CN105737851A - 面向精度设计的硅微机械陀螺系统参数获取方法 - Google Patents

面向精度设计的硅微机械陀螺系统参数获取方法 Download PDF

Info

Publication number
CN105737851A
CN105737851A CN201610067133.XA CN201610067133A CN105737851A CN 105737851 A CN105737851 A CN 105737851A CN 201610067133 A CN201610067133 A CN 201610067133A CN 105737851 A CN105737851 A CN 105737851A
Authority
CN
China
Prior art keywords
design
precision
expression formula
interface circuit
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610067133.XA
Other languages
English (en)
Other versions
CN105737851B (zh
Inventor
苑伟政
申强
谢建兵
常洪龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201610067133.XA priority Critical patent/CN105737851B/zh
Publication of CN105737851A publication Critical patent/CN105737851A/zh
Application granted granted Critical
Publication of CN105737851B publication Critical patent/CN105737851B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)

Abstract

发明公开了一种面向精度设计的硅微机械陀螺系统参数获取方法,属于微机电系统设计领域。该方法通过建立参数之间的关联,给出一套从陀螺精度指标出发,考虑精度,电路噪声,带宽,灵敏度,谐振频率,品质因数,机械噪声,寄生电容,反馈电容,电容分辨率,驱动位移,激励电压等参数,以中心电容为结束的完整设计流程,为硅微机械陀螺的精度设计提供指导方法。本专利通过建立参数之间的关联,克服硅微机械陀螺参数复杂、多样的特点对设计者造成的困扰,完成面向精度的陀螺系统参数设计。

Description

面向精度设计的硅微机械陀螺系统参数获取方法
技术领域
本发明涉及一种硅微机械陀螺的设计方法,尤其涉及一种面向精度设计的硅微机械陀螺系统参数获取方法,属于微机电系统设计领域。
背景技术
陀螺是一种用来测量物体旋转角速率的惯性器件,在导航制导、深空探测、平台稳定控制、汽车工业、消费电子等领域具有重要的应用。
精度是评价硅微机械陀螺性能最重要的指标,因此,面向精度的硅微机械陀螺设计方法具有重要意义。然而,硅微机械陀螺驱动模态与敏感模态之间的机械振动相互耦合、电检测信号极其微弱且相互耦合以及存在多个复杂的闭环控制电路,且参数多样,如:精度、系统噪声、系统灵敏度、接口电路噪声、机械噪声、电路增益、电容分辨率、有效品质因数、机械灵敏度、寄生电容、反馈电容、等效电压噪声、等效电流噪声、机械带宽、中心电容、驱动位移、谐振频率、品质因数等,使得面向精度的硅微机械陀螺设计过程尤其复杂且不易实现。目前,已公开的文献报道中还没有面向精度的硅微机械陀螺系统参数设计方法相关研究。
发明内容
为克服硅微机械陀螺参数复杂、多样的特点对设计者造成困扰,本发明提出一种面向精度设计的硅微机械陀螺系统参数获取方法。通过建立参数之间的关联,给出一套从陀螺精度指标出发,考虑精度,电路噪声,带宽,灵敏度,谐振频率,品质因数,机械噪声,寄生电容,反馈电容,电容分辨率,驱动位移,激励电压等参数,以中心电容为结束的完整设计流程,为硅微机械陀螺的精度设计提供指导方法。
本发明提出的面向精度设计的硅微机械陀螺系统参数获取方法流程图是:参考图1。
本发明提出的面向精度设计的硅微机械陀螺系统参数获取方法为:
第一步,根据实际应用需求的陀螺精度BS、带宽BW,确定陀螺谐振频率fd,通常2kHz<fd<20kHz,再根据公式(1)计算有效品质因数Qeff,进一步,根据公式(2)推导得出品质因数Qs,此时Qs为陀螺系统设计需要的最小品质因数;再通过表达式(3)获得机械噪声MNEΩ,其中,X为驱动模态振动位移且满足表达式(4),ls0为梳齿重叠长度,KB为玻尔兹曼常数,T为开尔文温度,ms为陀螺振动质量,通常,10-8kg<ms<10-6kg;
Q e f f = f d 2 B W - - - ( 1 )
Q e f f = 1 ( 1 - ( 2 &pi; ( f d + B W ) ) 2 ( 2 &pi;f d ) 2 ) 2 + 1 Q s 2 ( 2 &pi; ( f d + B W ) 2 &pi;f d ) 2 - - - ( 2 )
M N E &Omega; = 180 4 &pi; 2 XQ e f f B W K B &CenterDot; T &CenterDot; 2 &pi; ( f d + B W ) m s Q s - - - ( 3 )
1 4 l s 0 < X < 3 4 l s 0 - - - ( 4 )
第二步,根据应用需求的系统灵敏度SF以及表达式(5),得到系统噪声VT;再根据电路增益G,通常100<G<1000,以及表达式(6)得到接口电路电压噪声Vn;进一步,由接口电路阻抗特性表达式(7)得到接口电路电流噪声In,其中,Rf为接口电路电荷放大器的反馈电阻,通常,100MΩ≤Rf≤200MΩ,Cf和Cλ分别为接口电路电荷放大器的反馈电阻、寄生电容,通常,1pF≤Cf≤5pF,2pF<Cλ<7pF;
V T = B S &times; S F B W - - - ( 5 )
V n = V T G - - - ( 6 )
I n 2 = V n 2 &CenterDot; ( ( 2 &pi;f d ) 2 &CenterDot; ( C &lambda; 2 + C f 2 ) + 1 R f 2 ) - - - ( 7 )
第三步,根据表达式(8),得到接口电路等效噪声ENEΩ,其中,Vp为接口电路输入端电压有效值,通常1V≤Vp≤10V,Cs0为陀螺的中心电容;通过比较MNEΩ和ENEΩ,增大Cs0,直到MNEΩ≤ENEΩ<100×MNEΩ;
E N E &Omega; = 90 l s 0 &pi;V p X &CenterDot; I n Q e f f C s 0 - - - ( 8 )
最后,根据器件层厚度h,通常,2×10-5m<h<1×10-4m,加工能获得的最小线宽d,通常1.5×10-6m<d<4×10-6m,根据表达式(9),获得陀螺设计应达到的梳齿对数N,再根据表达式(10),设计陀螺振动质量的边长L。到此,面向精度的陀螺系统参数全部确定。
C s 0 = N &CenterDot; &epsiv; &CenterDot; l s 0 &CenterDot; h d - - - ( 9 )
ms=ρ·L2·h(10)
本发明的有益效果是:通过建立参数之间的关联,克服硅微机械陀螺参数复杂、多样的特点对设计者造成的困扰,完成面向精度的陀螺系统参数设计。下面结合图和实施例对本发明进一步说明。
附图说明
图1是实施例中面向精度设计的陀螺系统参数获取方法流程图。
具体实施方式
本实施例中给出了一种面向精度设计的陀螺系统参数获取方法,该实施例中的设计流程为:
第一步,根据实际应用需求,需要设计精度为0.015°/s的硅微机械陀螺,其中应用的带宽BW需求为19Hz,驱动频率fd为3531Hz,那么根据公式(1),计算得有效品质因数Qeff为93;再根据公式(2)推导得出品质因数Qs为8100且是系统设计需求的最小品质因数;此时,驱动位移X取值为6×10-6m,根据表达式(4),梳齿重叠长度ls0设计为1×10-5m,玻尔兹曼常数KB为1.38×10-23J/K,开尔文T设置为室温298K,陀螺振动质量ms设置为4.5×10-7kg,满足振动质量的取值范围,再通过表达式(3)计算得机械噪声MNEΩ为6.3×10-5°/s/√Hz;
第二步,根据实际应用需求,需要的系统灵敏度SF为15mV/°/s,根据表达式(5)计算得系统噪声VT为5.1×10-5°/s/√Hz,此时,取电路增益G为600,根据表达式(6)计算得接口电路电压噪声Vn为8.6×10-8V/√Hz;再根据接口电路阻抗特性可知,Rf取值为150MΩ,Cf取值为5pF,Cλ取值为4pF,由表达式(7)计算得到接口电路电流噪声In为1.2×10-14A/√Hz;
第三步,根据表达式(8)计算获得接口电路等效噪声ENEΩ为1.1×10-3°/s/√Hz,其中,接口电路输入电压有效值Vp为3.5V,中心电容Cs0设计值为2pF;比较MNEΩ和ENEΩ可知,ENEΩ小于100倍的MNEΩ,符合设计要求;
最后,器件层厚度h为2.5×10-5m,加工能获得的最小线宽d为3×10-6m,根据表达式(9),得到陀螺设计的梳齿对数N为1367,介电常数ε为8.85×10-12F/m;再根据表达式(10)以及前面要求的振动质量ms,计算得陀螺振动质量的边长L为2.8×10-3m。到此,陀螺系统参数设计值完全确定,获得了精度为0.015°/s的硅微机械陀螺。

Claims (1)

1.一种面向精度设计的硅微机械陀螺系统参数获取方法,其特征在于,主要包括如下步骤:
第一步,根据实际应用需求的陀螺精度BS、带宽BW,确定陀螺谐振频率fd,通常2kHz<fd<20kHz,再根据公式(1)计算有效品质因数Qeff,进一步,根据公式(2)推导得出品质因数Qs,此时Qs为陀螺系统设计需要的最小品质因数;再通过表达式(3)获得机械噪声MNEΩ,其中,X为驱动模态振动位移且满足表达式(4),ls0为梳齿重叠长度,KB为玻尔兹曼常数,T为开尔文温度,ms为陀螺振动质量,通常,10-8kg<ms<10-6kg;
第二步,根据应用需求的系统灵敏度SF以及表达式(5),得到系统噪声VT;再根据电路增益G,通常100<G<1000,以及表达式(6)得到接口电路电压噪声Vn;进一步,由接口电路阻抗特性表达式(7)得到接口电路电流噪声In,其中,Rf为接口电路电荷放大器的反馈电阻,通常,100MΩ≤Rf≤200MΩ,Cf和Cλ分别为接口电路电荷放大器的反馈电阻、寄生电容,通常,1pF≤Cf≤5pF,2pF<Cλ<7pF;
第三步,根据表达式(8),得到接口电路等效噪声ENEΩ,其中,Vp为接口电路输入端电压有效值,通常1V≤Vp≤10V,Cs0为陀螺的中心电容;通过比较MNEΩ和ENEΩ,增大Cs0,直到MNEΩ≤ENEΩ<100×MNEΩ;
最后,根据器件层厚度h,通常,2×10-5m<h<1×10-4m,加工能获得的最小线宽d,通常1.5×10-6m<d<4×10-6m,根据表达式(9),获得陀螺设计应达到的梳齿对数N,再根据表达式(10),设计陀螺振动质量的边长L;到此,面向精度的陀螺系统参数全部确定。
ms=ρ·L2·h(10)。
CN201610067133.XA 2016-01-30 2016-01-30 面向精度设计的硅微机械陀螺系统参数获取方法 Active CN105737851B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610067133.XA CN105737851B (zh) 2016-01-30 2016-01-30 面向精度设计的硅微机械陀螺系统参数获取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610067133.XA CN105737851B (zh) 2016-01-30 2016-01-30 面向精度设计的硅微机械陀螺系统参数获取方法

Publications (2)

Publication Number Publication Date
CN105737851A true CN105737851A (zh) 2016-07-06
CN105737851B CN105737851B (zh) 2018-08-21

Family

ID=56247222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610067133.XA Active CN105737851B (zh) 2016-01-30 2016-01-30 面向精度设计的硅微机械陀螺系统参数获取方法

Country Status (1)

Country Link
CN (1) CN105737851B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039074A (ja) * 1999-10-13 2011-02-24 Analog Devices Inc 機械式センサとこれを含む機械式レートジャイロスコープとその操作方法
CN104897150A (zh) * 2015-06-16 2015-09-09 中北大学 一种提升硅微机械陀螺仪带宽全温性能的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039074A (ja) * 1999-10-13 2011-02-24 Analog Devices Inc 機械式センサとこれを含む機械式レートジャイロスコープとその操作方法
CN104897150A (zh) * 2015-06-16 2015-09-09 中北大学 一种提升硅微机械陀螺仪带宽全温性能的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FARROKH AYAZI: ""A HARPSS Polysilicon Vibrating Ring Gyroscope"", 《JOURNAL OF MICROELECTROMECHANICAL SYSTEMS》 *
蒋庆华: ""电容式z轴微机械陀螺的噪声抑制"", 《微纳电子技术》 *

Also Published As

Publication number Publication date
CN105737851B (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
US8549915B2 (en) Micromachined gyroscopes with 2-DOF sense modes allowing interchangeable robust and precision operation
Chang et al. Combining numerous uncorrelated MEMS gyroscopes for accuracy improvement based on an optimal Kalman filter
CN100559123C (zh) 一种mems陀螺仪的差分测量方法
TWI384198B (zh) Angle measurement gyroscope system and angle estimation method
CN108413986B (zh) 一种基于Sage-Husa卡尔曼滤波的陀螺仪滤波方法
Trusov et al. Performance characterization of a new temperature-robust gain-bandwidth improved MEMS gyroscope operated in air
US20190025056A1 (en) Electrostatic offset correction
Menon et al. Sensitivity analysis of an in-plane MEMS vibratory gyroscope
CN113155114A (zh) Mems惯性测量单元陀螺零位的温度补偿方法及装置
CN104819710A (zh) 一种具有温度补偿结构的谐振式硅微机械陀螺
Schofield et al. Micromachined gyroscope concept allowing interchangeable operation in both robust and precision modes
He et al. Calculating capacitance and analyzing nonlinearity of micro-accelerometers by Schwarz–Christoffel mapping
Shi et al. The application of chaotic oscillator in detecting weak resonant signal of MEMS resonator
CN105737851A (zh) 面向精度设计的硅微机械陀螺系统参数获取方法
Zhou et al. Fabrication of a MEMS capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure
Su et al. Improvement of bias stability for a micromachined gyroscope based on dynamic electrical balancing of coupling stiffness
CN106679659A (zh) 一种基于参数可调非线性跟踪微分器的信号去噪方法
CN106771361B (zh) 双电容式微机械加速度传感器及基于其的温度自补偿系统
Esmaeili et al. An adaptable broadband MEMS vibratory gyroscope by simultaneous optimization of robustness and sensitivity parameters
CN103196450B (zh) 基于模拟电路形式的卡尔曼滤波方法及模拟电路
Nesterenko et al. Metrological performance of integrated multiple axis MEMS accelerometers under thermal effect
Polóni et al. Adaptive model estimation of vibration motion for a nanopositioner with moving horizon optimized extended Kalman filter
EP2985567B1 (en) Systems and methods for improving mems gyroscope start time
Miao et al. A novel method of quadrature compensation in the butterfly resonator based on modal stiffness analysis
Jazar et al. Effects of nonlinearities on the steady state dynamic behavior of electric actuated microcantilever-based resonators

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180815

Address after: 710072 No. 127 Youyi West Road, Shaanxi, Xi'an

Co-patentee after: RESEARCH & DEVELOPMENT INSTITUTE OF NORTHWESTERN POLYTECHNICAL University IN SHENZHEN

Patentee after: Northwestern Polytechnical University

Address before: 710072 No. 127 Youyi West Road, Shaanxi, Xi'an

Patentee before: Northwestern Polytechnical University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230802

Address after: 710072 No. 127 Youyi West Road, Shaanxi, Xi'an

Patentee after: Northwestern Polytechnical University

Address before: 710072 No. 127 Youyi West Road, Shaanxi, Xi'an

Patentee before: Northwestern Polytechnical University

Patentee before: RESEARCH & DEVELOPMENT INSTITUTE OF NORTHWESTERN POLYTECHNICAL University IN SHENZHEN

TR01 Transfer of patent right