JP6533938B2 - Method of detecting dust adhesion state in surface detection device of charge in blast furnace - Google Patents

Method of detecting dust adhesion state in surface detection device of charge in blast furnace Download PDF

Info

Publication number
JP6533938B2
JP6533938B2 JP2015154230A JP2015154230A JP6533938B2 JP 6533938 B2 JP6533938 B2 JP 6533938B2 JP 2015154230 A JP2015154230 A JP 2015154230A JP 2015154230 A JP2015154230 A JP 2015154230A JP 6533938 B2 JP6533938 B2 JP 6533938B2
Authority
JP
Japan
Prior art keywords
blast furnace
furnace
detection device
opening
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015154230A
Other languages
Japanese (ja)
Other versions
JP2017032460A (en
Inventor
早衛 萱野
早衛 萱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wadeco Co Ltd
Original Assignee
Wadeco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wadeco Co Ltd filed Critical Wadeco Co Ltd
Priority to JP2015154230A priority Critical patent/JP6533938B2/en
Priority to PCT/JP2016/072905 priority patent/WO2017022818A1/en
Publication of JP2017032460A publication Critical patent/JP2017032460A/en
Application granted granted Critical
Publication of JP6533938B2 publication Critical patent/JP6533938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炉の外に設置された伝搬部に検出波を伝搬させるとともに、検出波を反射手段により高炉内部に送り送受信を行う方式の表面検出装置において、伝搬部の内部に存在する部品への粉塵の付着状況を検知する方法に関する。   The present invention is a surface detection apparatus of the type that transmits a detection wave to the inside of the blast furnace by reflecting means while transmitting the detection wave to the propagation part installed outside the blast furnace, to the parts present inside the propagation part Relates to a method of detecting the adhesion state of

高炉では、コークスや鉄鉱石等の装入物の堆積量を測定したり、表面プロフィールを測定して装入物の堆積状態を最適化することが行われている。このような表面検出装置として、例えば特許文献1に記載されているように、先端に反射板を備えたランスを炉内に挿入し、ランスを水平移動させながら検出波の送受信を行って、装入物の表面を走査して表面プロフィールを検知する表面検出装置が使用されている。   In the blast furnace, it has been carried out to measure the deposition amount of the charge such as coke and iron ore, or to measure the surface profile to optimize the deposit state of the charge. As described in, for example, Patent Document 1, as such a surface detection device, a lance having a reflecting plate at its tip is inserted into a furnace, and detection waves are transmitted / received while horizontally moving the lance. Surface detectors have been used that scan the surface of the receptacle to detect the surface profile.

しかし、ランスを備える表面検出装置では、ランスを移動させるために炉外に広い空間が必要になり、また炉内の高温によりランスが湾曲してランスの水平移動に支障を来す等の問題がある。そこで、特許文献2に記載されている表面検出装置では、高炉の炉頂近傍に設けた開口部の直上に耐圧容器を取り付け、容器内に反射手段や送受信手段に直結するアンテナを収容し、送受信手段からの検出波を反射手段で反射して開口部を通じて高炉の内部へと送り、炉内の装入物で反射された検出波を再度反射手段で反射して送受信手段へと送るとともに、反射手段の反射角度を変えることにより装入物の表面を走査して表面プロフィールを測定している。   However, in the surface detection apparatus provided with the lance, a large space is required outside the furnace to move the lance, and the high temperature in the furnace causes the lance to be bent and causes problems such as horizontal movement of the lance. is there. Therefore, in the surface detection device described in Patent Document 2, a pressure-resistant container is attached immediately above the opening provided in the vicinity of the furnace top of the blast furnace, and an antenna directly connected to the reflection means and the transmission / reception means is accommodated in the container to transmit and receive The detected wave from the means is reflected by the reflecting means and sent through the opening to the inside of the blast furnace, and the detected wave reflected by the charge in the furnace is again reflected by the reflecting means and sent to the transmitting and receiving means, The surface of the charge is scanned to measure the surface profile by changing the reflection angle of the means.

また、本出願人も先に、特許文献3において、高炉の炉頂近傍に設けた開口部の直上に連続して管体を取り付け、管体の一端に開口部と対向して反射手段を設置し、他端に送受信手段に直結するアンテナを設置し、送受信手段からの検出波を反射手段で反射して開口部を通じて高炉の内部へと送り、炉内の装入物で反射された検出波を再度反射手段で反射して送受信手段へと送るとともに、反射手段の反射角度を変えることにより装入物の表面を走査して表面プロフィールを測定している。   In addition, the applicant also previously attached a pipe continuously in the vicinity of the opening provided in the vicinity of the furnace top of the blast furnace in Patent Document 3, and installed a reflection means at the end of the pipe opposite the opening. An antenna directly connected to the transmitting and receiving means is installed at the other end, the detected wave from the transmitting and receiving means is reflected by the reflecting means and sent through the opening to the inside of the blast furnace, and the detected wave reflected from the charge in the furnace The light is again reflected by the reflecting means and sent to the transmitting / receiving means, and the surface of the charge is scanned to measure the surface profile by changing the reflection angle of the reflecting means.

特開2002−115008号公報Japanese Patent Application Publication No. 2002-115008 特開2011−145237号公報JP, 2011-145237, A 特開2014−196992号公報JP, 2014-19699, A

高炉からは、開口部を通じて炉内から鉄鉱石片やコークス片、粉塵等が侵入するため、特許文献2では、開口部と反射手段との間を、検出波を透過する材料からなる通気性耐熱ボードで塞ぐとともに、耐圧容器内に不活性ガスを供給して通気性耐熱ボードの通気孔から噴き出している。また、特許文献3では、管体の内部において、反射手段とアンテナとの間に、反射手段に近い側から順に、検出波を透過する耐熱材料からなる通気性の隔壁と、検出波を透過する耐熱材料からなる非通気性の隔壁とを設置するとともに、両隔壁との間に形成された空間に不活性ガスを供給し、通気性の隔壁の通気孔から不活性ガスを噴き出している。   Since iron ore fragments, coke fragments, dust and the like enter from the inside of the furnace from the blast furnace through the opening, in Patent Document 2, the air-permeable heat-resistant material made of a material transmitting the detection wave between the opening and the reflection means While being blocked with a board, an inert gas is supplied into the pressure-resistant container to blow out from the vent holes of the breathable heat-resistant board. Further, in Patent Document 3, in the inside of the tubular body, between the reflection means and the antenna, in the order from the side closer to the reflection means, a permeable partition made of a heat-resistant material that transmits the detection wave and the detection wave are transmitted. A non-air-permeable partition made of a heat-resistant material is installed, and an inert gas is supplied to the space formed between both the partitions, and the inert gas is blown out from the vent of the permeable partition.

しかしながら、通気性耐熱ボードや通気性の隔壁の通気孔よりも小さい粉塵が耐圧容器や管体の内部に侵入することを完全に防ぐことはできず、通気性耐熱ボードや通気性の隔壁が目詰まりを起こす。また、特許文献2でが、アンテナと反射手段との間に隔壁を設けることもあり(公報の図5参照)、その場合はこの隔壁に粉塵が付着する。特許文献3でも、非通気性の隔壁に粉塵が付着する。尚、目詰まりも、粉塵が通気孔に付着して起こる現象であるため、以降の説明では目詰まりも含めて「付着」という。   However, it is not possible to completely prevent the penetration of dust smaller than the air-permeable heat-resistant board or the air-permeable partition's vent into the interior of the pressure container or tube, and the air-permeable heat-resistant board or the air-permeable partition Cause a jam. Further, in Patent Document 2, a partition wall may be provided between the antenna and the reflection means (see FIG. 5 of the official gazette), in which case dust adheres to the partition wall. Also in Patent Document 3, dust adheres to the non-air-permeable partition wall. Clogging is also a phenomenon that occurs as dust adheres to the vent, so in the following description it is also referred to as "adherence" including clogging.

通気性耐熱ボードや通気性の隔壁、非通気性の隔壁は、検出波の伝搬経路上にあるため、粉塵の付着量が増すと、検出波の受信強度が低下して検出条件が悪化する。粉塵の発生は、コークスや鉄鉱石の種類(組成)や大きさ、装入量、炉内の温度や圧力等により変化するため、必ずしも粉塵の付着量が高炉の操業時間に比例して増加するとは限らず、定期点検時に通気性耐熱ボードや通気性の隔壁、非通気性の隔壁を交換したとしても、次の定期点検までの間に粉塵の付着量が急に多くなって、送受信ができなくなるおそれもある。従来では、高炉の操業中に粉塵の付着状況を検知することができず、定期点検以外であっても、送受信ができなって高炉の操業を停止しなければならないこともあり、生産計画に狂いが生じる。   Since the air-permeable heat-resistant board, the air-permeable partition wall, and the non-air-permeable partition wall are on the propagation path of the detection wave, if the adhesion amount of dust increases, the reception intensity of the detection wave decreases and the detection condition deteriorates. Since the generation of dust changes depending on the type (composition) and size of coke and iron ore, the loading amount, temperature and pressure in the furnace, etc., the amount of dust adhesion necessarily increases in proportion to the operation time of the blast furnace Even if the ventilation heat-resistant board, the air-permeable partition, and the non-air-permeable partition are replaced at the time of regular inspection, the adhesion amount of dust suddenly increases until the next periodic inspection, and transmission and reception can be performed. There is also a possibility that it will disappear. In the past, it was not possible to detect the adhesion of dust during operation of the blast furnace, and even if it was not a regular inspection, transmission and reception could be performed and the operation of the blast furnace had to be stopped, which made the production plan crazy. Will occur.

尚、特許文献3では、管体の反射手段の直上に窓を設け、反射手段を180°回動させて反射面を窓に向けることにより反射面への粉塵の付着状況を観察しているが、通気性の隔壁や非通気性の隔壁への粉塵の付着状況を数値的に検知することはできない。   In Patent Document 3, a window is provided immediately above the reflecting means of the tube body, and the state of dust adhesion to the reflecting surface is observed by rotating the reflecting means by 180 ° and directing the reflecting surface to the window. It is not possible to numerically detect the adhesion of dust to breathable partition walls or non-breathable partition walls.

本発明はこのような状況に鑑みてなされたものであり、高炉の外に設置された伝搬部に検出波を伝搬させるとともに、伝搬部の内部に設置した反射手段により検出波を高炉内部に送って送受信を行う方式の表面検出装置において、伝搬部内の伝搬経路上に設置された部材への粉塵の付着状況を、装置を分解することなく簡便に、かつ正確に検知することを目的とする。   The present invention has been made in view of such a situation, and propagates the detection wave to the propagation part installed outside the blast furnace, and sends the detection wave inside the blast furnace by the reflection means installed inside the propagation part. An object of the present invention is to provide a surface detection apparatus of a type that performs transmission and reception, and easily and accurately detects the adhesion state of dust to a member installed on a propagation path in a propagation unit without disassembling the apparatus.

上記課題を解決するために本発明は、高炉の開口部に接続した伝搬部に送受信手段からの検出波を伝搬させるとともに、伝搬部内に設置した反射手段により開口部を通じて炉内に検出波を送り、炉内の装入物の表面で反射された検出波を反射手段で反射して伝搬部を伝搬させて送受信手段に送り、送受信手段で検波して装入物の表面までの距離や表面のプロフィールを検出する表面検出装置における、伝搬部の伝搬経路上に設置された部品への高炉内からの粉塵の付着状況を検知する方法であって、表面検出装置の取り付け時に、反射手段の反射面を高炉の開口部以外の方向に向けて回動させて伝搬部の内壁との間で検出波の送受信を行い、初期受信強度を測定し、所定時間間隔で、表面検出装置の取り付け時と同一の測定条件にて、それぞれの時期における受信強度を測定して初期受信強度からの減衰量を求め、減衰量が予め設定した閾値以上になった時期を基に、伝搬経路上の部材の交換時期や清掃時期を決定することを特徴とする高炉内装入物の表面検出装置における粉塵付着状況の検知方法を提供する。   In order to solve the above problems, the present invention propagates the detection wave from the transmitting and receiving means to the propagation part connected to the opening of the blast furnace, and sends the detection wave into the furnace through the opening by the reflection means installed in the propagation part. The detection wave reflected on the surface of the charge in the furnace is reflected by the reflection means, propagated to the propagation part and sent to the transmission / reception means, detected by the transmission / reception means, the distance to the surface of the charge, the surface A surface detection apparatus for detecting a profile, comprising: a method of detecting an adhesion state of dust from inside a blast furnace to a component installed on a propagation path of a propagation unit, which is a reflection surface of reflection means when the surface detection apparatus is attached Is rotated in a direction other than the opening of the blast furnace to transmit and receive detection waves to and from the inner wall of the propagation part, measure the initial reception strength, and at predetermined time intervals, the same as when attaching the surface detection device Under the measurement conditions of Measure the reception strength at the time of to determine the attenuation from the initial reception strength, and determine the replacement time and cleaning time of the members on the propagation path based on the time when the attenuation reaches or exceeds the preset threshold. The present invention provides a method of detecting dust adhesion in a surface detection device for a charge in a blast furnace characterized by

本発明の粉塵付着状況の検知方法では、表面検出装置の取り付け時に伝搬部の内壁との間で測定した初期受信強度と、所定時間経過後の時期に同条件にて測定した受信強度とを比較する。そして、受信信号の初期受信強度からの減衰量を求め、予め規定した閾値よりもかなり小さい場合にはそのまま高炉の操業を続けてもよいと判断し、閾値以上になった場合は部品の交換時期が近いとして交換時期の決定に反映させることができる。   In the dust adhesion state detection method of the present invention, the initial reception intensity measured with the inner wall of the propagation part at the time of attachment of the surface detection device is compared with the reception intensity measured under the same conditions at the time after a predetermined time has elapsed. Do. Then, the attenuation amount from the initial reception intensity of the reception signal is determined, and if it is considerably smaller than the predetermined threshold value, it is judged that the operation of the blast furnace may be continued as it is. Can be reflected in the decision on the replacement time as it is close.

高炉装入物の表面検出装置の一例を示す要部断面図である。It is principal part sectional drawing which shows an example of the surface detection apparatus of a blast-furnace charge. 高炉の開口部と管体との連結部分を、反射面と対向する側から見た断面図である。It is sectional drawing which looked at the connection part of the opening part of a blast furnace, and a pipe body from the side which opposes a reflective surface. 粉塵の付着状況を確信するための送受信方法を説明するための図である。It is a figure for demonstrating the transmission / reception method for confirming the adhesion condition of dust. 高炉装入物の表面検出装置の他の例を示す要部断面図である。It is principal part sectional drawing which shows the other example of the surface detection apparatus of a blast-furnace charge.

以下、図面を参照して本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明の粉塵付着状況の検知方法(以下「本検知方法」ともいう。)は、高炉の開口部に接続する伝搬部に検出波を伝搬させ、伝搬部内に設置した反射手段を用いて検出波を炉内に送って炉内との送受信を行う構成の表面検出装置を対象にする。このような表面検出装置として、例えば特許文献3に記載されている表面検出装置を例示することができる。   The method for detecting the dust adhesion state of the present invention (hereinafter also referred to as "the present detection method") propagates the detection wave to the propagation part connected to the opening of the blast furnace and detects the wave using the reflection means installed in the propagation part The present invention is directed to a surface detection device configured to send in the furnace to transmit and receive the inside of the furnace. As such a surface detection apparatus, the surface detection apparatus described in patent document 3 can be illustrated, for example.

即ち、図1に示すように、高炉100の頂部近傍には開口部101が開口しており、この開口部101に表面検出装置1の管体30の連結部32が連結される。連結部32の直上空間31には反射手段20が収容されており、反射手段20の反射面20aと対向して、管体30の他端にはアンテナ11が設置されている。アンテナ11には、導波管12を介してマイクロ波やミリ波(以下、総称して「検出波」)の送受信手段10が接続されており、アンテナ11から送信された検出波は管体30の内部を伝搬し、反射手段20の反射面20aで反射されて開口部101を通じて炉内へと送られる。管体30が伝搬部に相当し、アンテナ11から反射面20aを通り、炉内へと続く伝搬経路が形成される。   That is, as shown in FIG. 1, an opening 101 is opened near the top of the blast furnace 100, and the connection portion 32 of the tube 30 of the surface detection device 1 is connected to the opening 101. The reflection means 20 is accommodated in the space 31 directly above the connection portion 32, and the antenna 11 is installed at the other end of the tube 30 so as to face the reflection surface 20 a of the reflection means 20. The antenna 11 is connected to a microwave or millimeter wave (hereinafter collectively referred to as "detected wave") transmitting / receiving means 10 through the waveguide 12. The detected wave transmitted from the antenna 11 is a tube 30. And is reflected by the reflecting surface 20 a of the reflecting means 20 and is sent into the furnace through the opening 101. The tube body 30 corresponds to a propagation portion, and a propagation path is formed which continues from the antenna 11 through the reflection surface 20a and into the furnace.

また、管体30の内部には、反射手段20の反射面20aと対向して通気性の隔壁40が配設され、通気性の隔壁40とアンテナ11との間に非通気性の隔壁41が配設されている。尚、通気性の隔壁40及び非通気性の隔壁41が、伝搬経路上の部材に相当する。そして、両隔壁40、41で区画された空間に、ガス供給口50から窒素ガス等の不活性ガスが高圧で供給される。   Further, in the inside of the tubular body 30, a permeable partition 40 is disposed to face the reflection surface 20a of the reflection means 20, and a non-permeable partition 41 is provided between the permeable partition 40 and the antenna 11. It is arranged. In addition, the permeable partition 40 and the non-permeable partition 41 correspond to the member on a propagation path. Then, an inert gas such as nitrogen gas is supplied at high pressure from the gas supply port 50 to the space partitioned by the both partitions 40 and 41.

非通気性の隔壁41は、検出波を透過し、更には耐熱性を有し、高圧の不活性ガスに耐え得る機械的強度を有する材料で形成され、例えばセラミックス製とすることができる。但し、セラミックスの種類によっては、若干ではあるが検出波を反射するものがあり、アンテナ11に近すぎたり、検出波の送信強度が低い場合にはノイズとなることがある。そこで、図示されるように、非通気性の隔壁41を、アンテナ11に対して傾斜させることが好ましい。   The non-air-permeable partition wall 41 is made of a material that transmits detection waves, is heat resistant, and has mechanical strength that can withstand high pressure inert gas, and can be made of, for example, a ceramic. However, depending on the type of ceramic, some may reflect the detection wave, and may be noise when the antenna 11 is too close or the transmission intensity of the detection wave is low. Therefore, it is preferable to incline the non-air-permeable partition wall 41 with respect to the antenna 11 as illustrated.

通気性の隔壁40は、ポーラスセラミックス製とする他に、セラミックス繊維やガラス繊維等からなる通気性織物を用いることができる。   The breathable partition wall 40 may be made of porous ceramic, or may be a breathable fabric made of ceramic fiber, glass fiber, or the like.

また、管体30の連結部32と、高炉100の開口部101との連結部分には、仕切弁110が介在しており、測定時には開状態となり、非測定時には閉状態となる。   Moreover, the gate valve 110 intervenes in the connection part of the connection part 32 of the pipe body 30, and the opening part 101 of the blast furnace 100, it will be in an open state at the time of measurement, and it will be in a closed state at the time of non-measurement.

このように構成される表面検出装置1は、測定時には、図示されるように、アンテナ11を通じて送受信手段10から送信された検出波(Ms)は、非通気性の隔壁41及び通気性の隔壁40を透過して反射手段20の反射面20aで反射され、連結部32を通って高炉100の開口部101から炉内に入射する。そして、送信検出波Msは、炉内に堆積している装入物である鉄鉱石やコークス(図示せず)の表面で反射され、その反射波(Mr)が開口部101を通じて反射手段20へと進み、反射面20aで反射された後、通気性の隔壁40及び非通気性の隔壁41を透過してアンテナ11で受信され、送受信手段10で検波される。そして、送受信手段10では受信信号を演算装置(図示せず)に送り、演算装置で検出波の送受信結果を基に炉内の装入物までの距離を求める。   In the surface detection device 1 configured as described above, at the time of measurement, as shown in the figure, the detection wave (Ms) transmitted from the transmitting and receiving means 10 through the antenna 11 is not air permeable partition 41 and air permeable partition 40. The light is reflected by the reflecting surface 20a of the reflecting means 20, passes through the connecting portion 32, and enters the furnace from the opening 101 of the blast furnace 100. Then, the transmission detection wave Ms is reflected by the surface of iron ore and coke (not shown) which are charges accumulated in the furnace, and the reflected wave (Mr) is transmitted to the reflection means 20 through the opening 101. After being reflected by the reflecting surface 20 a, the air is transmitted through the permeable partition 40 and the non-permeable partition 41, received by the antenna 11, and detected by the transmission / reception means 10. Then, the transmitting and receiving means 10 sends a reception signal to a computing device (not shown), and the computing device determines the distance to the charge in the furnace based on the transmission and reception result of the detection wave.

また、モータ70により反射手段20の反射面20aを、検出波の伝搬軸と垂直な方向に回動させることもできる。反射面20aを回動させることにより、図2に示すように、回動方向に沿って検出波を送信することができ、炉内の装入物の表面を線状に走査して表面のプロフィールを検知することができる。尚、同図に示すように、管体30の連結部32を、反射面20aの回動角度θ(振り幅)に対応して高炉側に漸次拡径する扇形に形成して開口部101の側壁が送受信の妨げにならないようにする。   In addition, the reflecting surface 20a of the reflecting means 20 can be rotated by the motor 70 in the direction perpendicular to the propagation axis of the detection wave. By rotating the reflecting surface 20a, as shown in FIG. 2, a detection wave can be transmitted along the rotating direction, and the surface of the charge in the furnace is linearly scanned to profile the surface Can be detected. As shown in the figure, the connecting portion 32 of the tubular body 30 is formed in a fan-like shape which gradually expands in diameter toward the blast furnace corresponding to the rotation angle θ (swing width) of the reflecting surface 20a. Ensure that the sidewalls do not interfere with transmission and reception.

更に、管体30の反射手段20の周囲の適所、例えば反射面20aの直上部分に窓80を形成し、反射手段20を180°回動させて反射面20aを窓80に対面させることにより、反射面20aへの粉塵の付着状況を観察することもできる。   Furthermore, a window 80 is formed at an appropriate place around the reflecting means 20 of the tube 30, for example, a portion immediately above the reflecting surface 20a, and the reflecting means 20 is rotated 180 ° to make the reflecting surface 20a face the window 80, It is also possible to observe the adhesion of dust to the reflective surface 20a.

上記の表面検出装置1では、測定時に、ガス供給口50から通気性の隔壁40と非通気性の隔壁41との間の空間に高圧の不活性ガスを供給し、通気性の隔壁40の通気孔から噴出させることにより、通気性の隔壁40のや、非通気性の隔壁41の隔壁40側の面41aへの粉塵の付着を防いでいる。しかし、このような粉塵の付着を完全に防ぐことは不可能であり、実際には高炉の操業とともに粉塵の付着量が増加する。   In the surface detection device 1 described above, high pressure inert gas is supplied from the gas supply port 50 to the space between the breathable partition 40 and the non-breathable partition 41 at the time of measurement, and the flow of the breathable partition 40 is performed. By blowing the air from the pores, adhesion of dust to the surface 41 a of the air-permeable partition 40 and the non-air-permeable partition 41 on the partition 40 side is prevented. However, it is impossible to completely prevent the adhesion of such dust, and in fact, the adhesion amount of dust increases with the operation of the blast furnace.

そこで本検知方法では、装置取り付け時に、図3に示すように、反射手段20の反射面20aが高炉100の開口部101とは異なる方向を向くように、反射手段20を回動させ、その回動位置にて検出波の送受信を行う。この反射手段20の回動により、反射面20aは管体30の内壁30aと対向し、内壁30aとの間で送受信を行うことになる。そして、その時の受信強度を初期受信強度とする。尚、反射面20aは、図示のように開口部101の中心に対して90°の位置である必要はなく、管体30の内壁30aと対向する位置であれば、反射手段20の回動角度は不問である。例えば、反射面20aが開口部101と対向する内壁30a(図3において内壁30aの天井部分)を向くように、反射手段20を180°回動させてもよい。尚、窓80を形成する場合は、反射手段20を180°回動させると反射面20aが窓80と対向して送受信ができなくなるため、窓80以外の内壁30aとの間に回動角度を調整する。   Therefore, in the present detection method, as shown in FIG. 3, the reflecting means 20 is turned so that the reflecting surface 20a of the reflecting means 20 faces in a direction different from the opening 101 of the blast furnace 100 when the device is attached. Transmit and receive detection waves at moving positions. By the rotation of the reflecting means 20, the reflecting surface 20a faces the inner wall 30a of the tube 30, and performs transmission and reception with the inner wall 30a. Then, the reception strength at that time is taken as the initial reception strength. The reflecting surface 20a does not have to be at a position of 90 ° with respect to the center of the opening 101 as shown in the drawing, and if it is a position facing the inner wall 30a of the tube 30, the rotation angle of the reflecting means 20 Is unquestionable. For example, the reflecting means 20 may be turned 180 ° so that the reflecting surface 20a faces the inner wall 30a facing the opening 101 (the ceiling portion of the inner wall 30a in FIG. 3). When the window 80 is formed, when the reflection means 20 is rotated 180 °, the reflection surface 20a faces the window 80 and transmission and reception can not be performed. Therefore, the rotation angle is set between the window 80 and the inner wall 30a other than the window 80. adjust.

その後、高炉の操業を行いつつ所定時間間隔で装置取り付け時と同一の測定条件、即ち検出波の出力及び反射手段20の回動角度を同じにして管体30の内壁30aとの間で送受信を行い、それぞれの測定時期での受信強度を測定し、初期受信強度からの減衰量を求める。この送受信では、検出波は非通気性の隔壁41及び通気性の隔壁40しか透過しないため、両隔壁41、40及び反射面20aへの粉塵の付着量に応じて受信強度が減衰する。   Thereafter, while the blast furnace is operated, transmission and reception are performed between the inner wall 30a of the tubular body 30 at predetermined time intervals under the same measurement conditions as at the installation of the apparatus, that is, the output of the detection wave and the rotation angle of the reflection means 20 are the same. The reception strength at each measurement time is measured, and the attenuation from the initial reception strength is determined. In this transmission and reception, since the detection wave transmits only the non-air permeable partition 41 and the air permeable partition 40, the reception intensity is attenuated according to the amount of dust attached to both the partitions 41 and 40 and the reflective surface 20a.

そして、減衰量が、予め設定した閾値以上になった時期を、通気性の隔壁40や非通気性の隔壁41や反射面20aへの粉塵の付着量が多く、交換時期や清掃時期が近いと判断し、交換時期や清掃時期の決定に反映させる。尚、閾値は、安全率を考慮して決定されるが、受信強度が初期受信強度の70%(減衰率で30%)程度が適当である。   When the amount of dust attached to the permeable partition 40, the non-permeable partition 41, and the reflective surface 20a is large when the attenuation amount becomes equal to or greater than the preset threshold, the replacement time and the cleaning time are near. Judge, reflect on the decision of replacement time and cleaning time. The threshold value is determined in consideration of the safety factor, but it is appropriate that the reception intensity is about 70% (30% in attenuation ratio) of the initial reception intensity.

また、図4に示すような構成の表面検出装置も知られている。尚、図4に示す表面検出装置は、特許文献2の図5に相当する。図示される表面検出装置は、高炉100の開口部101に、仕切弁110を介して耐圧容器120が設置されており、耐圧容器120の内部に反射手段20とアンテナ11とを対向配置するとともに、アンテナ11と反射手段20との間を、検出波を透過する材料からなる隔壁122で仕切っている。アンテナ11には、耐圧容器120の外部に導波管12を介して送受信手段10が接続しており、反射手段20はモータ70により回動される。送受信手段10からの検出波は、アンテナ11から送信され、反射手段20で反射されて開口部101を通じて高炉100の内部へと送られ(Ms)、装入物で反射された検出波(Mr)は反射手段20で反射されてアンテナ11で受信され、送受信手段10で検波される。その際、反射手段20をモータ70で回動させることにより、検出波Msが紙面の前後方向に振られて装入物の表面を走査する。尚、この表面面出装置では、検出波が耐圧容器120の内部を伝搬するため、耐圧容器120が伝搬部に相当する。   In addition, a surface detection apparatus having a configuration as shown in FIG. 4 is also known. The surface detection apparatus shown in FIG. 4 corresponds to FIG. 5 of Patent Document 2. In the illustrated surface detection apparatus, a pressure resistant container 120 is installed at the opening 101 of the blast furnace 100 via the gate valve 110, and the reflecting means 20 and the antenna 11 are disposed to face each other inside the pressure resistant container 120. The antenna 11 and the reflection means 20 are partitioned by a partition wall 122 made of a material that transmits the detection wave. The transmitting and receiving means 10 is connected to the antenna 11 via the waveguide 12 to the outside of the pressure resistant container 120, and the reflecting means 20 is rotated by the motor 70. The detection wave from the transmission / reception means 10 is transmitted from the antenna 11, reflected by the reflection means 20, transmitted through the opening 101 to the inside of the blast furnace 100 (Ms), and reflected by the charge (Mr) Are reflected by the reflecting means 20, received by the antenna 11, and detected by the transmitting / receiving means 10. At that time, by rotating the reflecting means 20 by the motor 70, the detection wave Ms is swung in the back and forth direction of the paper surface to scan the surface of the charge. In this surface surface projecting apparatus, since the detection wave propagates inside the pressure resistant container 120, the pressure resistant container 120 corresponds to a propagation portion.

また、耐圧容器120の反射手段20の収容部123には、ガス供給口50から不活性ガスが供給され、通気性耐熱ボード121から不活性ガスを噴出させて粉塵の耐圧容器120への侵入を防いでいる。しかし、通気性耐熱ボード121の目詰まりや、侵入した粉塵が隔壁122の反射手段側表面122aに付着するのを完全に防ぐことができず、検出波の受信強度を低下させる。   In addition, an inert gas is supplied from the gas supply port 50 to the housing portion 123 of the reflection means 20 of the pressure container 120, and the inert gas is ejected from the air-permeable heat resistant board 121 to infiltrate dust into the pressure container 120. I'm preventing. However, the clogging of the air-permeable heat-resistant board 121 and the invading dust can not be completely prevented from adhering to the reflection means side surface 122 a of the partition wall 122, and the reception intensity of the detection wave is reduced.

そこで、上記と同様に、反射手段20を回動させ、反射面20aを耐圧容器120の高炉100の開口部101以外の面(側面や天井面)に向けた状態で検出波の送受信を行う。そして、装置取り付け時の受信強度と比較し、その減衰量から通気性耐熱ボード121や隔壁122の反射手段側表面122aへの粉塵の付着状況を推察する。   Therefore, as described above, the reflection means 20 is rotated to transmit and receive detection waves in a state where the reflection surface 20a is directed to a surface (a side surface or a ceiling surface) of the blast furnace 100 other than the opening 101 of the blast furnace 100. And compared with the receiving intensity at the time of device attachment, the adhesion situation of dust on the reflecting means side surface 122a of the air-permeable heat resistant board 121 and the partition wall 122 is inferred from the attenuation amount.

このように、高炉100の炉外に設置された伝搬部(管体30や耐圧容器120)に検出波を伝搬させるとともに、検出波を反射手段20により炉内に送り送受信を行う方式の表面検出装置1であれば、装置取り付け時及び所定時間間隔で、高炉100の開口部101以外の伝搬部内壁との間で送受信を行うという簡単な操作により、検出波の伝搬経路に配置された非通気性の隔壁41や通気性の隔壁40、反射面20a、通気性耐熱ボード121、隔壁122等の部材への粉塵の付着状況を、装置を分解することなく正確に検知することができる。   As described above, surface detection of a method of transmitting the detection wave to the inside of the furnace by the reflection means 20 while transmitting the detection wave to the propagation part (the tube 30 and the pressure container 120) installed outside the furnace of the blast furnace 100. In the case of the device 1, the non-air flow arranged in the propagation path of the detection wave by the simple operation of performing transmission and reception with the inner wall of the propagation portion other than the opening 101 of the blast furnace 100 at the time of installation and at predetermined time intervals. It is possible to accurately detect the adhesion of dust to members such as the elastic partition 41, the permeable partition 40, the reflective surface 20a, the permeable heat resistant board 121, and the partition 122 without disassembling the apparatus.

尚、上記の表面検出装置は、反射面を1方向に回動させて検出波を装入物の表面を線状に走査する構成であるが、反射面を2方向に回動させて検出波を挿入物の表面を面状に走査する構成の表面検出装置においても、同様に、高炉の開口部以外の伝搬路内壁との間で送受信をするだけで、伝搬経路上に配置された部材への粉塵の付着状況を正確に検知することができる。   Although the above-mentioned surface detection device is configured to rotate the reflection surface in one direction to scan the detection wave linearly in the surface of the charge, the reflection surface is rotated in two directions to detect the detection wave. Also in the surface detection device configured to scan the surface of the insert in a planar manner, similarly, only by transmitting and receiving to and from the inner wall of the propagation path other than the opening of the blast furnace, Can accurately detect the adhesion of dust on

また、アンテナと反射板とを連結し、アンテナを検出波の伝搬軸を中心に回動させることにより、反射面も同方向に回動させる方式の表面検出装置にも適用可能である。このような表面検出装置でも、表面検出装置を高炉の外に設置し、高炉の開口部に通気性耐熱ボードを設置している。また、アンテナに円筒状の部材を取り付け、その先端の一部に反射板を固定して、円筒状の部材の開口を通気性の隔壁や非通気性の隔壁で塞ぐことも行われている。そのため、通気性耐熱ボードや両隔壁に粉塵が付着するため、上記と同様にしてアンテナを開口部以外の方向に向けて送受信を行い、その受信強度から付着状況を求めることができる。   The present invention can also be applied to a surface detection apparatus in which the reflection surface is also rotated in the same direction by connecting the antenna and the reflection plate and rotating the antenna around the propagation axis of the detection wave. Even in such a surface detection device, the surface detection device is installed outside the blast furnace, and the air-permeable heat-resistant board is installed at the opening of the blast furnace. Also, a cylindrical member is attached to the antenna, and a reflecting plate is fixed to a part of the tip, and the opening of the cylindrical member is closed with a permeable partition or a non-permeable partition. Therefore, dust adheres to the air-permeable heat-resistant board and both partition walls, so that the antenna can be directed to directions other than the opening in the same manner as described above, and the adhesion state can be determined from the reception intensity.

1 検出装置
10 送受信手段
11 アンテナ
12 導波管
20 反射手段
30 管体
40 通気性の隔壁
41 非通気性の隔壁
70 モータ
100 高炉
101 開口部
120 耐圧容器
121 通気性耐熱ボード
122 隔壁
Reference Signs List 1 detection device 10 transmitting / receiving means 11 antenna 12 waveguide 20 reflecting means 30 tube 40 air-permeable partition wall 41 non-air-permeable partition wall 70 motor 100 blast furnace 101 opening 120 pressure-resistant container 121 air-permeable heat resistant board 122 partition wall

Claims (1)

高炉の開口部に接続した伝搬部に送受信手段からの検出波を伝搬させるとともに、伝搬部内に設置した反射手段により開口部を通じて炉内に検出波を送り、炉内の装入物の表面で反射された検出波を反射手段で反射して伝搬部を伝搬させて送受信手段に送り、送受信手段で検波して装入物の表面までの距離や表面のプロフィールを検出する表面検出装置における、伝搬部の伝搬経路上に設置された部品への高炉内からの粉塵の付着状況を検知する方法であって、
表面検出装置の取り付け時に、反射手段の反射面を高炉の開口部以外の方向に向けて回動させて伝搬部の内壁との間で検出波の送受信を行い、初期受信強度を測定し、
所定時間間隔で、表面検出装置の取り付け時と同一の測定条件にて、それぞれの時期における受信強度を測定して初期受信強度からの減衰量を求め、
減衰量が予め設定した閾値以上になった時期を基に、伝搬経路上の部材の交換時期や清掃時期を決定することを特徴とする高炉内装入物の表面検出装置における粉塵付着状況の検知方法。
The detection wave from the transmitting and receiving means is propagated to the propagation part connected to the opening of the blast furnace, and the detection wave is sent into the furnace through the opening by the reflection means installed in the propagation part and reflected on the surface of the load in the furnace. Of the detected wave is reflected by the reflection means to propagate the propagation part and sent to the transmission / reception means, and the propagation part in the surface detection device for detecting the distance to the surface of the charge and the surface profile detected by the transmission / reception means A method of detecting the adhesion of dust from inside the blast furnace to components installed on the propagation path of
At the time of attachment of the surface detection device, the reflection surface of the reflection means is turned toward the direction other than the opening of the blast furnace to transmit and receive detection waves with the inner wall of the propagation part, and measure the initial reception intensity.
At predetermined time intervals, measure the reception intensity at each time under the same measurement conditions as when attaching the surface detection device to determine the attenuation from the initial reception intensity,
A method of detecting dust adhesion in a surface detection device for in-blast furnace charge characterized by determining replacement time and cleaning time of members on the propagation path based on the time when the attenuation amount becomes equal to or more than a preset threshold value. .
JP2015154230A 2015-08-04 2015-08-04 Method of detecting dust adhesion state in surface detection device of charge in blast furnace Active JP6533938B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015154230A JP6533938B2 (en) 2015-08-04 2015-08-04 Method of detecting dust adhesion state in surface detection device of charge in blast furnace
PCT/JP2016/072905 WO2017022818A1 (en) 2015-08-04 2016-08-04 Surface detection device and charging method of charged material into blast furnace and operating method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015154230A JP6533938B2 (en) 2015-08-04 2015-08-04 Method of detecting dust adhesion state in surface detection device of charge in blast furnace

Publications (2)

Publication Number Publication Date
JP2017032460A JP2017032460A (en) 2017-02-09
JP6533938B2 true JP6533938B2 (en) 2019-06-26

Family

ID=57988934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015154230A Active JP6533938B2 (en) 2015-08-04 2015-08-04 Method of detecting dust adhesion state in surface detection device of charge in blast furnace

Country Status (1)

Country Link
JP (1) JP6533938B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870346B2 (en) * 1992-03-23 1999-03-17 住友金属工業株式会社 Vertical furnace charge profile measuring method and measuring device
CN1405330A (en) * 2001-08-13 2003-03-26 宝山钢铁股份有限公司 Blast furnace top full-charge-level millimeter-wave three-dimensional imaging instrument
JP2009535647A (en) * 2006-05-01 2009-10-01 マサチューセッツ インスティテュート オブ テクノロジー Microwave detection for filter load determination
JP5628818B2 (en) * 2008-11-03 2014-11-19 レスリー ブロムバーグ, System and method for measuring holdings in filters
JP5391458B2 (en) * 2009-07-09 2014-01-15 株式会社ワイヤーデバイス Method and apparatus for measuring charge profile in blast furnace
JP5313794B2 (en) * 2009-07-13 2013-10-09 新日鉄住金エンジニアリング株式会社 High level detector and industrial furnace
TWI412598B (en) * 2010-02-05 2013-10-21 China Steel Corp Design method of standing blast furnace material
EP2929317B1 (en) * 2012-11-08 2018-01-10 Menn, Anatoly, Naftaly Device for monitoring fouling deposits in a pulverized coal furnace
JP6130234B2 (en) * 2012-11-12 2017-05-17 株式会社Wadeco Surface detection device for blast furnace interior
JP6261189B2 (en) * 2013-05-31 2018-01-17 古野電気株式会社 Radar apparatus and radar performance measurement method

Also Published As

Publication number Publication date
JP2017032460A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
WO2017164358A1 (en) Blast furnace charge-material surface detection device and detection method
JP6405362B2 (en) Method for charging and depositing charge in blast furnace, surface detection device for charge, and method for operating blast furnace
KR102087778B1 (en) Detection apparatus for detecting surface of substance loaded in blast furnace
JP5652735B2 (en) Coke oven coal level measurement device
CN104198003A (en) Ultrasonic flowmeter
JP2015172184A (en) Device for measuring charging level of coke oven
WO2017022818A1 (en) Surface detection device and charging method of charged material into blast furnace and operating method of blast furnace
JP2012237560A (en) Profile measurement apparatus for object charged into blast furnace
JP6533938B2 (en) Method of detecting dust adhesion state in surface detection device of charge in blast furnace
WO2018056171A1 (en) Surface detection device for blast furnace
JP5220690B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP2009097035A (en) Method for controlling position of lance, and lance device
CN107055037A (en) The intelligent detection equipment and slag remover of a kind of slag remover
JP2014133922A (en) Profile measurement apparatus for blast furnace charging material
CN104480295A (en) Transverse deviation detecting system for billet
JP2015219129A (en) Surface detection device for blast furnace charging material
JP2006214609A (en) Antenna for microwave and microwave level meter
JP4504090B2 (en) Microwave distance measuring device
JP6758643B2 (en) Adhesion state detection method of coal loading level measuring device
JP7315213B2 (en) object detector
JP6285813B2 (en) Crack detection method
JP2006257457A (en) Instrument for measuring raw material level in blast furnace
JP2015132580A (en) Measuring method and measuring apparatus of flow rate of powder flowing in pipe
JP2015025710A (en) Method for measuring profile of material inserted in blast furnace
KR101988753B1 (en) Apparatus for measuring thickness of refractory in furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190426

R150 Certificate of patent or registration of utility model

Ref document number: 6533938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250