を“ω”とし、自然共鳴周波数、ω、における周波数応答の品質係数を“Q”とすると、一般的に、2次システムの特性周波数応答、ω、は、次式であらわされる。
ω = [ω +jω(ω/Q)−ω]/ω (2)
さらに、品質係数、Q、は、次式であらわされる。
Q = ω/BW (3)
ここで、BWは、自然共鳴周波数、ω、に中心を置く3−dB帯域幅である。
本体106から成る2次機械式システムに関し対応する速度応答ω〜は、本体106の偏位を感知軸、y、に沿って制限する機械式ばねのばね定数を“k”とし、本体106と基板との間のせん断粘性による減衰を“D”とすると、次式によってあらわされることが認められる。
ω〜=ω(Fd/m)/[k/m+jω(D/m)−ω] (4)
上の(2)と(4)で類似の係数を等しいとすると、自然共鳴周波数、ω、及び品質係数、Q、を機械式センサ102の機械的特性を用いて、次のようにあらわすことができる。
ω = k/m (5)
及び
ω/Q =D/m. (6)
また上述のように、本体106の駆動軸、x、に沿う振動は、機械式センサ102のレート感知軸、z、の周りの回転と結合して、感知軸、y、に沿って印加される見掛けのコリオリの力、Fc、のため、本体106にコリオリの加速度、Ac、を受けさせる。明細に言うと、コリオリの力、Fc、は、次式にしたがって、コリオリの加速度、Ac、に対応する。
Fc = mAc (7)
Ac =2vΩ、コリオリの力、Fc、は、機械式センサ102をレート感知軸、z、の周りで回転させるため印加される角速度を“ΩIN”とすると、次式にしたがって、速度、v、に対応するからである。
Fc = 2mvΩIN (8)
したがって、上記に定義した(1)と(2)を用いて、コリオリの力、Fc、の駆動力、Fd、に対する比は、次式となる。
Fc/Fd = 2ΩIN/ωc・ (9)
駆動力、Fd、は、駆動指の第1セット118と第2セット120との間に印加され、フィードバック力、Ff、は、横断駆動指170と172との間及び横断駆動指174と176との間に印加される。したがって、駆動力、Fd、のフィードバック力、Ff、に対する比は、駆動系114と横断駆動系166及び168の中の指(一般的に、セグメント)の各数Nd,Nfの比Nd/Nfを“N”と定義すると、数値、N、に比例する。
Fd/Ff ∝ N (10)
好適実施例においては、各駆動系114のための複数の駆動指118が本体106に一体となって結合されており、単一の駆動指170と単一の駆動指174が同様に本体106に一体となって結合されている。例えば、数値、N、を400とし、フィードバック力、Ff、は、70度/秒の角速度、ΩIN、に等しいとする。
当然の帰結として、フィードバック力、Ff、は、駆動力、Fd、を数値、N、で割ったものに比例する。
Ff ∝ Fd/N (11)
上に定義した(11)を用いると、フィードバック力、Ff、は、したがって次のようにあらわされる
Ff = R(Fd/N) (12)
ここで“R”は、横断駆動系166及び168が駆動信号を受信して必要なフィードバック力、Ff、を生じる間の時間量に比例する数値である。
フィードバック力、Ff、の大きさは、コリオリの力、Fc、の大きさに等しいと認められる。したがって、上に定義した(12)を用いると、コリオリの力、Fc、の駆動力、Fd、に対する比もまた、次式であらわされる。
Fc/Fd = R/N (13)
上に定義した(9)及び(13)を用いると、レート感知軸、z、の周りで回転させるため機械式センサ102に印加される角速度、ΩIN、は次式であらわされる。
ΩIN =(R/2N)ωc (14)
上述のように、駆動信号を伝送路178及び180の上で駆動系114に与えて、機械式センサ102を機械的共鳴で作動させるのが好適である。特性周波数、ωc、は、したがって、自然共鳴周波数、ωo、に中心のある3−dB帯域幅、BW、に対応する。即ち、
ωc = BW. (15)
上に定義した(3)及び(15)を用いると、特性周波数、ωc、は、次のようにあらわされる。
ωc = ωo/Q. (16)
したがって、上に定義した(14)及び(16)を用いると、機械式センサ102が機械的共鳴で作動するとき機械式センサ102に印加される角速度、ΩIN、は次のようにあらわされる。
ΩIN = R(ωo/2)(1/NQ) (17)
この解析において、コンパレータ156が発生するデジタルフィードバック信号のPRFは、説明を判り易くするため、角周波数、ωs、であらわす。さらに、上述のように、この例示的実施例の機械式レートジャイロスコープ100は、デルタ−シグマ変調器として機能する。1−ビットA−D変換を持つデルタ−シグマ変調器(即ちコンパレータ)のフィートバック流は、正と負の量子だけから成る。入力信号が全く無いと、正と負の量子が交互に繰り返されて、平均値がゼロ(0)になる。フィードバック流を変えることの出来る唯一の方法は、量子を反対極性のものと置き換えることである。したがって、フィードバック流の値は、量子二つ(2)の増し分でだけ変更することが出来る。この場合、量子は、ωoの全サイクル又はそれらの逆位相等価物を構成し、ゼロフィードバック波形は、ωo成分のない。
ωo/2 (18)
のように見えるようになる。当然の帰結として、量子がωsに同等のPRFにおいてこのように変えられると、フィードバックの時間平均は、次のようにあらわされる。
R = 2ωs/ωo. (19)
したがって、上に定義した(17)及び(19)を用いると、角周波数、ωs、は次のようにあらわされる。
ωs =kΩIN (20)
ここで、
= NQ (21)
である。
角周波数、ωs、はしたがって、印加された角速度、ΩIN、に比例する。加えて、比例定数、K、は変換係数N及びQから成り、これらは機械式レートジャイロスコープ100の増幅回路又は電気−機械インターフェースからの不確実性を全く含まない。
図示した実施例において、駆動信号は駆動系114にもまた与えられ、機械式センサ102を自然共鳴周波数、ωo、から離れて作動させる。例えば、機械式センサ102を、自然共鳴周波数、ωo、より上の角周波数、ω、で作動させる。この場合、特性周波数共鳴、ωc、は次のようにあらわされる。
ωc =ω、ω>ωo (22)
したがって、上に定義した(14)及び(22)を用いると、機械式センサ102が自然共鳴周波数、ωo、より上で作動するとき機械式センサ102に加わる角速度、ΩIN、は、次式であらわされる。
ΩIN=R(ω/2)(1/N) 、ω>ωo. (23)
さらに、D−型フリップフロップ158のクロック入力に与えられる駆動信号の角周波数は、印加された角周波数、ω(ω>ωo)、に等しいので、この角周波数、ωs、は次のようにあらわされる。
ωs =R(ω/2)、ω>ωo. (24)
上に定義した(23)及び(24)を用いると、この角周波数、ωs、は次のようにあらわされる。
ωs =KΩIN、ω>ωo (25)
ここで
= N. (26)
である。
角周波数、ωs、は、したがって、印加された角速度、ΩIN、に比例する。しかし、この場合、比例定数、K、は変換係数、N、だけから成り、これは、機械式レートジャイロスコープ100の増幅回路又は電気−機械インターフェースからの不確実性を全く含まない。
機械式レートジャイロスコープ100は、ジャイロスコープの機械的及び電気的特性に対して感応度が低いか又はその影響を全く受けない変換係数を有するので、変換係数を測定して釣り合わせその不確実性と不安定性を減少する工程段階を簡略化するか又は省略することが出来、それにより、機械式レートジャイロスコープ100の全体製造工程が簡単になる。その上、これら不確実性と不安定性を減少するため専用の信号調節回路もまた、簡略化するか又は省略することができるので、それにより、機械式レートジャイロスコープ100の大きさが小さくなる。
上の機械式レートジャイロスコープ100の説明的実施例を記述したので、別の代替実施例又は変形を行うことが出来る。例えば、図2は、機械式レートジャイロスコープ100に対し小型にした機械式レートジャイロスコープ200を示す。このような小型化は、相互抵抗増幅器125をD−型フリップフロップ210及び212で置き換えることにより、果たされる。D−型フリップフロップ210は、そのクロック入力に、外部発生のクロックを受信する。さらに、D−型フリップフロップ212が、反対極性の駆動信号を、クロススイッチ164に与える。そして伝送路178の上に与えられた駆動信号を用いて、クロススイッチ138を制御し、D−型フリップフロップ158をクロックする。D−型フリップフロップ210及び212は、上述の共鳴が、この代替実施例において駆動信号とフィードバック信号との間に必要な90度位相シフトを生じるため、必要とする。
図3は、小型化した機械式レートジャイロスコープ300を示す。この代替実施例においては、増幅器127をスイッチキャパシタ増幅器320で置き換えており、これが相互抵抗増幅器の働きをする。スイッチキャパシタ増幅器320が90度位相シフトを生じるので、クロススイッチ138及びD−型フリップフロップ158の制御入力及びクロック入力は、このときD−型フリップフロップ210によりそのQ出力から与えられる。増幅器127もまた、このような90度位相シフトを生じる別の増幅器構成に置き換えてよいことが理解される筈である。
当業者はさらに、ここに記述した新規概念から逸脱することなく上述の機械式レートジャイロスコープの変形及び修正をおこない得ることを、理解するであろう。したがって、本発明は付属請求項の範囲及び精神のみにより制限されるべきものである。

Claims (11)

  1. 基板と、質量と、該質量を基板に対して振動させる駆動力Fdを発生させる構成となっている第1セグメント駆動系と、印加された角速度に応じて発生したコリオリの力により生じた質量の偏位を測定する構成となっている変位センサと、コリオリの力の影響を打ち消すためフィードバック力Ffを発生する構成となっている横断セグメント駆動系と、を含む機械式センサと、
    第1セグメント駆動系に駆動力Fdを発生させるための交流駆動を与え、フィードバック力Ffを発生させるための前記交流駆動の完全サイクルを具備するフィードバック信号を、横断セグメント駆動系に対し与える構成となっている制御回路と、
    を具備する機械式レートジャイロスコープであって、
    前記第1セグメント駆動系が、質量に作動的に結合された第1数Ndのセグメントを含み、前記横断セグメント駆動系が、質量に作動的に結合された第2数Nfのセグメントを含み、この横断セグメント駆動系のセグメントが、前記第1セグメント駆動系のセグメントと同じ形態であって、該第1セグメント駆動系のセグメントに対して横断する方向に向いており、
    Fd/FfがNd/Nfに比例する、
    機械式レートジャイロスコープ。
  2. 前記制御回路が更に、前記横断セグメント駆動系に与えられる前記交流駆動の完全サイクルの極性を制御する構成となっている請求項1記載の機械式レートジャイロスコープ。
  3. 前記第1セグメント駆動系が第1の静電式セグメント駆動系を具備し、前記横断セグメント駆動系が横断静電式セグメント駆動系を具備し、前記交流駆動が交流電圧駆動を具備する請求項1記載の機械式レートジャイロスコープ。
  4. 前記第1セグメント駆動系が第1の電磁式セグメント駆動系を具備し、前記横断セグメント駆動系が横断電磁式セグメント駆動系を具備し、前記交流駆動が交流電流駆動を具備する請求項1記載の機械式レートジャイロスコープ。
  5. 前記横断セグメント駆動系のセグメントが少なくとも1つの不作動セグメントを含む請求項1記載の機械式レートジャイロスコープ。
  6. 前記制御回路が更に、前記変位センサにより与えられ、前記質量の偏位の大きさに比例する大きさを有する少なくとも1つの感知信号を受信し、その感知信号を用いてコリオリの力とフィードバック力Ffとの差の時間平均をあらわすエラー信号を発生する構成となっており、該エラー信号が、印加された角速度に比例するパルス反復周波数を具備する請求項1記載の機械式レートジャイロスコープ。
  7. 基板と、
    質量と、
    質量を基板に対し結合する構成となっている懸垂系と、
    コリオリの力により生じた質量の偏位を測定する構成となっている変位センサと、
    質量に作動的に結合された第1数Ndのセグメントを含み、質量を基板に対し振動を引き起こすように作用する駆動力Fdを発生させる交流駆動を受ける構成となっている第1セグメント駆動系と、
    質量に作動的に結合された第2数Nfのセグメントを含む横断セグメント駆動系であって、該横断セグメント駆動系のセグメントが、第1セグメント駆動系のセグメントと同じ形態であって、第1セグメント駆動系のセグメントを横断する方向に向いており、横断セグメント駆動系は、コリオリの力の影響を打ち消すよう作用するフィードバック力Ffを発生させる前記交流駆動の完全サイクルを受ける構成となっており、Fd/FfがNd/Nfに比例する横断セグメント駆動系と、
    を具備する機械式センサ。
  8. 前記第1セグメント駆動系が第1の静電式セグメント駆動系を具備し、前記横断セグメント駆動系が横断静電式セグメント駆動系を具備し、前記交流駆動が交流電圧駆動を具備する請求項7記載の機械式センサ。
  9. 前記第1セグメント駆動系が第1の電磁式セグメント駆動系を具備し、前記横断セグメント駆動系が横断電磁式セグメント駆動系を具備し、前記交流駆動が交流電流駆動を具備する請求項7記載の機械式センサ。
  10. 前記第2数Nfのセグメントが少なくとも1つの不作動セグメントを含む請求項7記載の機械式センサ。
  11. 機械式センサ及び制御回路を含む機械式レートジャイロスコープの操作方法であって、前記機械式センサが、基板と、質量と、変位センサと、第1セグメント駆動系と、横断セグメント駆動系とを有し、前記方法が、
    前記制御回路によって、前記第1セグメント駆動系に交流駆動を与えるステップと、
    前記第1セグメント駆動系によって、前記交流駆動を用いた駆動力Fdを発生させ、これにより前記質量を基板に対して振動させるステップと、
    前記変位センサによって、印加された角速度に応答して発生したコリオリの力によって引き起こされた前記質量の変位を計測するステップと、
    前記制御回路によって、前記横断セグメント駆動系に前記交流駆動の完全サイクルを与えるステップと、
    前記横断セグメント駆動系によって、前記交流駆動の完全サイクルを用いたフィードバック力Ffを発生させ、これによりコリオリの力の影響を打ち消すステップと、
    を具備する機械式レートジャイロスコープの操作方法。
JP2010229399A 1999-10-13 2010-10-12 機械式センサとこれを含む機械式レートジャイロスコープとその操作方法 Expired - Lifetime JP4971490B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15927999P 1999-10-13 1999-10-13
US60/159,279 1999-10-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001530525A Division JP2003511684A (ja) 1999-10-13 2000-10-04 レートジャイロスコープ用フィードバック機構

Publications (2)

Publication Number Publication Date
JP2011039074A true JP2011039074A (ja) 2011-02-24
JP4971490B2 JP4971490B2 (ja) 2012-07-11

Family

ID=22571869

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2001530525A Pending JP2003511684A (ja) 1999-10-13 2000-10-04 レートジャイロスコープ用フィードバック機構
JP2010229399A Expired - Lifetime JP4971490B2 (ja) 1999-10-13 2010-10-12 機械式センサとこれを含む機械式レートジャイロスコープとその操作方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2001530525A Pending JP2003511684A (ja) 1999-10-13 2000-10-04 レートジャイロスコープ用フィードバック機構

Country Status (4)

Country Link
US (1) US6470748B1 (ja)
EP (1) EP1221019B1 (ja)
JP (2) JP2003511684A (ja)
WO (1) WO2001027559A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737851A (zh) * 2016-01-30 2016-07-06 西北工业大学 面向精度设计的硅微机械陀螺系统参数获取方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107615B2 (en) 2002-12-18 2015-08-18 Active Protective Technologies, Inc. Method and apparatus for body impact protection
US6713829B1 (en) 2003-03-12 2004-03-30 Analog Devices, Inc. Single unit position sensor
US6845665B2 (en) * 2003-04-28 2005-01-25 Analog Devices, Inc. Micro-machined multi-sensor providing 2-axes of acceleration sensing and 1-axis of angular rate sensing
DE102005010940B8 (de) * 2004-03-12 2013-01-17 Denso Corporation Elektrostatisch in Schwingungen versetzbare Anordnung
DE602005027713D1 (de) * 2005-12-02 2011-06-09 St Microelectronics Srl Vorrichtung und Verfahren zum Auslesen eines kapazitiven Sensors insbesondere eines mikro-elektromechanischen Sensors
JP5181449B2 (ja) * 2006-09-14 2013-04-10 セイコーエプソン株式会社 検出装置、センサ及び電子機器
JP4576441B2 (ja) * 2008-03-21 2010-11-10 日立オートモティブシステムズ株式会社 角速度センサ
US7956783B2 (en) * 2009-01-29 2011-06-07 Analog Devices, Inc. Analog-to-digital converter using digital output as dither
US8322213B2 (en) * 2009-06-12 2012-12-04 The Regents Of The University Of California Micromachined tuning fork gyroscopes with ultra-high sensitivity and shock rejection
US8534127B2 (en) 2009-09-11 2013-09-17 Invensense, Inc. Extension-mode angular velocity sensor
US9097524B2 (en) 2009-09-11 2015-08-04 Invensense, Inc. MEMS device with improved spring system
US8508290B2 (en) * 2010-09-14 2013-08-13 Ayman Elsayed Interface for MEMS inertial sensors
DE102010053022B4 (de) * 2010-12-02 2014-01-09 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Vorrichtung zur Messung einer Drehrate
US9212908B2 (en) 2012-04-26 2015-12-15 Analog Devices, Inc. MEMS gyroscopes with reduced errors
FR3013445B1 (fr) * 2013-11-20 2015-11-20 Sagem Defense Securite Capteur a element sensible mobile ayant un fonctionnement mixte vibrant et pendulaire, et procedes de commande d'un tel capteur
JP6435631B2 (ja) * 2014-04-23 2018-12-12 株式会社デンソー 角速度センサ
JP6571064B2 (ja) * 2016-11-21 2019-09-04 株式会社東芝 検出装置およびセンサ装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123632A (ja) * 1992-10-13 1994-05-06 Nippondenso Co Ltd 力学量センサ
JPH06258083A (ja) * 1992-06-11 1994-09-16 Soc Appl Gen Electr Mec <Sagem> ビーム振動型ジャイロ測定装置
JPH0854242A (ja) * 1994-08-12 1996-02-27 Murata Mfg Co Ltd 振動ジャイロ
JPH0942973A (ja) * 1995-08-01 1997-02-14 Nissan Motor Co Ltd 角速度センサ
JPH09159460A (ja) * 1995-12-05 1997-06-20 Murata Mfg Co Ltd 角速度センサ
WO1999012002A2 (en) * 1997-09-02 1999-03-11 Analog Devices, Inc. Micromachined gyros
WO1999014557A1 (en) * 1997-09-18 1999-03-25 British Aerospace Public Limited Company A digital control system for a vibrating structure gyroscope
JPH1183494A (ja) * 1997-09-10 1999-03-26 Aisin Seiki Co Ltd 角速度センサ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2927962A (en) 1954-04-26 1960-03-08 Bell Telephone Labor Inc Transmission systems employing quantization
US3192371A (en) 1961-09-14 1965-06-29 United Aircraft Corp Feedback integrating system
US3560957A (en) 1966-01-26 1971-02-02 Hitachi Ltd Signal conversion systems with storage and correction of quantization error
US3656354A (en) 1969-10-06 1972-04-18 Gen Motors Corp Bell gyro and improved means for operating same
US3670578A (en) 1970-10-08 1972-06-20 Trw Inc Current pulse generator
US3839915A (en) 1973-03-19 1974-10-08 Northrop Corp Turn rate sensor
US3924475A (en) 1973-10-23 1975-12-09 Singer Co Vibrating ring gyro
US3992952A (en) 1974-12-20 1976-11-23 The Singer Company Control system for angular displacement sensor
US4038527A (en) 1975-10-21 1977-07-26 The Singer Company Simplified strapped down inertial navigation utilizing bang-bang gyro torquing
US4264838A (en) 1979-10-01 1981-04-28 Sperry Corporation Force balanced piezoelectric vibratory rate sensor
GB2127637B (en) 1982-08-26 1985-12-11 British Aerospace Improvements in or relating to pulse rebalanced servomechanisms
US4926178A (en) 1988-07-13 1990-05-15 Analog Devices, Inc. Delta modulator with integrator having positive feedback
US5025346A (en) 1989-02-17 1991-06-18 Regents Of The University Of California Laterally driven resonant microstructures
WO1991011863A1 (en) 1990-01-31 1991-08-08 Analog Devices, Inc. Sigma delta modulator
US5055843A (en) 1990-01-31 1991-10-08 Analog Devices, Inc. Sigma delta modulator with distributed prefiltering and feedback
US5205171A (en) 1991-01-11 1993-04-27 Northrop Corporation Miniature silicon accelerometer and method
US5349855A (en) 1992-04-07 1994-09-27 The Charles Stark Draper Laboratory, Inc. Comb drive micromechanical tuning fork gyro
US5488862A (en) * 1993-10-18 1996-02-06 Armand P. Neukermans Monolithic silicon rate-gyro with integrated sensors
DE4442033C2 (de) * 1994-11-25 1997-12-18 Bosch Gmbh Robert Drehratensensor
US5945599A (en) * 1996-12-13 1999-08-31 Kabushiki Kaisha Toyota Chuo Kenkyusho Resonance type angular velocity sensor
US5952574A (en) 1997-04-29 1999-09-14 The Charles Stark Draper Laboratory, Inc. Trenches to reduce charging effects and to control out-of-plane sensitivities in tuning fork gyroscopes and other sensors
JP2001520385A (ja) * 1997-10-14 2001-10-30 アービン・センサーズ・コーポレイション 複数要素のマイクロジャイロ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258083A (ja) * 1992-06-11 1994-09-16 Soc Appl Gen Electr Mec <Sagem> ビーム振動型ジャイロ測定装置
JPH06123632A (ja) * 1992-10-13 1994-05-06 Nippondenso Co Ltd 力学量センサ
JPH0854242A (ja) * 1994-08-12 1996-02-27 Murata Mfg Co Ltd 振動ジャイロ
JPH0942973A (ja) * 1995-08-01 1997-02-14 Nissan Motor Co Ltd 角速度センサ
JPH09159460A (ja) * 1995-12-05 1997-06-20 Murata Mfg Co Ltd 角速度センサ
WO1999012002A2 (en) * 1997-09-02 1999-03-11 Analog Devices, Inc. Micromachined gyros
JPH1183494A (ja) * 1997-09-10 1999-03-26 Aisin Seiki Co Ltd 角速度センサ
WO1999014557A1 (en) * 1997-09-18 1999-03-25 British Aerospace Public Limited Company A digital control system for a vibrating structure gyroscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737851A (zh) * 2016-01-30 2016-07-06 西北工业大学 面向精度设计的硅微机械陀螺系统参数获取方法

Also Published As

Publication number Publication date
EP1221019A2 (en) 2002-07-10
WO2001027559B1 (en) 2002-03-07
EP1221019A4 (en) 2006-06-07
WO2001027559A3 (en) 2002-02-07
JP4971490B2 (ja) 2012-07-11
EP1221019B1 (en) 2014-08-06
US6470748B1 (en) 2002-10-29
JP2003511684A (ja) 2003-03-25
WO2001027559A2 (en) 2001-04-19

Similar Documents

Publication Publication Date Title
JP4971490B2 (ja) 機械式センサとこれを含む機械式レートジャイロスコープとその操作方法
JP4458441B2 (ja) 分割電極を有する音叉ジャイロ
JP4620055B2 (ja) コリオリの角速度計を用いて回転速度/加速度を測定する方法およびこの目的に適ったコリオリの角速度計
JP5349891B2 (ja) キャパシタンス変調によるmemsジャイロスコープのパラメトリック増幅
US6230563B1 (en) Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability
JP4690652B2 (ja) マイクロ電子機械システム
US7051590B1 (en) Structure for attenuation or cancellation of quadrature error
JP3307906B2 (ja) マイクロジャイロスコープ
JP5222048B2 (ja) 開ループ読み出し装置を有するマイクロエレクトロメカニカルジャイロスコープ及びその制御方法
EP2236982B1 (en) MEMS gyroscope magnetic field gradient sensitivity recuction
JPH05312579A (ja) ジャイロコンパス
JP2018021850A (ja) バイアス補正機能を有する振動型ジャイロ、及び振動型ジャイロの使用方法
US6817244B2 (en) Methods and systems for actively controlling movement within MEMS structures
JP2010502998A (ja) 微小電気機械センサ及び微小電気機械センサの操作方法
JPH0914974A (ja) 角速度測定装置
RU2344374C1 (ru) Электродная структура для микромеханического гироскопа и микромеханический гироскоп с этой структурой (варианты)
Greiff et al. Vibrating wheel micromechanical gyro
Marra et al. Single resonator, time-switched, low offset drift z-axis FM MEMS accelerometer
US6453743B1 (en) Compensated integrated micro-machined yaw rate sensor
RU2289100C1 (ru) Способ измерения угловой скорости и микромеханический гироскоп для его реализации
JPH1078327A (ja) 角速度検出素子および角速度検出装置
JP3189434B2 (ja) 振動ジャイロ
Maeda et al. Out-of-plane axis SOI MEMS gyroscope with initially displaced vertical sensing comb
KR101433590B1 (ko) 커패시턴스 변조에 의한 mems 자이로스코프의 파라미터증폭
JP2017150997A (ja) バイアスの低減が図られた振動型ジャイロ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111212

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4971490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250