JP2011033619A - Measuring method and measuring device for charge profile in blast furnace - Google Patents

Measuring method and measuring device for charge profile in blast furnace Download PDF

Info

Publication number
JP2011033619A
JP2011033619A JP2010155828A JP2010155828A JP2011033619A JP 2011033619 A JP2011033619 A JP 2011033619A JP 2010155828 A JP2010155828 A JP 2010155828A JP 2010155828 A JP2010155828 A JP 2010155828A JP 2011033619 A JP2011033619 A JP 2011033619A
Authority
JP
Japan
Prior art keywords
container
antenna
reflector
microwave
guide pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010155828A
Other languages
Japanese (ja)
Other versions
JP5391458B2 (en
Inventor
Hayae Kayano
早衛 萱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wadeco Co Ltd
Original Assignee
Wadeco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wadeco Co Ltd filed Critical Wadeco Co Ltd
Priority to JP2010155828A priority Critical patent/JP5391458B2/en
Publication of JP2011033619A publication Critical patent/JP2011033619A/en
Application granted granted Critical
Publication of JP5391458B2 publication Critical patent/JP5391458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable a surface profile of a charge which is inserted in a blast furnace to be measured in a plana shape, and to enable introductory operation during the profile measurement quickly capable of the introductory operation to be operated, according to the measured profile, and furthermore, to attain smaller and lighter in the device as a whole. <P>SOLUTION: In the device, an antenna connected to a microwave transmission and reception means and a reflector plate which is variable in its reflection angle are accommodated in a container; additionally, this container is mounted hermetically at an opening which is located at a suitable position of the blast furnace upper part; the microwave beam emitted from the antenna is reflected at the reflection plate and plane-scanned the surface of the charge; and the reflected microwave at the surface of the charge is detected by the microwave transmission and reception means, then the distance data corresponding to the scanning position are obtained and this distance data are mapped. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、高炉に挿入された装入物の表面のプロフィールを測定する方法及び測定するための装置に関する。   The present invention relates to a method and apparatus for measuring the surface profile of a charge inserted in a blast furnace.

鉄鉱石を溶解する高炉では、通常、炉頂から鉄鉱石とコークスを交互に装入し、炉頂部での装入物の表面プロフィールが蟻地獄の如き逆錘状(図4参照)になるように装入操作を行う。   In a blast furnace that melts iron ore, iron ore and coke are usually charged alternately from the top of the furnace so that the surface profile of the charge at the top of the furnace becomes an inverted weight like ant hell (see Fig. 4). Perform the charging operation.

このような高炉では、適正な装入物分布を形成することにより、炉内のガス流れが安定し、燃料費低減や炉体の長寿命化が可能となる。適正な装入物分布制御を行うためには、装入物の表面プロフィールを短時間で正確に測定し、炉況の変化に対応して適正な原料装入調整を行う必要がある。表面プロフィールの測定方法として従来では、図7に示すように、炉壁1を貫通して炉内に挿入されるランス10の先端に装着したアンテナ11から装入物20の表面に向けてマイクロ波M1を発射し、装入物20の表面からの反射マイクロ波M2をアンテナ10で受信し、ミキシングして得られるビート波の周波数により、アンテナ10から装入物20の表面までの距離を測定する方法が一般的であり、ランス10を移動させながら測定することにより装入物20の表面プロフィールを求めている(例えば、非特許文献1参照)。   In such a blast furnace, by forming an appropriate charge distribution, the gas flow in the furnace is stabilized, and it becomes possible to reduce fuel costs and extend the life of the furnace body. In order to perform proper charge distribution control, it is necessary to accurately measure the surface profile of the charge in a short time and to perform appropriate raw material charge adjustment in response to changes in furnace conditions. Conventionally, as a method for measuring the surface profile, as shown in FIG. 7, a microwave is directed from the antenna 11 attached to the tip of a lance 10 that passes through the furnace wall 1 and is inserted into the furnace toward the surface of the charge 20. M1 is emitted, the reflected microwave M2 from the surface of the charge 20 is received by the antenna 10, and the distance from the antenna 10 to the surface of the charge 20 is measured by the frequency of the beat wave obtained by mixing. The method is general, and the surface profile of the charge 20 is obtained by measuring while moving the lance 10 (see, for example, Non-Patent Document 1).

しかしながら、ランス10は直線状に移動するため、装入物20の表面全面のプロフィールが得られない。また、ランス10は炉の内径ほどの長さが必要であり、長尺で、高荷重でもあるため、炉内に長く挿入しておくと自重により垂れ下がって炉から抜けなくなり、移動の際のストロークも大きいため炉外に大きなスペースが必要になる。更に、ランス10を移動させるための駆動ユニットが別途必要であり、設備費や運転コストが高くなる。加えて、プロフィール測定中に装入操作を行うことができず、測定したプロファイルに応じた迅速な装入操作ができない。   However, since the lance 10 moves linearly, a profile of the entire surface of the charge 20 cannot be obtained. Moreover, since the lance 10 needs to be as long as the inner diameter of the furnace, is long and has a high load, if it is inserted into the furnace for a long time, it will hang down due to its own weight and will not come out of the furnace. Therefore, a large space is required outside the furnace. Furthermore, a drive unit for moving the lance 10 is required separately, which increases equipment costs and operation costs. In addition, a charging operation cannot be performed during profile measurement, and a quick charging operation according to the measured profile cannot be performed.

「製鉄研究」第317号、第3〜16頁"Steel Research" No.317, pp.3-16

そこで本発明は、高炉に挿入された装入物の表面のプロファイルを面状に測定でき、プロフィール測定中でも装入操作が可能で測定したプロフィールに応じて迅速な導入操作を可能にし、更に装置全体の小型軽量化を図ることを目的とする。   Therefore, the present invention can measure the profile of the surface of the charge inserted in the blast furnace in a planar shape, enables the charging operation even during profile measurement, and enables a quick introduction operation according to the measured profile. The purpose is to reduce the size and weight.

上記目的を達成するために本発明は、下記に示す高炉における装入物プロフィールの測定方法及び測定装置を提供する。
(1)高炉内に装入された鉄鉱石やコークス等の装入物の表面のプロフィールをマイクロ波により測定する方法であって、
マイクロ波送受信手段に連結するアンテナと、反射角度可変の反射板とを容器内に収容し、該容器を高炉上部の適所に設けた開口に気密に取り付け、前記アンテナから発射されたマイクロ波ビームを前記反射板で反射して装入物の表面を面状に走査するとともに、表面で反射されたマイクロ波を前記マイクロ波送受信手段で検波して走査位置に対応する距離データを求めることを特徴とする装入物プロフィール測定方法。
(2)高炉内に装入された鉄鉱石やコークス等の装入物の表面のプロフィールをマイクロ波により測定するための装置であって、
反射角度が可変の反射板と、前記反射板の反射角度を制御するための角度可変機構と、マイクロ波送受信手段と、誘電材料からなる栓部材で閉塞された導波管により前記マイクロ波送受信手段に連結されたアンテナとを備え、一面が開口した容器内に前記反射板と前記アンテナとを対向配置するとともに、該容器に、前記マイクロ波送受信手段及び前記角度可変機構をそれぞれ別容器に収容した状態で取り付けてなる測定部と、
前記角度可変手段及び前記マイクロ波送受信手段の駆動を制御するとともに、検波信号の解析を行う制御部とを備えるとともに、
前記測定部を、前記容器の開口部が高炉上部の適所に設けた開口と重なるように高炉に気密に取り付け、前記アンテナから発射されたマイクロ波を前記反射板で反射して装入物の表面を面状に走査するとともに、表面で反射されたマイクロ波を前記マイクロ波送受信手段にて検波し、前記制御部にて走査位置に対応する距離データを求めてマップ化することを特徴とする装入物プロフィール測定装置。
(3)前記測定部において、
反射板が、その両端に設けた支軸を介して支持部材に、該支軸を中心に回動自在に支持されるとともに、該反射板のアンテナ対向面とは反対側の面上を前記支軸と直交する直線上を移動する棒状片を備え、
前記反射板を、前記棒状片を移動させて前記支軸を中心に第1の方向に回動させるとともに、前記支持部材をその軸線を中心に回動させて第2の方向に回動させ、
前記第1の方向への回動と、前記第2の方向への回動とを組み合わせることにより、前記反射板によるマイクロ波の反射角度を制御することを特徴とする上記(2)記載の挿入物プロフィール測定装置。
(4)前記棒状片が、導波管の軸線に沿って移動する連結棒の先端から前記反射板の裏面に向かって垂下しており、
内軸と外軸との二重構造からなる軸管の内軸の先端に前記支持部材が固定され、外軸に連結棒が固定されるとともに、前記内軸をその軸線を中心にして回動させ、前記外軸をその軸線に沿って移動させる駆動手段を備えることを特徴とする上記(3)記載の挿入物プロフィール測定装置。
(5)前記反射板及び前記アンテナを収容する前記容器に、窒素ガス取り入れ口を設けて窒素ガスを流入させることを特徴とする上記(3)または(4)記載の挿入物プロフィール測定装置。
(6)前記測定部において、
高炉の開口と対向する開口部が形成されたガイドパイプの前記開口部に、反射板が、その両端に設けた支軸を介して回動自在に支持されているとともに、
前記反射板のアンテナ対向面とは反対側の面の中心に棒状片の一端が固定され、該棒状片の他端がガイドパイプの軸線方向に移動可能な連結棒に連結しており、
前記反射板を、前記連結棒を移動させて前記支軸を中心に第1の方向に回動させるとともに、前記ガイドパイプをその軸線を中心に回動させて第2の方向に回動させ、
前記第1の方向への回動と、前記第2の方向への回動とを組み合わせることにより、前記反射板によるマイクロ波の反射角度を制御することを特徴とする上記(2)記載の挿入物プロフィール測定装置。
(7)前記ガイドパイプの開口部が、該ガイドパイプの長手方向中央部に形成されており、
該ガイドパイプの一方の端部にアンテナが接続され、他端を閉塞する端面の外側に、前記連結棒を移動させるための駆動手段及び該ガイドパイプを回動させるための駆動手段が取り付けられていることを特徴とする上記(6)記載の挿入物プロフィール測定装置。
(8)前記反射板と前記ガイドパイプの開口部周辺とを包囲する容器と、
前記容器の両外側に配置され、該容器の両側に突出する前記ガイドパイプを支持するための一対の軸受と、該容器の気密性を維持するシール部材とを備える支持部材と
を備えることを特徴とする上記(7)記載の挿入物プロフィール測定装置。
(9)前記ガイドパイプを、前記容器のアンテナ側壁面で分割するとともに、該ガイドパイプの該容器からアンテナ側に突出する部分を前記容器に接合し、前記容器から突出する他方の部分を前記支持部材で支持することを特徴とする上記(8)記載の挿入物プロフィール測定装置。
(10)前記アンテナ及び前記反射板の少なくとも一方に、マイクロ波の送受信に影響しない孔を開けるとともに、前記ガイドパイプに窒素ガス取り入れ口を設けて窒素ガスを流入させることを特徴とする上記(6)〜(9)の何れか1項に記載の挿入物プロフィール測定装置。
In order to achieve the above object, the present invention provides the following method and apparatus for measuring a charge profile in a blast furnace.
(1) A method of measuring the surface profile of a charge such as iron ore or coke charged in a blast furnace by microwaves,
An antenna connected to the microwave transmission / reception means and a reflection plate having a variable reflection angle are accommodated in a container, and the container is hermetically attached to an opening provided at an appropriate position above the blast furnace, and a microwave beam emitted from the antenna is The surface of the charged object is scanned in a planar shape by being reflected by the reflecting plate, and the microwave reflected by the surface is detected by the microwave transmitting / receiving means to obtain distance data corresponding to the scanning position. To measure the charge profile.
(2) An apparatus for measuring the profile of the surface of a charge such as iron ore or coke charged in a blast furnace by microwaves,
The microwave transmission / reception means by a reflection plate having a variable reflection angle, an angle variable mechanism for controlling the reflection angle of the reflection plate, a microwave transmission / reception means, and a waveguide closed by a plug member made of a dielectric material. The reflector and the antenna are disposed opposite to each other in a container having an open surface, and the microwave transmitting / receiving means and the angle variable mechanism are accommodated in separate containers, respectively. A measuring unit attached in a state,
While controlling the driving of the angle variable means and the microwave transmitting and receiving means, and a controller for analyzing the detection signal,
The measurement unit is hermetically attached to the blast furnace so that the opening of the container overlaps with an opening provided at an appropriate position in the upper part of the blast furnace, and the microwave emitted from the antenna is reflected by the reflector and the surface of the charge The microwave reflected by the surface is detected by the microwave transmission / reception means, and distance data corresponding to the scanning position is obtained and mapped by the control unit. Input profile measuring device.
(3) In the measurement unit,
The reflecting plate is supported by the support member via the supporting shafts provided at both ends thereof so as to be rotatable about the supporting shaft, and on the surface of the reflecting plate opposite to the antenna facing surface, the supporting plate is supported. A rod-shaped piece that moves on a straight line orthogonal to the axis,
The reflector is moved in the first direction around the support shaft by moving the bar-shaped piece, and the support member is rotated in the second direction around the axis,
The insertion according to (2), wherein the microwave reflection angle by the reflecting plate is controlled by combining the rotation in the first direction and the rotation in the second direction. Object profile measuring device.
(4) The rod-like piece hangs from the tip of the connecting rod moving along the axis of the waveguide toward the back surface of the reflector,
The support member is fixed to the tip of the inner shaft of the shaft tube having a double structure of the inner shaft and the outer shaft, the connecting rod is fixed to the outer shaft, and the inner shaft is rotated around the axis. The insert profile measuring device according to the above (3), further comprising driving means for moving the outer shaft along the axis.
(5) The insert profile measuring apparatus according to (3) or (4) above, wherein a nitrogen gas inlet is provided in the container that houses the reflector and the antenna to allow nitrogen gas to flow.
(6) In the measurement unit,
In the opening of the guide pipe in which an opening facing the opening of the blast furnace is formed, a reflector is rotatably supported via support shafts provided at both ends thereof.
One end of a rod-like piece is fixed at the center of the surface opposite to the antenna-facing surface of the reflector, and the other end of the rod-like piece is connected to a connecting rod that can move in the axial direction of the guide pipe,
The reflector is moved in the first direction around the support shaft by moving the connecting rod, and the guide pipe is rotated in the second direction around the axis,
The insertion according to (2), wherein the microwave reflection angle by the reflecting plate is controlled by combining the rotation in the first direction and the rotation in the second direction. Object profile measuring device.
(7) The opening of the guide pipe is formed at the center in the longitudinal direction of the guide pipe,
An antenna is connected to one end of the guide pipe, and driving means for moving the connecting rod and driving means for rotating the guide pipe are attached to the outside of the end face closing the other end. The insert profile measuring device according to (6) above, wherein
(8) a container surrounding the reflector and the periphery of the opening of the guide pipe;
A support member provided with a pair of bearings disposed on both outer sides of the container and supporting the guide pipes projecting on both sides of the container and a seal member for maintaining airtightness of the container. The insert profile measuring device according to (7) above.
(9) The guide pipe is divided on the antenna side wall surface of the container, a portion of the guide pipe protruding from the container toward the antenna is joined to the container, and the other portion protruding from the container is supported. The insert profile measuring device according to (8), wherein the insert profile measuring device is supported by a member.
(10) The above-mentioned (6), wherein a hole that does not affect microwave transmission / reception is formed in at least one of the antenna and the reflector, and a nitrogen gas inlet is provided in the guide pipe to allow nitrogen gas to flow in. The insert profile measuring device according to any one of (9) to (9).

本発明によれば、高炉に挿入された装入物の表面のプロフィールを全面にわたり測定でき、プロフィール測定中でも装入操作が可能で、かつ測定したプロフィールに応じて迅速な導入操作も可能となる。また、装置全体の小型軽量化を図ることができ、保守作業を安全に行うこともできる。   According to the present invention, the profile of the surface of the charge inserted into the blast furnace can be measured over the entire surface, the charging operation can be performed even during profile measurement, and a quick introduction operation can be performed according to the measured profile. In addition, the entire apparatus can be reduced in size and weight, and maintenance work can be performed safely.

本発明に係る装入物プロフィール測定装置の全体構成を示す図である。It is a figure showing the whole charge profile measuring device composition concerning the present invention. 測定部の第1の例を示す拡大図である。It is an enlarged view which shows the 1st example of a measurement part. 図2に示す測定部を上面からみた断面図である。It is sectional drawing which looked at the measurement part shown in FIG. 2 from the upper surface. 測定部の第2例を示す側断面図である。It is a sectional side view which shows the 2nd example of a measurement part. 図4に示す測定部の反射板周辺を示す一部切欠斜視図である。FIG. 5 is a partially cutaway perspective view showing the vicinity of the reflector of the measurement unit shown in FIG. 4. 図4に示す測定部の反射板の傾斜角度を変更する機構を示す図である。It is a figure which shows the mechanism which changes the inclination-angle of the reflecting plate of the measurement part shown in FIG. 従来の装入物プロフィール測定装置を示す図である。It is a figure which shows the conventional charge profile measuring apparatus.

以下、本発明に関して図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は本発明の挿入物プロフィール測定装置の全体構成を示す図であるが、高炉の軸線に沿った断面を示している。また、図2は測定部Aの周辺を示す拡大図であり、図3は測定部Aを上面からみた断面図である。   FIG. 1 is a diagram showing an overall configuration of an insert profile measuring apparatus according to the present invention, and shows a cross section along the axis of a blast furnace. 2 is an enlarged view showing the periphery of the measurement unit A, and FIG. 3 is a cross-sectional view of the measurement unit A as viewed from above.

測定部Aは、円板状の反射板100と、マイクロ波送受信手段110に連結するアンテナ120とを対向配置して第1の容器130に収容して構成されており、炉壁1の頂部近傍の適所に設けられた開口2に装着される。また、反射板100の下にはセラミックスフィルタ31を介してバルブ30が設けられており、プロフィール計測時にはバルブ30を開き、保守点検時にはバルブ30を閉めるようになっている。更に、バルブ30と開口2との間にフィルタ32を設け、炉内からの高温ガスの流入や粉塵の侵入を防止している。また、窒素ガス取入れ口33から窒素ガスを供給して、プロフィール測定時に測定部Aの内部を炉内より高圧にして粉塵の侵入を防止する。   The measuring section A is configured by accommodating a disk-shaped reflecting plate 100 and an antenna 120 connected to the microwave transmitting / receiving means 110 so as to face each other in the first container 130, and in the vicinity of the top of the furnace wall 1. It is attached to the opening 2 provided at an appropriate position. A valve 30 is provided under the reflector 100 via a ceramic filter 31. The valve 30 is opened during profile measurement, and is closed during maintenance and inspection. Furthermore, a filter 32 is provided between the valve 30 and the opening 2 to prevent inflow of high temperature gas and dust from the furnace. Further, nitrogen gas is supplied from the nitrogen gas inlet 33, and the inside of the measuring part A is set to a pressure higher than that in the furnace during profile measurement to prevent dust from entering.

アンテナ120は、取り付けのための奥行きが短かいことから、パラボラアンテナが好ましい。   The antenna 120 is preferably a parabolic antenna because the mounting depth is short.

第1の容器130は略円筒状で、その上面は上蓋131で閉塞されており、下面132は開口しており、図示は省略されるセラミックフィルタ31やフィルタ32を介在させて、炉壁1の開口2と重なるように装着される。また、窒素ガス取り入れ口135を設け、窒素ガスが供給される。   The first container 130 has a substantially cylindrical shape, the upper surface thereof is closed with an upper lid 131, the lower surface 132 is opened, and the ceramic filter 31 and the filter 32 (not shown) are interposed to interpose the furnace wall 1. It is mounted so as to overlap with the opening 2. Further, a nitrogen gas intake port 135 is provided, and nitrogen gas is supplied.

また、第1の容器130の周壁にはアンテナ120が取り付けられており、アンテナ120の背面を覆うように第2の容器140が装着されている。この第2の容器140には、マイクロ波送受信手段110が収容され、マイクロ波送受信手段110とアンテナ120とは導波管150により連結されている。導波管150は、誘電材料からなる栓部材151により閉塞されており、アンテナ120のマイクロ波の送受信を行うための開口(図示せず)を通じてガスや粉塵が流入しないようにしてある。また、マイクロ波送受信手段110は、コネクタ155を介して外部の制御部(図示せず)に繋がっており、電力の供給やマイクロ波の送受信の制御、検波信号の処理等が制御部を通じて行われる。   An antenna 120 is attached to the peripheral wall of the first container 130, and the second container 140 is mounted so as to cover the back surface of the antenna 120. The second container 140 accommodates microwave transmission / reception means 110, and the microwave transmission / reception means 110 and the antenna 120 are connected by a waveguide 150. The waveguide 150 is closed by a plug member 151 made of a dielectric material so that gas and dust do not flow through an opening (not shown) for transmitting and receiving microwaves of the antenna 120. The microwave transmission / reception means 110 is connected to an external control unit (not shown) via the connector 155, and power supply, microwave transmission / reception control, detection signal processing, and the like are performed through the control unit. .

更に、第1の容器130の周壁には、アンテナ120と直交する位置に、反射板100の角度を制御するための角度可変機構160が装着されている。反射板100は第1の容器130の中央部に配置されており、その直径両端が半円環の支持アーム101の両端に設けられた軸受102a,102bにより支持されている。支持アーム101は、角度可変機構160の内軸161に直結している。内軸161は、第1のモータ170により回転駆動され、それに伴って反射板100は矢印X方向に回動する。   Furthermore, a variable angle mechanism 160 for controlling the angle of the reflecting plate 100 is mounted on the peripheral wall of the first container 130 at a position orthogonal to the antenna 120. The reflecting plate 100 is disposed at the center of the first container 130, and both ends of its diameter are supported by bearings 102 a and 102 b provided at both ends of a semi-annular support arm 101. The support arm 101 is directly connected to the inner shaft 161 of the angle variable mechanism 160. The inner shaft 161 is rotationally driven by the first motor 170, and the reflector 100 rotates in the arrow X direction accordingly.

また、反射板100のアンテナ対向面とは反対側の裏面100aの中心部には、棒状片103の先端103aが固着されている。この棒状片103は、第1の球面滑り軸受104を介して連結棒105に接続しており、連結棒105の他端は第2の球面滑り軸受106を介して、内軸161と同軸に配設された外軸162の先端部に接続している。   Further, the tip 103a of the rod-shaped piece 103 is fixed to the center of the back surface 100a opposite to the antenna facing surface of the reflector 100. The rod-like piece 103 is connected to the connecting rod 105 via the first spherical plain bearing 104, and the other end of the connecting rod 105 is arranged coaxially with the inner shaft 161 via the second spherical plain bearing 106. It is connected to the tip of the provided outer shaft 162.

外軸162には、第2の球面滑り軸受106とは他端の外周面に雄ネジ162aが形成されており、内軸161上に取り付けられた第2のモータ172により回転駆動される雌ネジ部材173の内周面に形成された雌ネジ173aと螺合している。そして、第2のモータ172を駆動すると、雌ネジ部材173が回転して外軸162が反射板100に接近または離間するように図中の左右方向に移動し、それに伴って連結棒105が図中の左右方向に移動する。連結棒105の動きは軸受102a,102bを支点として第1の球面滑り軸受104を円運動させる。反射板100は軸受102a,102bにより図中左右方向への移動が規制されているため、第1の球面滑り軸受104の動きに連動して棒状片103の先端103aが円運動することにより、反射板100は図中の上下方向、即ち矢印Y方向に回動する。   A male screw 162 a is formed on the outer peripheral surface of the other end of the second spherical plain bearing 106 on the outer shaft 162, and is a female screw that is rotationally driven by a second motor 172 mounted on the inner shaft 161. The member 173 is screwed with a female screw 173a formed on the inner peripheral surface. Then, when the second motor 172 is driven, the female screw member 173 rotates and moves in the left-right direction in the drawing so that the outer shaft 162 approaches or separates from the reflecting plate 100, and the connecting rod 105 is moved accordingly. Move in the horizontal direction. The movement of the connecting rod 105 causes the first spherical plain bearing 104 to move circularly with the bearings 102a and 102b as fulcrums. Since the reflector 100 is restricted from moving in the left-right direction in the drawing by the bearings 102a and 102b, the tip 103a of the rod-like piece 103 moves circularly in conjunction with the movement of the first spherical plain bearing 104, thereby reflecting. The plate 100 rotates in the vertical direction in the drawing, that is, in the arrow Y direction.

尚、図示は省略するが、第2のモータ172を内軸161上に取り付けず、第1のモータ170と第2のモータ172の回転差で雌ネジ部材173を回転させることもできる。   Although not shown, the second motor 172 can be rotated by the rotational difference between the first motor 170 and the second motor 172 without attaching the second motor 172 on the inner shaft 161.

このように構成される角度可変機構160において、内軸161と外軸162とを協働すると、内軸161の回転により反射板100を矢印X方向に所定角度で傾斜させ、それと同時に外軸162を回転して棒状体103の先端103aを円運動させて矢印Y方向への回動を付加することができ、反射板100を任意の方向に傾斜させることができる。   In the variable angle mechanism 160 configured as described above, when the inner shaft 161 and the outer shaft 162 cooperate, the reflecting plate 100 is inclined at a predetermined angle in the direction of the arrow X by the rotation of the inner shaft 161, and at the same time, the outer shaft 162 is rotated. To rotate the tip 103a of the rod-like body 103 in a circular motion to add rotation in the arrow Y direction, and the reflector 100 can be tilted in an arbitrary direction.

また、角度可変機構160は、第1のモータ170、第2のモータ172、内軸161及び外管162の一部、更に雌ネジ部材173は第3の容器180に収容され、第1の容器130に取り付けられている。更に、第1のモータ170はコネクタ174を通じて、第2のモータ172はコネクタ175を通じて外部の制御部に接続されており、電力供給や回転の制御が制御部を通じて行われる。   In addition, the variable angle mechanism 160 includes a first motor 170, a second motor 172, an inner shaft 161, a part of the outer tube 162, and a female screw member 173 accommodated in the third container 180. 130 is attached. Further, the first motor 170 is connected to an external control unit through a connector 174, and the second motor 172 is connected to an external control unit through a connector 175, and power supply and rotation control are performed through the control unit.

装入物の表面のプロフィールを測定するには、マイクロ波送受信手段110で発振されたマイクロ波Mをアンテナ120から発射し、反射波100で反射して開口2を通じて装入物20に向けて送信する。そして、装入物20の表面で反射されたマイクロ波Mを反射板100で反射してアンテナ120へと導き、マイクロ波送受信手段110で受信し、受信信号を外部の制御部に送り、ビート波の周波数によりアンテナ120から装入物20の表面までの距離を求める。   In order to measure the surface profile of the charge, the microwave M oscillated by the microwave transmitting / receiving means 110 is emitted from the antenna 120, reflected by the reflected wave 100, and transmitted toward the charge 20 through the opening 2. To do. Then, the microwave M reflected from the surface of the charge 20 is reflected by the reflector 100 and guided to the antenna 120, received by the microwave transmitting / receiving means 110, the received signal is sent to the external control unit, and the beat wave is transmitted. The distance from the antenna 120 to the surface of the charge 20 is obtained from the frequency of.

本発明では、反射板100の角度を角度可変機構160により連続的に変化させてマイクロ波Mが装入物20の全面を走査するようにする。そして、走査の位置情報と、装入物20の表面までの距離とを2次元的にマップ化することにより、装入物の全面のプロフィールが得られる。マイクロ波Mによる走査に際し、装入物が新たに装入されても、測定には支障がない。   In the present invention, the angle of the reflecting plate 100 is continuously changed by the angle variable mechanism 160 so that the microwave M scans the entire surface of the charge 20. Then, the profile of the entire surface of the charge can be obtained by two-dimensionally mapping the scanning position information and the distance to the surface of the charge 20. In the scanning with the microwave M, there is no problem in measurement even if a new charge is inserted.

尚、高炉内では、人体に有害な一酸化炭素ガスが発生しており、測定部Aの気密性は安全上の重要課題である。本発明では、上記のように、フィルタ32やセラミックスフィルタ31により2重の気密構造とするとともに、第1の容器に反射板100及びアンテナ120を収容し、第2の容器にマイクロ波送受信手段110を収容するとともにアンテナ120との連結に用いる導波管150を栓部材155で閉塞し、更に角度可変機構160を第3の容器180に収容しているため、測定部Aを通じて一酸化炭素ガスが外部に漏洩することがない。   In the blast furnace, carbon monoxide gas harmful to the human body is generated, and the airtightness of the measuring section A is an important safety issue. In the present invention, as described above, the double airtight structure is formed by the filter 32 and the ceramic filter 31, the reflection plate 100 and the antenna 120 are accommodated in the first container, and the microwave transmitting / receiving means 110 is accommodated in the second container. In addition, the waveguide 150 used for connection to the antenna 120 is closed by the plug member 155, and the angle variable mechanism 160 is housed in the third container 180. There is no leakage to the outside.

また、バルブ30を閉じることにより、高炉を気密にした状態で、測定部Aを高炉から分離でき、測定部Aの保守作業を安全に行うことができる。   Further, by closing the valve 30, the measuring section A can be separated from the blast furnace in a state where the blast furnace is airtight, and maintenance work of the measuring section A can be performed safely.

反射板の角度可変機構として、図4〜図6に示す構成にすることもできる。尚、図4〜図6において、図1〜図3に示した部材と同一の部材には同一の符号を付してある。   As the angle varying mechanism of the reflecting plate, the configuration shown in FIGS. 4 to 6, the same members as those shown in FIGS. 1 to 3 are denoted by the same reference numerals.

図4は全体構成を側断面図であるが、図示されるように、ガイドパイプ200の一端にアンテナ120が取り付けられており、アンテナ120にはマイクロ波送受信手段110が接続しており、制御部にてマイクロ波の送受信が制御される。尚、アンテナ120とマイクロ波送受信手段110とを接続する導波管150は、栓部材151で閉塞されており、マイクロ波送受信手段110は第2の容器140に収容され、密封されている。   FIG. 4 is a side sectional view of the overall configuration. As shown in the figure, an antenna 120 is attached to one end of a guide pipe 200, and a microwave transmitting / receiving means 110 is connected to the antenna 120. The transmission and reception of microwaves is controlled at. The waveguide 150 connecting the antenna 120 and the microwave transmission / reception means 110 is closed with a plug member 151, and the microwave transmission / reception means 110 is accommodated in the second container 140 and sealed.

また、ガイドパイプ200の中央部には、炉の開口2に対面する面が切欠して開口部210が形成されており、この開口部210の内部に円板状の反射板100が収容される。また、ガイドパイプ200の開口部210は、第1の容器130で包囲されており、第1の容器130が、炉の開口2に対面する側が開口しており、図示は省略されるバルブ30、セラミックフィルタ31、フィルタ32を介在させて、炉の開口2に接続される(図1参照)。また、第1の容器130の開口は、炉内からの粉塵がガイドパイプ200の内部に流入しないように、フィルタ220で閉塞されていている。   In addition, an opening 210 is formed at the center of the guide pipe 200 by cutting out a surface facing the opening 2 of the furnace, and the disc-shaped reflecting plate 100 is accommodated in the opening 210. . Further, the opening 210 of the guide pipe 200 is surrounded by a first container 130, and the first container 130 is open on the side facing the opening 2 of the furnace. The ceramic filter 31 and the filter 32 are interposed and connected to the furnace opening 2 (see FIG. 1). The opening of the first container 130 is closed with a filter 220 so that dust from the furnace does not flow into the guide pipe 200.

反射板100は、図5に示すように、その直径両端から突出する支軸190が設けられており、支軸190がガイドパイプ200に固定されている。それにより、反射板100は、支軸190を中心にして矢印Pに示すように回動する。   As shown in FIG. 5, the reflecting plate 100 is provided with a support shaft 190 that protrudes from both ends of the diameter, and the support shaft 190 is fixed to the guide pipe 200. Thereby, the reflecting plate 100 rotates as indicated by an arrow P around the support shaft 190.

また、反射100の裏面100aの中心Cには所定の角度θ(例えば45°)で棒状片230が固定されている。この棒状片230には第1の球面滑りヒンジ240を介して第1の連結棒232が接続され、更に第1の連結棒232には第2の球面滑りヒンジ241を介して第2の連結棒233が接続されている。   Further, a rod-like piece 230 is fixed to the center C of the back surface 100a of the reflection 100 at a predetermined angle θ (for example, 45 °). A first connecting rod 232 is connected to the rod-shaped piece 230 via a first spherical sliding hinge 240, and a second connecting rod is connected to the first connecting rod 232 via a second spherical sliding hinge 241. 233 is connected.

ガイドパイプ200の他端は端面201で閉塞しており、端面201には第2の連結棒233を挿通可能な開口が開けられ、この開口から第2の連結棒233が外部に延出している。そして、端面201の外側には、第2の連結棒233をガイドパイプの軸線に沿って矢印H方向に移動させるための連結棒駆動手段235が取り付けられている。この連結棒駆動手段235は、例えばモータ236とラックギア237とで構成することができる。   The other end of the guide pipe 200 is closed by an end surface 201, and an opening through which the second connecting rod 233 can be inserted is opened in the end surface 201, and the second connecting rod 233 extends outside from the opening. . A connecting rod driving means 235 for moving the second connecting rod 233 in the direction of arrow H along the axis of the guide pipe is attached to the outside of the end surface 201. The connecting rod driving means 235 can be constituted by a motor 236 and a rack gear 237, for example.

図6(A)に示すように、第2の連結棒233を矢印Ha方向に移動させると、第1の連結棒232も同方向に移動して第1の球面滑りヒンジ240を介して棒状片230が支軸190を中心にして矢印L方向に傾倒する。それに伴い、図6(B)に示すように反射板100が矢印Paで示す方向に回動する。このとき、第1の球面滑りヒンジ240は、図5(A)に示す当初の位置よりも図中左下方向に若干降下し、図6(B)に示すように第1の連結棒232も第1の球面滑りヒンジ240の端部が若干降下する。そこで、第2の球面滑りヒンジ241によりこの第1の連結棒232の降下を吸収する。   As shown in FIG. 6A, when the second connecting rod 233 is moved in the direction of the arrow Ha, the first connecting rod 232 is also moved in the same direction, and the rod-shaped piece is interposed via the first spherical sliding hinge 240. 230 tilts in the direction of arrow L about the support shaft 190. Accordingly, as shown in FIG. 6B, the reflecting plate 100 rotates in the direction indicated by the arrow Pa. At this time, the first spherical sliding hinge 240 is slightly lowered in the lower left direction in the drawing from the initial position shown in FIG. 5A, and the first connecting rod 232 is also moved as shown in FIG. 6B. The end of one spherical sliding hinge 240 is slightly lowered. Therefore, the second spherical sliding hinge 241 absorbs the lowering of the first connecting rod 232.

また、図示は省略するが、この状態から第2の連結棒233を矢印Haとは反対側に移動させると、反射板100が矢印Paとは反対側に回動する。   Although illustration is omitted, when the second connecting rod 233 is moved to the opposite side to the arrow Ha from this state, the reflecting plate 100 rotates to the opposite side to the arrow Pa.

上記の第2の連結棒233の移動に伴う反射板100の矢印P方向への回動により、アンテナ120から送信され反射板100で反射されたマイクロ波Mは、図中の左右方向に送られる。   The microwave M transmitted from the antenna 120 and reflected by the reflecting plate 100 is sent in the left-right direction in the figure by the rotation of the reflecting plate 100 in the direction of arrow P accompanying the movement of the second connecting rod 233. .

また、ガイドパイプ200は、アンテナ120及びマイクロ波送受信手段110を収容する第2の容器140ごと、その軸線を中心に矢印Q方向に回転可能に構成されており、それに伴い反射板100も同じように回動し、マイクロ波Mは紙面と垂直な方向に送られる。ガイドパイプ200の回転は、端面201の外側に設けたモータ205で行うことができ、モータ205の回転軸はガイドパイプ200の軸線の延長線上に設けられている。また、モータ205は、連結棒駆動手段235とともに容器208に収容される。   The guide pipe 200 is configured to be rotatable about the axis thereof in the direction of the arrow Q for each of the second containers 140 that house the antenna 120 and the microwave transmission / reception means 110, and the reflector 100 is similarly configured accordingly. The microwave M is sent in a direction perpendicular to the paper surface. The guide pipe 200 can be rotated by a motor 205 provided outside the end surface 201, and the rotation axis of the motor 205 is provided on an extension line of the axis of the guide pipe 200. Further, the motor 205 is accommodated in the container 208 together with the connecting rod driving means 235.

このように、第2の連結棒233の移動と、ガイドパイプ200の回転により、マイクロ波Mを二次元方向に走査できる。   Thus, the microwave M can be scanned in a two-dimensional direction by the movement of the second connecting rod 233 and the rotation of the guide pipe 200.

また、第1の容器130の両側には支持部材260,261が配設される。支持部材260,261は、ガイドパイプ200の外周に軸受を嵌合してガイドパイプ200を回動自在に支持し、更にシール部材で容器内部の気密性を維持する。尚、シール部材は耐熱性を有することが望ましい。第1の容器130の内部は、測定時に炉の開口2を通じて炉内と同じガス圧になり、かなりの高圧となる。そこで、支持部材260,261で圧力を分担して受けることで、第1の容器130を保護するができ、ガイドパイプ200の抜け防止装置を別途設ける必要もなくなる。   Support members 260 and 261 are disposed on both sides of the first container 130. The support members 260 and 261 fit a bearing on the outer periphery of the guide pipe 200 to rotatably support the guide pipe 200, and further maintain airtightness inside the container with a seal member. Note that the seal member desirably has heat resistance. The inside of the first container 130 has the same gas pressure as the inside of the furnace through the opening 2 of the furnace at the time of measurement, and a considerably high pressure. Therefore, the first container 130 can be protected by sharing the pressure with the support members 260 and 261, and it is not necessary to provide a separate prevention device for the guide pipe 200.

更に、第1の容器130には、窒素ガス取り入れ口135から窒素ガスを流入させることができ、内部を観察できるように窓137を設けることができる。   Further, the first container 130 can be provided with a window 137 so that nitrogen gas can flow from the nitrogen gas inlet 135 and the inside can be observed.

また、ガイドパイプ200にも窒素ガス取り入れ口136a,136bを設け、ガイドパイプ200の内部に窒素ガスを流入させてもよい。   Further, the guide pipe 200 may be provided with nitrogen gas intake ports 136 a and 136 b so that the nitrogen gas flows into the guide pipe 200.

上記において、ガイドパイプ200を第1の容器130のアンテナ側壁面130aで分割するとともに、アンテナ側の部分を第1の容器130に溶接等により接合し、第1の容器130からガイドパイプ200の端面201までの部分を回転可能にすることもでき、その場合、アンテナ側の部分を保持する支持部材261を省略することができる。   In the above, the guide pipe 200 is divided by the antenna side wall surface 130a of the first container 130, and the antenna side portion is joined to the first container 130 by welding or the like, and the end surface of the guide pipe 200 is connected from the first container 130. The part up to 201 can also be made rotatable, and in that case, the support member 261 that holds the part on the antenna side can be omitted.

また、図示は省略するが、アンテナ120に、マイクロ波の送受信に影響を与えない程度の小孔を開け、窒素ガス取り入れ口136aをアンテナ120の背面(マイクロ波送受信手段側の面)の近傍に設けることにより、窒素ガスがアンテナ120の小孔を通じてガイドパイプ200の内部を第1の容器130へと流入するとともに、アンテナ120の裏面の粉塵を除去することができる。   Although not shown, a small hole is formed in the antenna 120 so as not to affect microwave transmission / reception, and the nitrogen gas inlet 136a is placed near the back surface of the antenna 120 (surface on the microwave transmission / reception means side). By providing the nitrogen gas, the inside of the guide pipe 200 flows into the first container 130 through the small hole of the antenna 120 and dust on the back surface of the antenna 120 can be removed.

更に、反射板100にも同様の小孔を開けることで、窒素ガス取り入れ口136aからの窒素ガスが反射板100の裏面側へも流通するとともに、窒素ガス取り入れ口136bからの窒素ガスがアンテナ側へも流通するようになり、ガイドパイプ200の全域にわたり窒素ガスがより流通しやすくなる。   Further, by making a similar small hole in the reflecting plate 100, the nitrogen gas from the nitrogen gas intake port 136a circulates to the back side of the reflecting plate 100, and the nitrogen gas from the nitrogen gas intake port 136b is transferred to the antenna side. The nitrogen gas is more easily distributed over the entire area of the guide pipe 200.

A 測定部
100 反射板
101 支持アーム
104 第1の球面滑り軸受
105 連結棒
106 第2の球面滑り軸受
110 マイクロ波送受信手段
120 アンテナ
130 第1の容器
140 第2の容器
150 導波管
151 栓部材
160 角度可変機構
161 内軸
162 外軸
170 第1のモータ
172 第2のモータ
180 第3の容器
190 支軸
200 ガイドパイプ
210 開口部
220 フィルタ
230 棒状片
232 第1の連結棒
233 第2の連結棒
240 第1の球面滑りヒンジ
241 第2の球面滑りヒンジ
260,261 支持部材
A Measuring unit 100 Reflector 101 Support arm 104 First spherical plain bearing 105 Connecting rod 106 Second spherical plain bearing 110 Microwave transmitting / receiving means 120 Antenna 130 First container 140 Second container 150 Waveguide 151 Plug member 160 Angle variable mechanism 161 Inner shaft 162 Outer shaft 170 First motor 172 Second motor 180 Third container 190 Support shaft 200 Guide pipe 210 Opening 220 Filter 230 Rod-like piece 232 First connecting rod 233 Second connection Rod 240 First spherical sliding hinge 241 Second spherical sliding hinge 260, 261 Support member

Claims (10)

高炉内に装入された鉄鉱石やコークス等の装入物の表面のプロフィールをマイクロ波により測定する方法であって、
マイクロ波送受信手段に連結するアンテナと、反射角度可変の反射板とを容器内に収容し、該容器を高炉上部の適所に設けた開口に気密に取り付け、前記アンテナから発射されたマイクロ波を前記反射板で反射して装入物の表面を面状に走査するとともに、表面で反射されたマイクロ波を前記マイクロ波送受信手段で検波して走査位置に対応する距離データを求めてマップ化することを特徴とする装入物プロフィール測定方法。
A method for measuring the surface profile of a charge such as iron ore or coke charged in a blast furnace by microwaves,
An antenna connected to the microwave transmission / reception means and a reflection plate having a variable reflection angle are accommodated in a container, and the container is hermetically attached to an opening provided at an appropriate location in the upper part of the blast furnace, and the microwave emitted from the antenna is The surface of the charged object is scanned in a planar shape after being reflected by the reflector, and the microwave reflected by the surface is detected by the microwave transmitting / receiving means to obtain distance data corresponding to the scanning position and map it. The charge profile measuring method characterized by this.
高炉内に装入された鉄鉱石やコークス等の装入物の表面のプロフィールをマイクロ波により測定するための装置であって、
反射角度が可変の反射板と、前記反射板の反射角度を制御するための角度可変機構と、マイクロ波送受信手段と、誘電材料からなる栓部材で閉塞された導波管により前記マイクロ波送受信手段に連結されたアンテナとを備え、一面が開口した容器内に前記反射板と前記アンテナとを対向配置するとともに、該容器に、前記マイクロ波送受信手段及び前記角度可変機構をそれぞれ別容器に収容した状態で取り付けてなる測定部と、
前記角度可変手段及び前記マイクロ波送受信手段の駆動を制御するとともに、検波信号の解析を行う制御部とを備えるとともに、
前記測定部を、前記容器の開口部が高炉上部の適所に設けた開口と重なるように高炉に気密に取り付け、前記アンテナから発射されたマイクロ波を前記反射板で反射して装入物の表面を面状に走査するとともに、表面で反射されたマイクロ波を前記マイクロ波送受信手段にて検波し、前記制御部にて走査位置に対応する距離データを求めてマップ化することを特徴とする装入物プロフィール測定装置。
An apparatus for measuring the surface profile of a charge such as iron ore or coke charged in a blast furnace by microwaves,
The microwave transmission / reception means by a reflection plate having a variable reflection angle, an angle variable mechanism for controlling the reflection angle of the reflection plate, a microwave transmission / reception means, and a waveguide closed by a plug member made of a dielectric material. The reflector and the antenna are disposed opposite to each other in a container having an open surface, and the microwave transmitting / receiving means and the angle variable mechanism are accommodated in separate containers, respectively. A measuring unit attached in a state,
While controlling the driving of the angle variable means and the microwave transmitting and receiving means, and a controller for analyzing the detection signal,
The measurement unit is hermetically attached to the blast furnace so that the opening of the container overlaps with an opening provided at an appropriate position in the upper part of the blast furnace, and the microwave emitted from the antenna is reflected by the reflector and the surface of the charge The microwave reflected by the surface is detected by the microwave transmission / reception means, and distance data corresponding to the scanning position is obtained and mapped by the control unit. Input profile measuring device.
前記測定部において、
反射板が、その両端に設けた支軸を介して支持部材に、該支軸を中心に回動自在に支持されるとともに、該反射板のアンテナ対向面とは反対側の面上を前記支軸と直交する直線上を移動する棒状片を備え、
前記反射板を、前記棒状片を移動させて前記支軸を中心に第1の方向に回動させるとともに、前記支持部材をその軸線を中心に回動させて第2の方向に回動させ、
前記第1の方向への回動と、前記第2の方向への回動とを組み合わせることにより、前記反射板によるマイクロ波の反射角度を制御することを特徴とする請求項2記載の挿入物プロフィール測定装置。
In the measurement unit,
The reflecting plate is supported by the support member via the supporting shafts provided at both ends thereof so as to be rotatable about the supporting shaft, and on the surface of the reflecting plate opposite to the antenna facing surface, the supporting plate is supported. A rod-shaped piece that moves on a straight line orthogonal to the axis,
The reflector is moved in the first direction around the support shaft by moving the bar-shaped piece, and the support member is rotated in the second direction around the axis,
The insert according to claim 2, wherein the angle of reflection of the microwave by the reflector is controlled by combining rotation in the first direction and rotation in the second direction. Profile measuring device.
前記棒状片が、導波管の軸線に沿って移動する連結棒の先端から前記反射板の裏面に向かって垂下しており、
内軸と外軸との二重構造からなる軸管の内軸の先端に前記支持部材が固定され、外軸に連結棒が固定されるとともに、前記内軸をその軸線を中心にして回動させ、前記外軸をその軸線に沿って移動させる駆動手段を備えることを特徴とする請求項3記載の挿入物プロフィール測定装置。
The rod-like piece hangs from the tip of a connecting rod that moves along the axis of the waveguide toward the back surface of the reflector,
The support member is fixed to the tip of the inner shaft of the shaft tube having a double structure of the inner shaft and the outer shaft, the connecting rod is fixed to the outer shaft, and the inner shaft is rotated around the axis. 4. The insert profile measuring device according to claim 3, further comprising driving means for moving the outer shaft along the axis.
前記反射板及び前記アンテナを収容する前記容器に、窒素ガス取り入れ口を設けて窒素ガスを流入させることを特徴とする請求項3または4記載の挿入物プロフィール測定装置。   5. The insert profile measuring apparatus according to claim 3, wherein a nitrogen gas inlet is provided in the container that accommodates the reflector and the antenna to allow nitrogen gas to flow therein. 前記測定部において、
高炉の開口と対向する開口部が形成されたガイドパイプの前記開口部に、反射板が、その両端に設けた支軸を介して回動自在に支持されているとともに、
前記反射板のアンテナ対向面とは反対側の面の中心に棒状片の一端が固定され、該棒状片の他端がガイドパイプの軸線方向に移動可能な連結棒に連結しており、
前記反射板を、前記連結棒を移動させて前記支軸を中心に第1の方向に回動させるとともに、前記ガイドパイプをその軸線を中心に回動させて第2の方向に回動させ、
前記第1の方向への回動と、前記第2の方向への回動とを組み合わせることにより、前記反射板によるマイクロ波の反射角度を制御することを特徴とする請求項2記載の挿入物プロフィール測定装置。
In the measurement unit,
In the opening of the guide pipe in which an opening facing the opening of the blast furnace is formed, a reflector is rotatably supported via support shafts provided at both ends thereof.
One end of a rod-like piece is fixed at the center of the surface opposite to the antenna-facing surface of the reflector, and the other end of the rod-like piece is connected to a connecting rod that can move in the axial direction of the guide pipe,
The reflector is moved in the first direction around the support shaft by moving the connecting rod, and the guide pipe is rotated in the second direction around the axis,
The insert according to claim 2, wherein the angle of reflection of the microwave by the reflector is controlled by combining rotation in the first direction and rotation in the second direction. Profile measuring device.
前記ガイドパイプの開口部が、該ガイドパイプの長手方向中央部に形成されており、
該ガイドパイプの一方の端部にアンテナが接続され、他端を閉塞する端面の外側に、前記連結棒を移動させるための駆動手段及び該ガイドパイプを回動させるための駆動手段が取り付けられていることを特徴とする請求項6記載の挿入物プロフィール測定装置。
The opening of the guide pipe is formed at the center in the longitudinal direction of the guide pipe,
An antenna is connected to one end of the guide pipe, and driving means for moving the connecting rod and driving means for rotating the guide pipe are attached to the outside of the end face closing the other end. The insert profile measuring device according to claim 6, wherein
前記反射板と前記ガイドパイプの開口部周辺とを包囲する容器と、
前記容器の両外側に配置され、該容器の両側に突出する前記ガイドパイプを支持するための一対の軸受と、該容器の気密性を維持するシール部材とを備える支持部材と
を備えることを特徴とする請求項7記載の挿入物プロフィール測定装置。
A container surrounding the reflector and the periphery of the opening of the guide pipe;
A support member provided with a pair of bearings disposed on both outer sides of the container and supporting the guide pipes projecting on both sides of the container and a seal member for maintaining airtightness of the container. The insert profile measuring device according to claim 7.
前記ガイドパイプを、前記容器のアンテナ側壁面で分割するとともに、該ガイドパイプの該容器からアンテナ側に突出する部分を前記容器に接合し、前記容器から突出する他方の部分を前記支持部材で支持することを特徴とする請求項8記載の挿入物プロフィール測定装置。   The guide pipe is divided at the antenna side wall surface of the container, a portion of the guide pipe protruding from the container toward the antenna is joined to the container, and the other portion protruding from the container is supported by the support member. The insert profile measuring device according to claim 8, wherein: 前記アンテナ及び前記反射板の少なくとも一方に、マイクロ波の送受信に影響しない孔を開けるとともに、前記ガイドパイプに窒素ガス取り入れ口を設けて窒素ガスを流入させることを特徴とする請求項6〜9の何れか1項に記載の挿入物プロフィール測定装置。


A hole that does not affect transmission / reception of microwaves is formed in at least one of the antenna and the reflector, and a nitrogen gas inlet is provided in the guide pipe to allow nitrogen gas to flow. The insert profile measuring device according to any one of the preceding claims.


JP2010155828A 2009-07-09 2010-07-08 Method and apparatus for measuring charge profile in blast furnace Active JP5391458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155828A JP5391458B2 (en) 2009-07-09 2010-07-08 Method and apparatus for measuring charge profile in blast furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009162788 2009-07-09
JP2009162788 2009-07-09
JP2010155828A JP5391458B2 (en) 2009-07-09 2010-07-08 Method and apparatus for measuring charge profile in blast furnace

Publications (2)

Publication Number Publication Date
JP2011033619A true JP2011033619A (en) 2011-02-17
JP5391458B2 JP5391458B2 (en) 2014-01-15

Family

ID=43762814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155828A Active JP5391458B2 (en) 2009-07-09 2010-07-08 Method and apparatus for measuring charge profile in blast furnace

Country Status (1)

Country Link
JP (1) JP5391458B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2490030A2 (en) 2011-02-18 2012-08-22 The University of Tokyo Voltage detecting circuit
JP2012237560A (en) * 2011-05-10 2012-12-06 Nippon Steel Corp Profile measurement apparatus for object charged into blast furnace
JP2014133922A (en) * 2013-01-10 2014-07-24 Nippon Steel & Sumitomo Metal Profile measurement apparatus for blast furnace charging material
JP2014196992A (en) * 2012-11-12 2014-10-16 株式会社ワイヤーデバイス Apparatus for detecting surface of substance loaded in blast furnace
CN104611494A (en) * 2014-12-29 2015-05-13 北京科技大学 Radar scanning device capable of monitoring change of charge level of blast furnace in real time
JP2017512300A (en) * 2014-01-20 2017-05-18 ティエムティ − タッピング メジャーリング テクノロジー エスエイアールエル Surface shape measuring device for blast furnace interior
EP3115471A4 (en) * 2014-03-04 2017-08-16 Wadeco Co., Ltd. Method for charging and depositing charging material in shaft furnace, charging material surface detection device, and method for operating shaft furnace
KR20180009781A (en) * 2016-03-25 2018-01-29 가부시키가이샤 와데코 Blast furnace charge-material surface detection device and detection method
WO2018056171A1 (en) * 2016-09-23 2018-03-29 株式会社Wadeco Surface detection device for blast furnace

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6533938B2 (en) * 2015-08-04 2019-06-26 株式会社Wadeco Method of detecting dust adhesion state in surface detection device of charge in blast furnace
JP6595265B2 (en) * 2015-09-01 2019-10-23 株式会社Wadeco Method for charging and depositing charge in blast furnace, surface detection device for charge, and method for operating blast furnace
WO2017022818A1 (en) * 2015-08-04 2017-02-09 株式会社ワイヤーデバイス Surface detection device and charging method of charged material into blast furnace and operating method of blast furnace
JP2017150035A (en) * 2016-02-24 2017-08-31 株式会社Wadeco Display method for blast furnace profile meter, and method for charging material to be charged in blast furnace
JP2017128783A (en) * 2016-01-22 2017-07-27 株式会社Wadeco Display method of blast furnace profile meter and charging method of charging material to blast furnace
KR20220015902A (en) 2019-05-31 2022-02-08 가부시키가이샤 와데코 Surface profile detection device and operation method of the charge in the blast furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138405A (en) * 1976-05-17 1977-11-18 Nippon Steel Corp Equipment for measuring distribution shape of charged materials in furnace
JPS61290378A (en) * 1985-06-17 1986-12-20 Ishikawajima Harima Heavy Ind Co Ltd Instrument for measuring deposited quantity in vertical furnace
JPH0611328A (en) * 1992-03-23 1994-01-21 Sumitomo Metal Ind Ltd Method and instrument for measuring profile of charge in shaft furnace
JP2000283443A (en) * 1999-03-29 2000-10-13 Mitsubishi Heavy Ind Ltd Device and method for measuring refuse layer in refuse incinerator
JP2001311612A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Shape input device
JP2006153845A (en) * 2004-11-02 2006-06-15 Nippon Steel Corp Refractory thickness measuring method and refractory thickness measuring apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138405A (en) * 1976-05-17 1977-11-18 Nippon Steel Corp Equipment for measuring distribution shape of charged materials in furnace
JPS61290378A (en) * 1985-06-17 1986-12-20 Ishikawajima Harima Heavy Ind Co Ltd Instrument for measuring deposited quantity in vertical furnace
JPH0611328A (en) * 1992-03-23 1994-01-21 Sumitomo Metal Ind Ltd Method and instrument for measuring profile of charge in shaft furnace
JP2000283443A (en) * 1999-03-29 2000-10-13 Mitsubishi Heavy Ind Ltd Device and method for measuring refuse layer in refuse incinerator
JP2001311612A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Shape input device
JP2006153845A (en) * 2004-11-02 2006-06-15 Nippon Steel Corp Refractory thickness measuring method and refractory thickness measuring apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2490030A2 (en) 2011-02-18 2012-08-22 The University of Tokyo Voltage detecting circuit
JP2012237560A (en) * 2011-05-10 2012-12-06 Nippon Steel Corp Profile measurement apparatus for object charged into blast furnace
JP2014196992A (en) * 2012-11-12 2014-10-16 株式会社ワイヤーデバイス Apparatus for detecting surface of substance loaded in blast furnace
JP2014133922A (en) * 2013-01-10 2014-07-24 Nippon Steel & Sumitomo Metal Profile measurement apparatus for blast furnace charging material
JP2017512300A (en) * 2014-01-20 2017-05-18 ティエムティ − タッピング メジャーリング テクノロジー エスエイアールエル Surface shape measuring device for blast furnace interior
EP3115471A4 (en) * 2014-03-04 2017-08-16 Wadeco Co., Ltd. Method for charging and depositing charging material in shaft furnace, charging material surface detection device, and method for operating shaft furnace
CN104611494A (en) * 2014-12-29 2015-05-13 北京科技大学 Radar scanning device capable of monitoring change of charge level of blast furnace in real time
KR20180009781A (en) * 2016-03-25 2018-01-29 가부시키가이샤 와데코 Blast furnace charge-material surface detection device and detection method
KR102074877B1 (en) * 2016-03-25 2020-02-07 가부시키가이샤 와데코 Blast furnace charge-material surface detection device and detection method
WO2018056171A1 (en) * 2016-09-23 2018-03-29 株式会社Wadeco Surface detection device for blast furnace
JP2018048384A (en) * 2016-09-23 2018-03-29 株式会社Wadeco Surface detection device for blast furnace
KR20190057288A (en) 2016-09-23 2019-05-28 가부시키가이샤 와데코 Surface detector for blast furnace
EP3517633A4 (en) * 2016-09-23 2020-02-12 Wadeco Co., Ltd. Surface detection device for blast furnace
US11021765B2 (en) 2016-09-23 2021-06-01 Wadeco Co., Ltd. Surface detection apparatus for blast furnace
KR102421754B1 (en) * 2016-09-23 2022-07-15 가부시키가이샤 와데코 Surface detection device for blast furnace

Also Published As

Publication number Publication date
JP5391458B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5391458B2 (en) Method and apparatus for measuring charge profile in blast furnace
JP2012067340A (en) Charging and depositing method of charged material to blast furnace, and operating method of blast furnace
US10415107B2 (en) Method for loading and depositing loaded material in blast furnace, loaded material surface detection device, and method for operating blast furnace
JP6573323B2 (en) Surface detection apparatus and detection method for blast furnace charge
WO2019168139A1 (en) Surface detection device for charged material in blast furnace
JP5802995B2 (en) Measuring device and measuring method for a blast furnace, blast furnace having such a device, and tilting device for at least one measuring probe
JP2870346B2 (en) Vertical furnace charge profile measuring method and measuring device
WO2017022818A1 (en) Surface detection device and charging method of charged material into blast furnace and operating method of blast furnace
US20130083819A1 (en) Method for operating an arc furnace, oscillation measurement device for an arc electrode and configuration for an arc furnace
US11021765B2 (en) Surface detection apparatus for blast furnace
JP5441730B2 (en) Profile measuring device for blast furnace interior
JP5916774B2 (en) True density measuring device
CN213714217U (en) Scanner assembly, system and scanner manipulator for measuring wear of refractory lining
JP2002275516A (en) Instrument and method for measuring distribution shape of charged materials
JP2015219129A (en) Surface detection device for blast furnace charging material
JP2017048421A (en) Charge and deposition method of charging material to blast furnace, surface monitor of charging material and operation method of blast furnace
JP2023042980A (en) Surface profile detection device of object charged into blast furnace
JP7294741B1 (en) Charge surface profile detection device and operating method
JP2013253883A (en) Apparatus and method for measuring profile of surface of charging material
US20030010264A1 (en) Fill door having angled movement
KR20150062705A (en) Device and method for measuring surface profile of charging meterials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5391458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250