JP2017048421A - Charge and deposition method of charging material to blast furnace, surface monitor of charging material and operation method of blast furnace - Google Patents

Charge and deposition method of charging material to blast furnace, surface monitor of charging material and operation method of blast furnace Download PDF

Info

Publication number
JP2017048421A
JP2017048421A JP2015172030A JP2015172030A JP2017048421A JP 2017048421 A JP2017048421 A JP 2017048421A JP 2015172030 A JP2015172030 A JP 2015172030A JP 2015172030 A JP2015172030 A JP 2015172030A JP 2017048421 A JP2017048421 A JP 2017048421A
Authority
JP
Japan
Prior art keywords
charge
blast furnace
waveguide
antenna
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015172030A
Other languages
Japanese (ja)
Other versions
JP6595265B2 (en
Inventor
早衛 萱野
Hayae Kayano
早衛 萱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wadeco Co Ltd
Original Assignee
Wadeco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wadeco Co Ltd filed Critical Wadeco Co Ltd
Priority to JP2015172030A priority Critical patent/JP6595265B2/en
Priority to PCT/JP2016/072905 priority patent/WO2017022818A1/en
Publication of JP2017048421A publication Critical patent/JP2017048421A/en
Application granted granted Critical
Publication of JP6595265B2 publication Critical patent/JP6595265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blast Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify an angle variable system of a reflector plate for two-dimensionally scanning transmission wave in a surface monitor for detecting a surface profile of a charging material as a plane, and to measure the surface profile more precisely and quickly.SOLUTION: A device configuration is simplified by connecting an antenna and a reflector plate with a connection component and operating to revolve to a same direction by a waveguide revolving means, and by making a structure such that a slant of the reflector plate to the antenna side and to a blast furnace side is conducted by the reflector plate slant means. Detection wave scans the surface of the charging material in a concentric or helical manner about an axis of the blast furnace.SELECTED DRAWING: Figure 1

Description

本発明は、マイクロ波やミリ波等の検出波を高炉内に送信し、炉内に装入された鉄鉱石やコークスで反射された検出波を受信して、装入物の表面プロフィールを検出する装置に関する。また、本発明は、高炉に装入される鉄鉱石やコークスの堆積プロフィールを制御する技術に関する。   The present invention transmits detection waves such as microwaves and millimeter waves into the blast furnace, receives detection waves reflected by iron ore and coke charged in the furnace, and detects the surface profile of the charge. It is related with the apparatus to do. The present invention also relates to a technique for controlling the deposition profile of iron ore and coke charged in a blast furnace.

高炉では、炉内に装入された鉄鉱石やコークスの表面プロフィールを検出するために、鉄鉱石やコークスの表面に検出波を送信し(送信波)、鉄鉱石やコークスで反射された検出波(反射波)を受信し、送信波と反射波との時間差等から鉄鉱石やコークスまでの距離や表面のプロフィールを検出することが行われている。尚、検出波としては、高温で使用でき、炉内の浮遊物や水蒸気等の影響を受けにくいことから、マイクロ波やミリ波が使用されている。   In the blast furnace, in order to detect the surface profile of iron ore and coke charged in the furnace, a detection wave is transmitted to the surface of the iron ore and coke (transmitted wave), and the detection wave reflected by the iron ore and coke. (Reflected wave) is received, and the distance to the iron ore and coke and the profile of the surface are detected from the time difference between the transmitted wave and the reflected wave. As the detection wave, a microwave or a millimeter wave is used because it can be used at a high temperature and is not easily affected by suspended matter or water vapor in the furnace.

表面検出装置として、例えば特許文献1では、図9に示すように、高炉6の内部に挿入されるランス1の先端開口近傍にアンテナ2を通じて、マイクロ波送受信手段3からのマイクロ波を炉内の装入物7(鉄鉱石7aまたはコークス7b)に向けて送信し、装入物7の表面で反射されたマイクロ波をアンテナ2で受信してマイクロ波送受信手段3で検波し、送信と受信との時間差から装入物7の表面までの距離を求めている。その際、ランス1を炉壁5から、高炉6の軸線4に向かって往復させることにより、装入物7の堆積プロフィールを求めている。装入物7の堆積状態は、図示されるように、高炉6の軸線4上が最も深く、炉壁5に向かって徐々に浅くなる逆釣鐘状を呈しており、走査位置毎に装入物7までの距離を測定することにより、装入物7の表面プロフィールを線状(2次元的)に検出することができる。   As a surface detection device, for example, in Patent Document 1, as shown in FIG. 9, the microwave from the microwave transmission / reception means 3 is passed through the antenna 2 near the tip opening of the lance 1 inserted into the blast furnace 6. Transmitting toward the charge 7 (iron ore 7a or coke 7b), receiving the microwave reflected by the surface of the charge 7 by the antenna 2, detecting it by the microwave transmitting / receiving means 3, and transmitting and receiving The distance to the surface of the charge 7 is obtained from the time difference between. At this time, the deposition profile of the charge 7 is obtained by reciprocating the lance 1 from the furnace wall 5 toward the axis 4 of the blast furnace 6. As shown in the figure, the accumulation state of the charge 7 is in the shape of a reverse bell that is deepest on the axis 4 of the blast furnace 6 and gradually becomes shallower toward the furnace wall 5. By measuring the distance to 7, the surface profile of the charge 7 can be detected linearly (two-dimensionally).

しかし、特許文献1の検出装置では、ランス1を平行移動するだけであるから、装入物7の表面プロフィールを線状にしか検出できない。また、ランス1は、炉の半径ほどの長尺物であり、自重により下方に垂れ下がって炉から抜けなくなったり、移動のためのストロークも長く炉外に大きなスペースが必要になる。更には、ランス1を移動するための駆動ユニットも必要になる。   However, since the detection apparatus of Patent Document 1 only moves the lance 1 in parallel, the surface profile of the charge 7 can be detected only in a linear shape. Further, the lance 1 is a long object about the radius of the furnace and hangs down by its own weight and cannot be removed from the furnace, or a long stroke for movement requires a large space outside the furnace. Furthermore, a drive unit for moving the lance 1 is also required.

そこで、本出願人は先に特許文献2において、図10に示すように、高炉6の炉頂付近に設けた開口部6aの直上に反射板120を配設し、反射板120と対向してアンテナ111を配設し、送受信手段110からの検出波Mをアンテナ111から送信して反射板120で反射して炉内に送り、炉内の装入物7(鉄鉱石7aやコークス7b)で反射された反射波を反射板120で反射して送受信手段110に送るとともに、反射板120に取り付けた角度可変機構(図示せず)により反射板120を互いに直交する2方向に回動させることにより、送信波を装入物7の表面を面状に走査させて、表面プロフィールを3次元的に検知する表面検出装置100を提案している。   In view of this, the present applicant previously arranged a reflector 120 immediately above the opening 6a provided near the top of the blast furnace 6 in Patent Document 2 as shown in FIG. An antenna 111 is provided, a detection wave M from the transmission / reception means 110 is transmitted from the antenna 111, reflected by the reflector 120, and sent to the furnace, and the charge 7 (iron ore 7a or coke 7b) in the furnace. By reflecting the reflected wave reflected by the reflecting plate 120 and sending it to the transmitting / receiving means 110, the reflecting plate 120 is rotated in two directions orthogonal to each other by an angle variable mechanism (not shown) attached to the reflecting plate 120. The surface detection device 100 is proposed that detects the surface profile in a three-dimensional manner by scanning the surface of the charge 7 in a plane shape with a transmission wave.

ところで、高炉を安定して操業するための重要な要因の1つに、炉内のガス流の分布がある。このガス流の分布は、鉄鉱石やコークスの堆積状況と密接な関係があり、通常は、実験によりガス流の分布が最適となる堆積状態、即ち堆積物の傾斜面の角度や、鉄鉱石の堆積層とコークスの堆積層との層厚比等が最適となるような理論堆積プロフィールを求め、実際の堆積状態が理論堆積プロフィールと合致するように大ベル(図9の符号8)やシュータ(図10の符号10)動作を制御している。   By the way, one of the important factors for stably operating the blast furnace is the distribution of gas flow in the furnace. This gas flow distribution is closely related to the iron ore and coke deposits, and usually the deposition state where the gas flow distribution is optimal by experiment, that is, the angle of the slope of the deposit, the iron ore A theoretical deposition profile is obtained so that the layer thickness ratio between the deposition layer and the coke deposition layer is optimal, and a large bell (reference numeral 8 in FIG. 9) or a shooter (so that the actual deposition state matches the theoretical deposition profile). Reference numeral 10 in FIG. 10) controls the operation.

そのため、表面プロフィールの測定をより正確に、かつ、迅速に行い、理論堆積プロフィールにより近くなるように装入作業を行うことが要求される。しかし、特許文献1の検出装置では、鉄鉱石7aやコークス7bの装入の際にランス1が障害物になるため、鉄鉱石7aまたはコークス7bを装入している間はランス1を炉外に引き抜く必要があり、一回の装入が完了するまでは鉄鉱石7aやコークス7bの堆積プロフィールを測定することができない。また、ランス1の往復にも時間がかかるため、迅速な測定ができない。更には、表面プロフィールを線状にしか検知できない。そのため、理論堆積プロフィールとの乖離が大きくなっている。   Therefore, it is required to carry out the charging operation so that the measurement of the surface profile is performed more accurately and quickly and closer to the theoretical deposition profile. However, in the detection device of Patent Document 1, since the lance 1 becomes an obstacle when the iron ore 7a and the coke 7b are charged, the lance 1 is removed from the furnace while the iron ore 7a or the coke 7b is charged. The deposition profile of the iron ore 7a and the coke 7b cannot be measured until one charge is completed. In addition, since the reciprocation of the lance 1 also takes time, quick measurement cannot be performed. Furthermore, the surface profile can only be detected linearly. For this reason, the deviation from the theoretical deposition profile is large.

また、特許文献2の表面検出装置も、角度可変機構において反射板120を2方向に回動させるため、装置構成及びその制御が複雑であり、回動動作の高速化に改善の余地がある。しかも、図10に示すように、表面検出装置100は、シュータ10を避けるために、高炉6の軸線Cからある程度離れて設置される。そのため、図示されるように、検出波Mは装入物7に対して斜め上方から送信され、炉頂から装入物7の表面を見ると、図11(A)、(B)に示すように、検出波Mは装入物7の表面では楕円状(点線)に走査する。そのため、同図(A)に示すように、楕円の外側に走査されない領域A(ハッチングで示す)が発生する。また、装入物7の全面を走査しようとすると、同図(B)に示すように、走査範囲(点線で示す)が装入物7よりも楕円状に広くなり、無駄なサンプリング領域B(ハッチングで示す)が発生して走査時間を浪費している。   Further, the surface detection device of Patent Document 2 also rotates the reflector 120 in two directions in the angle variable mechanism, so that the device configuration and its control are complicated, and there is room for improvement in speeding up the rotation operation. Moreover, as shown in FIG. 10, the surface detection device 100 is installed some distance away from the axis C of the blast furnace 6 in order to avoid the shooter 10. Therefore, as shown in the figure, the detection wave M is transmitted obliquely from above to the charge 7, and when the surface of the charge 7 is viewed from the top of the furnace, as shown in FIGS. 11 (A) and 11 (B). In addition, the detection wave M scans in an elliptical shape (dotted line) on the surface of the charge 7. Therefore, as shown in FIG. 6A, a region A (shown by hatching) that is not scanned outside the ellipse is generated. If the entire surface of the charge 7 is to be scanned, as shown in FIG. 5B, the scanning range (shown by a dotted line) becomes wider in an elliptical shape than the charge 7, and the useless sampling area B ( (Indicated by hatching) occurs and the scan time is wasted.

図12に示すように、例えば鉄鉱石7aを装入する場合、予め堆積している鉄鉱石7aの堆積プロフィールをP0とすると、シュータ10をV方向への回転角度θ1にて旋回させると、新たな鉄鉱石7aが堆積プロフィールP0の上に、シュータ10の回転角度θ1に応じた位置を起点として堆積されて新たな堆積プロフィールP1となる。次いで、シュータ10をV方向への回転角度θ2にて新たに旋回させると、新たな鉄鉱石7aが堆積プロフィールP1の上に、シュータ10の回転角度θ2に応じた位置を起点として堆積され、堆積プロフィールP2となる。このようなシュータ10の旋回ごとに堆積プロフィールは変化するため、より迅速な走査を行って理論堆積プロフィールと比較し、理論堆積プロフィールにより近づけるようにシュータ10の旋回様式を制御することが望まれる。   As shown in FIG. 12, for example, when the iron ore 7a is charged, if the deposition profile of the iron ore 7a deposited in advance is P0, the shooter 10 is rotated at the rotation angle θ1 in the V direction. A new iron ore 7a is deposited on the deposition profile P0 starting from a position corresponding to the rotation angle θ1 of the shooter 10 to form a new deposition profile P1. Next, when the shooter 10 is newly turned at a rotation angle θ2 in the V direction, a new iron ore 7a is deposited on the deposition profile P1 with a position corresponding to the rotation angle θ2 of the shooter 10 as a starting point. Profile P2. Since the deposition profile changes with each rotation of the shooter 10 as described above, it is desirable to control the rotation mode of the shooter 10 so as to be closer to the theoretical deposition profile by performing a faster scan and compare with the theoretical deposition profile.

特開平7−34107号公報JP-A-7-34107 特許第5391458号公報Japanese Patent No. 5391458

そこで本発明は、装入物の表面プロフィールを面状に検出する表面検出装置において、送信波を2次元的に走査するための反射板の角度可変機構を簡素化するとともに、表面プロフィールをより正確に、かつ、迅速に測定することを目的とする。   Therefore, the present invention simplifies the reflector angle changing mechanism for two-dimensionally scanning the transmission wave in the surface detection device for detecting the surface profile of the charge in a planar shape, and makes the surface profile more accurate. In addition, the purpose is to measure quickly.

上記課題を解決するために本発明は、下記に示す高炉における装入物の表面検出装置を提供する。
(1)高炉に設けた開口部を通じて、送受信手段からの検出波を炉内に送信し、炉内の装入物の表面で反射された検出波を、開口部を通じて送受信手段に送り、送受信手段にて受信して装入物の表面プロフィールを検出する装入物の表面検出装置において、
一端が送受信手段に接続し、他端にアンテナが取り付けられた導波管と、
導波管を、該導波管の軸線を中心に所定角度で回動させる導波管回動手段と、
高炉の開口部の直上に、アンテナと対向して配置される反射板と、
反射板傾斜手段とを備え、
導波管回動手段と反射板傾斜手段とを連動させて、導波管の回動とともに反射板を回動させるとともに、反射面を所定角度でアンテナ側または反アンテナ側に傾斜させ、
装入物の表面を、高炉の軸線を中心に同心円状または螺旋状に走査することを特徴とする装入物の表面検出装置。
(2)高炉に設けた開口部を通じて、送受信手段からの検出波を炉内に送信し、炉内の装入物の表面で反射された検出波を、開口部を通じて送受信手段に送り、送受信手段にて受信して装入物の表面プロフィールを検出する装入物の表面検出装置において、
一端が送受信手段に接続し、他端にアンテナが取り付けられた導波管と、
導波管を、該導波管の軸線を中心に所定角度で回動させる導波管回動手段と、
高炉の開口部の直上に、アンテナと対向して配置される反射板と、
アンテナと、反射板の直径両端に突設した支軸とを連結する連結部材と、
反射板傾斜手段とを備え、
導波管回動手段と反射板傾斜手段とを連動させて、導波管の回動とともに反射板を回動させるとともに、反射面を所定角度でアンテナ側または反アンテナ側に傾斜させ、
装入物の表面を、装入物の直径に相当する最長の線分を中心とし、最長の線分から離れるほど徐々に短くなる線分を平行に、かつ、各線分の両端同士を連結したときにほぼ円を描くように配置した軌跡に沿って走査することを特徴とする装入物の表面検出装置。
(3)シュータにより、鉄鉱石やコークス等の装入物を高炉の内部に装入し、堆積させる方法であって、
上記(1)または(2)記載の表面検出装置を備えるとともに、
検出波により装入物の表面を走査する送受信作業を、シュータの1旋回内もしくは所定旋回回数内に完了し、
シュータの旋回中または所定旋回毎に、装入物の表面プロフィールを測定して装入物を装入することを特徴とする高炉内への装入物の装入及び堆積方法。
(4)表面プロフィールを基に装入物の堆積プロフィールを求め、予め求めた理論堆積プロフィールと比較し、理論堆積プロフィールからの誤差を修正するようにシュータを制御して新たな装入物を装入することを特徴とする上記(3)記載の高炉への装入物の装入及び堆積方法。
(5)上記(3)または(4)に記載の方法により高炉内に装入物を装入し、堆積させて高炉を操業することを特徴とする高炉の操業方法。
In order to solve the above-mentioned problems, the present invention provides the following surface detection device for a charge in a blast furnace.
(1) The detection wave from the transmission / reception means is transmitted into the furnace through the opening provided in the blast furnace, and the detection wave reflected from the surface of the charge in the furnace is transmitted to the transmission / reception means through the opening, thereby transmitting / receiving means. In the charge surface detection device for detecting the surface profile of the charge received at
A waveguide having one end connected to the transmitting / receiving means and an antenna attached to the other end;
A waveguide rotating means for rotating the waveguide at a predetermined angle about the axis of the waveguide;
A reflector disposed directly above the opening of the blast furnace and facing the antenna;
A reflector tilting means,
The waveguide rotating means and the reflecting plate tilting means are interlocked to rotate the reflecting plate as the waveguide rotates, and the reflecting surface is tilted to the antenna side or the non-antenna side at a predetermined angle.
An apparatus for detecting a surface of a charge, wherein the surface of the charge is scanned concentrically or spirally about the axis of the blast furnace.
(2) The detection wave from the transmission / reception means is transmitted into the furnace through the opening provided in the blast furnace, and the detection wave reflected from the surface of the charge in the furnace is transmitted to the transmission / reception means through the opening, and the transmission / reception means In the charge surface detection device for detecting the surface profile of the charge received at
A waveguide having one end connected to the transmitting / receiving means and an antenna attached to the other end;
A waveguide rotating means for rotating the waveguide at a predetermined angle about the axis of the waveguide;
A reflector disposed directly above the opening of the blast furnace and facing the antenna;
A connecting member that connects the antenna and the support shaft protruding from both ends of the diameter of the reflector;
A reflector tilting means,
The waveguide rotating means and the reflecting plate tilting means are interlocked to rotate the reflecting plate as the waveguide rotates, and the reflecting surface is tilted to the antenna side or the non-antenna side at a predetermined angle.
When the surface of the charge is centered on the longest line segment corresponding to the diameter of the charge, the line segments that gradually become shorter as the distance from the longest line segment is parallel, and both ends of each line segment are connected A surface detection device for a charged object, characterized by scanning along a trajectory arranged so as to draw a substantially circular shape.
(3) A method of charging and depositing iron ore, coke and other charges into the blast furnace with a shooter,
While comprising the surface detection device according to (1) or (2) above,
The transmission / reception operation of scanning the surface of the charged object with the detection wave is completed within one or a predetermined number of turns of the shooter,
A method for charging and depositing a charge in a blast furnace, wherein the charge is charged by measuring a surface profile of the charge during turning of the shuter or at every predetermined turn.
(4) Obtain a deposit profile of the charge based on the surface profile, compare it with the previously determined theoretical deposition profile, and control the shooter to correct the error from the theoretical deposition profile and load a new charge. The method for charging and depositing a charge into a blast furnace as described in (3) above, wherein
(5) A method for operating a blast furnace, wherein the charge is charged into the blast furnace by the method described in (3) or (4) above, and the blast furnace is operated by being deposited.

本発明の表面検出装置において、反射板の角度可変機構は、導波管回動手段によりアンテナとともに反射板を回動させ、反射板のアンテナ側または高炉の開口部側への傾斜を別機構(反射板傾斜手段)で行う。そのため、特許文献2のように反射板を2方向に回動させる方式に比べて回動させるための装置や制御が大幅に簡素化されている。また、装入物の表面を、高炉の軸受を中心に同心円状、螺旋状または線状に走査するため、装入物の全表面を過不足なく走査することができ、より正確で、迅速な走査が可能になる。   In the surface detection apparatus of the present invention, the angle changing mechanism of the reflecting plate rotates the reflecting plate together with the antenna by the waveguide rotating means, and separates the tilt of the reflecting plate toward the antenna side or the opening side of the blast furnace. Reflector tilting means). Therefore, the apparatus and control for rotating the reflecting plate in two directions as in Patent Document 2 are greatly simplified. In addition, since the surface of the charge is scanned concentrically, spirally or linearly around the blast furnace bearing, the entire surface of the charge can be scanned without excess or deficiency, making it more accurate and quick. Scanning is possible.

そして、本発明の表面検出装置を用いることにより、シュータが一回転する間にも装入物の表面プロフィールを測定できるため、理論堆積プロフィールにより合致するように装入して最適な高炉操業を可能にする。   And by using the surface detection device of the present invention, the surface profile of the charge can be measured even during one rotation of the shooter, so that the optimum blast furnace operation can be performed by charging it so as to match the theoretical deposition profile. To.

本発明の表面検出装置を示す断面図である。It is sectional drawing which shows the surface detection apparatus of this invention. 図1に示した表面検出装置の詳細を示す断面図である。It is sectional drawing which shows the detail of the surface detection apparatus shown in FIG. 図1または図2に示した表面検出装置の反射板傾斜手段について、反射板の裏面側を示す上面図である。It is a top view which shows the back surface side of a reflecting plate about the reflecting plate inclination means of the surface detection apparatus shown in FIG. 1 or FIG. 本発明の表面検出装置における第1の走査方法を説明するための図である。It is a figure for demonstrating the 1st scanning method in the surface detection apparatus of this invention. 第1の走査方法において、反射板の回動角度を計算から求める方法について説明するための図である。It is a figure for demonstrating the method to obtain | require the rotation angle of a reflecting plate from calculation in a 1st scanning method. 本発明の表面検出装置における第2の走査方法を説明するための図である。It is a figure for demonstrating the 2nd scanning method in the surface detection apparatus of this invention. 第2の走査方法において、導波管及び反射板の回動方法を説明するための図である。It is a figure for demonstrating the rotation method of a waveguide and a reflecting plate in the 2nd scanning method. 本発明の表面検出装置における第3の走査方法を説明するための図である。It is a figure for demonstrating the 3rd scanning method in the surface detection apparatus of this invention. 特許文献1に記載の表面検出装置を示す断面図である。It is sectional drawing which shows the surface detection apparatus of patent document 1. 特許文献2に記載の表面検出装置を示す断面図である。It is sectional drawing which shows the surface detection apparatus of patent document 2. 特許文献2に記載の表面検出装置による走査範囲を示す模式図である。10 is a schematic diagram showing a scanning range by the surface detection device described in Patent Document 2. FIG. 鉄鉱石の堆積プロフィールを説明するための図である、It is a figure for demonstrating the deposition profile of an iron ore,

以下、図面を参照して本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は本発明の表面検出装置を示す図であり、図10に従い高炉6の断面に沿って示している。また、図2は図1に示した表面検出装置の詳細を示す断面図であり、図3は反射板傾斜手段について反射板の裏面側の構成を示す上面図である。   FIG. 1 is a view showing a surface detection apparatus according to the present invention, and is shown along a cross section of a blast furnace 6 according to FIG. 2 is a cross-sectional view showing details of the surface detection device shown in FIG. 1, and FIG. 3 is a top view showing a configuration of the back side of the reflector with respect to the reflector tilting means.

高炉6の炉頂には、鉄鉱石7aやコークス7bを装入するためのシュータ10が配設されており、シュータ10は矢印Rで示すように水平方向への旋回、及び矢印Vで示すように振り子運動を組み合わせた動きにより投下口11から鉄鉱石7aやコークス7bを炉内の所定位置に装入する。また、装入物7(鉄鉱石7aまたはコークス7b)の堆積プロフィールを測定するための表面検出装置100が、シュータ10の回転を避けるために、炉頂から側壁に連続する傾斜部に設けられた開口部6aに接続して炉外に設置される。   A shooter 10 for charging iron ore 7a and coke 7b is disposed at the top of the blast furnace 6, and the shooter 10 is turned in a horizontal direction as indicated by an arrow R and as indicated by an arrow V. Then, iron ore 7a and coke 7b are charged into a predetermined position in the furnace from the dropping port 11 by a motion combined with the pendulum motion. Moreover, in order to avoid rotation of the shooter 10, the surface detection apparatus 100 for measuring the deposition profile of the charge 7 (iron ore 7a or coke 7b) was provided in the inclined part which continued from the furnace top to the side wall. It is connected to the opening 6a and installed outside the furnace.

表面検出装置100は、検出波の送受信手段110に導波管112を通じて連結するアンテナ111と、反射板120とが対向して配置されており、反射板120の反射面120aが高炉6の開口部6aを向くように下方に傾斜している。尚、検出波としては、熱や炉内の水蒸気等の影響を受けにくいマイクロ波やミリ波を用いる。   In the surface detection device 100, an antenna 111 connected to a detection wave transmission / reception means 110 through a waveguide 112 and a reflection plate 120 are arranged to face each other, and a reflection surface 120 a of the reflection plate 120 is an opening of the blast furnace 6. It inclines below so that it may face 6a. As the detection wave, a microwave or a millimeter wave that is not easily affected by heat or water vapor in the furnace is used.

導波管112は、図中に矢印Xで示すように、導波管112の軸線を中心に時計回りまたは反時計回りに回動自在にする。回動させるには、モータ130によりモータ側ギア131を回転させ、その回転を導波管112に取り付けた導波管側ギア132に伝達する。尚、導波管112には送受信手段110が連結しており、この送受信手段110も導波管112の回動に伴って回動するが、導波管112と送受信手段110とをカプラー135等により分離することにより、送受信手段110は固定のままで、導波管112のみを回動させることもできる。   As indicated by an arrow X in the figure, the waveguide 112 is rotatable clockwise or counterclockwise about the axis of the waveguide 112. In order to rotate, the motor-side gear 131 is rotated by the motor 130, and the rotation is transmitted to the waveguide-side gear 132 attached to the waveguide 112. Note that a transmission / reception unit 110 is connected to the waveguide 112, and the transmission / reception unit 110 also rotates as the waveguide 112 rotates. However, the waveguide 112 and the transmission / reception unit 110 are coupled to each other by a coupler 135 or the like. Therefore, it is possible to rotate only the waveguide 112 while the transmission / reception means 110 remains fixed.

反射板120の直径両端には、ピン状の支軸121,121が突出して設けられている。また、アンテナ111の開口周縁のフランジ111aには筒状の連結部材115が取り付けられており、連結部材115から一対の支持部材117,117が導波管112の軸線と同一の水平位置にて反射板側に延出している。そして、支持部材117,117に反射板120の支軸121,121が支持される。これにより、図中に矢印Yで示すように、反射板120の反射面120aが、支軸121,121を中心にしてアンテナ側または開口部側に自在に回動する。また、導波管回動手段により導波管112の回動と同方向(矢印X方向)に回動する。   Pin-shaped support shafts 121, 121 are provided to protrude from both ends of the diameter of the reflecting plate 120. In addition, a cylindrical connecting member 115 is attached to the flange 111 a at the periphery of the opening of the antenna 111, and the pair of support members 117 and 117 are reflected from the connecting member 115 at the same horizontal position as the axis of the waveguide 112. It extends to the plate side. The support shafts 121 and 121 of the reflection plate 120 are supported by the support members 117 and 117. As a result, as indicated by an arrow Y in the figure, the reflecting surface 120a of the reflecting plate 120 freely rotates about the support shafts 121, 121 toward the antenna side or the opening side. Further, the waveguide is rotated in the same direction (arrow X direction) as the waveguide 112 is rotated by the waveguide rotating means.

また、反射板120の裏面(反射板120aとは反対側の面)には、反射面120aの中心部、またはその上下位置に取付片122が設けられており、取付片122にはシリンダ125のピストンロッド126の先端部に連結する棒状部材127が連結している。そして、シリンダ125を駆動することにより、ピストンロッド126が矢印Fのように前進(図中右側に移動)または後退(図中左側に移動)し、ピストンロッド126が前進したときには棒状部材127と連動して取付片122もアンテナ側に移動し、それに伴って反射面120aが高炉側を向くように反射板120を傾斜させる。一方、ピストンロッド126が後退したときには、取付片122を反アンテナ側に移動させ、それに伴って反射面120aがアンテナ側を向くように反射板120を傾斜させる。このようなリンク機構を備える反射板傾斜手段により、シリンダ125を駆動して、反射板120を支軸121,121を中心にして矢印Y方向に回動させる。それにより、マイクロ波またはミリ波は、Mで示すように図中左右方向に振られて炉内へと送られる。   Further, a mounting piece 122 is provided on the back surface of the reflecting plate 120 (the surface opposite to the reflecting plate 120a) at the center of the reflecting surface 120a or at a position above and below the reflecting plate 120a. A rod-shaped member 127 connected to the tip of the piston rod 126 is connected. Then, by driving the cylinder 125, the piston rod 126 moves forward (moves to the right in the figure) or moves backward (moves to the left in the figure) as indicated by the arrow F, and when the piston rod 126 moves forward, it interlocks with the rod-shaped member 127. Then, the attachment piece 122 also moves to the antenna side, and accordingly, the reflecting plate 120 is inclined so that the reflecting surface 120a faces the blast furnace side. On the other hand, when the piston rod 126 moves backward, the attachment piece 122 is moved to the side opposite to the antenna, and accordingly, the reflecting plate 120 is inclined so that the reflecting surface 120a faces the antenna side. The cylinder 125 is driven by the reflecting plate tilting means having such a link mechanism, and the reflecting plate 120 is rotated about the support shafts 121 and 121 in the arrow Y direction. Thereby, the microwave or the millimeter wave is shaken in the left-right direction in the figure as indicated by M and sent into the furnace.

このように、上記表面検出装置100によれば、導波管回動手段による回動と反射板傾斜手段におけるピストンロッドの前後運動との組み合わせにより、反射板120の反射面120aをX方向及びY方向に自在に回動させることができ、装入物7の表面を面状に走査することが可能になる。しかも、X方向への回動は導波管112を回動させるモータ130及びギア131,132で行い、Y方向への回動はシリンダ125で行うため、特許文献2のように、反射板120のX方向及びY方向への傾斜の制御を同時に行う場合に比べて装置構成及び制御が簡素になる。   As described above, according to the surface detection device 100, the reflection surface 120a of the reflection plate 120 is moved in the X direction and the Y direction by the combination of the rotation by the waveguide rotation means and the back and forth movement of the piston rod in the reflection plate inclination means. It can be freely rotated in the direction, and the surface of the charge 7 can be scanned in a planar shape. Moreover, since the rotation in the X direction is performed by the motor 130 and the gears 131 and 132 that rotate the waveguide 112, and the rotation in the Y direction is performed by the cylinder 125, the reflector 120 is disclosed in Patent Document 2. Compared with the case where the tilt control in the X direction and the Y direction is simultaneously performed, the apparatus configuration and control are simplified.

しかし、図1に示されるように、表面検出装置100の取り付け位置の関係で、マイクロ波やミリ波は装入物7に対して斜め上方から送信されるため、装入物7の表面では楕円状に走査することになる。   However, as shown in FIG. 1, because microwaves and millimeter waves are transmitted obliquely from above to the charge 7 due to the mounting position of the surface detection device 100, the surface of the charge 7 is elliptical. Will be scanned.

そこで、図4に示すように、導波管112の回動角度Xを0°で固定し、反射板120の回動角度Yを変えて装入物7の表面を線状に走査して、装入物7と高炉6の内壁とが接する位置から、装入物7の直径dを測定する。反射板120の回動角度Y(振り幅)を大きくすることにより走査する距離が長くなり、いずれ装入物7の外周端縁を超えて高炉6の内壁による反射波が検出され、その時に両端間の距離を装入物7の直径dと見做すことができる。そして、この直径dに相当する長さの線分Dを走査するために要する反射板120の回動角度Y(θ)、並びに回動起点及び回動終点を求める。 Therefore, as shown in FIG. 4, the rotation angle X of the waveguide 112 is fixed at 0 °, the rotation angle Y of the reflection plate 120 is changed, and the surface of the charge 7 is scanned linearly, The diameter d of the charge 7 is measured from the position where the charge 7 and the inner wall of the blast furnace 6 are in contact. Increasing the rotation angle Y (swing width) of the reflector 120 increases the scanning distance, and eventually the reflected wave by the inner wall of the blast furnace 6 is detected beyond the outer peripheral edge of the charge 7, The distance between them can be regarded as the diameter d of the charge 7. Then, the rotation angle Y (θ 0 ) of the reflection plate 120 required for scanning the line segment D 0 having a length corresponding to the diameter d, the rotation start point, and the rotation end point are obtained.

尚、反射板120は図中左右方向に振られ、高炉6の軸線Cを中心にしてその回動角度を右側を+側、左側を−側とすることができる。従って、回動起点は、例えば+a°、回動終点は−b°のように表される。   The reflecting plate 120 is swung in the left-right direction in the figure, and the rotation angle around the axis C of the blast furnace 6 can be set to the + side on the right side and the − side on the left side. Accordingly, the rotation starting point is expressed as + a °, and the rotation end point is expressed as -b °, for example.

次いで、導波管112の回動角度Xをどちらかの方向に、例えば+2°回動させ(図の例ではDの上方側を走査する)、反射板120の回動角度Yを変えて走査すると、走査の軌跡は、Dに対して距離Sだけ上方に平行移動した線状になる。その際に、装入物7が高炉6の内壁と接する両端を検出して両端間の距離を求め、その距離に相当する長さの線分Dを走査するのに要する反射板120の回動角度Y(θ)、並びに回動起点と回動終点とを求める。 Next, the rotation angle X of the waveguide 112 is rotated in either direction, for example, + 2 ° (in the example in the figure, the upper side of D 0 is scanned), and the rotation angle Y of the reflection plate 120 is changed. When scanning is performed, the trajectory of scanning becomes a linear shape that is translated upward by a distance S 2 with respect to D 0 . At that time, obtains a distance between both ends by detecting both ends of charge 7 is in contact with the inner wall of the blast furnace 6, the reflecting plate 120 times required to scan the length of the line segment D 2 which corresponds to the distance The moving angle Y (θ 2 ) and the rotation start point and rotation end point are obtained.

同様にして、導波管112の回動角度Xを大きくして、その回動角度Xごとに反射板120を回動させて装入物7が高炉6の内壁とする位置からその両端間の距離を求め、、その距離に相当する長さの線分Dを走査するのに要する反射板120の回動角度Y(θ)、並びに回動起点と回動終点とを求める。 Similarly, the rotation angle X of the waveguide 112 is increased, and the reflecting plate 120 is rotated for each rotation angle Xn , so that the charge 7 becomes the inner wall of the blast furnace 6 between the both ends thereof. , And the rotation angle Y (θ n ) of the reflection plate 120 required for scanning the line segment D n having a length corresponding to the distance, and the rotation start point and the rotation end point are determined.

上記から、装入物7の直径dに相当する長さの線分Dを中心とし、そこからの平行移動量(S・・・S)が大きくなるのに従って、線分長さが徐々に短くなる複数の線分(D・・・D)が平行に配置した軌跡が得られる。この軌跡は、線分の両端同士を連結すると、丁度、装入物7の円周にほぼ沿った円形になる。 From the above, with the line segment D 0 having a length corresponding to the diameter d of the charge 7 as the center, as the amount of parallel movement (S 2 ... S n ) increases, the line segment length increases. A trajectory in which a plurality of line segments (D 2 ... D n ) gradually shortening are arranged in parallel is obtained. When the two ends of the line segment are connected to each other, the locus becomes a circle substantially along the circumference of the charge 7.

そして、これら導波管112の回動角度Xと、反射板120の回動角度Y及び回動起点と回動終点との関係を、装入物7の直径dごとにマップ化しておく。そして、実際の走査に際して、回動角度Xを0°として反射板120を回動させて装入物7の直径dを測定し、その後、測定して得られた直径dに相当する長さの線分に対応するテーブルを基に、回動角度Xを増しながら、反射板120を回動させる。これにより、装入物7の円周の内側部分を無駄なく走査することができる。   The relationship between the rotation angle X of the waveguide 112, the rotation angle Y of the reflection plate 120, the rotation start point, and the rotation end point is mapped for each diameter d of the charge 7. In actual scanning, the reflecting plate 120 is rotated by setting the rotation angle X to 0 ° to measure the diameter d of the charge 7, and then the length corresponding to the diameter d obtained by the measurement is obtained. Based on the table corresponding to the line segment, the reflecting plate 120 is rotated while the rotation angle X is increased. Thereby, the inner part of the circumference of the charge 7 can be scanned without waste.

尚、走査に際して、Dに沿って図の右側から左側に走査したときには(矢印F)、Dを走査する際に図中の左側端部から走査する(矢印R)。このように、隣接する線分ごとに走査方向を逆向きにすることにより、走査時間を短縮することができる。 Note that when scanning, when scanned from the right side of the figure along the D 0 to the left to scan from the left end in the drawing when scanning (arrow F), D 2 (arrow R). Thus, the scanning time can be shortened by reversing the scanning direction for each adjacent line segment.

また、上記では、導波管112の回動角度Xを固定し、反射板120の回動角度Yを変化させたが、反射板120の回動角度Yを固定し、導波管112の方を回動させてもよい。この場合は、線分D、D・・Dは、図中、Y=0°の線と平行に縦方向に並んだ状態となる。 In the above description, the rotation angle X of the waveguide 112 is fixed and the rotation angle Y of the reflection plate 120 is changed. However, the rotation angle Y of the reflection plate 120 is fixed and the waveguide 112 May be rotated. In this case, the line segments D 0 , D 2 ... D n are aligned in the vertical direction in parallel with the line of Y = 0 ° in the drawing.

上記では導波管112の回動角度Xと、反射板120の回動角度Yとの関係を測定により求めているが、下記のように計算して求めることもできる。   In the above description, the relationship between the rotation angle X of the waveguide 112 and the rotation angle Y of the reflecting plate 120 is obtained by measurement, but it can also be obtained by calculation as follows.

図5に高炉6の断面図を示すが、反射板120の中心をA、装入物7の外周端部と高炉6の内壁との接点をHa,Hbとするとき、検出波のAからHaまでの距離aと、AからHbまでの距離bと、線分Dとの間で三角形が形成される。装入物7の直径dは、HaとHbとを含む平面上にあるから、装入物7の直径dを上記のように測定して求めると、高炉6の設計仕様からHa,Hbが決まる。反射板120の中心Aは、表面検出装置100の設置位置で決まるため、aとbも幾何学的に決められる。また、装入物7の直径dは、線分Dの長さに相当する。従って、a、b及び線分Dの長さがそれぞれ既知となり、線分Dに対する反射板120の回動角度Y(θ)が幾何学的に算出される。 FIG. 5 shows a cross-sectional view of the blast furnace 6, where A is the center of the reflector 120, and Ha and Hb are the contact points between the outer peripheral end of the charge 7 and the inner wall of the blast furnace 6. and the distance a to the distance b from a to Hb, triangles are formed between the line segment D 0. Since the diameter d of the charge 7 is on a plane including Ha and Hb, when the diameter d of the charge 7 is measured as described above, Ha and Hb are determined from the design specifications of the blast furnace 6. . Since the center A of the reflector 120 is determined by the installation position of the surface detection device 100, a and b are also determined geometrically. The diameter d of the charge 7 corresponds to the length of the line segment D 0. Therefore, the lengths of a, b and the line segment D 0 are known, and the rotation angle Y (θ 0 ) of the reflector 120 with respect to the line segment D 0 is calculated geometrically.

また、装入物7の円周は、線分Dの長さから決まるため、線分Dと平行で、線分Dに相当する同円の円周上で対向する2点が求められる。この2点が新たなHaとHbに相当し、それぞれをHa、Hbとする。反射板120の中心Aは固定であるから、AからHaまでの距離aと、AからHbまでの距離bが求められる。そして、線分Dの長さ、a及びbから、反射板120の回動角度Y(θ)が算出される。以下、同様にして線分Dの長さ、Ha、Hbが求められ、その時々の反射板120の回動角度Y(θ)が算出され、マップ化しておく。 Further, the circumference of the charge 7, because determined by the length of the line segment D 0, parallel to the line segment D 0, 2 points opposing on the circumference of the same circle which corresponds to the line segment D 2 is determined It is done. These two points correspond to new Ha and Hb, which are referred to as Ha 2 and Hb 2 , respectively. Since the center A of the reflecting plate 120 is fixed, and the distance a 2 from A to Ha 2, the distance b 2 from A to Hb 2 is determined. Then, the rotation angle Y (θ 2 ) of the reflecting plate 120 is calculated from the length of the line segment D 2 , a 2 and b 2 . Hereinafter, similarly to the length of the line segment D n, Ha n, Hb n is determined, the occasional reflector plates 120 pivot angle Y (θ n) is calculated in advance and mapped.

このように、装入物7の堆積位置(Ha、Hb)を測定するだけで、装入物7の直径dに相当する線分Dの長さ、並びに線分Dから平行移動した各線分ごとに反射板120の回動角度Yを算出することができる、そして、この計算結果を基にして装入物7の表面を走査する。 As described above, the length of the line segment D 0 corresponding to the diameter d of the charge 7 and each line translated from the line segment D 0 are obtained only by measuring the deposition position (Ha, Hb) of the charge 7. The rotation angle Y of the reflecting plate 120 can be calculated every minute, and the surface of the charge 7 is scanned based on the calculation result.

上記以外にも、装入物7の表面を、高炉6の軸線Cを中心として同心円状(図6)または螺旋状(図8)に走査することもできる。   In addition to the above, the surface of the charge 7 can be scanned concentrically (FIG. 6) or spirally (FIG. 8) around the axis C of the blast furnace 6.

図6において、(A)は高炉6の上面から装入物7を見た図であり、表面検出装置100の導波管112の軸線に沿った方向をY軸、このY軸と直交する方向をX軸としている。また、図6(B)はX軸方向から見た断面図であり、図6(C)はY軸方向から見た断面図である。図6(A)に示すように、装入物7の高炉6の内壁と接する位置、即ち装入物7の円周に沿って1回目の走査Sを行う。走査は、導波管112の回動角度X=0°の点Xaを起点とし、反射板120の最大回動角度に相当するYb方向へと進んで一周する軌跡を辿る。円に沿って走査するには、導波管112の回動角度Xと、反射板120の回動角度Yとを同時に制御する。 6A is a view of the charge 7 seen from the upper surface of the blast furnace 6. The direction along the axis of the waveguide 112 of the surface detection device 100 is the Y axis, and the direction orthogonal to the Y axis. Is the X axis. 6B is a cross-sectional view seen from the X-axis direction, and FIG. 6C is a cross-sectional view seen from the Y-axis direction. As shown in FIG. 6A, the first scan S 1 is performed along the position of the charge 7 in contact with the inner wall of the blast furnace 6, that is, along the circumference of the charge 7. The scanning starts from a point Xa where the rotation angle X of the waveguide 112 is 0, and proceeds in the Yb direction corresponding to the maximum rotation angle of the reflection plate 120 and follows a trajectory. To scan along the circle, the rotation angle X of the waveguide 112 and the rotation angle Y of the reflector 120 are controlled simultaneously.

図7(A)に示すように、ある円C上の点Fの座標(x、y)は、中心Cと点Fとを結ぶ直線KとX軸とがなす角度をαとするとき、x=kcosα、y=ksinαで表される。kは直線Kの長さである。即ち、導波管112についてはcos波に従って回動角度Xを制御し、反射板120についてはsin波に従って回動角度Yを制御することができる。 As shown in FIG. 7A, the coordinates (x, y) of the point F on a certain circle C F are expressed as follows: α is the angle formed by the straight line K connecting the center C and the point F and the X axis. x = k cos α, y = k sin α. k is the length of the straight line K. That is, the rotation angle X of the waveguide 112 can be controlled according to the cosine wave, and the rotation angle Y of the reflector 120 can be controlled according to the sine wave.

図7(B)は、経過時間(T)による上記波形の変化状況を示す図であり、実線は導波管112の回動角度X、点線は反射板120の回動角度Yの経時変化を示している。即ち、導波管112の回動角度Xを示す波形W(実線)と、反射板120の回動角度Yを示す波形W(点線)とは、90°位相がずれて重なる。 FIG. 7B is a diagram showing a change state of the waveform according to the elapsed time (T). A solid line indicates a change in the rotation angle X of the waveguide 112 and a dotted line indicates a change in the rotation angle Y of the reflector 120 with time. Show. That is, the waveform W X (solid line) indicating the rotation angle X of the waveguide 112 and the waveform W Y (dotted line) indicating the rotation angle Y of the reflecting plate 120 overlap each other with a 90 ° phase shift.

図7(B)に示す波形では、回動角度X、Yの変化速度が一定であるが、図6(C)に示すように、表面検出装置100が高炉6の斜面部分に設置されているため、導波管112を回動させた際に、反射板120からXaまでの距離と、Xbまでの距離とが異なり、図7(B)に示す回動角度Xの変化が一定である波形Wに従って導波管112を回動させても、図7(A)に示すような円形に走査することはできない。そこで、上記した平行配置された線分を走査する場合のように、マイクロ波やミリ波の傾斜を基に補正する必要がある。 In the waveform shown in FIG. 7B, the changing speeds of the rotation angles X and Y are constant, but as shown in FIG. 6C, the surface detection device 100 is installed on the slope portion of the blast furnace 6. Therefore, when the waveguide 112 is rotated, the distance from the reflecting plate 120 to Xa is different from the distance to Xb, and the change in the rotation angle X shown in FIG. 7B is constant. even when the waveguide 112 is rotated in accordance with W X, it can not be scanned in a circle as shown in FIG. 7 (a). Therefore, it is necessary to correct based on the inclination of the microwave and the millimeter wave as in the case of scanning the line segments arranged in parallel.

そこで、装入物7の表面で円を描くような、回動角度Xの変化速度(波の傾斜)が時間(T)で異なる波形W´を測定から求めるか、計算から求める。 Therefore, a waveform W X ′ in which the change speed (wave slope) of the rotation angle X differs in time (T), such as drawing a circle on the surface of the charge 7, is obtained from measurement or obtained from calculation.

また、反射板120については、図6(B)に示すように、回動角度Yは高炉6の軸線Cに対して対称であり、図7(B)に点線で示す波形Wをそのまま利用する。 As for the reflector 120, as shown in FIG. 6B, the rotation angle Y is symmetric with respect to the axis C of the blast furnace 6, and the waveform W Y shown by the dotted line in FIG. 7B is used as it is. To do.

そして、走査Sに対する、回動角度Xに関する補正した波形W´と、回動角度Yに関する波形とを記憶しておく。 Then, the corrected waveform W X ′ related to the rotation angle X and the waveform related to the rotation angle Y for the scan S 1 are stored.

1回目の走査Sの終了後に、それより小径側にて2回目の走査Sを行う。図7(A)に示すように、αが同じで、円Cよりも小径の円C上の点Gは、直線Kの長さが短くなっただけであり、図7(B)において振幅kが小さくなった波形に相当する。そして、走査Sと同様にして、振幅がkよりも小さい振幅kであり、かつ、回動角度Xを補正した波形WX2´を求め、振幅kであり、かつ、位相変化がWと同じである波形WY2を記憶する。 After the first scan S 1 completed, the second scan S 2 at it from the small diameter side. As shown in FIG. 7 (A), alpha is the same, the point G on the circle C F diameter of the circle C G than merely shortened the length of the straight line K, in FIG. 7 (B) This corresponds to a waveform with a reduced amplitude k. In the same manner as the scan S 1, the amplitude is small amplitude k 1 than k, and obtains the waveform W X2 'obtained by correcting the rotational angle X, the amplitude k 1, and the phase change is W A waveform W Y2 that is the same as Y is stored.

以下、円周ごとに、回動角度Xについて補正した波形を求めてマップ化する。そして、この場合も、導波管112の回動角度を0°とし、反射板120を最大角度で走査して装入物7の直径dを求め、直径dに対応するテーブルを基に導波管112及び反射板120の各回動角度X、Yをそれぞれの波形に沿って制御することにより、同心円状に走査することができる。   Hereinafter, for each circumference, a waveform corrected for the rotation angle X is obtained and mapped. Also in this case, the rotation angle of the waveguide 112 is set to 0 °, the reflector 120 is scanned at the maximum angle to obtain the diameter d of the charge 7, and the waveguide is guided based on the table corresponding to the diameter d. By controlling the rotation angles X and Y of the tube 112 and the reflecting plate 120 along the respective waveforms, it is possible to scan concentrically.

図8は、装入物7の表面を高炉6の軸線Cを中心にした螺旋に沿って走査する場合を示しているが、この場合も導波管112及び反射板120を、螺旋の方程式に従って同時に回動させる。その際、マイクロ波やミリ波の傾斜を考慮して、導波管112の回動速度を補正する。尚、螺旋の起点は導波管112の回動角度Xが0°の位置であり、螺旋の動径が徐々に縮まるように装入物7の円周から軸線Cに向かって走査する。   FIG. 8 shows the case where the surface of the charge 7 is scanned along a helix centered on the axis C of the blast furnace 6. In this case as well, the waveguide 112 and the reflector 120 are moved according to the helix equation. Rotate simultaneously. At that time, the rotation speed of the waveguide 112 is corrected in consideration of the inclination of the microwave and the millimeter wave. Note that the starting point of the spiral is a position where the rotation angle X of the waveguide 112 is 0 °, and scanning is performed from the circumference of the charge 7 toward the axis C so that the radius of the spiral is gradually reduced.

そして、装入物7の反射板120からの高さごとに導波管112及び反射板120の回動角度X、Yをマップ化しておき、測定に際して装入物7の反射板120からの高さを測定し、直径に則した導波管112及び反射板120の回動様式にて走査を行う。   Then, the rotation angles X and Y of the waveguide 112 and the reflector 120 are mapped for each height of the charge 7 from the reflector 120, and the height of the charge 7 from the reflector 120 is measured in the measurement. The thickness is measured, and scanning is performed in a rotation manner of the waveguide 112 and the reflecting plate 120 according to the diameter.

上記した走査方法によれば、図11(B)に示したような無駄な領域Bでの走査が無くなくなり、走査時間を大幅に短縮することができる。その結果、図12に示したように、鉄鉱石7aやコークス7bの堆積状態を細かく検出することかでき、シュータ10の旋回を理論堆積プロフィールにより合致させるように制御することができ、高炉6の操業を安定して行うことができる。   According to the scanning method described above, there is no need to scan in the useless region B as shown in FIG. 11B, and the scanning time can be greatly shortened. As a result, as shown in FIG. 12, the accumulation state of the iron ore 7a and the coke 7b can be detected in detail, and the rotation of the shooter 10 can be controlled so as to match the theoretical deposition profile. Operation can be performed stably.

また、図11(A)に示したような、走査されない領域Aが発生することもない。   Further, the non-scanned area A as shown in FIG. 11A does not occur.

上記の表面検出装置は、種々の変更が可能である。図2に示すように、アンテナ111をレンズ付ホーンアンテナにしてもよい。レンズ113は、セラミックスやガラス、フッ素樹脂等の誘電体からなる半凸状体であり、ホーンアンテナからのマイクロ波やミリ波を収束して送信することができ、ホーンアンテナのホーン長さを短くして、装置を小型化することができる。また、図示は省略するが、アンテナ111として、パラボラアンテナを用いることもできる。   Various modifications can be made to the surface detection device. As shown in FIG. 2, the antenna 111 may be a horn antenna with a lens. The lens 113 is a semi-convex body made of a dielectric material such as ceramics, glass, or fluorine resin, and can converge and transmit microwaves and millimeter waves from the horn antenna, and shorten the horn length of the horn antenna. Thus, the apparatus can be reduced in size. Although illustration is omitted, a parabolic antenna can be used as the antenna 111.

また、高炉6からは、開口部6aを通じて粉塵や高温のガスが装置内部に侵入する。そこで、図2に示すように、連結部材115の開口部を、検出波を透過する材料からなる通気性のフィルタ140で覆う。このフィルタ140として、例えば宇部興産(株)製の「チラノ繊維」からなる織物を用いることができる。このチラノ繊維は、シリコン、チタン、ジルコニウム、炭素及び酸素からなるセラミック繊維であり、これを面状に編んだものは、耐熱性の通気材料となる。   Further, dust and high-temperature gas enter the apparatus from the blast furnace 6 through the opening 6a. Therefore, as shown in FIG. 2, the opening of the connecting member 115 is covered with a breathable filter 140 made of a material that transmits the detection wave. As the filter 140, for example, a woven fabric made of “Tyranno fiber” manufactured by Ube Industries, Ltd. can be used. The Tyranno fiber is a ceramic fiber made of silicon, titanium, zirconium, carbon, and oxygen, and the one knitted into a planar shape becomes a heat-resistant ventilation material.

更に、連結部材115のフィルタ140とアンテナ111との間の適所に、空気等の気体や粉塵等の固体を透過せず、検出波を透過する材料からなる耐熱性の非通気性隔壁145を配設し、フィルタ140とアンテナ111との間の空間を区画してもよい。この非通気性隔壁145は、例えばセラミックボードとすることができる。非通気性隔壁145により、高炉6からの熱を遮断することができる。   Further, a heat-resistant air-impermeable partition wall 145 made of a material that does not transmit a gas such as air or a solid such as dust but transmits a detection wave is disposed at an appropriate position between the filter 140 of the connecting member 115 and the antenna 111. And a space between the filter 140 and the antenna 111 may be partitioned. This non-breathable partition wall 145 may be a ceramic board, for example. The non-breathable partition wall 145 can block heat from the blast furnace 6.

そして、反射板120、フィルタ140、非通気性隔壁145及びアンテナ111を耐圧容器150に収容するとともに、ガス供給口151を通じて耐圧容器150に高圧の不活性ガス(例えば窒素ガス)を供給する。連結部材115には、フィルタ側に傾斜している通気孔116が複数形成されており、ガス供給口151は、この連結部材115の直上付近に設けられる。導波管112を回動させると、それに伴って連結部材115も回動し、通気孔116がガス供給口151に到達すると、ガス供給口151からの不活性ガスが通気孔116を通じてフィルタ140に向かって噴出され、フィルタ140に付着した炉内からの粉塵を払い落とすことができる。また、不活性ガスは、フィルタ140を透過して反射板120の反射面120aにも到達するため、反射面120aに付着した粉塵も払い落とすことができる。   The reflector 120, the filter 140, the air-impermeable partition wall 145, and the antenna 111 are housed in the pressure resistant container 150, and a high-pressure inert gas (for example, nitrogen gas) is supplied to the pressure resistant container 150 through the gas supply port 151. The connecting member 115 is formed with a plurality of air holes 116 that are inclined toward the filter, and the gas supply port 151 is provided in the vicinity immediately above the connecting member 115. When the waveguide 112 is rotated, the connecting member 115 is also rotated accordingly, and when the vent hole 116 reaches the gas supply port 151, the inert gas from the gas supply port 151 enters the filter 140 through the vent hole 116. The dust from the inside of the furnace ejected toward the filter and attached to the filter 140 can be removed. Further, since the inert gas passes through the filter 140 and reaches the reflecting surface 120a of the reflecting plate 120, dust attached to the reflecting surface 120a can be removed.

一方、連結部材115の通気孔116がガス供給口151の付近に無い場合は、がス供給口151からの不活性ガスは耐圧容器150と連結部材115との隙間に供給されるため、この隙間への粉塵の侵入を防いだり、この隙間に侵入した粉塵を除去することができる。   On the other hand, when the vent hole 116 of the connecting member 115 is not in the vicinity of the gas supply port 151, the inert gas from the gas supply port 151 is supplied to the gap between the pressure-resistant vessel 150 and the connecting member 115. It is possible to prevent the dust from entering the dust or to remove the dust that has entered the gap.

このように、連結部材115の回動に伴って、通気孔116がガス供給口151に到達したり、ガス供給口151から離間することを繰り返すことにより、不活性ガスの流れも変わり、連結部材115も振動し、その振動がフィルタ140にも伝わる。そして、この振動によってもフィルタ140に付着している粉塵が払い落とされる。更には、反射板120が正逆方向に回動するたびに、モータ側ギア131及び導波管側ギア132が反対方向に切り替えられるため、そのときの振動が導波管112を通じてアンテナ111、連結部材115、更にはフィルタ140へと伝わり、フィルタ140に付着している粉塵が振動により振い落とされる。   As described above, as the connecting member 115 rotates, the flow of the inert gas is also changed by repeatedly reaching the gas supply port 151 or being separated from the gas supply port 151, thereby changing the flow of the inert gas. 115 also vibrates, and the vibration is also transmitted to the filter 140. The dust adhering to the filter 140 is also removed by this vibration. Furthermore, each time the reflector 120 rotates in the forward and reverse directions, the motor side gear 131 and the waveguide side gear 132 are switched in opposite directions, so that the vibration at that time is connected to the antenna 111 through the waveguide 112. The dust that is transmitted to the member 115 and further to the filter 140 and adheres to the filter 140 is shaken off by vibration.

上記のように非通気性隔壁145により高炉6からの熱を遮断しているが、断熱をより確実にするために、アンテナ111と導波管112との連結部、あるいは導波管112の送受信手段110により近い位置に、フッ素樹脂やセラミックス等の検出波を透過する材料からなる栓部材160を挿入してもよい。   As described above, the heat from the blast furnace 6 is cut off by the non-breathable partition wall 145. However, in order to further insulate the heat, the connecting portion between the antenna 111 and the waveguide 112 or the transmission / reception of the waveguide 112 is performed. You may insert the plug member 160 which consists of material which permeate | transmits a detection wave, such as a fluororesin and ceramics, in the position nearer to the means 110.

また、開口部6aが広く、ピストンロッド126や棒状部材127が露出しているため、炉内から吹き上がった鉄鉱石7aやコークス7bがこれらに直接衝突する。そこで、反射板120の裏面全体を追うような金属製のカバー170を付設し、測定しない間はアンテナ111や反射板120とともに180°回転させてカバー170を開口部側に移動してピストンロッド126や棒状部材127、反射板120を炉内からの鉄鉱石7aやコークス7bの衝突からの防御や、粉塵の侵入を防ぐこともできる。   Further, since the opening 6a is wide and the piston rod 126 and the rod-shaped member 127 are exposed, the iron ore 7a and coke 7b blown up from the furnace directly collide with them. Therefore, a metal cover 170 that follows the entire back surface of the reflecting plate 120 is attached, and while not being measured, the cover 170 is rotated 180 ° together with the antenna 111 and the reflecting plate 120 to move the cover 170 to the opening side, and the piston rod 126. It is also possible to prevent the rod-shaped member 127 and the reflector 120 from colliding with the iron ore 7a and coke 7b from the inside of the furnace, and to prevent dust from entering.

その他にも、図示は省略するが、耐圧容器150の反射板120及びフィルタ140の直上部分を開口して窓を設け、非測定時に、導波管112及び反射板120を180°回動させて反射面120a及びフィルタ140を窓に対面させることにより、反射面120a及びフィルタ140の粉塵付着状況を観察することができる。上記のように、反射面120aやフィルタ140は不活性ガスや振動により付着した粉塵を除去することができるが、除去が不十分なことがあり、窓を通じて粉塵の付着状況を観察し、粉塵の除去が必要な場合は窓を開放して清掃作業を行うことができる。   In addition, although illustration is omitted, a window is provided by opening a portion directly above the reflection plate 120 and the filter 140 of the pressure vessel 150, and when not measuring, the waveguide 112 and the reflection plate 120 are rotated 180 °. By making the reflective surface 120a and the filter 140 face the window, it is possible to observe the dust adhesion state of the reflective surface 120a and the filter 140. As described above, the reflective surface 120a and the filter 140 can remove dust adhering to inert gas or vibration, but the removal may be insufficient, and the dust adhesion state is observed through the window. If removal is necessary, the window can be opened for cleaning.

このように、非測定時に導波管112及び反射板120を180°回動させることにより、反射板120の裏面(反射面120aとは反対側の面)が高炉6の開口部6aと対向するため、高炉6から吹き上げられた鉄鉱石やコークスが開口部6aを通じて装置内に飛来してきても、反射板120の裏面に当り、フィルタ140を破壊することもない。   In this way, by rotating the waveguide 112 and the reflection plate 120 by 180 ° during non-measurement, the back surface of the reflection plate 120 (surface opposite to the reflection surface 120a) faces the opening 6a of the blast furnace 6. Therefore, even if iron ore or coke blown up from the blast furnace 6 comes into the apparatus through the opening 6a, it does not hit the back surface of the reflector 120 and destroy the filter 140.

また、高炉6の開口部6aと表面検出装置100との間、例えば、耐圧容器150の連結部152に仕切弁を設け、測定時には開状態とし、非測定時には閉状態とするともできる。   In addition, a gate valve may be provided between the opening 6a of the blast furnace 6 and the surface detection device 100, for example, at the connecting portion 152 of the pressure vessel 150, and may be opened during measurement and closed during non-measurement.

6 高炉
7 装入物
7a 鉄鉱石
7b コークス
10 シュータ
100 表面検出装置
110 送受信手段
111 アンテナ
112 導波管
115 連結部材
117 支持部材
120 反射板
121 支軸
122 取付片
125 シリンダ
126 ピストンロッド
127 棒状部材
130 モータ
131 モータ側ギア
132 導波管側ギア
140 フィルタ
145 非通気性隔壁
150 耐圧容器
152 連結部
6 Blast Furnace 7 Charge 7a Iron Ore 7b Coke 10 Shuter 100 Surface Detection Device 110 Transmitting / Receiving Means 111 Antenna 112 Waveguide 115 Connection Member 117 Support Member 120 Reflector Plate 121 Supporting Shaft 122 Mounting Piece 125 Cylinder 126 Piston Rod 127 Rod-shaped Member 130 Motor 131 Motor side gear 132 Waveguide side gear 140 Filter 145 Non-air-permeable partition wall 150 Pressure-resistant container 152 Connecting part

Claims (5)

高炉に設けた開口部を通じて、送受信手段からの検出波を炉内に送信し、炉内の装入物の表面で反射された検出波を、開口部を通じて送受信手段に送り、送受信手段にて受信して装入物の表面プロフィールを検出する装入物の表面検出装置において、
一端が送受信手段に接続し、他端にアンテナが取り付けられた導波管と、
導波管を、該導波管の軸線を中心に所定角度で回動させる導波管回動手段と、
高炉の開口部の直上に、アンテナと対向して配置される反射板と、
反射板傾斜手段とを備え、
導波管回動手段と反射板傾斜手段とを連動させて、導波管の回動とともに反射板を回動させるとともに、反射面を所定角度でアンテナ側または反アンテナ側に傾斜させ、
装入物の表面を、高炉の軸線を中心に同心円状または螺旋状に走査することを特徴とする装入物の表面検出装置。
The detection wave from the transmission / reception means is transmitted into the furnace through the opening provided in the blast furnace, and the detection wave reflected by the surface of the charge in the furnace is transmitted to the transmission / reception means through the opening and received by the transmission / reception means. In the charge surface detection device for detecting the charge surface profile,
A waveguide having one end connected to the transmitting / receiving means and an antenna attached to the other end;
A waveguide rotating means for rotating the waveguide at a predetermined angle about the axis of the waveguide;
A reflector disposed directly above the opening of the blast furnace and facing the antenna;
A reflector tilting means,
The waveguide rotating means and the reflecting plate tilting means are interlocked to rotate the reflecting plate as the waveguide rotates, and the reflecting surface is tilted to the antenna side or the non-antenna side at a predetermined angle.
An apparatus for detecting a surface of a charge, wherein the surface of the charge is scanned concentrically or spirally about the axis of the blast furnace.
高炉に設けた開口部を通じて、送受信手段からの検出波を炉内に送信し、炉内の装入物の表面で反射された検出波を、開口部を通じて送受信手段に送り、送受信手段にて受信して装入物の表面プロフィールを検出する装入物の表面検出装置において、
一端が送受信手段に接続し、他端にアンテナが取り付けられた導波管と、
導波管を、該導波管の軸線を中心に所定角度で回動させる導波管回動手段と、
高炉の開口部の直上に、アンテナと対向して配置される反射板と、
アンテナと、反射板の直径両端に突設した支軸とを連結する連結部材と、
反射板傾斜手段とを備え、
導波管回動手段と反射板傾斜手段とを連動させて、導波管の回動とともに反射板を回動させるとともに、反射面を所定角度でアンテナ側または反アンテナ側に傾斜させ、
装入物の表面を、装入物の直径に相当する最長の線分を中心とし、最長の線分から離れるほど徐々に短くなる線分を平行に、かつ、各線分の両端同士を連結したときにほぼ円を描くように配置した軌跡に沿って走査することを特徴とする装入物の表面検出装置。
The detection wave from the transmission / reception means is transmitted into the furnace through the opening provided in the blast furnace, and the detection wave reflected by the surface of the charge in the furnace is transmitted to the transmission / reception means through the opening and received by the transmission / reception means. In the charge surface detection device for detecting the charge surface profile,
A waveguide having one end connected to the transmitting / receiving means and an antenna attached to the other end;
A waveguide rotating means for rotating the waveguide at a predetermined angle about the axis of the waveguide;
A reflector disposed directly above the opening of the blast furnace and facing the antenna;
A connecting member that connects the antenna and the support shaft protruding from both ends of the diameter of the reflector;
A reflector tilting means,
The waveguide rotating means and the reflecting plate tilting means are interlocked to rotate the reflecting plate as the waveguide rotates, and the reflecting surface is tilted to the antenna side or the non-antenna side at a predetermined angle.
When the surface of the charge is centered on the longest line segment corresponding to the diameter of the charge, the line segments that gradually become shorter as the distance from the longest line segment is parallel, and both ends of each line segment are connected A surface detection device for a charged object, characterized by scanning along a trajectory arranged so as to draw a substantially circular shape.
シュータにより、鉄鉱石やコークス等の装入物を高炉の内部に装入し、堆積させる方法であって、
請求項1または2記載の表面検出装置を備えるとともに、
検出波により装入物の表面を走査する送受信作業を、シュータの1旋回内もしくは所定旋回回数内に完了し、
シュータの旋回中または所定旋回毎に、装入物の表面プロフィールを測定して装入物を装入することを特徴とする高炉内への装入物の装入及び堆積方法。
A method of charging and depositing iron ore, coke and other charges into a blast furnace with a shuta,
While comprising the surface detection device according to claim 1 or 2,
The transmission / reception operation of scanning the surface of the charged object with the detection wave is completed within one or a predetermined number of turns of the shooter,
A method for charging and depositing a charge in a blast furnace, wherein the charge is charged by measuring a surface profile of the charge during turning of the shuter or at every predetermined turn.
表面プロフィールを基に装入物の堆積プロフィールを求め、予め求めた理論堆積プロフィールと比較し、理論堆積プロフィールからの誤差を修正するようにシュータを制御して新たな装入物を装入することを特徴とする請求項3記載の高炉への装入物の装入及び堆積方法。   Determining the charge deposit profile based on the surface profile, comparing it to the previously determined theoretical deposit profile, and charging the new charge by controlling the shooter to correct the error from the theoretical deposit profile. The method for charging and depositing a charge into a blast furnace according to claim 3. 請求項3または4に記載の方法により高炉内に装入物を装入し、堆積させて高炉を操業することを特徴とする高炉の操業方法。   A method for operating a blast furnace, comprising charging a charge into a blast furnace by the method according to claim 3 or 4 and depositing the charge to operate the blast furnace.
JP2015172030A 2015-08-04 2015-09-01 Method for charging and depositing charge in blast furnace, surface detection device for charge, and method for operating blast furnace Active JP6595265B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015172030A JP6595265B2 (en) 2015-09-01 2015-09-01 Method for charging and depositing charge in blast furnace, surface detection device for charge, and method for operating blast furnace
PCT/JP2016/072905 WO2017022818A1 (en) 2015-08-04 2016-08-04 Surface detection device and charging method of charged material into blast furnace and operating method of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015172030A JP6595265B2 (en) 2015-09-01 2015-09-01 Method for charging and depositing charge in blast furnace, surface detection device for charge, and method for operating blast furnace

Publications (2)

Publication Number Publication Date
JP2017048421A true JP2017048421A (en) 2017-03-09
JP6595265B2 JP6595265B2 (en) 2019-10-23

Family

ID=58280872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015172030A Active JP6595265B2 (en) 2015-08-04 2015-09-01 Method for charging and depositing charge in blast furnace, surface detection device for charge, and method for operating blast furnace

Country Status (1)

Country Link
JP (1) JP6595265B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164358A1 (en) * 2016-03-25 2017-09-28 株式会社Wadeco Blast furnace charge-material surface detection device and detection method
CN112313346A (en) * 2019-05-31 2021-02-02 株式会社Wadeco Surface profile detection device for blast furnace contents and operation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125359A (en) * 1976-04-14 1977-10-21 Ishikawajima Harima Heavy Ind Method of measuring level distribution of charging materials in vertical furnace
JPH0611328A (en) * 1992-03-23 1994-01-21 Sumitomo Metal Ind Ltd Method and instrument for measuring profile of charge in shaft furnace
JP5391458B2 (en) * 2009-07-09 2014-01-15 株式会社ワイヤーデバイス Method and apparatus for measuring charge profile in blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125359A (en) * 1976-04-14 1977-10-21 Ishikawajima Harima Heavy Ind Method of measuring level distribution of charging materials in vertical furnace
JPH0611328A (en) * 1992-03-23 1994-01-21 Sumitomo Metal Ind Ltd Method and instrument for measuring profile of charge in shaft furnace
JP5391458B2 (en) * 2009-07-09 2014-01-15 株式会社ワイヤーデバイス Method and apparatus for measuring charge profile in blast furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164358A1 (en) * 2016-03-25 2017-09-28 株式会社Wadeco Blast furnace charge-material surface detection device and detection method
CN112313346A (en) * 2019-05-31 2021-02-02 株式会社Wadeco Surface profile detection device for blast furnace contents and operation method
JP6857933B1 (en) * 2019-05-31 2021-04-14 株式会社Wadeco Surface profile detection device and operation method for blast furnace interior inclusions
CN112313346B (en) * 2019-05-31 2022-09-06 株式会社Wadeco Surface profile detection device for blast furnace contents and operation method
EP3978633A4 (en) * 2019-05-31 2023-06-28 Wadeco Co., Ltd. Surface profile detection device for blast furnace charge and operation method
US11891672B2 (en) 2019-05-31 2024-02-06 Wadeco Co., Ltd. Surface profile detection apparatus of burden in blast furnace and operation method comprising an angle fixed reflection plate to transmit the detection wave from an antenna to the reflection surface of an angle variable reflection plate

Also Published As

Publication number Publication date
JP6595265B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6405362B2 (en) Method for charging and depositing charge in blast furnace, surface detection device for charge, and method for operating blast furnace
JP5577525B2 (en) Method for charging and depositing charge in blast furnace and method for operating blast furnace
JP6573323B2 (en) Surface detection apparatus and detection method for blast furnace charge
WO2017022818A1 (en) Surface detection device and charging method of charged material into blast furnace and operating method of blast furnace
JP6857933B1 (en) Surface profile detection device and operation method for blast furnace interior inclusions
WO2019168139A1 (en) Surface detection device for charged material in blast furnace
JP6595265B2 (en) Method for charging and depositing charge in blast furnace, surface detection device for charge, and method for operating blast furnace
JP6669907B2 (en) Coking furnace coal level measurement method
JP7017753B2 (en) Surface profile detection device and operation method of the charge
KR102421754B1 (en) Surface detection device for blast furnace
JP4383313B2 (en) Method and apparatus for measuring surface shape of blast furnace interior
JP2023181865A (en) In-blast furnace insert surface profile measurement apparatus and measurement method, and blast furnace operation method
JP2015219129A (en) Surface detection device for blast furnace charging material
JP7294741B1 (en) Charge surface profile detection device and operating method
JP7055355B2 (en) How to charge and deposit the charged material in the blast furnace, and how to operate the blast furnace
JP2022152972A (en) Detection method of surface profile of burden in blast furnace and object detection device therefor, and operation method of blast furnace
JP2021172877A (en) Surface detection device and surface profile detection method of blast furnace charged materials, and operation method of blast furnace
JP2022179120A (en) Surface profile detection device for charged material in blast furnace
JP2017128783A (en) Display method of blast furnace profile meter and charging method of charging material to blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190926

R150 Certificate of patent or registration of utility model

Ref document number: 6595265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250