JP7017753B2 - Surface profile detection device and operation method of the charge - Google Patents

Surface profile detection device and operation method of the charge Download PDF

Info

Publication number
JP7017753B2
JP7017753B2 JP2017233551A JP2017233551A JP7017753B2 JP 7017753 B2 JP7017753 B2 JP 7017753B2 JP 2017233551 A JP2017233551 A JP 2017233551A JP 2017233551 A JP2017233551 A JP 2017233551A JP 7017753 B2 JP7017753 B2 JP 7017753B2
Authority
JP
Japan
Prior art keywords
charge
surface profile
detection device
wave
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017233551A
Other languages
Japanese (ja)
Other versions
JP2019100648A (en
Inventor
早衛 萱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wadeco Co Ltd
Original Assignee
Wadeco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wadeco Co Ltd filed Critical Wadeco Co Ltd
Priority to JP2017233551A priority Critical patent/JP7017753B2/en
Publication of JP2019100648A publication Critical patent/JP2019100648A/en
Application granted granted Critical
Publication of JP7017753B2 publication Critical patent/JP7017753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、高炉内の鉄鉱石やコークス、溶融炉内の金属類、焼却炉内のごみ類、ホッパー内の穀物等の貯蔵物(以下、まとめて「装入物」ともいう。)の表面プロフィールを検出する検出装置に関する。また、本発明は、これら装入物の表面プロフィールを基に、装入物を補給して安定な操業を行う方法に関する。 INDUSTRIAL APPLICABILITY According to the present invention, the surface of a storage material such as iron ore and coke in a blast furnace, metals in a melting furnace, garbage in an incinerator, and grains in a hopper (hereinafter collectively referred to as “charged material”). Regarding a detection device that detects a profile. Further, the present invention relates to a method of replenishing the charged material and performing stable operation based on the surface profile of the charged material.

例えば高炉では、鉄鉱石やコークスの堆積状態を適正にして、炉内のガスの流れを安定させることにより、燃料費低減や炉体の長寿命化が可能となる。適正な堆積状態を得るためには、これら装入物の表面プロフィールを短時間で正確に測定し、予め求めておいた理論的な堆積状態となるように装入物を補給する必要がある。表面プロフィールの測定方法として従来では、図9に示すように、炉壁1を貫通して炉内に挿入されるランス10の先端に装着したアンテナ11から装入物20の表面に向けて検出波M1を発射し、装入物20の表面からの反射検出波M2をアンテナ11で受信し、ミキシングして得られるビート波の周波数により、アンテナ11から装入物20の表面までの距離を測定する方法が一般的であり、ランス10を移動させながら測定することにより装入物20の表面プロフィールを求めている。 For example, in a blast furnace, fuel costs can be reduced and the life of the furnace body can be extended by optimizing the deposition state of iron ore and coke and stabilizing the gas flow in the furnace. In order to obtain an appropriate deposition state, it is necessary to accurately measure the surface profile of these charges in a short time and replenish the charges so that the theoretical deposition state obtained in advance is obtained. Conventionally, as a method for measuring the surface profile, as shown in FIG. 9, a detection wave is detected from an antenna 11 attached to the tip of a lance 10 inserted into the furnace through the furnace wall 1 toward the surface of the charge 20. M1 is emitted, the reflection detection wave M2 from the surface of the charge 20 is received by the antenna 11, and the distance from the antenna 11 to the surface of the charge 20 is measured by the frequency of the beat wave obtained by mixing. The method is common, and the surface profile of the charge 20 is obtained by measuring while moving the lance 10.

しかしながら、上記のランス式検出装置では、ランス10が直線状に移動するため、装入物20の線状の表面プロフィール、即ち2次元の表面プロフィールしか得られない。また、ランス10は炉の内径ほどの長さが必要であり、高荷重になるため、炉内に長く挿入しておくと自重により垂れ下がって炉から抜けなくなり、移動の際にもストロークも大きいため、炉外に大きなスペースが必要になる。更に、ランス10を移動させるための駆動ユニットが別途必要であり、設備費や運転コストが高くなる。加えて、装入物の補給に際してランス10が邪魔になるため、プロフィール測定中に装入物を補給することができず、測定した表面プロファイルに応じた迅速な装入操作ができない。 However, in the above-mentioned lance type detection device, since the lance 10 moves linearly, only a linear surface profile of the charge 20, that is, a two-dimensional surface profile can be obtained. In addition, the lance 10 needs to be as long as the inner diameter of the furnace and has a high load, so if it is inserted for a long time in the furnace, it will hang down due to its own weight and will not come out of the furnace, and the stroke will be large when moving. , A large space is required outside the furnace. Further, a drive unit for moving the lance 10 is required separately, which increases the equipment cost and the operating cost. In addition, since the lance 10 interferes with the replenishment of the charged material, the charged material cannot be replenished during the profile measurement, and the quick charging operation according to the measured surface profile cannot be performed.

そこで本出願人は、図10に示すように、 検出波送受信手段31のアンテナ32と、反射板33とを対向配置した検出装置30を提案している。この検出装置30では、反射板33が、高炉1の炉内側への傾斜角度Xが可変であり、更には、アンテナ32の開口部の中心を通るアンテナ軸線を中心にした回動角度Yも可変であり、傾斜角度Xと回動角度Yとを制御することにより、図中符号Mで示す検出波は、装入物20の表面を同心円状、あるいは螺旋状に走査することができ、3次元表面プロフィールを検出することができる。しかも、反射板33の傾斜角度X及び回動角度Yを高速で可変できるため、短時間で測定可能である。 Therefore, as shown in FIG. 10, the applicant proposes a detection device 30 in which the antenna 32 of the detection wave transmission / reception means 31 and the reflector 33 are arranged to face each other. In this detection device 30, the reflector 33 has a variable tilt angle X toward the inside of the blast furnace 1, and further, a variable rotation angle Y about the antenna axis passing through the center of the opening of the antenna 32. By controlling the tilt angle X and the rotation angle Y, the detection wave indicated by the reference numeral M in the figure can scan the surface of the charge 20 concentrically or spirally, and is three-dimensional. The surface profile can be detected. Moreover, since the inclination angle X and the rotation angle Y of the reflector 33 can be changed at high speed, the measurement can be performed in a short time.

特許第5391458号公報Japanese Patent No. 5391458

しかしながら、特許文献1に記載された検出装置30では、傾斜角度Xと回動角度Yとを同時に、かつ、正確に、高速で制御しなければならず、傾斜角度X及び回動角度Yの制御に用いる反射板33の駆動装置や制御装置への負担も大きい。 However, in the detection device 30 described in Patent Document 1, the tilt angle X and the rotation angle Y must be controlled simultaneously, accurately and at high speed, and the tilt angle X and the rotation angle Y are controlled. The burden on the drive device and control device of the reflector 33 used for the above is also large.

そこで本発明は、反射板並びにその駆動装置や制御装置を備えることなく、簡易な装置構成でありながらも、装入物の表面プロフィールを3次元的に検出できる検出装置を提供することを目的とする。 Therefore, it is an object of the present invention to provide a detection device capable of three-dimensionally detecting the surface profile of an object, even though it has a simple device configuration, without providing a reflector and a drive device or control device thereof. do.

上記課題を解決するために本発明は、下記の装入物の表面プロフィール検出装置及び操業方法を提供する。
(1)容器の頂部近傍の開口から、容器内の装入物の表面に向けて検出波を送信し、前記装入物の表面で反射された前記検出波を受信して前記装入物の表面プロフィールを検出する検出装置において、
前記検出波の発振及び検波を行うための送受信器と、前記送受信器ごとに接続するアンテナとを備える1つまたは複数の送受信手段と、
前記アンテナを前記開口に向けて取り付けた回転板と、
前記回転板の中心に取り付けられた回転軸と、
前記回転軸を、その軸線を中心に回動させるための駆動源とを備えるとともに、
前記回転板を回動させながら前記送受信手段による送受信を行い、前記装入物の表面を円に沿って線状に走査することを特徴とする装入物の表面プロフィール検出装置。
(2)前記アンテナの軸線と、前記回転軸の軸線との交差角度が可変であることを特徴とする上記(1)記載の装入物の表面プロフィール検出装置。
(3)前記送受信器が複数であり、それぞれ異なる前記スリットに取り付けられており、前記検出波による前記装入物の表面を走査する走査円の直径が互いに異なっていることを特徴とする上記(1)または(2)記載の装入物の表面プロフィール検出装置。
(4)前記送受信器が複数で、それぞれ前記アンテナにて同時に検出波の送受信を行うことを特徴とする上記(1)~(3)の何れか1項に記載の装入物の表面プロフィール検出装置。
)前記送受信手段が無線信号伝送器と接続しており、送受信情報を無線により外部と通信することを特徴とする上記(1)~()の何れか1項に記載の装入物の表面プロフィール検出装置。
)前記検出波が、マイクロ波またはミリ波であることを特徴とする上記(1)~()の何れか1項に記載の装入物の表面プロフィール検出装置。
)前記開口と前記回転板との空間に、前記開口及び前記回転板の両方に対向する反射板を、配置したことを特徴とする上記(1)~()の何れか1項に記載の装入物の表面プロフィール検出装置。
)前記容器が高炉、溶融炉、焼却炉またはホッパーであることを特徴とする上記(1)~()の何れか1項に記載の装入物の表面プロフィール検出装置。
)上記(1)~()の何れか1項に記載の装入物の表面プロフィール検出装置を用いて装入物の表面プロフィールを測定し、前記表面プロフィールを基に前記装入物を補給することを特徴とする操業方法。
尚、以降において装入物の表面プロフィール検出装置を「検出装置」と略称することがある。
In order to solve the above problems, the present invention provides the following surface profile detection device and operation method for the charged material.
(1) A detection wave is transmitted from an opening near the top of the container toward the surface of the charge in the container, and the detection wave reflected on the surface of the charge is received and the charge is received. In a detector that detects a surface profile
A transmitter / receiver for oscillating and detecting the detected wave, and one or more transmitter / receiver means including an antenna connected to each transmitter / receiver.
A rotating plate with the antenna attached toward the opening, and
The rotating shaft attached to the center of the rotating plate and
The rotation axis is provided with a drive source for rotating the axis around the axis, and is provided with a drive source.
A device for detecting a surface profile of a charge, which transmits and receives by the transmission / reception means while rotating the rotating plate, and scans the surface of the charge linearly along a circle.
(2) The surface profile detection device for a charge according to (1) above, wherein the crossing angle between the axis of the antenna and the axis of the rotation axis is variable.
(3) The above-mentioned (3), wherein the transmitter / receiver is a plurality of transmitters / receivers, each of which is attached to a different slit, and the diameters of scanning circles scanning the surface of the charged object by the detected wave are different from each other (3). The surface profile detection device for the charge according to 1) or (2).
(4) The surface profile of the charge according to any one of (1) to (3) above, wherein the transmitter / receiver has a plurality of transmitters / receivers, and the detection waves are simultaneously transmitted / received by the respective antennas . Detection device.
( 5 ) The charge according to any one of (1) to ( 4 ) above, wherein the transmission / reception means is connected to a wireless signal transmitter and the transmission / reception information is wirelessly communicated with the outside. Surface profile detector.
( 6 ) The surface profile detection device for a charge according to any one of (1) to ( 5 ) above, wherein the detection wave is a microwave or a millimeter wave.
( 7 ) In any one of the above (1) to ( 6 ), wherein a reflector facing both the opening and the rotating plate is arranged in the space between the opening and the rotating plate. The surface profile detector for the described charge.
( 8 ) The surface profile detection device for a charge according to any one of (1) to ( 7 ) above, wherein the container is a blast furnace, a melting furnace, an incinerator or a hopper.
( 9 ) The surface profile of the charge is measured using the surface profile detection device of the charge according to any one of (1) to ( 8 ) above, and the charge is based on the surface profile. An operating method characterized by replenishing.
Hereinafter, the surface profile detection device of the charged material may be abbreviated as "detection device".

本発明によれば、簡易な装置構成でありながらも、装入物の表面プロフィールを3次元的に検出できる検出装置が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, there is provided a detection device capable of three-dimensionally detecting the surface profile of an object, even though it has a simple device configuration.

本発明の検出装置の第1実施形態を示す概略図である。It is a schematic diagram which shows the 1st Embodiment of the detection apparatus of this invention. 図1のAA矢視図である。It is an arrow view of AA of FIG. 図1の検出装置による検出波の装入物表面での走査様式を示す図である。It is a figure which shows the scanning mode of the detection wave on the charge surface by the detection device of FIG. 回転板の他の例を示す断面図である。It is sectional drawing which shows the other example of a rotating plate. 本発明の検出装置の第2実施形態を、図1に従って示す概略図である。It is the schematic which shows the 2nd Embodiment of the detection apparatus of this invention according to FIG. 図5のAA矢視図である。FIG. 5 is an arrow view of AA in FIG. 図5の検出装置による検出波の装入物表面での走査様式を、図3に従って示す図である。It is a figure which shows the scanning mode of the detection wave on the charge surface by the detection device of FIG. 5 according to FIG. 本発明の検出装置の第3実施形態を示す概略図である。It is a schematic diagram which shows the 3rd Embodiment of the detection apparatus of this invention. 従来のランス式検出装置を示す概略図である。It is a schematic diagram which shows the conventional lance type detection apparatus. 特許文献1の検出装置を示す概略図である。It is a schematic diagram which shows the detection apparatus of Patent Document 1. FIG.

以下、本発明に関して図面を参照して詳細に説明するが、ここでは高炉を例にして説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings, but here, a blast furnace will be described as an example.

(第1実施形態)
図1は本発明の検出装置を、高炉1の軸線に沿って示す概略断面図であり、図2は図1のAA矢視図である。高炉1には、装入物である鉄鉱石とコークスとが、交互に層をなして堆積している。
(First Embodiment)
FIG. 1 is a schematic cross-sectional view showing the detection device of the present invention along the axis of the blast furnace 1, and FIG. 2 is a view taken along the line AA of FIG. In the blast furnace 1, iron ore and coke, which are charged materials, are alternately deposited in layers.

本発明の検出装置は、送受信手段100と、送受信手段100を取り付けた回転板120と、回転板120を回動させるための駆動源130とを備えており、高炉1の炉頂近傍の開口2に設置される。 The detection device of the present invention includes a transmission / reception means 100, a rotary plate 120 to which the transmission / reception means 100 is attached, and a drive source 130 for rotating the rotary plate 120. Will be installed in.

回転板120は、図2に示すように円板であり、その中心に駆動源130の回転軸131が取り付けられている。回転軸131は、その軸線を中心にして駆動源130により図中矢印Rで示すように回動し、それに伴って回転板120も同方向に、回転軸131を中心に回動する。また、回転軸131にはエンコーダ140が連結しており、回転軸131の回動角度がエンコーダ140により検出される。 As shown in FIG. 2, the rotary plate 120 is a disk, and the rotary shaft 131 of the drive source 130 is attached to the center thereof. The rotary shaft 131 is rotated around the axis by the drive source 130 as shown by an arrow R in the figure, and the rotary plate 120 is rotated in the same direction with respect to the rotary shaft 131. Further, the encoder 140 is connected to the rotary shaft 131, and the rotary angle of the rotary shaft 131 is detected by the encoder 140.

送受信手段100は、検出波Mの発振及び検波を行うための送受信器101と、送受信器101に接続するアンテナ102とを備えており、アンテナ102を高炉1の開口2に向けて回転板120のスリット121(図2参照)に取り付けられている。尚、図示の例では、送受信器101とアンテナ102とが直結しているが、送受信器101を回転板120の板上適所に配置し、導波管や同軸ケーブルでアンテナ102と接続してもよい。 The transmission / reception means 100 includes a transmitter / receiver 101 for oscillating and detecting the detection wave M, and an antenna 102 connected to the transceiver 101, and the antenna 102 is directed toward the opening 2 of the blast furnace 1 of the rotating plate 120. It is attached to the slit 121 (see FIG. 2). In the illustrated example, the transmitter / receiver 101 and the antenna 102 are directly connected, but the transmitter / receiver 101 may be placed at an appropriate position on the rotating plate 120 and connected to the antenna 102 with a waveguide or a coaxial cable. good.

検出波Mとしては、炉内が高温で、浮遊物も多く存在していることなどからマイクロ波やミリ波を用いることが好ましい。特に、ミリ波はマイクロ波よりも波長が短く、指向性が高いことなどから好ましい。 As the detection wave M, it is preferable to use a microwave or a millimeter wave because the temperature inside the furnace is high and a large amount of suspended matter is present. In particular, millimeter waves are preferable because they have a shorter wavelength and higher directivity than microwaves.

検出波Mの送受信は、例えばFM-CW方式で行うことができる。即ち、図1に示すように、送受信器101で発振された検出波Mはアンテナ102から送信され(送信波)、開口2を通じて炉内へと送られた後、装入物20の表面で反射され、その反射波がアンテナ102に入射して送受信器101で検波され、送信波と反射波との周波数差(ビート周波数)からアンテナ102と装入物20の表面との間の距離が測定される。従って、駆動源130により回転板120を回転させながら送受信手段100による検出波Mの送受信を行うことにより、図3に示すように、検出波Mは装入物20の表面を円に沿って走査し、走査円Sの各位置において装入物20による反射波を検出し、走査円Sに沿った装入物20までの距離情報が得られる。一方、エンコーダ140により回転軸131の回動角度が検出されるため、走査円S上の検出波Mの位置情報が得られる。そして、距離情報と位置情報とから、装入物20の表面プロフィールとして、走査円Sに沿った堆積高さのプロフィールが得られる。 The detection wave M can be transmitted and received by, for example, the FM-CW method. That is, as shown in FIG. 1, the detection wave M oscillated by the transmitter / receiver 101 is transmitted from the antenna 102 (transmission wave), sent into the furnace through the opening 2, and then reflected on the surface of the charge 20. Then, the reflected wave is incident on the antenna 102 and detected by the transmitter / receiver 101, and the distance between the antenna 102 and the surface of the charge 20 is measured from the frequency difference (beat frequency) between the transmitted wave and the reflected wave. To. Therefore, by transmitting and receiving the detection wave M by the transmission / reception means 100 while rotating the rotary plate 120 by the drive source 130, the detection wave M scans the surface of the charge 20 along the circle as shown in FIG. Then, the reflected wave by the charge 20 is detected at each position of the scanning circle S, and the distance information to the charge 20 along the scanning circle S is obtained. On the other hand, since the rotation angle of the rotation shaft 131 is detected by the encoder 140, the position information of the detection wave M on the scanning circle S can be obtained. Then, from the distance information and the position information, a profile of the deposit height along the scanning circle S can be obtained as the surface profile of the charge 20.

図3に示す走査円Sの直径は、任意に変えることができる。例えば、図1に示すように、検出波Mの伝搬軸と、回転軸131の軸線Cとがなす交差角度θにより変えることができる。アンテナ102から送信される検出波Mの伝搬軸は、アンテナ102の開口中心Acを通る線(アンテナ軸線)と一致すると見做せるため、回転板120にアンテナ102を取り付ける際に、アンテナ軸線の回転板120への傾斜角度θを調整する。 The diameter of the scanning circle S shown in FIG. 3 can be arbitrarily changed. For example, as shown in FIG. 1, it can be changed by the crossing angle θ formed by the propagation axis of the detection wave M and the axis C of the rotation axis 131. Since the propagation axis of the detection wave M transmitted from the antenna 102 is considered to coincide with the line passing through the opening center Ac of the antenna 102 (antenna axis line), the rotation of the antenna axis line when the antenna 102 is attached to the rotating plate 120. Adjust the tilt angle θ A with respect to the plate 120.

また、回転板120は、図4に示すように、断面が円弧状で、その半径に沿ってスリット121が形成されたものでもよい。この湾曲した回転板120は、駆動源130側が凸となるように設置される。スリット121にはアンテナ102が取り付けられるが、取付位置におけるスリット121の接線Kと、アンテナ軸線とが垂直、即ちアンテナ102の回転板120への傾斜角度θ′が90°の状態で取付けてもよい。この場合も、アンテナ軸線と回転軸131の軸線Cとの交差角度θが、アンテナ102のスリット121への取付位置により変わり、走査円Sの直径を変えることができる。 Further, as shown in FIG. 4, the rotary plate 120 may have an arcuate cross section and slits 121 may be formed along the radius thereof. The curved rotating plate 120 is installed so that the drive source 130 side is convex. The antenna 102 is attached to the slit 121, but even if the tangent K of the slit 121 at the attachment position and the antenna axis are perpendicular to each other, that is, the inclination angle θ A ′ of the antenna 102 to the rotating plate 120 is 90 °. good. Also in this case, the crossing angle θ between the antenna axis and the axis C of the rotating shaft 131 changes depending on the mounting position of the antenna 102 in the slit 121, and the diameter of the scanning circle S can be changed.

上記では検出波Mを一本の直線で示したが、実際には検出波Mはある広がりをもってアンテナ102から送信されるため、装入物20以外、例えば図1に示す開口2の周壁2aや側壁1aでも反射され、その反射波が検出される。また、装入物20の表面でも、走査円Sの周辺の装入物以外の物体(例えばランス)による反射波が検出されることがある。そこで、例えば「メディアンフィルタ処理」と称される補正を行うことが好ましい。 In the above, the detection wave M is shown by a single straight line, but since the detection wave M is actually transmitted from the antenna 102 with a certain spread, other than the charge 20, for example, the peripheral wall 2a of the opening 2 shown in FIG. It is also reflected on the side wall 1a, and the reflected wave is detected. Further, even on the surface of the charge 20, a reflected wave by an object (for example, a lance) other than the charge around the scanning circle S may be detected. Therefore, for example, it is preferable to perform a correction called "median filter processing".

このメディアンフィルタ処理は、測定値(a、b、・・・、m、n)を小さい値から大きな値に順に並べ、その中間値をXとするとき、各測定値と中間値Xとの差分(a-X、b-X、・・・m-X、n-X)を求め、差分が予め設定した閾値よりも大きい測定値(例えばaとm)を削除して新たな集合を作り、この新たな集合を実際の測定値として取り扱う手法である。本発明でもメディアンフィルタ処理することにより、本来の走査円上の高さよりも極端に高い、または低いものの測定値を除くことができる。 In this median filtering process, when the measured values (a, b, ..., M, n) are arranged in order from a small value to a large value and the intermediate value is X, the difference between each measured value and the intermediate value X. (A-X, b-X, ... m-X, n-X) are obtained, and the measured values (for example, a and m) whose difference is larger than the preset threshold value are deleted to create a new set. This is a method of treating this new set as an actual measured value. Also in the present invention, by performing the median filter processing, it is possible to remove the measured values that are extremely higher or lower than the height on the original scanning circle.

再び図1を参照して説明すると、上記の送受信手段100による距離情報を、回転板120に取付けた無線信号伝送装置150で外部の演算回路(図示せず)に伝送するとともに、気密容器160に付設した無線信号伝送装置150により回転軸131の位置情報を演算回路に伝送することもできる。また、外部の制御手段(図示せず)からの送受信器101や回転軸131の動作を制御する制御信号を受信する。回転演算手段送受信手段100は回転板120とともに回転するため、無線伝送することにより、距離情報を演算回路に送るための配線が不要になる。 To explain again with reference to FIG. 1, the distance information by the transmission / reception means 100 is transmitted to an external arithmetic circuit (not shown) by the wireless signal transmission device 150 attached to the rotating plate 120, and is transmitted to the airtight container 160. The position information of the rotating shaft 131 can also be transmitted to the arithmetic circuit by the attached wireless signal transmission device 150. Further, it receives a control signal for controlling the operation of the transmitter / receiver 101 and the rotating shaft 131 from an external control means (not shown). Since the rotation calculation means transmission / reception means 100 rotates together with the rotation plate 120, wireless transmission eliminates the need for wiring for sending distance information to the calculation circuit.

上記の送受信手段100や回転板120等の各部品は、耐熱耐圧性の気密容器160に収容される。回転板120は、その円周端部を支持板161により摺動可能に支持してもよい。 Each component such as the transmission / reception means 100 and the rotary plate 120 is housed in a heat-resistant and pressure-resistant airtight container 160. The rotary plate 120 may be slidably supported by the support plate 161 at its circumferential end.

気密容器160は高炉1の開口2に取り付けられるが、この開口2を通じて、炉内の浮遊物や鉄鉱石片、コークス片が侵入する。そこで、検出波Mを透過する材料、例えばセラミック製の非通気性の隔壁170で開口2を塞ぐことが好ましい。また、隔壁170に浮遊物等が付着するため、開口2側にセラミック製のフィルタ180を付設し、気密容器160の取付部162に設けた貫通孔163を通じて隔壁170とフィルタ180との間の空間に窒素ガス(N)等を供給し、炉内側に噴出させてもよい。尚、フィルタ180としては、例えば、宇部興産株式会社製の「チラノ繊維」からなる織布を用いることができる。このチラノ繊維は、シリコン、チタンまたはジルコニウム、炭素、酸素から成るセラミックス繊維である。 The airtight container 160 is attached to the opening 2 of the blast furnace 1, through which the suspended matter, iron ore pieces, and coke pieces in the furnace enter. Therefore, it is preferable to close the opening 2 with a material that transmits the detection wave M, for example, a non-breathable partition wall 170 made of ceramic. Further, since floating matter or the like adheres to the partition wall 170, a ceramic filter 180 is attached to the opening 2 side, and a space between the partition wall 170 and the filter 180 is provided through a through hole 163 provided in the mounting portion 162 of the airtight container 160. Nitrogen gas (N 2 ) or the like may be supplied to the inside of the furnace and ejected into the furnace. As the filter 180, for example, a woven fabric made of "Tyranno fiber" manufactured by Ube Industries, Ltd. can be used. This tyranno fiber is a ceramic fiber composed of silicon, titanium or zirconium, carbon, and oxygen.

(第2実施形態)
上記の第1実施形態は、検出波Aによる走査円Sが一つの場合であるが、走査円Sを複数の同心円にすることにより、走査線Sに沿った堆積高さのプロフィールが複数得られ、各々のプロフィールを合成することで、装入物20の表面プロフィールをより正確に知ることができる。
(Second Embodiment)
In the first embodiment described above, there is only one scanning circle S due to the detection wave A, but by making the scanning circles S a plurality of concentric circles, a plurality of profiles of the deposition height along the scanning lines S can be obtained. , By synthesizing each profile, the surface profile of the charge 20 can be known more accurately.

本実施形態では、図7に示すように、検出波Mによる走査円Sを3つの同心円Sa、Sb、Scとする場合を例にして説明する。その装置構成を図5に、図1に従って示すが、ここでは送受信手段100、回転板120及び駆動源130の周辺についてのみ記載して説明する。図示されるように、回転板120には3つの送受信手段100a、100b、100cが取り付けられている。3つの送受信手段100a、100b、100cでは、それぞれのアンテナ102a、102b、102cから3つの検出波Ma、Mb,Mcが送信されるが、それぞれ回転軸131の軸線Cとの交差角度θが異なっており、送受信手段100aにおける検出波Maとの交差角度をθa、送受信手段100bにおける検出波Mbとの交差角度をθb、送受信手段100cにおける検出波Mcとの交差角度をθcとする。尚、図の例では、回転軸131の軸線Cと、検出波Ma,Mb、Mcとの交差位置が異なっているが、同一になるようにアンテナ102a、102b、102cの回転板120との傾斜角度を調整してもよい。これにより、開口2の開口面積を小さくすることができる。 In the present embodiment, as shown in FIG. 7, a case where the scanning circle S by the detection wave M is three concentric circles Sa, Sb, and Sc will be described as an example. The apparatus configuration is shown in FIG. 5 according to FIG. 1, but here, only the periphery of the transmission / reception means 100, the rotary plate 120, and the drive source 130 will be described and described. As shown, three transmission / reception means 100a, 100b, and 100c are attached to the rotating plate 120. In the three transmission / reception means 100a, 100b, 100c, three detection waves Ma, Mb, and Mc are transmitted from the respective antennas 102a, 102b, 102c, but the crossing angle θ of the rotation axis 131 with the axis C is different. The intersection angle with the detection wave Ma in the transmission / reception means 100a is θa, the intersection angle with the detection wave Mb in the transmission / reception means 100b is θb, and the intersection angle with the detection wave Mc in the transmission / reception means 100c is θc. In the example shown in the figure, the crossing positions of the axis C of the rotating shaft 131 and the detected waves Ma, Mb, and Mc are different, but the antennas 102a, 102b, and 102c are tilted with respect to the rotating plate 120 so as to be the same. You may adjust the angle. Thereby, the opening area of the opening 2 can be reduced.

また、図6に示すように、回転板120には、面上を3等分する位置にそれぞれスリット121a、121b、121cが形成されており、各スリットそれぞれに送受信手段100a、100b、100cのアンテナ102a、102b、102cが取り付けられている。その際、回転板120が平坦な円板である場合には、同図の点線で示す同一円上にて、各送受信手段のアンテナ102a、102b、102cを、それぞれの交差角度θa、θb、θcとなるように角度調整して取り付ける。また、図4に示したように、回転板120が湾曲面の場合は、スリット121a、121b、121cへのアンテナ102a、102b、102cの取付位置、即ち回転軸131からの離間距離を互いに変えればよい。 Further, as shown in FIG. 6, the rotary plate 120 is formed with slits 121a, 121b, and 121c at positions that divide the surface into three equal parts, and the antennas of the transmission / reception means 100a, 100b, and 100c are formed in each of the slits, respectively. 102a, 102b, 102c are attached. At that time, when the rotating plate 120 is a flat disk, the antennas 102a, 102b, 102c of each transmitting / receiving means are placed on the same circle shown by the dotted line in the figure at the crossing angles θa, θb, θc, respectively. Adjust the angle so that it becomes. Further, as shown in FIG. 4, when the rotating plate 120 is a curved surface, if the mounting positions of the antennas 102a, 102b, 102c to the slits 121a, 121b, 121c, that is, the separation distance from the rotating shaft 131 is changed from each other. good.

図7に示すように、3つの送受信手段100a、100b、100cがそれぞれ、互いに直径の異なる3つの走査円Sa、Sb、Scにて装入物20の表面を走査するため、装入物20の堆積状態をより正確に知ることができる。 As shown in FIG. 7, since the three transmission / reception means 100a, 100b, and 100c scan the surface of the charge 20 with three scanning circles Sa, Sb, and Sc having different diameters from each other, the charge 20 is used. It is possible to know the sedimentation state more accurately.

尚、3つの送受信手段100a、100b、100cによる走査は、3つ同時でもよいし、スイッチにより切り替えて順に行うこともできる。即ち、図5に示すように、送受信器101a、101b、101cのそれぞれにアンテナ102a、102b、102cを接続して送受信手段100a、100b、100cとして同時に送受信してもよいし、図示は省略するが、送受信器101を一つとし、アンテナ102a、102b、102cを接続してスイッチでアンテナを切替えて送受信を順に行うこともできる。 It should be noted that the scanning by the three transmitting / receiving means 100a, 100b, 100c may be performed simultaneously, or may be switched by a switch and performed in order. That is, as shown in FIG. 5, antennas 102a, 102b, 102c may be connected to the transmitters / receivers 101a, 101b, and 101c, respectively, to simultaneously transmit and receive as the transmission / reception means 100a, 100b, 100c, although not shown. , The transmitter / receiver 101 may be used as one, and the antennas 102a, 102b, 102c may be connected and the antennas may be switched by a switch to perform transmission / reception in order.

(第3実施形態)
上記の第1実施形態及び第2実施形態はともに、高炉1の開口2の直上に検出装置を設置した状態を示しているが、炉内からの熱を避けるために、図8に示すように、開口2の直上に、開口2に対して例えば45°傾斜する金属製の反射板200を設置し、反射板200と検出装置とを対向配置することもできる。尚、図8は、図1に示す検出装置を用いた場合を示す。また、図5に示すように複数の走査円Sa、Sn、Scで走査する検出装置を用いることもできる。
(Third Embodiment)
Both the first embodiment and the second embodiment described above show a state in which the detection device is installed directly above the opening 2 of the blast furnace 1, but as shown in FIG. 8 in order to avoid heat from the inside of the furnace. A metal reflector 200 having an inclination of, for example, 45 ° with respect to the opening 2 may be installed directly above the opening 2, and the reflector 200 and the detection device may be arranged to face each other. Note that FIG. 8 shows a case where the detection device shown in FIG. 1 is used. Further, as shown in FIG. 5, a detection device that scans with a plurality of scanning circles Sa, Sn, and Sc can also be used.

図示される検出装置においても、送受信手段100のアンテナ101から送信される検出波は、図中Mで示すように、反射板200で反射されて開口2を通じて炉内へと進み、装入物(図示せず)の表面で反射されて、その反射波が反射板200で反射して送受信手段100へと至り、受信される。 Also in the illustrated detection device, the detection wave transmitted from the antenna 101 of the transmission / reception means 100 is reflected by the reflector 200 and travels into the furnace through the opening 2 as shown by M in the figure, and is charged. It is reflected on the surface of (not shown), and the reflected wave is reflected by the reflector 200 to reach the transmission / reception means 100 and is received.

以上、本発明に関して高炉1における装入物20、即ち鉄鉱石やコークスの表面プロフィールの検出装置について説明したが、この検出装置はそのままの構成で、溶融炉における溶融金属の表面プロフィール、焼却炉におけるごみの表面プロフィール、ホッパーにおける穀物等の各種貯蔵物の表面プロフィールの検出にも応用することができる。 The present invention has described the charge 20 in the blast furnace 1, that is, the detection device for the surface profile of iron ore and coke, but the detection device has the same configuration as the surface profile of the molten metal in the melting furnace and the incinerator. It can also be applied to the detection of the surface profile of garbage and the surface profile of various storages such as grains in a hopper.

(操業方法)
本発明はまた、上記の検出装置で検出した装入物の表面プロフィールを、安定した高炉1等の操業を行うのに適した理論上の表面プロフィールに近づけて装入物の補給を行い、より安定した操業を行うことを含む。
(Operation method)
The present invention also replenishes the charge by bringing the surface profile of the charge detected by the above detection device closer to the theoretical surface profile suitable for stable operation of the blast furnace 1 and the like. Includes stable operation.

例えば、高炉1では、検出装置で検出した表面プロフィールを基に、理論堆積状態よりも少ない箇所には多く、多い箇所には少なく鉄鉱石やコークスを補給して操業を行う。 For example, in the blast furnace 1, based on the surface profile detected by the detection device, iron ore and coke are replenished in many places less than the theoretical deposit state and less in many places, and the operation is performed.

1 高炉
2 開口部
20 装入物
100、100a、100b、100c 送受信手段
101、101a、101b、101c 送受信器
102、102a、102b、102c アンテナ
120 回転板
121、121a、121b、121c スリット
130 駆動源
131 回転軸
140 エンコーダ
150 無線信号伝送装置
160 気密容器
170 隔壁
200 反射板
1 Blast furnace 2 Opening 20 Charges 100, 100a, 100b, 100c Transmission / reception means 101, 101a, 101b, 101c Transmitter / receiver 102, 102a, 102b, 102c Antenna 120 Rotating plate 121, 121a, 121b, 121c Slit 130 Drive source 131 Rotating shaft 140 Encoder 150 Wireless signal transmission device 160 Airtight container 170 Partition 200 Reflector

Claims (9)

容器の頂部近傍の開口から、容器内の装入物の表面に向けて検出波を送信し、前記装入物の表面で反射された前記検出波を受信して前記装入物の表面プロフィールを検出する検出装置において、
前記検出波の発振及び検波を行うための送受信器と、前記送受信器ごとに接続するアンテナとを備える1つまたは複数の送受信手段と、
前記アンテナを前記開口に向けて取り付けた回転板と、
前記回転板の中心に取り付けられた回転軸と、
前記回転軸を、その軸線を中心に回動させるための駆動源とを備えるとともに、
前記回転板を回動させながら前記送受信手段による送受信を行い、前記装入物の表面を円に沿って線状に走査することを特徴とする装入物の表面プロフィール検出装置。
A detection wave is transmitted from an opening near the top of the container toward the surface of the charge in the container, and the detection wave reflected on the surface of the charge is received to obtain a surface profile of the charge. In the detection device to detect
A transmitter / receiver for oscillating and detecting the detected wave, and one or more transmitter / receiver means including an antenna connected to each transmitter / receiver.
A rotating plate with the antenna attached toward the opening, and
The rotating shaft attached to the center of the rotating plate and
The rotation axis is provided with a drive source for rotating the axis around the axis, and is provided with a drive source.
A device for detecting a surface profile of a charge, which transmits and receives by the transmission / reception means while rotating the rotating plate, and scans the surface of the charge linearly along a circle.
前記アンテナの軸線と、前記回転軸の軸線との交差角度が可変であることを特徴とする請求項1記載の装入物の表面プロフィール検出装置。 The surface profile detection device for an object according to claim 1, wherein the angle of intersection between the axis of the antenna and the axis of the rotation axis is variable. 前記送受信器が複数であり、前記検出波による前記装入物の表面を走査する走査円の直径が互いに異なっていることを特徴とする請求項1または2記載の装入物の表面プロフィール検出装置。 The surface profile detection device for a charge according to claim 1 or 2, wherein the transmitter / receiver has a plurality of transmitters / receivers, and the diameters of scanning circles scanning the surface of the charge by the detection wave are different from each other. .. 前記送受信器が複数で、それぞれ前記アンテナにて同時に検出波の送受信を行うことを特徴とする請求項1~3の何れか1項に記載の装入物の表面プロフィール検出装置。 The surface profile detection device for a charge according to any one of claims 1 to 3, wherein the transmitter / receiver has a plurality of transmitters / receivers, and the detection waves are simultaneously transmitted / received by the respective antennas. 前記送受信手段が無線信号伝送器と接続しており、送受信情報を無線により外部と通信することを特徴とする請求項1~の何れか1項に記載の装入物の表面プロフィール検出装置。 The surface profile detecting device for a charge according to any one of claims 1 to 4 , wherein the transmitting / receiving means is connected to a wireless signal transmitter and the transmitted / received information is wirelessly communicated with the outside. 前記検出波が、マイクロ波またはミリ波であることを特徴とする請求項1~の何れか1項に記載の装入物の表面プロフィール検出装置。 The surface profile detection device for a charge according to any one of claims 1 to 5 , wherein the detection wave is a microwave or a millimeter wave. 前記開口と前記回転板との空間に、前記開口及び前記回転板の両方に対向する反射板を、配置したことを特徴とする請求項1~の何れか1項に記載の装入物の表面プロフィール検出装置。 The charge according to any one of claims 1 to 6 , wherein a reflector facing both the opening and the rotary plate is arranged in the space between the opening and the rotary plate. Surface profile detector. 前記容器が高炉、溶融炉、焼却炉またはホッパーであることを特徴とする請求項1~の何れか1項に記載の装入物の表面プロフィール検出装置。 The surface profile detection device for a charge according to any one of claims 1 to 7 , wherein the container is a blast furnace, a melting furnace, an incinerator or a hopper. 請求項1~の何れか1項に記載の装入物の表面プロフィール検出装置を用いて装入物の表面プロフィールを測定し、前記表面プロフィールを基に前記装入物を補給することを特徴とする操業方法。 The surface profile of the charge is measured by using the surface profile detection device of the charge according to any one of claims 1 to 8 , and the charge is replenished based on the surface profile. Operation method.
JP2017233551A 2017-12-05 2017-12-05 Surface profile detection device and operation method of the charge Active JP7017753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017233551A JP7017753B2 (en) 2017-12-05 2017-12-05 Surface profile detection device and operation method of the charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017233551A JP7017753B2 (en) 2017-12-05 2017-12-05 Surface profile detection device and operation method of the charge

Publications (2)

Publication Number Publication Date
JP2019100648A JP2019100648A (en) 2019-06-24
JP7017753B2 true JP7017753B2 (en) 2022-02-09

Family

ID=66976826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017233551A Active JP7017753B2 (en) 2017-12-05 2017-12-05 Surface profile detection device and operation method of the charge

Country Status (1)

Country Link
JP (1) JP7017753B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241008A1 (en) * 2019-05-31 2020-12-03 株式会社Wadeco Surface profile detection device for blast furnace charge and operation method
CN110684874A (en) * 2019-09-25 2020-01-14 包头钢铁(集团)有限责任公司 Blast furnace material distribution method
CN114136232A (en) * 2021-11-19 2022-03-04 中国神华能源股份有限公司哈尔乌素露天煤矿 Material accumulation form measuring method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133005A1 (en) 2014-03-04 2015-09-11 株式会社ワイヤーデバイス Method for charging and depositing charging material in shaft furnace, charging material surface detection device, and method for operating shaft furnace
US20170069951A1 (en) 2014-02-21 2017-03-09 Vega Grieshaber Kg Level indicator comprising an energy transmission device
JP2017512300A (en) 2014-01-20 2017-05-18 ティエムティ − タッピング メジャーリング テクノロジー エスエイアールエル Surface shape measuring device for blast furnace interior
US20170141454A1 (en) 2015-11-17 2017-05-18 Vega Grieshaber Kg Antenna device and method for operating an antenna device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512300A (en) 2014-01-20 2017-05-18 ティエムティ − タッピング メジャーリング テクノロジー エスエイアールエル Surface shape measuring device for blast furnace interior
US20170069951A1 (en) 2014-02-21 2017-03-09 Vega Grieshaber Kg Level indicator comprising an energy transmission device
WO2015133005A1 (en) 2014-03-04 2015-09-11 株式会社ワイヤーデバイス Method for charging and depositing charging material in shaft furnace, charging material surface detection device, and method for operating shaft furnace
US20170141454A1 (en) 2015-11-17 2017-05-18 Vega Grieshaber Kg Antenna device and method for operating an antenna device

Also Published As

Publication number Publication date
JP2019100648A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
KR101740874B1 (en) Method for charging and depositing charging material in shaft furnace, charging material surface detection device, and method for operating shaft furnace
JP7017753B2 (en) Surface profile detection device and operation method of the charge
JP2870346B2 (en) Vertical furnace charge profile measuring method and measuring device
TWI683992B (en) Material level measuring instrument and method for measuring the topography of filler surface and application of material level measuring instrument
JP6669907B2 (en) Coking furnace coal level measurement method
JP6573323B2 (en) Surface detection apparatus and detection method for blast furnace charge
JP5577525B2 (en) Method for charging and depositing charge in blast furnace and method for operating blast furnace
JP6857933B1 (en) Surface profile detection device and operation method for blast furnace interior inclusions
WO2017022818A1 (en) Surface detection device and charging method of charged material into blast furnace and operating method of blast furnace
JP5674542B2 (en) Profile measurement method for blast furnace interior
JP2012237560A (en) Profile measurement apparatus for object charged into blast furnace
JP5441730B2 (en) Profile measuring device for blast furnace interior
JP6595265B2 (en) Method for charging and depositing charge in blast furnace, surface detection device for charge, and method for operating blast furnace
JP2020180833A (en) Device for detecting surface profile of charging material and operation method
JP2023181865A (en) In-blast furnace insert surface profile measurement apparatus and measurement method, and blast furnace operation method
JP2015219129A (en) Surface detection device for blast furnace charging material
JP7055355B2 (en) How to charge and deposit the charged material in the blast furnace, and how to operate the blast furnace
JP2022152972A (en) Detection method of surface profile of burden in blast furnace and object detection device therefor, and operation method of blast furnace
JP2021172877A (en) Surface detection device and surface profile detection method of blast furnace charged materials, and operation method of blast furnace
JPH0552737A (en) Grain-size measuring method for granular substance
JP2017128783A (en) Display method of blast furnace profile meter and charging method of charging material to blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120

R150 Certificate of patent or registration of utility model

Ref document number: 7017753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150