JP2019100648A - Surface profile detection device for charged material, and operation method therefor - Google Patents

Surface profile detection device for charged material, and operation method therefor Download PDF

Info

Publication number
JP2019100648A
JP2019100648A JP2017233551A JP2017233551A JP2019100648A JP 2019100648 A JP2019100648 A JP 2019100648A JP 2017233551 A JP2017233551 A JP 2017233551A JP 2017233551 A JP2017233551 A JP 2017233551A JP 2019100648 A JP2019100648 A JP 2019100648A
Authority
JP
Japan
Prior art keywords
charge
surface profile
detection
antenna
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017233551A
Other languages
Japanese (ja)
Other versions
JP7017753B2 (en
Inventor
早衛 萱野
Hayae Kayano
早衛 萱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wadeco Co Ltd
Original Assignee
Wadeco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wadeco Co Ltd filed Critical Wadeco Co Ltd
Priority to JP2017233551A priority Critical patent/JP7017753B2/en
Publication of JP2019100648A publication Critical patent/JP2019100648A/en
Application granted granted Critical
Publication of JP7017753B2 publication Critical patent/JP7017753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

To provide a detection device capable of three-dimensionally detecting the surface profile of a charged material in spite of its simple device constitution without being provided with a reflection board, and a driving apparatus and a control apparatus therefor.SOLUTION: Provided is a detection device comprising: a receiver/transmitter for performing the vibration and detection of detection waves such as microwaves and millimeter waves; one or more receiving/transmitting means provided with an antenna(es) connected to the transceiver; a rotary board mounted with an antenna toward the opening of a container such as a blast furnace; a rotary shaft fitted to the center of the rotary board; and a driving source for rolling the rotary shaft with its shaft axis as the center, where receiving/transmitting by the receiving/transmitting means is performed while rolling the rolling board, and the surface of a charged material is circularly scanned.SELECTED DRAWING: Figure 1

Description

本発明は、高炉内の鉄鉱石やコークス、溶融炉内の金属類、焼却炉内のごみ類、ホッパー内の穀物等の貯蔵物(以下、まとめて「装入物」ともいう。)の表面プロフィールを検出する検出装置に関する。また、本発明は、これら装入物の表面プロフィールを基に、装入物を補給して安定な操業を行う方法に関する。   The present invention is the surface of stored products such as iron ore and coke in blast furnace, metals in melting furnace, refuse in incinerator, grains in hopper (hereinafter collectively referred to as "charge"). The present invention relates to a detection device that detects a profile. The present invention also relates to a method of replenishing the charge and performing stable operation based on the surface profile of the charge.

例えば高炉では、鉄鉱石やコークスの堆積状態を適正にして、炉内のガスの流れを安定させることにより、燃料費低減や炉体の長寿命化が可能となる。適正な堆積状態を得るためには、これら装入物の表面プロフィールを短時間で正確に測定し、予め求めておいた理論的な堆積状態となるように装入物を補給する必要がある。表面プロフィールの測定方法として従来では、図9に示すように、炉壁1を貫通して炉内に挿入されるランス10の先端に装着したアンテナ11から装入物20の表面に向けて検出波M1を発射し、装入物20の表面からの反射検出波M2をアンテナ11で受信し、ミキシングして得られるビート波の周波数により、アンテナ11から装入物20の表面までの距離を測定する方法が一般的であり、ランス10を移動させながら測定することにより装入物20の表面プロフィールを求めている。   For example, in a blast furnace, the fuel cost can be reduced and the life of the furnace body can be extended by appropriately depositing iron ore and coke and stabilizing the flow of gas in the furnace. In order to obtain the proper deposition conditions, it is necessary to accurately measure the surface profile of these charges in a short time, and to replenish the charges so as to achieve the theoretical deposition conditions obtained in advance. Conventionally, as a method of measuring the surface profile, as shown in FIG. 9, a detection wave is directed from the antenna 11 mounted at the tip of the lance 10 inserted into the furnace through the furnace wall 1 toward the surface of the charge 20 M1 is emitted, the reflection detection wave M2 from the surface of the charge 20 is received by the antenna 11, and the distance from the antenna 11 to the surface of the charge 20 is measured by the frequency of the beat wave obtained by mixing The method is general, and the surface profile of the charge 20 is determined by measuring while moving the lance 10.

しかしながら、上記のランス式検出装置では、ランス10が直線状に移動するため、装入物20の線状の表面プロフィール、即ち2次元の表面プロフィールしか得られない。また、ランス10は炉の内径ほどの長さが必要であり、高荷重になるため、炉内に長く挿入しておくと自重により垂れ下がって炉から抜けなくなり、移動の際にもストロークも大きいため、炉外に大きなスペースが必要になる。更に、ランス10を移動させるための駆動ユニットが別途必要であり、設備費や運転コストが高くなる。加えて、装入物の補給に際してランス10が邪魔になるため、プロフィール測定中に装入物を補給することができず、測定した表面プロファイルに応じた迅速な装入操作ができない。   However, in the above-described lance detector, since the lance 10 moves linearly, only a linear surface profile of the charge 20, i.e., a two-dimensional surface profile can be obtained. The lance 10 needs to be as long as the inner diameter of the furnace and has a high load. Therefore, if it is inserted in the furnace for a long time, it will hang down due to its own weight and will not come out of the furnace, and the stroke will be large even during movement. , Need a large space outside the furnace. Furthermore, a separate drive unit is required to move the lance 10, which increases the cost of equipment and operation. In addition, since the lance 10 is in the way when replenishing the charge, the charge can not be replenished during profile measurement, and a quick charging operation can not be performed according to the measured surface profile.

そこで本出願人は、図10に示すように、 検出波送受信手段31のアンテナ32と、反射板33とを対向配置した検出装置30を提案している。この検出装置30では、反射板33が、高炉1の炉内側への傾斜角度Xが可変であり、更には、アンテナ32の開口部の中心を通るアンテナ軸線を中心にした回動角度Yも可変であり、傾斜角度Xと回動角度Yとを制御することにより、図中符号Mで示す検出波は、装入物20の表面を同心円状、あるいは螺旋状に走査することができ、3次元表面プロフィールを検出することができる。しかも、反射板33の傾斜角度X及び回動角度Yを高速で可変できるため、短時間で測定可能である。   Therefore, as shown in FIG. 10, the applicant has proposed a detection device 30 in which the antenna 32 of the detection wave transmission / reception means 31 and the reflection plate 33 are disposed opposite to each other. In this detection device 30, the reflection plate 33 has a variable inclination angle X to the inside of the blast furnace 1, and further, the rotation angle Y centered on the antenna axis passing through the center of the opening of the antenna 32 is also variable. By controlling the inclination angle X and the rotation angle Y, the detection wave indicated by symbol M in the figure can scan the surface of the charge 20 concentrically or spirally, and three-dimensional Surface profiles can be detected. Moreover, since the inclination angle X and the rotation angle Y of the reflection plate 33 can be changed at high speed, measurement can be performed in a short time.

特許第5391458号公報Patent No. 5391458 gazette

しかしながら、特許文献1に記載された検出装置30では、傾斜角度Xと回動角度Yとを同時に、かつ、正確に、高速で制御しなければならず、傾斜角度X及び回動角度Yの制御に用いる反射板33の駆動装置や制御装置への負担も大きい。   However, in the detection device 30 described in Patent Document 1, the tilt angle X and the pivot angle Y must be controlled simultaneously and accurately at high speed, and control of the tilt angle X and the pivot angle Y The load on the drive device and control device of the reflection plate 33 used for

そこで本発明は、反射板並びにその駆動装置や制御装置を備えることなく、簡易な装置構成でありながらも、装入物の表面プロフィールを3次元的に検出できる検出装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a detection device capable of three-dimensionally detecting the surface profile of a charge without providing a reflection plate and its driving device or control device, and having a simple device configuration. Do.

上記課題を解決するために本発明は、下記の装入物の表面プロフィール検出装置及び操業方法を提供する。
(1)容器の頂部近傍の開口から、容器内の装入物の表面に向けて検出波を送信し、前記装入物の表面で反射された前記検出波を受信して前記装入物の表面プロフィールを検出する検出装置において、
前記検出波の発振及び検波を行うための送受信器と、前記送受信器に接続するアンテナとを備える1つまたは複数の送受信手段と、
前記アンテナを前記開口に向けて取り付けた回転板と、
前記回転板の中心に取り付けられた回転軸と、
前記回転軸を、その軸線を中心に回動させるための駆動源とを備えるとともに、
前記回転板を回動させながら前記送受信手段による送受信を行い、前記装入物の表面を円状に走査することを特徴とする装入物の表面プロフィール検出装置。
(2)前記アンテナの軸線と、前記回転軸の軸線との交差角度が可変であることを特徴とする上記(1)記載の装入物の表面プロフィール検出装置。
(3)前記送受信手段が複数であり、前記検出波による前記装入物の表面を走査する走査円の直径が互いに異なっていることを特徴とする上記(1)または(2)記載の装入物の表面プロフィール検出装置。
(4)前記送受信器が複数で、それぞれに前記アンテナが接続しており、かつ、同時に検出波の送受信を行うことを特徴とする上記(1)〜(3)の何れか1項に記載の装入物の表面プロフィール検出装置。
(5)前記送受信器が一つで、複数の前記アンテナが接続しており、かつ、複数の前記アンテナを切り替えて検出波の送受信を順次行うことを特徴とする上記(1)〜(3)の何れか1項に記載の装入物の表面プロフィール検出装置。
(6)前記送受信手段が無線信号伝送器と接続しており、送受信情報を無線により外部と通信することを特徴とする上記(1)〜(5)の何れか1項に記載の装入物の表面プロフィール検出。
(7)前記検出波が、マイクロ波またはミリ波であることを特徴とする上記(1)〜(6)の何れか1項に記載の装入物の表面プロフィール検出装置。
(8)前記開口と前記回転板との空間に、前記開口及び前記回転板の両方に対向する反射板を、配置したことを特徴とする上記(1)〜(7)の何れか1項に記載の装入物の表面プロフィール検出装置。
(9)前記容器が高炉、溶融炉、焼却炉またはホッパーであることを特徴とする上記(1)〜(8)の何れか1項に記載の装入物の表面プロフィール検出装置。
(10)上記(1)〜(9)の何れか1項に記載の装入物の表面プロフィール検出装置を用いて装入物の表面プロフィールを測定し、前記表面プロフィールを基に前記装入物を補給することを特徴とする操業方法。
尚、以降において。装入物の表面プロフィール検出装置を「検出装置」と略称することがある。
In order to solve the above problems, the present invention provides the following apparatus for detecting the surface profile of the charge and the operation method.
(1) A detection wave is transmitted from the opening near the top of the container toward the surface of the charge in the container, and the detection wave reflected from the surface of the charge is received to In a detection device for detecting a surface profile,
One or more transmission / reception means comprising a transceiver for oscillating and detecting the detection wave, and an antenna connected to the transceiver;
A rotating plate mounted with the antenna directed to the opening;
A rotating shaft attached to the center of the rotating plate;
And a drive source for rotating the rotating shaft about its axis,
An apparatus for detecting a surface profile of a charge, wherein transmission and reception are performed by the transmitting and receiving means while rotating the rotary plate, and the surface of the charge is scanned in a circle.
(2) The apparatus for detecting a surface profile of a charge according to the above (1), wherein the crossing angle between the axis of the antenna and the axis of the rotation axis is variable.
(3) The charging according to (1) or (2), wherein the transmitting and receiving means are plural and the diameters of scanning circles for scanning the surface of the charge by the detection wave are different from each other. Surface profile detector for objects.
(4) A plurality of the transmitter-receivers, each of which has the antenna connected thereto, and simultaneously transmits and receives a detection wave, according to any one of the above (1) to (3) Load surface profile detector.
(5) The transmitter / receiver is one, a plurality of the antennas are connected, and the plurality of antennas are switched to sequentially transmit and receive the detection wave. A device for detecting the surface profile of a charge according to any one of the preceding claims.
(6) The charge according to any one of the above (1) to (5), wherein the transmitting and receiving means is connected to a wireless signal transmitter, and the transmitting and receiving information is communicated to the outside by wireless. Surface profile detection.
(7) The apparatus for detecting a surface profile of a charge according to any one of (1) to (6) above, wherein the detection wave is a microwave or a millimeter wave.
(8) In any one of the above (1) to (7), a reflective plate facing both the opening and the rotating plate is disposed in the space between the opening and the rotating plate. Device for detecting the surface profile of a charge as described.
(9) The apparatus for detecting a surface profile of a charge according to any one of the above (1) to (8), wherein the container is a blast furnace, a melting furnace, an incinerator or a hopper.
(10) The surface profile of the charge is measured using the surface profile detection device for a charge according to any one of (1) to (9) above, and the charge is determined based on the surface profile. Operation method characterized by supplying
In addition, later. The surface profile detector of the charge may be abbreviated as "detector".

本発明によれば、簡易な装置構成でありながらも、装入物の表面プロフィールを3次元的に検出できる検出装置が提供される。   According to the present invention, there is provided a detection device capable of three-dimensionally detecting the surface profile of a charge while having a simple device configuration.

本発明の検出装置の第1実施形態を示す概略図である。It is the schematic which shows 1st Embodiment of the detection apparatus of this invention. 図1のAA矢視図である。It is AA arrow line view of FIG. 図1の検出装置による検出波の装入物表面での走査様式を示す図である。It is a figure which shows the scanning mode on the charge surface of the detection wave by the detection apparatus of FIG. 回転板の他の例を示す断面図である。It is sectional drawing which shows the other example of a rotor plate. 本発明の検出装置の第2実施形態を、図1に従って示す概略図である。FIG. 2 is a schematic view according to FIG. 1 of a second embodiment of the detection device of the invention; 図5のAA矢視図である。It is AA arrow line view of FIG. 図5の検出装置による検出波の装入物表面での走査様式を、図3に従って示す図である。FIG. 6 is a view according to FIG. 3 showing a scanning pattern on a charge surface of detection waves by the detection device of FIG. 5; 本発明の検出装置の第3実施形態を示す概略図である。It is the schematic which shows 3rd Embodiment of the detection apparatus of this invention. 従来のランス式検出装置を示す概略図である。It is the schematic which shows the conventional lance type | mold detection apparatus. 特許文献1の検出装置を示す概略図である。It is the schematic which shows the detection apparatus of patent document 1. FIG.

以下、本発明に関して図面を参照して詳細に説明するが、ここでは高炉を例にして説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings. Here, a blast furnace will be described as an example.

(第1実施形態)
図1は本発明の検出装置を、高炉1の軸線に沿って示す概略断面図であり、図2は図1のAA矢視図である。高炉1には、装入物である鉄鉱石とコークスとが、交互に層をなして堆積している。
First Embodiment
FIG. 1 is a schematic cross-sectional view showing the detection device of the present invention along the axis of the blast furnace 1, and FIG. 2 is a view on arrow AA of FIG. In the blast furnace 1, iron ore and coke which are charges are deposited in layers alternately.

本発明の検出装置は、送受信手段100と、送受信手段100を取り付けた回転板120と、回転板120を回動させるための駆動源130とを備えており、高炉1の炉頂近傍の開口2に設置される。   The detection device of the present invention includes transmission / reception means 100, a rotary plate 120 attached with the transmission / reception means 100, and a drive source 130 for rotating the rotary plate 120, and an opening 2 in the vicinity of the furnace top of the blast furnace 1 Installed in

回転板120は、図2に示すように円板であり、その中心に駆動源130の回転軸131が取り付けられている。回転軸131は、その軸線を中心にして駆動源130により図中矢印Rで示すように回動し、それに伴って回転板120も同方向に、回転軸131を中心に回動する。また、回転軸131にはエンコーダ140が連結しており、回転軸131の回動角度がエンコーダ140により検出される。   The rotary plate 120 is a disk as shown in FIG. 2, and the rotation shaft 131 of the drive source 130 is attached at the center thereof. The rotary shaft 131 is rotated about the axis by the drive source 130 as shown by the arrow R in the figure, and accordingly the rotary plate 120 is also rotated in the same direction around the rotary shaft 131. Further, an encoder 140 is connected to the rotation shaft 131, and the rotation angle of the rotation shaft 131 is detected by the encoder 140.

送受信手段100は、検出波Mの発振及び検波を行うための送受信器101と、送受信器101に接続するアンテナ102とを備えており、アンテナ102を高炉1の開口2に向けて回転板120のスリット121(図2参照)に取り付けられている。尚、図示の例では、送受信器101とアンテナ102とが直結しているが、送受信器101を回転板120の板上適所に配置し、導波管や同軸ケーブルでアンテナ102と接続してもよい。   The transmitting and receiving unit 100 includes a transmitter / receiver 101 for oscillating and detecting the detection wave M, and an antenna 102 connected to the transmitter / receiver 101. The antenna 102 is directed to the opening 2 of the blast furnace 1 and the rotating plate 120 is provided. It is attached to the slit 121 (see FIG. 2). Although the transceiver 101 and the antenna 102 are directly connected in the illustrated example, the transceiver 101 may be disposed at an appropriate position on the rotating plate 120 and connected to the antenna 102 by a waveguide or a coaxial cable. Good.

検出波Mとしては、炉内が高温で、浮遊物も多く存在していることなどからマイクロ波やミリ波を用いることが好ましい。特に、ミリ波はマイクロ波よりも波長が短く、指向性が高いことなどから好ましい。   As the detection wave M, it is preferable to use microwaves or millimeter waves because the inside of the furnace is at a high temperature and a large amount of suspended matter is present. In particular, millimeter waves are preferable because they have a shorter wavelength and higher directivity than microwaves.

検出波Mの送受信は、例えばFM−CW方式で行うことができる。即ち、図1に示すように、送受信器101で発振された検出波Mはアンテナ102から送信され(送信波)、開口2を通じて炉内へと送られた後、装入物20の表面で反射され、その反射波がアンテナ102に入射して送受信器101で検波され、送信波と反射波との周波数差(ビート周波数)からアンテナ102と装入物20の表面との間の距離が測定される。従って、駆動源130により回転板120を回転させながら送受信手段100による検出波Mの送受信を行うことにより、図3に示すように、検出波Mは装入物20の表面を円に沿って走査し、走査円Sの各位置において装入物20による反射波を検出し、走査円Sに沿った装入物20までの距離情報が得られる。一方、エンコーダ140により回転軸131の回動角度が検出されるため、走査円S上の検出波Mの位置情報が得られる。そして、距離情報と位置情報とから、装入物20の表面プロフィールとして、走査円Sに沿った堆積高さのプロフィールが得られる。   Transmission and reception of the detection wave M can be performed, for example, by the FM-CW method. That is, as shown in FIG. 1, the detection wave M oscillated by the transmitter-receiver 101 is transmitted from the antenna 102 (transmission wave), sent into the furnace through the opening 2, and then reflected on the surface of the charge 20 The reflected wave is incident on the antenna 102 and detected by the transmitter / receiver 101, and the distance between the antenna 102 and the surface of the object 20 is measured from the frequency difference (beat frequency) between the transmitted wave and the reflected wave. Ru. Therefore, as shown in FIG. 3, the detection wave M scans the surface of the charge 20 along a circle by transmitting and receiving the detection wave M by the transmitting and receiving means 100 while rotating the rotary plate 120 by the drive source 130. The reflected wave by the charge 20 is detected at each position of the scan circle S, and the distance information to the charge 20 along the scan circle S is obtained. On the other hand, since the rotation angle of the rotating shaft 131 is detected by the encoder 140, position information of the detection wave M on the scanning circle S can be obtained. Then, from the distance information and the position information, a profile of deposition height along the scanning circle S is obtained as the surface profile of the charge 20.

図3に示す走査円Sの直径は、任意に変えることができる。例えば、図1に示すように、検出波Mの伝搬軸と、回転軸131の軸線Cとがなす交差角度θにより変えることができる。アンテナ102から送信される検出波Mの伝搬軸は、アンテナ102の開口中心Acを通る線(アンテナ軸線)と一致すると見做せるため、回転板120にアンテナ102を取り付ける際に、アンテナ軸線の回転板120への傾斜角度θを調整する。 The diameter of the scanning circle S shown in FIG. 3 can be arbitrarily changed. For example, as shown in FIG. 1, it can be changed by the crossing angle θ formed by the propagation axis of the detection wave M and the axis C of the rotation axis 131. Since the propagation axis of the detection wave M transmitted from the antenna 102 can be considered to coincide with a line (antenna axis) passing through the aperture center Ac of the antenna 102, the antenna axis is rotated when the antenna 102 is attached to the rotating plate 120. The inclination angle θ A to the plate 120 is adjusted.

また、回転板120は、図4に示すように、断面が円弧状で、その半径に沿ってスリット121が形成されたものでもよい。この湾曲した回転板120は、駆動源130側が凸となるように設置される。スリット121にはアンテナ102が取り付けられるが、取付位置におけるスリット121の接線Kと、アンテナ軸線とが垂直、即ちアンテナ102の回転板120への傾斜角度θ′が90°の状態で取付けてもよい。この場合も、アンテナ軸線と回転軸131の軸線Cとの交差角度θが、アンテナ102のスリット121への取付位置により変わり、走査円Sの直径を変えることができる。 Further, as shown in FIG. 4, the rotary plate 120 may have an arc-shaped cross section, and the slit 121 may be formed along the radius thereof. The curved rotary plate 120 is installed so that the drive source 130 side is convex. Although the antenna 102 is attached to the slit 121, even if the tangent K of the slit 121 at the attachment position and the antenna axis line are perpendicular, that is, the tilt angle θ A 'of the antenna 102 to the rotary plate 120 is 90 °. Good. Also in this case, the crossing angle θ of the antenna axis and the axis C of the rotation axis 131 changes depending on the mounting position of the antenna 102 to the slit 121, and the diameter of the scanning circle S can be changed.

上記では検出波Mを一本の直線で示したが、実際には検出波Mはある広がりをもってアンテナ102から送信されるため、装入物20以外、例えば図1に示す開口2の周壁2aや側壁1aでも反射され、その反射波が検出される。また、装入物20の表面でも、走査円Sの周辺の装入物以外の物体(例えばランス)による反射波が検出されることがある。そこで、例えば「メディアンフィルタ処理」と称される補正を行うことが好ましい。   In the above, the detection wave M is shown as a single straight line, but in fact the detection wave M is transmitted from the antenna 102 with a certain spread, so other than the charge 20, for example, the peripheral wall 2a of the opening 2 shown in FIG. The side wall 1a is also reflected, and the reflected wave is detected. Also on the surface of the charge 20, a reflected wave from an object (for example, a lance) other than the charge around the scanning circle S may be detected. Therefore, for example, it is preferable to perform correction called “median filtering”.

このメディアンフィルタ処理は、測定値(a、b、・・・、m、n)を小さい値から大きな値に順に並べ、その中間値をXとするとき、各測定値と中間値Xとの差分(a−X、b−X、・・・m−X、n−X)を求め、差分が予め設定した閾値よりも大きい測定値(例えばaとm)を削除して新たな集合を作り、この新たな集合を実際の測定値として取り扱う手法である。本発明でもメディアンフィルタ処理することにより、本来の走査円上の高さよりも極端に高い、または低いものの測定値を除くことができる。   In this median filtering process, the measured values (a, b,..., M, n) are arranged in order from small values to large values, and when the intermediate value is X, the difference between each measured value and the intermediate value X Find (a−x, b−x,... M−x, n−x), delete measured values (for example, a and m) whose difference is greater than a preset threshold, and create a new set, This is a method of treating this new set as an actual measurement value. Also in the present invention, median filtering can remove measured values that are extremely higher or lower than the height on the original scanning circle.

再び図1を参照して説明すると、上記の送受信手段100による距離情報を、回転板120に取付けた無線信号伝送装置150で外部の演算回路(図示せず)に伝送するとともに、気密容器160に付設した無線信号伝送装置150により回転軸131の位置情報を演算回路に伝送することもできる。また、外部の制御手段(図示せず)からの送受信器101や回転軸131の動作を制御する制御信号を受信する。回転演算手段送受信手段100は回転板120とともに回転するため、無線伝送することにより、距離情報を演算回路に送るための配線が不要になる。   Referring again to FIG. 1, the wireless signal transmission device 150 attached to the rotary plate 120 transmits the distance information by the transmission / reception means 100 to an external arithmetic circuit (not shown) and to the airtight container 160. The position information of the rotary shaft 131 can also be transmitted to the arithmetic circuit by the wireless signal transmission device 150 provided additionally. Further, it receives a control signal for controlling the operation of the transmitter / receiver 101 and the rotary shaft 131 from an external control means (not shown). Since the rotation calculation means transmission / reception means 100 rotates with the rotary plate 120, wireless transmission eliminates the need for wiring for sending distance information to the calculation circuit.

上記の送受信手段100や回転板120等の各部品は、耐熱耐圧性の気密容器160に収容される。回転板120は、その円周端部を支持板161により摺動可能に支持してもよい。   The components such as the transmission / reception means 100 and the rotary plate 120 described above are accommodated in a heat and pressure resistant airtight container 160. The rotary plate 120 may be slidably supported by the support plate 161 at its circumferential end.

気密容器160は高炉1の開口2に取り付けられるが、この開口2を通じて、炉内の浮遊物や鉄鉱石片、コークス片が侵入する。そこで、検出波Mを透過する材料、例えばセラミック製の非通気性の隔壁170で開口2を塞ぐことが好ましい。また、隔壁170に浮遊物等が付着するため、開口2側にセラミック製のフィルタ180を付設し、気密容器160の取付部162に設けた貫通孔163を通じて隔壁170とフィルタ180との間の空間に窒素ガス(N)等を供給し、炉内側に噴出させてもよい。尚、フィルタ180としては、例えば、宇部興産株式会社製の「チラノ繊維」からなる織布を用いることができる。このチラノ繊維は、シリコン、チタンまたはジルコニウム、炭素、酸素から成るセラミックス繊維である。 The airtight container 160 is attached to the opening 2 of the blast furnace 1, through which the floating matter, iron ore fragments and coke fragments in the furnace enter. Therefore, it is preferable to close the opening 2 with a material that transmits the detection wave M, for example, a non-air-permeable partition 170 made of ceramic. In addition, since floating matter and the like adhere to the partition wall 170, the ceramic filter 180 is attached to the opening 2 side, and the space between the partition wall 170 and the filter 180 through the through hole 163 provided in the mounting portion 162 of the airtight container 160. Alternatively, nitrogen gas (N 2 ) or the like may be supplied to the inside of the furnace. In addition, as the filter 180, for example, a woven fabric made of "Chirano fibers" manufactured by Ube Industries, Ltd. can be used. This Tyranno fiber is a ceramic fiber consisting of silicon, titanium or zirconium, carbon and oxygen.

(第2実施形態)
上記の第1実施形態は、検出波Aによる走査円Sが一つの場合であるが、走査円Sを複数の同心円にすることにより、走査線Sに沿った堆積高さのプロフィールが複数得られ、各々のプロフィールを合成することで、装入物20の表面プロフィールをより正確に知ることができる。
Second Embodiment
In the first embodiment described above, the scanning circle S by the detection wave A is one, but by making the scanning circle S a plurality of concentric circles, a plurality of profiles of deposition height along the scanning line S can be obtained. By synthesizing the respective profiles, the surface profile of the charge 20 can be known more accurately.

本実施形態では、図7に示すように、検出波Mによる走査円Sを3つの同心円Sa、Sb、Scとする場合を例にして説明する。その装置構成を図5に、図1に従って示すが、ここでは送受信手段100、回転板120及び駆動源130の周辺についてのみ記載して説明する。図示されるように、回転板120には3つの送受信手段100a、100b、100cが取り付けられている。3つの送受信手段100a、100b、100cでは、それぞれのアンテナ102a、102b、102cから3つの検出波Ma、Mb,Mcが送信されるが、それぞれ回転軸131の軸線Cとの交差角度θが異なっており、送受信手段100aにおける検出波Maとの交差角度をθa、送受信手段100bにおける検出波Mbとの交差角度をθb、送受信手段100cにおける検出波Mcとの交差角度をθcとする。尚、図の例では、回転軸131の軸線Cと、検出波Ma,Mb、Mcとの交差位置が異なっているが、同一になるようにアンテナ102a、102b、102cの回転板120との傾斜角度を調整してもよい。これにより、開口2の開口面積を小さくすることができる。   In this embodiment, as shown in FIG. 7, the case where the scanning circle S by the detection wave M is three concentric circles Sa, Sb, and Sc will be described as an example. The device configuration is shown in FIG. 5 according to FIG. 1, but here only the periphery of the transmitting / receiving means 100, the rotary plate 120 and the drive source 130 will be described and described. As shown, three transmitting and receiving means 100a, 100b and 100c are attached to the rotary plate 120. Although three detection waves Ma, Mb and Mc are transmitted from the respective antennas 102a, 102b and 102c in the three transmitting and receiving means 100a, 100b and 100c, the crossing angles θ with the axis C of the rotation axis 131 are different from each other. It is assumed that the crossing angle with the detection wave Ma in the transmission / reception means 100a is θa, the crossing angle with the detection wave Mb in the transmission / reception means 100b is θb, and the crossing angle with the detection wave Mc in the transmission / reception means 100c is θc. In the example of the figure, the crossing position of the axis C of the rotating shaft 131 and the detection waves Ma, Mb and Mc are different, but the inclination of the antennas 102a, 102b and 102c with the rotating plate 120 is the same. The angle may be adjusted. Thereby, the opening area of the opening 2 can be reduced.

また、図6に示すように、回転板120には、面上を3等分する位置にそれぞれスリット121a、121b、121cが形成されており、各スリットそれぞれに送受信手段100a、100b、100cのアンテナ102a、102b、102cが取り付けられている。その際、回転板120が平坦な円板である場合には、同図の点線で示す同一円上にて、各送受信手段のアンテナ102a、102b、102cを、それぞれの交差角度θa、θb、θcとなるように角度調整して取り付ける。また、図4に示したように、回転板120が湾曲面の場合は、スリット121a、121b、121cへのアンテナ102a、102b、102cの取付位置、即ち回転軸131からの離間距離を互いに変えればよい。   Further, as shown in FIG. 6, the rotary plate 120 is formed with slits 121a, 121b and 121c at positions dividing the surface into three equal parts, and the antennas of the transmitting and receiving means 100a, 100b and 100c are respectively provided for each slit. 102a, 102b, 102c are attached. At that time, when the rotary plate 120 is a flat disk, the antennas 102a, 102b and 102c of the respective transmitting / receiving means are respectively intersected at the crossing angles .theta.a, .theta.b and .theta.c on the same circle shown by the dotted line in FIG. Adjust the angle so that Further, as shown in FIG. 4, when the rotary plate 120 is a curved surface, the mounting positions of the antennas 102a, 102b, 102c to the slits 121a, 121b, 121c, ie, the separation distances from the rotary shaft 131 may be mutually changed Good.

図7に示すように、3つの送受信手段100a、100b、100cがそれぞれ、互いに直径の異なる3つの走査円Sa、Sb、Scにて装入物20の表面を走査するため、装入物20の堆積状態をより正確に知ることができる。   As shown in FIG. 7, the three transmitting / receiving means 100a, 100b, 100c scan the surface of the charge 20 with three scanning circles Sa, Sb, Sc having different diameters, respectively. The deposition state can be known more accurately.

尚、3つの送受信手段100a、100b、100cによる走査は、3つ同時でもよいし、スイッチにより切り替えて順に行うこともできる。即ち、図5に示すように、送受信器101a、101b、101cのそれぞれにアンテナ102a、102b、102cを接続して送受信手段100a、100b、100cとして同時に送受信してもよいし、図示は省略するが、送受信器101を一つとし、アンテナ102a、102b、102cを接続してスイッチでアンテナを切替えて送受信を順に行うこともできる。   The scanning by the three transmitting and receiving units 100a, 100b, and 100c may be performed simultaneously, or may be sequentially performed by switching with a switch. That is, as shown in FIG. 5, the antennas 102a, 102b, and 102c may be connected to the transceivers 101a, 101b, and 101c, and may be simultaneously transmitted and received as the transmitting and receiving means 100a, 100b, and 100c. Alternatively, one transmitter / receiver 101 may be connected to the antennas 102a, 102b, and 102c, and the switches may be used to switch the antennas to sequentially perform transmission and reception.

(第3実施形態)
上記の第1実施形態及び第2実施形態はともに、高炉1の開口2の直上に検出装置を設置した状態を示しているが、炉内からの熱を避けるために、図8に示すように、開口2の直上に、開口2に対して例えば45°傾斜する金属製の反射板200を設置し、反射板200と検出装置とを対向配置することもできる。尚、図8は、図1に示す検出装置を用いた場合を示す。また、図5に示すように複数の走査円Sa、Sn、Scで走査する検出装置を用いることもできる。
Third Embodiment
Although both of the first and second embodiments described above show the state where the detection device is installed immediately above the opening 2 of the blast furnace 1, as shown in FIG. 8 in order to avoid heat from the inside of the furnace. Alternatively, a metal reflecting plate 200 inclined at, for example, 45 ° with respect to the opening 2 may be provided immediately above the opening 2, and the reflecting plate 200 and the detection device may be disposed to face each other. FIG. 8 shows the case where the detection device shown in FIG. 1 is used. Further, as shown in FIG. 5, a detection device for scanning with a plurality of scanning circles Sa, Sn, Sc can also be used.

図示される検出装置においても、送受信手段100のアンテナ101から送信される検出波は、図中Mで示すように、反射板200で反射されて開口2を通じて炉内へと進み、装入物(図示せず)の表面で反射されて、その反射波が反射板200で反射して送受信手段100へと至り、受信される。   Also in the detection apparatus shown, the detection wave transmitted from the antenna 101 of the transmission / reception means 100 is reflected by the reflection plate 200 and travels into the furnace through the opening 2 as shown by M in the figure. The reflected wave is reflected on the surface (not shown), and the reflected wave is reflected by the reflecting plate 200 to reach the transmitting and receiving means 100 and received.

以上、本発明に関して高炉1における装入物20、即ち鉄鉱石やコークスの表面プロフィールの検出装置について説明したが、この検出装置はそのままの構成で、溶融炉における溶融金属の表面プロフィール、焼却炉におけるごみの表面プロフィール、ホッパーにおける穀物等の各種貯蔵物の表面プロフィールの検出にも応用することができる。   Although the present invention has been described with reference to the present invention, a device for detecting the charge 20 in the blast furnace 1, that is, the surface profile of iron ore and coke, this detection device has the same structure, the surface profile of molten metal in the melting furnace, and the incinerator. The present invention can also be applied to the detection of surface profile of waste and surface profiles of various storages such as grains in the hopper.

(操業方法)
本発明はまた、上記の検出装置で検出した装入物の表面プロフィールを、安定した高炉1等の操業を行うのに適した理論上の表面プロフィールに近づけて装入物の補給を行い、より安定した操業を行うことを含む。
(How to operate)
In the present invention, the surface profile of the charge detected by the above-mentioned detection device is brought close to the theoretical surface profile suitable for performing a stable operation of the blast furnace 1, etc. Including performing stable operations.

例えば、高炉1では、検出装置で検出した表面プロフィールを基に、理論堆積状態よりも少ない箇所には多く、多い箇所には少なく鉄鉱石やコークスを補給して操業を行う。   For example, in the blast furnace 1, based on the surface profile detected by the detection device, the operation is performed by supplying iron ore and coke to a small number of places less than the theoretical deposition state and a small number to many places.

1 高炉
2 開口部
20 装入物
100、100a、100b、100c 送受信手段
101、101a、101b、101c 送受信器
102、102a、102b、102c アンテナ
120 回転板
121、121a、121b、121c スリット
130 駆動源
131 回転軸
140 エンコーダ
150 無線信号伝送装置
160 気密容器
170 隔壁
200 反射板
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 Opening part 20 Charge 100, 100a, 100b, 100c Transmission / reception means 101, 101a, 101b, 101c Transmitter / receiver 102, 102a, 102b, 102c Antenna 120 Rotating plate 121, 121a, 121b, 121c Slit 130 Driving source 131 Rotary shaft 140 Encoder 150 Wireless signal transmission device 160 Airtight container 170 Partition wall 200 Reflector

Claims (10)

容器の頂部近傍の開口から、容器内の装入物の表面に向けて検出波を送信し、前記装入物の表面で反射された前記検出波を受信して前記装入物の表面プロフィールを検出する検出装置において、
前記検出波の発振及び検波を行うための送受信器と、前記送受信器に接続するアンテナとを備える1つまたは複数の送受信手段と、
前記アンテナを前記開口に向けて取り付けた回転板と、
前記回転板の中心に取り付けられた回転軸と、
前記回転軸を、その軸線を中心に回動させるための駆動源とを備えるとともに、
前記回転板を回動させながら前記送受信手段による送受信を行い、前記装入物の表面を円状に走査することを特徴とする装入物の表面プロフィール検出装置。
A detection wave is transmitted from the opening near the top of the container to the surface of the charge in the container, and the detection wave reflected from the surface of the charge is received to obtain a surface profile of the charge In the detection device that detects
One or more transmission / reception means comprising a transceiver for oscillating and detecting the detection wave, and an antenna connected to the transceiver;
A rotating plate mounted with the antenna directed to the opening;
A rotating shaft attached to the center of the rotating plate;
And a drive source for rotating the rotating shaft about its axis,
An apparatus for detecting a surface profile of a charge, wherein transmission and reception are performed by the transmitting and receiving means while rotating the rotary plate, and the surface of the charge is scanned in a circle.
前記アンテナの軸線と、前記回転軸の軸線との交差角度が可変であることを特徴とする請求項1記載の装入物の表面プロフィール検出装置。   The apparatus for detecting a surface profile of a charge according to claim 1, wherein the crossing angle between the axis of the antenna and the axis of the rotation axis is variable. 前記送受信手段が複数であり、前記検出波による前記装入物の表面を走査する走査円の直径が互いに異なっていることを特徴とする請求項1または2記載の装入物の表面プロフィール検出装置。   The apparatus according to claim 1 or 2, wherein a plurality of the transmitting and receiving means are provided, and diameters of scanning circles for scanning the surface of the material by the detection waves are different from each other. . 前記送受信器が複数で、それぞれに前記アンテナが接続しており、かつ、同時に検出波の送受信を行うことを特徴とする請求項1〜3の何れか1項に記載の装入物の表面プロフィール検出装置。   The surface profile of the charge according to any one of claims 1 to 3, characterized in that a plurality of the transmitter-receivers are connected to the respective antennas, and simultaneously transmit and receive detection waves. Detection device. 前記送受信器が一つで、複数の前記アンテナが接続しており、かつ、複数の前記アンテナを切り替えて検出波の送受信を順次行うことを特徴とする請求項1〜3の何れか1項に記載の装入物の表面プロフィール検出装置。   The transmitter / receiver according to any one of claims 1 to 3, wherein the number of the transmitter / receiver is one, the plurality of antennas are connected, and the plurality of antennas are switched to sequentially transmit and receive a detection wave Device for detecting the surface profile of a charge as described. 前記送受信手段が無線信号伝送器と接続しており、送受信情報を無線により外部と通信することを特徴とする請求項1〜5の何れか1項に記載の装入物の表面プロフィール検出装置。   The apparatus for detecting a surface profile of a charge according to any one of claims 1 to 5, wherein the transmitting and receiving means is connected to a wireless signal transmitter, and the transmitting and receiving information is wirelessly communicated with the outside. 前記検出波が、マイクロ波またはミリ波であることを特徴とする請求項1〜6の何れか1項に記載の装入物の表面プロフィール検出装置。   The apparatus for detecting a surface profile of a charge according to any one of claims 1 to 6, wherein the detection wave is a microwave or a millimeter wave. 前記開口と前記回転板との空間に、前記開口及び前記回転板の両方に対向する反射板を、配置したことを特徴とする請求項1〜7の何れか1項に記載の装入物の表面プロフィール検出装置。   The charging plate according to any one of claims 1 to 7, wherein a reflecting plate facing both the opening and the rotating plate is disposed in a space between the opening and the rotating plate. Surface profile detector. 前記容器が高炉、溶融炉、焼却炉またはホッパーであることを特徴とする請求項1〜8の何れか1項に記載の装入物の表面プロフィール検出装置。   The said container is a blast furnace, a melting furnace, an incinerator, or a hopper, The surface profile detection apparatus of the charge in any one of Claims 1-8 characterized by the above-mentioned. 請求項1〜9の何れか1項に記載の装入物の表面プロフィール検出装置を用いて装入物の表面プロフィールを測定し、前記表面プロフィールを基に前記装入物を補給することを特徴とする操業方法。   The surface profile of the charge is measured using the surface profile detection device for a charge according to any one of claims 1 to 9, and the charge is replenished based on the surface profile. How to operate
JP2017233551A 2017-12-05 2017-12-05 Surface profile detection device and operation method of the charge Active JP7017753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017233551A JP7017753B2 (en) 2017-12-05 2017-12-05 Surface profile detection device and operation method of the charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017233551A JP7017753B2 (en) 2017-12-05 2017-12-05 Surface profile detection device and operation method of the charge

Publications (2)

Publication Number Publication Date
JP2019100648A true JP2019100648A (en) 2019-06-24
JP7017753B2 JP7017753B2 (en) 2022-02-09

Family

ID=66976826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017233551A Active JP7017753B2 (en) 2017-12-05 2017-12-05 Surface profile detection device and operation method of the charge

Country Status (1)

Country Link
JP (1) JP7017753B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110684874A (en) * 2019-09-25 2020-01-14 包头钢铁(集团)有限责任公司 Blast furnace material distribution method
WO2020241008A1 (en) * 2019-05-31 2020-12-03 株式会社Wadeco Surface profile detection device for blast furnace charge and operation method
CN114136232A (en) * 2021-11-19 2022-03-04 中国神华能源股份有限公司哈尔乌素露天煤矿 Material accumulation form measuring method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133005A1 (en) * 2014-03-04 2015-09-11 株式会社ワイヤーデバイス Method for charging and depositing charging material in shaft furnace, charging material surface detection device, and method for operating shaft furnace
US20170069951A1 (en) * 2014-02-21 2017-03-09 Vega Grieshaber Kg Level indicator comprising an energy transmission device
JP2017512300A (en) * 2014-01-20 2017-05-18 ティエムティ − タッピング メジャーリング テクノロジー エスエイアールエル Surface shape measuring device for blast furnace interior
US20170141454A1 (en) * 2015-11-17 2017-05-18 Vega Grieshaber Kg Antenna device and method for operating an antenna device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512300A (en) * 2014-01-20 2017-05-18 ティエムティ − タッピング メジャーリング テクノロジー エスエイアールエル Surface shape measuring device for blast furnace interior
US20170069951A1 (en) * 2014-02-21 2017-03-09 Vega Grieshaber Kg Level indicator comprising an energy transmission device
WO2015133005A1 (en) * 2014-03-04 2015-09-11 株式会社ワイヤーデバイス Method for charging and depositing charging material in shaft furnace, charging material surface detection device, and method for operating shaft furnace
US20170141454A1 (en) * 2015-11-17 2017-05-18 Vega Grieshaber Kg Antenna device and method for operating an antenna device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241008A1 (en) * 2019-05-31 2020-12-03 株式会社Wadeco Surface profile detection device for blast furnace charge and operation method
US11891672B2 (en) 2019-05-31 2024-02-06 Wadeco Co., Ltd. Surface profile detection apparatus of burden in blast furnace and operation method comprising an angle fixed reflection plate to transmit the detection wave from an antenna to the reflection surface of an angle variable reflection plate
CN110684874A (en) * 2019-09-25 2020-01-14 包头钢铁(集团)有限责任公司 Blast furnace material distribution method
CN114136232A (en) * 2021-11-19 2022-03-04 中国神华能源股份有限公司哈尔乌素露天煤矿 Material accumulation form measuring method and system

Also Published As

Publication number Publication date
JP7017753B2 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
JP6405362B2 (en) Method for charging and depositing charge in blast furnace, surface detection device for charge, and method for operating blast furnace
JP2019100648A (en) Surface profile detection device for charged material, and operation method therefor
JP2870346B2 (en) Vertical furnace charge profile measuring method and measuring device
TWI683992B (en) Material level measuring instrument and method for measuring the topography of filler surface and application of material level measuring instrument
JP5412947B2 (en) Apparatus and method for measuring profile of blast furnace interior
CN112313346B (en) Surface profile detection device for blast furnace contents and operation method
JP6669907B2 (en) Coking furnace coal level measurement method
JP6573323B2 (en) Surface detection apparatus and detection method for blast furnace charge
JP5787607B2 (en) Profile measuring device for blast furnace interior
JP2012067340A (en) Charging and depositing method of charged material to blast furnace, and operating method of blast furnace
CN105164554A (en) Millimeter wave scanning imaging system
JP5220690B2 (en) Apparatus and method for measuring profile of blast furnace interior
JP5441730B2 (en) Profile measuring device for blast furnace interior
JP7294741B1 (en) Charge surface profile detection device and operating method
JP6595265B2 (en) Method for charging and depositing charge in blast furnace, surface detection device for charge, and method for operating blast furnace
JP6033690B2 (en) Profile measuring device for blast furnace interior
JP7149026B1 (en) Apparatus and method for measuring surface profile of blast furnace insert, and method for operating blast furnace
JP2020180833A (en) Device for detecting surface profile of charging material and operation method
JP2015219129A (en) Surface detection device for blast furnace charging material
JP2021172877A (en) Surface detection device and surface profile detection method of blast furnace charged materials, and operation method of blast furnace
JP2022135725A (en) Method of processing distance signal in range finder, object detector and operation method of blast furnace
EP4043841B1 (en) Radar level gauge with elastic system
JPH0552737A (en) Grain-size measuring method for granular substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120

R150 Certificate of patent or registration of utility model

Ref document number: 7017753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150