JP2011030242A - コンクリートパイルの監視システム、及び設置方法 - Google Patents

コンクリートパイルの監視システム、及び設置方法 Download PDF

Info

Publication number
JP2011030242A
JP2011030242A JP2010202264A JP2010202264A JP2011030242A JP 2011030242 A JP2011030242 A JP 2011030242A JP 2010202264 A JP2010202264 A JP 2010202264A JP 2010202264 A JP2010202264 A JP 2010202264A JP 2011030242 A JP2011030242 A JP 2011030242A
Authority
JP
Japan
Prior art keywords
pile
antenna
sensor
data
sensor package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010202264A
Other languages
English (en)
Inventor
Kurt Hecht
カート・ヘチュト
Richard Hecht
リチャード・ヘチュト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smart Structures Inc
Original Assignee
Smart Structures Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart Structures Inc filed Critical Smart Structures Inc
Publication of JP2011030242A publication Critical patent/JP2011030242A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/06Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers for observation while placing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N2001/021Correlating sampling sites with geographical information, e.g. GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • G01N2035/00881Communications between instruments or with remote terminals network configurations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0664Indicating or recording means; Sensing means using witness specimens

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Piles And Underground Anchors (AREA)
  • Aerials With Secondary Devices (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Character Discrimination (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

【課題】コンクリートパイルの監視システム、及び設置方法
【解決手段】パイルのようなコンクリート構造の製造、設置、及び/又はライフサイクルに関するデータを追跡及び監視するシステムと、このようなデータを追跡し、記憶し、これにアクセスする、関連したシステム構成要素及び方法とを提供する。このシステムは、1つ以上の組込み可能なアンテナアセンブリと、成型前にコンクリート構造フォーム内に設置されるセンサパッケージとを利用する。アンテナ(1つ以上)は、構造からのデータの無線通信を提供する。また、構造関連のデータをこの構造によって記憶するオンボードメモリを提供する。さらに、駆動中にパイルを追跡するシステムを提供する。
【選択図】 図28

Description

本発明は、コンクリートのパイル及び構造を長期監視するための監視システム、さらに、このようなシステムを、内部に計器とセンサがプレキャストされたパイル及び構造に設置及び接続する手段に関する。
現在のところ、パイルやスパンのようなコンクリート構造の設置に関連した状況、又はこれによって発生した状況を決定するために、このような構造から情報を通信する効果的な方法は存在しない。また現在のところ、手作業でひずみ計/加速度計監視装置を装着して、設置中にパイル内の力と速度を監視するには大変な労力がかかるため、監視対象となるパイルのようなコンクリート構造では、耐負荷及び他の応力/ひずみ関連のデータを実際に監視できるのは約10個のうち1個である。一般に、パイルは、構造に巻き付くチョーカケーブルによって位置決めされた後にクレーンで上昇されるため、位置決めの最中にチョーカケーブルによって損傷又は切断されてしまう危険を避けるため、パイルの外側には何も配置することができない。現時点では、駆動のためにパイルを位置決めした後に、所望の位置まで登り、必要な計器とセンサをを直立しているパイルに手作業で装着している。これは労働集約型で、時間とコストがかかる上に、設置者に危険を強いる方法である。これ自体では限られた監視しか一般に実施できないため、より高い設計安全性要因が必要となる。駆動時に無線監視を実行する手段は、テスト工程に関連するコストを低減し、時間を短縮する上で非常に価値があるため、この手段を使用すればより多くのテストの実施が可能となる。しかしこれには、パイルからのセンサデータの無線送信を含む数多くの技術的な障害が伴う。
RFアンテナをコンクリートに設置したり、コンクリート内に組み込む上での基本的な問題は、コンクリートの年数と共に変化する多量の誘電成分によって、RFアンテナの性能が著しく低下してしまうことである。これは、非常に困難で大変な使用環境を呈する。空気の誘電定数が1.0、水が80である場合に、コンクリートの誘電定数は20(新鮮)〜6(水の内容量に従って数ヶ月後に完全に硬化)の間で変化する。この出願におけるコンクリート構造では、成型後約28日間、又はこれよりも短い期間使用した後に、誘電定数が約9.0になることがわかった。
RFアンテナの付近に配置されたコンクリートの比較的高い誘電性によって、(現時点ではデチューンされている)アンテナから出射されたエネルギーのほとんどがアンテナから引き出されてコンクリート内に注入される。自由空気と結合した残りのRFエネルギーの全ては、ひずんだ、及び/又は不規則なパターンによって激しく減衰する。これは、典型的なアンテナ設計は自由空気環境で動作するように作製されているためである。
これに加え、パイルのような構造要素の設置後にはデータの収集が停止する。このデータは分析され、長期間にわたって構造要素を劣化させ構造的な欠陥を招く原因である周期的な負荷及び厳しい環境への露出を考慮した、構造要素の長期安定性と構造適性を監視するために使用されるものである。
このようなコンクリート構造を、これの使用寿命にかけて監視するためのより効率的で費用効果的な方法及びシステムを提供することが望ましい。成型中及び製造工程中に容易に設置でき、また、構造全体の安全性と信頼性の面で妥協することなく、より効果的な設計を利用できるようにするべく所与の用途における全てのコンクリート構造、特に建物、橋、路床用の特定のパイルを監視できるようにするために、上記のような費用効果的な方法で監視を行うことが可能なシステムを提供することがさらに好ましい。これに加え、設置後に頂部を切断したパイルの場合のような、全天候型のコンクリート構造要素全てを含むコンクリート構造のライフサイクル監視を行うシステムを提供することが望ましい。また、組み込まれた計器を、構造の最終状態に関係なく監視する手段を提供することも望ましい。
本発明は、パイルのようなコンクリート構造の製造、設置、及び/又はライフサイクルに関するデータを追跡及び監視するシステムと、これに関連した、このようなデータの追跡、記憶、アクセスを行うシステム構成要素及び方法とを提供する。
本発明の1つの態様では、製造及び移送中に構造の表面から突出することのない、反射装置を装備した永久的で組み込み式のアンテナが提供される。このアンテナは、コンクリート構造の側壁と同一平面をなすように挿入され、外面から構造内へ限られた長さだけ延びるため、構造の完全性を危険に晒すことがない。これに加え、このアンテナは構造の内部鋼鉄骨組みから離間しているため、湿気の浸入と、関連する構造完全性の損失を防止する。
アンテナの取り付け/設計は、多数回に及ぶ最大約+/−1000Gの重力がかかるハンマー打撃によって特徴付けられる、高い衝撃が繰り返される使用環境に耐えられなくてはならない。これは例えば、補強コンクリートパイルの駆動中に見られる。
さらに、アンテナは、湿気への露出を含む野外での動作環境に晒されるが、湿気はアンテナの性能を低下させたり不能にするため、湿気を保持又は維持することはできない。
本発明のアンテナは、構造内に永久的に組み込まれ、使い捨て可能で低コストである。
本発明の別の態様によれば、製造中にコンクリート構造の表面よりも下に組み込まれるアンテナ配列が提供される。このアンテナ配列は、アンテナを、第1の収容位置から、コンクリート表面から突出する第2の延長位置へ移動させるアクチュエータを含む。アクチュエータは手動で操作されるか、又は、例えばパイル駆動ハンマーの第1の打撃(1つ以上)のような、コンクリート構造を通って伝播する特定の負荷あるいは指向性衝撃波によって、もしくは制御命令や他の電気信号によって、始動される。
本発明はまた、センサ及び計器を、成型前のパイルフォーム内に、U字型垂下アセンブリを使用して、簡単及び繰り返し可能な方式で経済的かつ迅速に設置する方法を提供する。U字型垂下アセンブリはセンサ/計器パッケージを垂直に配置することで、成型におけるセンサ/電子機器の損傷の可能性を低減し、好ましくは、成型前にセンサ/計器パッケージをパイルフォーム内に自動的に中心決めすることで、精密なセンサ読み出しを確保する。
本発明はまた、パイル設置全体にわたるパイル情報の追跡を可能にする履歴追跡及び記録メモリを提供し、これは、設置中にリアルタイムのフィードバックを作業者に提供するためにも使用される。
本発明はまた、別のコンクリート構造要素に加え、パイルのライフサイクル監視の方法も提供する。この方法では、パイルフォーム内のストランドどうしの間に1つ以上のセンサ/計器パッケージを挿入することで、センサをパイルの核範囲内に位置決めする。このセンサ/計器パッケージは、例えば、ひずみ計、加速度計、間隙圧、温度及び/又は湿度センサなどであってよい。次に、パイルを成型してセンサを封入する。無線/アンテナアセンブリは、少なくともアンテナがパイルの頂部付近から露出した状態で、フォーム内に位置決めされた後、パイル内でプレキャストされることが好ましい。パイルを建築現場で駆動させ、この駆動中にセンサ/計器パッケージ(1つ以上)からデータをリアルタイムに取得する。このデータは、駆動データのリアルタイムの検査及び分析を可能にする制御/監視システムに送信される。駆動後に、パイルを、既存のセンサ/計器パッケージ(1つ以上)に接続/インターフェースされたネットワーク化された監視ノードに取り替える。所与のパイルの一意アドレス指定情報を、好ましくはセンサパッケージアドレスIDに論理的にリンクさせることで保持する。次に、これらのノード(及び、全体構造内の別のセンサからの潜在的なノード)を外部ゲートウェイに接続/ネットワーク化させると、全体構造の一部又は全てをライフサイクル監視することが可能になる。
前述の概要と、以下に述べる本発明の好ましい実施形態の詳細な説明は、添付の図面と共に読解することで理解が増す。本発明を例証する目的で、現在好ましい実施形態を図面に示している。しかし、本発明は提示されたとおりの配列に限定されないことが理解されるべきである。
パイル形成のために内部でコンクリートを成型する前の段階にあるパイルフォーム内のストランドを示す斜視図である。 図1と類似する拡大斜視図である。 コンクリートをフォーム内で成型した後のパイルフォームを示す斜視図である。 本発明の第1の実施形態によるアンテナアセンブリの第1の実施形態の展開図である。 図4のアンテナの断面図であり、パイルのようなコンクリート構造の側部に組み込まれた状態を示す。 パイル頂部に対向して配置したアンテナ場所を示す斜視図である。 コンクリート構造の表面と同一平面をなして取り付けられた展開可能なアンテナアセンブリの側面図である。 図7のアンテナの斜視図である。 本発明による現場で展開可能なアンテナの代替実施形態の斜視図である。 本発明による別のアンテナアセンブリを形成するために使用された反射装置の一部分解斜視図である。 本発明による第2の反射装置アセンブリを示す一部分解斜視図である。 電子機器モジュールハウジングが取り付けられ外部に露出した状態にある、アンテナハウジングと反射装置アセンブリの展開図である。 図12に示したアンテナ管とハウジングを密封するために使用される重合体プラグの拡大断面図である。 図12に示したアンテナ反射装置アセンブリのための、第1のタイプの端部キャップの正面図である。 図12に示したアンテナ反射装置アセンブリのための、第2の端部キャップの正面図である。 電子機器モジュールハウジングがない、図12と類似した、本発明による別のアンテナアセンブリの斜視図である。 解除ガスケットが電子機器モジュールハウジングカバーの周囲に配置されている、図12と類似した、アンテナアセンブリの斜視図である。 図17に示したアンテナアセンブリの背面斜視図である。 パイルフォームの断面図であり、本発明によるアンテナアセンブリをパイルフォーム内に対向させて位置決めした状態を示す。 パイルフォームの断面図であり、パイル内に計器を垂直に取り付けるための本発明によるストランドとU字型棒垂下アセンブリとを示している。 U字型棒垂下アセンブリの展開斜視図である。 取り付けたひずみ計、加速度計、電子機器モジュールと共に示された、組み立てた状態にあるU字型棒垂下アセンブリの、一部を概略的に示した側面図である。 ひずみ計、加速度計、電子機器モジュールを装備したU字型棒垂下アセンブリの別の実施形態を示した、図22と類似する側面図である。 図23のU字型棒垂下アセンブリの中央区間における電子機器とセンサ取り付け具の斜視図である。 図24のU字型棒垂下アセンブリに関連したセンサ取り付け具を示す背面斜視図である。 加速度計用の耐水ハウジングの断面図である。 頂部及び先端センサ/ゲージパッケージと無線/電子機器コンパートメントとの間の接続を示すパイルの略図である。 図27と類似のパイルの略図であり、この場合にパイルは、駆動後に頂部を切断したパイル用の組み込まれた先端計器への接続を可能にするためのワイヤ容器と案内管を含む。 図28の線29−29に沿ったパイルの断面図である。 パイルを除いた状態で示す、図28のパイルセンサとアンテナ配列の略図である。 共通データバックボーンとパイル内送信システムを示すパイルの略図である。 無線電子機器をネットワークノードモジュールと交換中の、駆動されるパイルの頂部の斜視図である。 頂部を切断したパイルの斜視図であり、ネットワークノードモジュールと接続した状態を示す。 本発明によるライフサイクル監視システムを示すフローチャートの一部である。 本発明によるライフサイクル監視システムを示すフローチャートの一部である。 本発明によるライフサイクル監視システムを示すフローチャートの一部である。 構造の追加部材、及び/又はデータを取得/監視するための遠隔操作アップリンクに接続するべく、共にノードに接続している監視センサを有する複数のパイル頂部の上に配置された、コンクリートキャップ成型の斜視図である。 本発明によるパイルの貫通深度を追跡するシステムの斜視図である。 パイルの貫通深度を追跡する代替システムの斜視図である。
以下の説明では、特定の専門用語を便宜面のみの目的で用いるが、これは限定を考慮したものではない。用語「下方」、「上方」、「左」、「右」は、参照する図面中の方向を示す。ここで使用しているとおり、「A、B、Cの少なくとも1つ」とは、A、B、Cのうちいずれか1つ、あるいはこれらの組み合わせを意味する。この場合A、B、Cは本発明の顕著な特徴を表す。これに加えて、用語「或る(a)」「1つの(one)」は、特に表記がない限り、参照する項目のうち1つ以上を含むものとして定義される。
図1を参照すると、パイルを形成するために、パイルフォーム14内にコンクリートを注入して成型を行う前の、パイルフォーム14内にパイル10用のストランド12を配置した状態を示している。設置中及び設置後にパイルからデータを送信するための複数のセンサ16とアンテナアセンブリ18が、好ましくはケーブル連結部又は類似の保持装置を使用して、ストランド12に接続された状態、又はストランド12から垂下した状態あるいはこれの上にある状態で示している。複数のセンサ及び複数のアンテナの好ましい用途は、下記に詳細に述べるとおり、パイルの設置及び/又はライフサイクル監視を行うため、又は場合によってはパイルデータの記録を行うために、パイル内に組み込んだセンサによって収集されたデータの直接無線データ転送を利用し、パイルを監視するというものである。
図2は、1つの好ましいアンテナ/無線アセンブリ60の拡大図であり、このアンテナ/無線アセンブリ60は、フォーム内にコンクリートを注入成型した際にコンクリートの中で浮き、これの頂面がパイルの表面に位置するようにパイルストランド12の頂部に一時的に配置されている。これに加え、センサ16をパイルストランド12どうしの間に配置するために、センサ16は好ましい垂下アセンブリに取り付けられている。これについては以下で詳細に説明する。
図3は、コンクリートを注入してフォーム14内に成型されたパイル10を示す。アンテナ18の表面は、パイルドライブ以前、最中、及び/又は以降に信号送信を実行できるように露出している。また、アンテナ/無線アセンブリ60のカバー64も露出した状態のままである。アンテナ18を取り外して、電子機器モジュールハウジング61のカバー64内に組み込むこともできる。以下でこれを詳細に説明する。
図4、図5に、本発明によるアンテナアセンブリ18の第1の実施形態を示す。製造中に、アンテナアセンブリ18は、図3に示すパイル10のようなコンクリート構造の側部に同一面取り付けされる。アンテナをパイル10の周囲のコンクリートから分離することが重要である。これは、好ましくは鋼鉄かアルミニウムのような金属製であるコーナーリフレクタ24を設けることで達成される。このコーナーリフレクタは、あるいは、電導性コーティングを施したプラスチック製であってもよい。従来のコーナーアンテナは、利得を提供する別の用途に使用されてきたが、本願明細書の場合には、アンテナを、これらが組み込まれている周囲のコンクリート構造から隔離させる目的で、慣習にとらわれない方法で使用する。典型的なコーナーリフレクタ用途では、リフレクタは、反射した波が同調して追加され、利得が提供されるように、アンテナから1/2波長離れた場所に配置される。本発明の用途によるコンクリート内の構造補強に基づく深さ規制のために、コーナーリフレクタ24の金属表面をアンテナから十分に離れた場所に配置することで、アンテナへのデチューンの影響(インピーダンスの不整合損失によって生じる)が最小化され、また、同金属表面を遠すぎない場所に配置することで、反射波によって生じる破壊的な干渉が最小化される。1つの用途では、916MHzの基準波長には、約1/6波長分の空間を提供する2.1インチ(約5.33cm)の距離が好ましい。
本発明の、より短い波長/より高い周波数(例えば2.4GHz)の別の実施形態では、組み込まれた、全体形状がより小型のアンテナアセンブリには約1インチ(2.54cm)の間隔を設ければよい。
やはり図4、図5を参照すると、アンテナ26は、オープンセル型発泡ブロック28又はこれと類似した非湿気吸収又は保持スペーサを設け、裏面に金属被覆を施したリフレクタに関連して適所に保持される。当該周波数にあるRF透過材料から形成されたカバープレート30をアンテナ26の上に設置することが好ましい。このカバーは、図3に示すようにコンクリート構造の表面と同一平面を成すことが好ましい。グロメット31を、アンテナ26から延びているワイヤ又は同軸ケーブル周囲に配置することが好ましい。このアセンブリ18の全体は、耐水方法で組み立てることが好ましい。
図6は、パイル10頂端部の対向した面上へのアンテナ18の好ましい配置を示す。このアンテナアセンブリ18は、頂部から2dだけ下に配置されることが好ましい。ここで、dはパイル10の幅である。センサ16も頂部から2dの場所に配置され、追加のチップセンサはパイルチップから2dに配置されていることが好ましい。これについては以下で詳細に説明している。しかし、センサはパイル断面の中間/核部分に配置されている。
図7、図8を参照すると、本発明の別の実施形態では、単式(又は複式)の引き込み可能なばね負荷型アンテナアセンブリ50を提供している。パイルの製造及び移送中、アンテナ52とパイル面は同一平面をなした状態に維持される。アンテナアセンブリ(1つ以上)50は、実際のパイルハンマーによる垂直打撃があった場合、又は制御命令が受信されてソレノイド駆動リリースが始動された場合のいずれかのみに展開位置へ延びるアンテナ52を有する。好ましくは絶縁基板上に被覆された金属や他の伝導性材料から形成される伝導性グラウンド面54が、コンクリート構造の表面と同一平面上に取り付けられている。この伝導性グラウンド面54は、カバー30のような表面上に定在しており、アンテナが展開されるとアンテナ構造の一部として動作する。アンテナ52の長さは、好ましくは1/4λであり、グラウンド面54は約λ/2のディメンションを有し、さらに、直径又は辺長さが約λ/2の円形又は四角形であることが好ましい。この配列が好ましいが、別の配列利用も可能である。
代わってあるいは遠隔リリースに加えて、アンテナアセンブリ50の自動延長の試みが失敗した場合に備えて、、手動押しボタンのオーバライド55を設けられる。これは、使用者がロッド又はピンを挿入したり、アンテナ52を収容状態にて保持するキャッチを解放できるようにするために、グラウンド面54に配置された小型開口部であってよい。
アンテナ(1つ以上)52は、適切な度数の強打又は制御命令を受けると、コンクリート面から直角に延びる。これは、図8に示すように蝶番を取り付けたアンテナ52によって容易に達成できる。強打又は制御によって始動されたソレノイド又はプランジャがキャッチを解放し、アンテナは、円周力コイルばね又は圧縮ばね(図示せず)の力で駆動されて外方へ回転する。代わって、図9に示すように、アセンブリ56は、コンクリート構造の表面に配置されている電導グラウンド面54aの表面に対してほぼ直交して延びている非電導スリーブ58内に配置されたアンテナ57を含むことができ、また、上述の検出された強打又は制御信号のいずれかによってキャッチの解放が始動されると、キャッチが解放され、アンテナ57が外方に跳ねて、スリーブ58からグラウンド面54aの上の方の延長位置へ到達する。
アンテナ(1つ以上)が設置中にグレード(水又は地面)に当たった場合には、繋がれたパイルの場合と同様に、内蔵の感知回路要素が、以下で詳細に説明するように、データの送信をグレードよりも上のアンテナ又は内蔵トランシーバに切り替えるか、又は、データエクスポート用ジャックを介して直接接続できるようにする。
図10、図11は、アンテナアセンブリ80、90の2つの追加の代替実施形態を示している。これらのアンテナアセンブリは、非常にコスト効率的な方法で構成され、また、厚さがλ/4、直径が好ましくはλ/2よりも大きい又はこれと等しい低損失及び低誘電性材料のプラグ82、92を使用している。各プラグは、プラスチック、又は上述の必要性を満たす何らかの適切な材料から形成されていてよく、また好ましくは円筒形(図10)、半球形、放物線形(図11)である。側部と底部は、金属被覆したホイル又は別の何らかの適切な材料のような電導性コーティング84、94で被覆されている。外部密封された中心開口部85、95を通って、同軸ケーブル88、98の中心ワイヤ86、96がλ/4の長さで延びている。ケーブル88、98のグラウンドブレードが、電導性コーティング84、94の中心開口部85、95のプラグ82、92の底部を通って延びている範囲に半田付けされるか、あるいは接続されている。低コストのアンテナを提供するために、製造中、プラグ82、92の頂面がカバーとして機能し、コンクリート構造の表面と同一平面に設置される。
図12ないし図15は、上方アンテナ/無線アセンブリ60の好ましい実施形態を詳細に示している。アンテナアセンブリ60は、リフレクタ本体66を有するリフレクタアセンブリ65を含んでいることが好ましく、リフレクタ本体66は、上方に曲がった金属シートによって好ましくはV字形状に形成され、また、図14、図15に示すように、これの両端には端部キャップ68、70が取り付けられている。リフレクタアセンブリ65は、アルミニウム又はステンレス鋼のような金属材料で形成されていることが好ましい。しかし、これ以外の適当な金属材料も利用でき、又は、金属コーティングされた重合体材料も適している。所望の周波数のRF透過材料で形成された保護カバー72が提供されている。このカバー72は、パイル製造における成型中にコンクリートをアンテナアセンブリ60から離しておくために必要であり、所望であればコンクリート硬化後に取り除くことができる。1つの好ましい実施形態では、これは、硬い厚紙/厚紙、あるいは厚さが約0.02インチ(約0.05cm)より厚く、リフレクタアセンブリ65に接着、テープ接着、若しくは密封することができる重合体材料で形成されている。
アンテナアセンブリ60はさらに、ワイヤ用のハウジング61と、アンテナ76に関連する電子構成要素と、データ信号の送信を行う無線モジュールとを含んでいる。アンテナ76は、PVCのような重合体材料で形成されたアンテナ管78の内部に配置されていることが好ましい。アンテナ76は、好ましくはハウジング61から延びている結合部69と、ハウジング61内部から結合部69内へ挿入されアンテナベースの周囲に延びているプラグ79とを使用して、耐水方法でハウジング61と接続している。これについては図13に示されている。プラグ79は、ハウジング61内に、符号81で示すように密封又は接着されていることが好ましい。前記リフレクタアセンブリ65は、第1の端部キャップ68がハウジング61と接触するように、アンテナ管78の上の方に設置されている。管端部キャップ83は、アンテナ76の設置後にアンテナ管の78の端部を密封するために使用される。耐水コネクタ91をハウジング61の側面に設けた開口部(1つ以上)内に挿入すれば、パイル10内に設置されている感知システムの様々なエレメントへデータ信号を送信する、及び/又は電力を伝送するワイヤ、ケーブルなどのための耐水入口地点及び出口地点を提供できる。これに加え、例えば提供されたフランジへのリベットで、又はこれ以外のクリップ、接着、ケーブル連結部などの任意の適切な接続によって、浮力補正板87がハウジング61の底部に好ましく接続される。この浮力補正板87は、上に十分な量のコンクリートを配置できる寸法に作製されているので、浮力補正板87がアンテナアセンブリ60の浮力に対抗することで、カバー72とパイル表面がほぼ同一平面にある状態において、アンテナアセンブリ60がパイルストランドよりも上の浮遊位置に維持される。
前記ハウジング61、結合部69、プラグ79、アンテナ管78、耐浮遊板87、端部キャップ83は全てPVC又は類似の重合体材料で作製され、単純かつ効率的な方法で相互に組み立て及び接着できることが好ましい。リフレクタアセンブリ65のカバー72は、パイルフォーム14内に配置されて、パイルの外面に沿って保持され、パイルの外面の一部を形成することが好ましい。また、パイルの形成後に、ハウジング61内に配置されているワイヤ、ケーブル、電池、診断サポート、及び/又は電子構成要素に接触できるようにするために、接触用カバー64がハウジング61に設けられ、さらにパイルの表面にも位置していることが好ましい。
図16は、第2のアンテナアセンブリ62用のリフレクタアセンブリ89を示しており、このリフレクタアセンブリ89は、カバー72と、好ましくはV字型のリフレクタ本体66とを含んでいる。アンテナ76を挿入したアンテナ管78をリフレクタアセンブリ89内部に入れ、この両端部を2つのリフレクタ端部キャップ70で閉鎖する。アンテナが管78内に設置されると、アンテナケーブルのみがリフレクタアセンブリ89の一端から外部へ出た状態で、管の両端部が管端部キャップ83又は類似タイプの端部キャップによって耐水密封され、これで第2のアンテナアセンブリ62の形成が完了する。
図17、図18は、設置を改善した好ましいアンテナ/無線アセンブリ60を示している。カバー64の取り外しを可能にするために、図17に示すように、発泡又はゴムスリーブ63をハウジング61の頂部周囲に設置し、これを上方へ、カバー64のリップ部を越えた場所にまで延ばしている。これにより、パイル10の形成に使用されるコンクリートがカバー64を適所でロックすることが防止され、また、スリーブ63は、コンクリートが硬化し、カバー64の取り外しを可能にする空隙ができた後に取り外すことが好ましい。あるいは、スリーブ63を取り外さずに、湿気の進入及び安定を防止するための密封として機能させることもできる。
複数の個別に切り替え可能で一意に識別されるアンテナを、コンクリートパイル構造内に組み込むことが好ましく、このアンテナは、ハウジング61内に無線モジュールが取り付けられたアンテナアセンブリ60と、場合によっては1つ以上のアンテナアセンブリ62と、あるいは上述で確認された別タイプのアンテナアセンブリとを含んでいることが好ましい。これらのアンテナは、どのアンテナ位置が最高の信号強度を提供するか、次いで最高のデータ帯域幅機能を提供するかを、受容システムによって、受容システムの物理位置に基づきラウンドロビン方式で、好ましくは自動的に使用可能にされる。このアンテナ(位置)のみが選択され、後続の全てのデータ通信について使用可能となる。パフォーマンスを最適化するために、データ取得の最中、使用されていないアンテナ位置には送電がされない。データ取得の最中、選択されたアンテナからの信号を損失してしまった場合、システムが残りのアンテナの1つとの接触の自動確立を試みることができる可能性がある。
アンテナ選択基準は、受信した信号の強度インジケータ信号(RSSI)、リンク品質、計算された検査信号送信帯域幅の組み合わせに基づくことが好ましい。アンテナを選択し、これを使用可能にするために使用される特定のプロトコルの選択は、使用している特定のシステムと用途に基づいて行うことができる。しかし、一般的には、最高の伝送能力を持ったアンテナが選択されて、使用及び電力供給される。一旦選択されると、選択されたアンテナには、全システム電力が送られてシステム電池の寿命が延長される一方で、最良の信号強度と最高の帯域幅が提供される。また、アンテナ構造はパイルの表面上に露出しているため、複数のアンテナを使用することによって、1つのアンテナが損傷した場合にも冗長性オプションと回復オプションを提供することができる。
次に図19は、パイルフォーム14内に配置されたアンテナアセンブリ60、62を示す。上方アンテナアセンブリ60は、製造後に水浸入源がストランドスケルトンに到達することを防止するために、コンクリート中のストランド12の上方の位置に浮いた状態にあることが好ましい。下方アンテナ62は、底面と同一平面にあるフォームの底部に配置でき、成型中のコンクリートの重量によってこの位置に維持される。上述した別型のアンテナアセンブリを使用することもできる。パイルフォーム14の対向する側壁にアンテナアセンブリを配置してもよい。
図1ないし図3に示したセンサ設置の際に遭遇する1つの問題は、コンクリートの注入、これに続く振動器又は他の手段を使用したコンクリートの硬化の最中に、ストランド12の上又はこれらの間にセンサを水平に取り付けることで、コンクリートの注入及び/又は突き固めをするべき凸凹の輪郭が増え、センサへの損傷の可能性が高まることである。
図20に示すように、本発明によれば、パイルフォーム14内に設置するセンサの迅速で精密かつ繰り返し可能な位置決めを促進するために、U字型棒垂下アセンブリ120、120’をパイルフォーム14内にほぼ垂直に設置することが好ましい。これには、パイルの核の断面内に配置しなければならない加速度計122とひずみ計124とが含まれることが好ましい。U字型棒垂下アセンブリ120、120’は、ばね負荷型のものであることが好ましく、また、後続のパイルの駆動中にも精密な加速度測定を実施すべく加速度計をパイル長さと直交する位置に維持し、さらに、精密なひずみ測定を実施するようにひずみ計をパイルの縦軸と平行する位置に維持しながら、ハンド測定の必要なく、センサをパイルフォーム14の核範囲の中心内に繰り返し可能に位置決めできることが好ましい。
次に、図21、図22を参照しながら、U字型棒垂下アセンブリ120の第1の実施形態を詳細に説明する。U字型棒垂下アセンブリ120は、上方及び下方U字型フレーム126、128を含んでいる。下方U字型フレーム128の脚部は、上方U字型フレーム126の脚部内で滑動することができる。上方U字型フレーム126の脚部内には、ばね130が配置され、上方U字型フレーム126を付勢して下方U字型フレーム128から離している。組み合わされた上方シールド/フック132と、1つ以上の下方フック134の各々とが、上方及び下方U字型フレーム126、128の基部にそれぞれ取り付けられている。シールド/フック132とフック(1つ以上)134は、直流腐食を防止する任意の適切な材料から形成されていてよく、また、図22に示すように、U字型棒アセンブリ120をパイルフォーム14内にほぼ垂直包囲に設置した場合に、ストランド12と係合できる任意の適切な形状であってよい。上方シールド/フック132は、コンクリート成型中、及びこれに続く振動による硬化/突き固めによって生じる損傷から計器/センサ配列を保護できるよう十分幅広であることが好ましい。
設置において、U字型棒垂下アセンブリ120を複数のストランド12どうしの間に挿入することができ、この場合、下方フック(1つ以上)134を下方ストランド12に係合させている。次に、上方U字型フレームをばね130の力に対抗して下方に押下して、下方U字型フレーム128の脚部を上方U字型フレーム126の脚部内に入れ子式に受容させることで、U字型棒垂下アセンブリ120を圧縮する。上方U字型フレーム126上の力が解放されると、上方及び下方U字型フレーム126、128がばね130によって相互に離れるように付勢され、上方シールド/フック132のフック部分がパイル部分14内の上方ストランド12の下面に対して係合できるようになる。
再び図21、図22を参照すると、U字型棒垂下アセンブリ120は、これに接続された搬送用そり136をさらに含んでいる。この搬送用そり136は、取り付けプラットホームを配置するために、上方及び下方U字型フレーム126、128の脚部と接触する案内フランジ138を含むことが好ましい。搬送用そり136の上方部分は、図22に示すように、電子機器モジュール159を保持及び保護するべくほぼU字型に屈曲した延長部137を含むことが好ましい。あるいは、この部分を別個の部品として、又は電子機器モジュールのハウジングの一部として設けることもできる。
センタリングばね140を提供し、これの第1の端部を上方U字型フレーム126と下方U字型フレーム128のそれぞれに接続することが好ましい。センタリングばね140の第2の端部を、搬送用そり136の上方及び下方側部上のブラケット141に接続し、さらに、ストランド12上の設置位置におけるフック132から134までの距離に関係なく、搬送用そり136をほぼ中心位置に付勢する。ブラケット141は、計器/センサアセンブリがパイルのほぼ中心に位置するように離間される。これは、「a」を、センサ/計器アセンブリ取り付け位置の中心線から等間隔に配置することで行うことが好ましい。図22に示すように、センタリングばね140からの力ベクトルは主要Y力成分を有する。しかし、取り付け配列に基づけば、搬送用そり136をU字型フレーム部材126、128に対して保持するためのX力成分を提供する可能性もある。設置装置をストランドどうしの間へ延ばし、搬送用そり136の位置を測定及び調整させなくても、センタリングばね140が、設置時に搬送用そり136が繰り返し可能な中心位置にあることを確認する。センタリングばね140は、ばね130よりも低いばね定数を有する。垂下アセンブリが適所に到達すると、ワイヤ連結部、ホースクランプ、つまみねじ、又は類似した他の装置によって、搬送用そり136が中心位置にクランプ留め及び/又は保持される。これは、コンクリート、及び/又は後続の振動/安定が、搬送用そり136をばね均衡位置から移動させてしまうことを防止する。
あるいは、別のばね配列を利用するか、もしくはセンタリングばね140を省略して、ケーブル連結部、曲げワイヤ、又は上述したようなこれ以外の適切な固定具によって、U字型棒垂下アセンブリ120に取り付けプラットホームを設置することもできる。
好ましくはケーブル連結部、ワイヤ連結部などによって、搬送用そり136に取り付け板139が接続されている。この取り付け板139は、好ましくは整列穴、タブ、又はこれと類似の別の方法によって、搬送用そり136上の適所に合わされている。加速度計アセンブリ122は、ケーブル連結部や他の適切なタイプのコネクタ、例えば機械固定具、エポキシ、又は任意の他の適切な手段によって、取り付け板139に取り付けられることが好ましい。あるいは、取り付け板139を省略して、これの取り付け特徴を搬送用そり136上に組み込むこともできる。
図23、図24は、U字型棒垂下アセンブリ120’の第2の実施形態を示す。第2の実施形態120’は、ばね130が不要であり、取り付け板139を省略してこれの機能を搬送用そり136’と一体に組み込んでいる点を除いて、実施形態120と類似する。U字型棒垂下アセンブリ120’では、U字型フレーム126、128は、上述したのと同じ方法で共に滑動可能であり、離間することができる。しかし、下方U字型フレーム128の脚部には一連の穴が含まれ、これらの穴は上方U字型フレーム126の脚部の穴と整列し、ピン、ボルト、リベット、又は任意の他の適切な固定具のようなピン133で留めることができる。U字型フレーム126、128は、パイル10を形成するための特定のストランド12空間について調整される。次にピン133を設置する。底部フック134’は、ばね鋼又は他の適切な弾性材料で形成されている。設置中に、U字型棒垂下アセンブリ120’がストランド12と下方ばねフック134’の間に挿入され、下方ストランドと係合する。ばねフック134’が伸縮的にゆがむことで、上方フック132をフォーム14の所望の上方ストランド12の下に挿入できるようになり、この後、上方フック132を弾性的に付勢して上方ストランドと係合させる。ストランド自体もいくらかの弾性を提供し、弾けて離間することでU字型棒垂下アセンブリを設置できるようになる。下方U字型フレーム128の脚部の穴は、多数の周知のパイルサイズの従来の標準的なストランドにおける適切な場所に配置することもできる。計器とセンサを取り付けた搬送用そり136’を、ケーブル連結部、クランプ、リベット、又は任意の他の適切な固定具を使用して、U字型フレーム126、128の中心位置に接続できる。
加速度計アセンブリ122は、図26に詳細に示すような、物理的な加速度計装置を収容する耐水空洞を保持したハウジング142を含んでいることが好ましい。ハウジング142は、物理的な加速度計装置が内部に収容される空洞148を画定する、頂部ハウジング部分144と底部ハウジング部分146とから形成されることが好ましい。上方ハウジング部分144に設けた円周溝内にOリング150が配置される。空洞148内に物理的な加速度計装置を設置すると、頂部及び底部ハウジング部分144、146が好ましくは接着剤を使って組み立てられ、ハウジング部分144と146が共に固定される。加速度計ハウジング142用の頂部及び底部ハウジング144、146は、低コストなポリカーボネートのような重合体材料で作製されることが好ましい。図22ないし図25に示すように、ハウジング142の円周周囲には好ましくはチャネル152が形成されているため、チャネル152内に受容されたケーブル連結器を使用して、ハウジング142を、これと別個に設けた搬送用そり136’又は取り付け板139と物理的に整列させ、これに物理的に取り付けることができるようになる。
図21に示すように、取り付け板139には好ましくは開口部154が配置されており、この内部に加速度計ハウジング142が固定されている。開口部154は、重ね合わせる/整列させるためのV字型の側壁を有しているため、V字型壁と重なり合ったハウジング142の周辺円周縁によって、加速度計ハウジング142が適所にしっかりと正確に保持される。加速度計を取り付けるべくケーブル連結部を延ばすために、取り付け板139にスロットを設けることが好ましい。この開口部154を設けることで、パイル作製に使用するコンクリートがハウジング142内の加速度計アセンブリ122の周囲で固まることができるようになり、これにより加速度計が正確なデータを収集できるようになる。あるいは、図24に示すように、同一タイプの開口部154’を搬送用そり136’に直接設けて、加速度計アセンブリ122を同じ方法で取り付けられるようにしてもよい。
ひずみ計124も、プレアセンブリの別個の部品として提供する場合には、ケーブル連結部を使用して、搬送用そり136又は取り付け板139上に設置されることが好ましい。ひずみ計124が収集するデータを正確なものにするために、開口部156を、図21に示すように、取り付け板139のひずみ計124の範囲に設けて、パイル作製に使用するコンクリートがひずみ計124の周囲で固まることができるようにすることが好ましい。図23、図24に示す実施形態では、これと類似の開口部156’も搬送用そり136’に直接設けられている。
図22、図24に示すように、ひずみ計124及び加速度計用の電子機器モジュール159も搬送用そり136、136’に取り付けられていることが好ましい。あるいは、これをパイルフォーム14内の何処かに配置することもできる。
取り付け板139は、Lexan(商標)のような重合体材料、又は任意の他の適切な重合体材料で形成されることが好ましい。上方及び下方U字型フレーム126、128は鋼鉄ロッド、管、他の構造から形成されることが好ましく、また、フック132、134も好ましくは鋼鉄のような適合性のある金属材料から形成され、溶接、リベット留め、又は任意の他の適切な手段によって、上方及び下方U字型フレーム126、128に接続していることが好ましい。上述したように、フック134’はばね鋼又は適切な弾性材料から形成される。搬送用そり136、136’は、鋼鉄のような適合性のある金属材料から形成されることが好ましい。
U字型棒垂下アセンブリ120、120’を使用することで、加速度計が形成されるパイルの核の長さと直交し、この核内に位置するべく、正確な整列と位置決めを維持する一方で、ひずみ計124は、形成されるパイルの核内で、これに平行に軸方向に延在し、ひずみ計124及び加速度計アセンブリ122のようなセンサのパイルストランド12に対する迅速で簡単な設置を、一貫した繰り返し可能な方法で行うことができるようになる。U字型棒アセンブリ120、120’は、搬送用そり136上に、計器/センサアセンブリを、パイルフォーム14内に精密に配置したストランド12と、ストランドの位置に基づいて正確かつ機械的に重ね合わせるように設計されているため、計器/センサアセンブリの精密かつ繰り返し可能な配置、好ましくはパイルの核の中心を、確実に得ることができる。
図27は、パイル10内のセンサ16の位置決めと、アンテナ/無線アセンブリ60及びアンテナアセンブリ62の位置決めを示す。パイル10内でデータ伝送を行うために、先端センサ16とハウジング61の間にシングルケーブル170が延びている。センサ16は、好ましくはU字型棒垂下アセンブリ120、120’を使用して、又は、センサ16をストランド12どうしの間の適所に保持する任意の他の適切なシステムを使用して配置される。対向した両側にアンテナを配置することで、アンテナの方位に関係なく、パイルから常にRF信号を受信できるようになる。
図28は、パイル10のセンサ及び信号送信システムの別の好ましい配列を示す。これの先端付近には、加速度計アセンブリ122とひずみ計124を含むことが好ましい、先端センサパッケージ16bが配置されている。少なくとも1つのアンテナ18がパイル頂部付近に配置され、また、さらなるセンサパッケージ16aもやはりパイル頂部又はこれの付近に配置されていることが好ましい。さらに、頂部及び先端センサパッケージ16a、16bのためのパイルサイズに基づいた好ましい配置場所を示している。先端センサパッケージ16bは、パイルライフサイクル履歴データ、計器キャリブレーションデータ、他のパイルドライブ関連のデータを記憶する不揮発性メモリ(NVRAM)を含むことが好ましい。これは電子機器モジュール159に内蔵するか、又は別個に設けることができる。
センサパッケージ16a、16bは、パイル核内に配置されるべき加速度計アセンブリ122とひずみ計124を保持した、U字型棒垂下アセンブリ120、120’のうち一方と、調整電子機器159とを含んでいることが好ましい。U字型棒垂下アセンブリ120、120’は、センサパッケージ16a、16bの迅速で簡単な取り付けを提供しながら、組み立てに要する時間とコストを低減する。
図28に示す好ましい実施形態では、好ましくはプラスチック材料から形成される管230が、先端センサパッケージ16bとアンテナ/無線アセンブリ60の電子機器モジュールのハウジング61との間に延びている。図29に示すように、先端センサパッケージ16bと電子機器モジュールのハウジング61の間に延びているケーブル又はワイヤ231は、管230を通って走行している。
図30は、この配列からパイル10を除いた状態の略図である。ワイヤ又はケーブル231の余剰分を収容するための拡大範囲又は容器233が、先端センサパッケージ16b又はこの付近に配置されている。この拡大範囲又は容器233は、管230の端部のバルブの形状で、センサパッケージ16bに向かって延びているワイヤ又はケーブル231に密封されていてもよい。これにより、設置後にパイル10の先端を切断すると、余剰分のワイヤ又はケーブル231をチャンバ233から上方へ引き出し、つなぐことができるようになるため、任意の他のセンサ、及び/又は先端センサパッケージ16bに配置されたNVRAMを含む加速度計及びひずみ計122、124を、ネットワーク化された監視ノードに接続して監視を続けることができる。以下でこれについて詳細に説明している。これに加え、先端センサパッケージ16b内にセンサ用の調整電子機器159と共に配置したメモリに記憶されたデータ全てにアクセスすることもできる。
図28、図29に示すように、管230を、パイル10の下流にて、ケーブル連結部又は別の適切なコネクタを使用してストランド12に緩く連結することで、管230が適所に配置されるが挟締されないため、ケーブル又はワイヤ231が管230で滑動できるようになることが好ましい。
図31は、ケーブル170又は231の形状をした共通データバックボーンを示すパイル10の略図を示している。本発明の一実施形態の好ましいシステムの全体像によれば、積層した(又はつないだ)垂直コンクリートパイルの先端及び頂部に、光ファイバ、RF、磁気又はハード接続を介した無線結合配列が配置されており、これをトランシーバモジュール260として示している。これは、各パイルの先端に組み込んだ受信機モジュール、頂部に組み込んだ送信機モジュール、及びパイルの先端から頂部へデータをパススルーモードで移動するためのハードワイヤリンク又はバックボーンを介した共通接続として提供できる。あるいは、トランシーバ260は、特定の用途に応じて、双方向データを提供することができる。
この配列を使用すれば、データをグレードパイルの下(below grade pile)から監視したり、この配列の頂部で駆動されているパイルにかけてデータをつなぐために、データの中継及び送信を行えるようになる。これにより、やはりハード接続したバックボーンに共通接続しているパイルに組み込まれた様々な感知モジュールから、情報(データ)を収集できるようになる。送信されたデータがどちらの方向に向けられているかを見分ける方法が、例えばネットワーク化されたノードの方法で提供される。
これに加え、本発明によれば、同じインターフェースの特別版を使用することで、構造どうしの間で電力を結合することができる。これにより、内部電源が失敗した場合にこれを自動オーバライドして、十分な動作電流を提供できるようになる。(場合によっては非常に離れている)動作場所のために、全ての構造に電力供給する電源には、ソーラーパネルを使用して得た太陽エネルギーも含まれる。
任意で、補助のバックアップ接続ポートを提供して、内蔵電源が失敗した場合に電池のような補助電源に接続できるようにしてもよい。内部データロガー、信号調整装置、送信機が失敗した場合に、加速度計、ひずみ計、温度センサ、及び任意の他のセンサからデータを直接読み出すための外部プラグ又は接続を、コンクリート構造内に組み込んだハード接続されたバックボーンを介して提供すれば、部分的なシステム欠陥が生じた場合にも、コンクリート構造内のセンサ及び計器からデータを収集することができる。
無線インターフェース電子機器を含む中央センサデータ多重化及び制御部が、ハウジング61内、又は好ましくはパイル表面に進入部カバーを有するパイルの中に配置された別のハウジング内に提供されることが好ましい。
送信機の無線アドレス又はMAC(媒体アクセス制御)アドレスに関連していることが好ましいパイルI.D.が、製造日付、キャリブレーションの日付、センサの詳細、センサ構成、利得、オフセット、計器要因、感度、ロット番号、シリアル番号、販売者などと共に、データ証明システムQCによってメモリに記憶される。この初期情報は、好ましくは先端計器調整電子機器と共に配置された不揮発性メモリに記憶され、成型ヤードにおけるパイル製造中に、例えば成型ヤード、検査官氏名/番号、成型日、成型におけるパイルの場所、コンクリートモジュール、コンクリートの明確な重量、杭長さ、杭径又は他の外形、温度プロフィール(以降で詳細に説明する)、及び/又はひずみプレロードのようなパイル成型プロセスに関する情報が追加されて、さらに増大する。こうして記憶されたこれらの情報は後に使用される。あらゆる成型データ、又はこれ以外のパイル形成に関する履歴も、後の駆動プロセスを補助できるように記録される。パイル成型実施の前後に、パイル製造監督がこのメモリにアクセスして、無線のテスト及び/又はチェックを行うことで、パイルの出荷及び/又は駆動前に、QCと任意の必要な修正とを実施できることが好ましい。さらに、パイルの駆動中に成型ヤード検査官が臨界検査パラメータを入力することで、このパラメータにアクセスし、これを使用できるようにしてもよい。
メモリ内の全てのデータには、アンテナアセンブリ60、62の一方、あるいは上述したパイル上に配置された別型のアンテナアセンブリを使用するパイルからの無線周波数送信によってアクセスできる。
一旦設置場所に設置されると、必要に応じて、メモリ内の、駆動時におけるパイルのGPSの場所に関連した情報をログ(記録)することも可能になる。これを既にわかっている土の性質マップとリンク付けすると、(被駆動パイルが土中の探針の役割を果たすことにより)土の性質を確認及び/又は決定するため、及び/又は駆動プロセスを変更するために、駆動データを使用できるようになる。
駆動プロセス全般にわたるパイルの駆動中にダイナミックな監視を実施するために、パイルの駆動中にひずみ計(1つ以上)124と加速度計122が収集したひずみ及び力データが、アンテナアセンブリ60、62の一方によってRF送信される。これにより、従来のように駆動中に相対ひずみの外部監視を行う方法に対抗して、駆動中に臨床絶対内部ひずみ情報が提供されるようになる。詳細には、本発明により、実絶対ひずみを監視し、情報を使用できるようになることで、駆動力がパイル内に望ましくない引張状況を生み出すレベルを超えることがなくなる。この絶対圧縮及び引張応力情報は、ハンマー又はクレーンの操作者にリアルタイムのフィードバックを提供するために使用されて、ハンマーエネルギーの選択的な制御と、駆動プロセスの最適化が可能になることが好ましい。この情報はさらに、絶対許容可能ひずみ読み出し及びレンジを報告し、これのフィードバックを提供することで、オーバドライブ及び後続のパイル失敗の防止を行う際にも使用される。
メモリには、検査官、駆動日付、あれば再打撃日付、さらに最大応力を記憶できる。この後、各パイルがこのデータを使用及び追跡できるようになり、さらに、データの受信及び記憶、データの送信を実行できるアクティブ読み出し/書き込み可能なRFI.D.タグと類似の方法で、一意の時間スタンプを付けてメモリ内で追跡できるようになる。これに加え、駆動検査官、土木工学検査官、パイル駆動クレーン操作者も、駆動中にセンサユニット電子機器メモリ内のデータにアクセスして、パイルとこれの履歴に関する情報のチェック又は確認を行うことができる。このパイリング履歴データは全て実際の駆動データのヘッダとしてリンク付けられ、駆動データと共にパイリングデータベース内へ送信されて、後のライフサイクル及び/又は長期にわたる監視、QA/QCトレーサビリティ及びアカウンタビリティに使用される。さらにこのデータは、欠陥や失敗を予測する将来の分析及び比較にも使用できる。
したがって、パイルのライフサイクル全体が不揮発性メモリに捕獲され、アンテナアセンブリ60、62の少なくとも一方を使用したRF送信によってアクセスされる。さらに、アンテナに失敗が生じた場合には、必要であればパイル10の表面からハウジングカバー64内に進入して、手動での電気接続、及び/又はセンサユニット電子機器の駆動に使用されている電池や電子機器モジュールの交換を行うこともできる。
このメモリは、不揮発性RAM、EEPROM、又は他の書き込み可能な光/磁気媒体であることが好ましく、また、制御装置によるアクセス及び制御が可能であることが好ましい。また、このメモリは、周知のRF I.D.モジュールに関連して使用される拡張メモリモジュールであってもよい。センサユニット電子機器は、センサに関するデータや、成型中のパイルに関する情報を捕獲できる不揮発性メモリを含んでいることが好ましい。これは、パイルのライフサイクル追跡とこれに関連するデータに関連して利用される。
本発明によれば、コンクリート構造内のコンクリート強度を調べ、温度又は硬化プロフィールの準備を確認できる。いくつかの標準規格品はこのプロセスを説明している(ASTM C 1074)。パイルの核内と、外面とに温度センサを提供すれば、温度硬化プロフィールもセンサユニット電子機器メモリ内に保存することができる。熱硬化温度の流動線は、パイルの核から外方へ放射線状にのみ変化して、パイルの全長にかけて同一点にほぼ一定に維持されると仮定した場合、核及び表面温度センサを使用してこのデータが正確に追跡されて、パイル内の別の温度勾配が決定された結果、コンクリートがいつ使用可能な強度に達するかが決定される。
ソフトウェアを使用することで、センサ電子機器及びデータロガーから情報を収集し、さらにこの情報が、成型監督、ヤード検査官、駆動検査官、クレーン操作者等のように様々に確立された役割に基づいてユーザに表示される。このシステムは、1つの役割が他の役割をサポートすることで構成できることが好ましい。例えば、土木工学検査官はこのシステムを、特定の動作範囲(ひずみ、力、容量など)を超えた場合にパイル駆動検査官にフラグ警告を行うように構成することができる。これは、特定の駆動基準が満たされた、又はエラーにフラグが立てられたことを確認する上で、クレーン操作者や他の使用者にも適用される。このシステムは、基準閾値に基づいて打撃を追跡、カウント、送信することもできる。
これに加え、計器をパイル10の頂部と先端の両方に既知の距離を置いて配置することで、電波速度の異常を検出し、これを、関連するデータの署名を使用して、事前定義された特定の問題条件と比較することができる。この問題条件には、例えば過剰なひずみ、パイルに入ったひびのような材料の断絶により生じた電波反射が含まれる。このような異常が検出されたり、潜在的な異常データの整合が生じた場合には、操作者にこれが知らされる。
好ましい一実施形態では、加速度計は、複数の圧電性加速度計に共通して見付かったゼロシフト効果を無効にするために、交流結合又は直流付勢サーボ制御されている。本発明の圧電性(PE)加速度計の適用では、以下の用途特有の位置条件が知られている。
パイルは常にゼロと等しい速度から開始する。
測定中のイベントは200m秒未満の合計サイクル時間を有する 。
パイルは常にゼロと等しい速度へ戻る 。
測定中のイベントの前後における速度はゼロと等しく、また、測定中のイベントは所定及び周知の時間間隔で発生するため、交流結合を使用すること、又は、データ捕獲以前に、調整された加速度計信号にサーボ制御フィードバックを使用する固定の直流付勢制御を使用することが、PE加速度計に一般的なゼロシフト効果(又はエラー)に効果を発揮する。これにより加速度計データのよりよい品質が得られる。
本発明を用いれば、パイルの履歴全体と駆動データを監視し、捕獲することができる。本発明は、駆動中に捕獲された加速度計のデータとひずみ計のデータを特に参照しているが、これは単に好ましいデータのタイプでしかなく、これ以外のタイプのセンサを使用して別タイプのデータを捕獲及び提供することもできる。これには、例えば駆動中の温度を捕獲する先端温度センサ、パイルの温度勾配を追跡するために使用される先端及び頂部温度センサが含まれる。さらにこれ以外のセンサの使用も可能である。
センサユニット電子機器及びメモリに加えて、好ましい長寿命の電池を使用しているが、別の電源、例えば振動誘発電荷、太陽熱などの手段を提供することも可能である。さらに、外部電源の取り付け、内蔵電源の交換を行うための進入部を提供することもできる。
本発明によれば、ハウジングカバー64を取り除くことにより、無線インターフェース電子機器を含む中央センサデータ多重化及び制御を回復することもできる。しかし、センサ計器はシステム内に組み込まれたままであり、回復不能なままである。これにより、システムの一部を回復して再利用する手段を提供することで、システムのコストをさらに低減できる。
次に図32を参照すると、本発明によれば、パイル10の頂部が切断されていない場合、パイル10は、アンテナ/無線アセンブリ60の電子機器モジュールのハウジング61から無線モジュールを取り除くことで長期監視されるように再構成される。交換部品であり、外部給電される、ネットワーク化された監視ノード314’がハウジング61内に設置され、任意の利用可能な先端/頂部計器ケーブル又はワイヤ231に接続される。
次に図33を参照すると、駆動後に、用途の必要性に基づいてパイルの頂部を取り除き切断展開させたパイル10を示している。パイル10のライフサイクル全体にわたるさらなる監視、及びこれに続く構造又は基礎の形成を提供するため、又は、先端センサパッケージ16bと共に配置されたメモリ内の情報へのアクセスを可能にするために、パイル頂部を切断した後に容器233からワイヤ又はケーブル231を上方へ引き出して、これをネットワーク化された監視ノード314に接続しているコネクタ又はケーブルとつなぎ、これをキャップ構造内に組み込むか、あるいはパイル10の付近に配置することができる。これは現場の技術者によって実施される。したがって、パイル10が駆動され、頂部が切断されている場合には、頂部計器16a以下のどの部分においても、管230の断面は図33に示すようにケーブル231が露出した状態となる。
次に図34Aないし34B、並びに図35を参照すると、本発明によるパイル製造のライフサイクル監視を提供している。これは、それぞれのパイルアンテナ/無線アセンブリ60をネットワーク化された監視ノード機能で改良することによって行う。これにより、選択センサイネーブルパイル10及び他のセンサのパワードローカルエリアネットワークを確立する方法が提供される。改良されたノード又はデータポートは、図35に示すように、コンクリートキャップ350を成型する以前に電子機器モジュールのハウジング61内に配置しておくことができ、また、移送/建物の基礎及び上層構造を作製するパイル及びコンクリート構造内で、接続されているパイルノード全てを自己構成する機構を含むことができる。ノード又はデータポートは、典型的なネットワークプロトコルを使ってインターフェースされていることが好ましい。これに加えて、システムが、監視されている全ての計器/センサに対して配電を行う。あるいは、配電及びネットワーキング機能を組み合わせてもよい。
本発明によれば、給電のためにネットワーク配線され、データ転送のために有線接続している、電子機器モジュールのハウジング61内に設置された既存のパイルデータポートが建築作業員によって交換又は増設される。このネットワークに追加されたノードは好ましくは自己構成型であり、ピアツーピア又はマスタ/ホスト構成にて報告を行う。ネットワーク及び/又は配線は、接続されたパイルの少なくとも1サブセットを使用可能及び/又はアクセス可能にするための冗長性とアドレサビリティを提供する。
図35に示すように、基礎を作製するこれら新規のネットワーク化されたパイル10は、GPRS、有線ブロードバンド、PowerLineネットワーキング等のような、より大型のネットワーク又は遠隔測定アップリンク312に接続することができる。
各パイル10に関する履歴寿命情報(ダイナミックな設置の詳細/結果を含む)がパイル10から論理的に転送されることで、先端センサパッケージ16bが長期監視を提供できるようになっている。
パイル10を長期監視する目的でドライブからアップロードされた全ての遠隔測定情報が遠隔中央レポジトリにて維持され、再考、監視、報告に使用される。
このシステムはまた、所与の無線の一意のアドレス指定情報を保持する手段を提供する。これは、上記情報をセンサアドレスIDに論理的にリンク付けするか、あるいは交換用ネットワーク化された監視ノード314のバックボーンIDと交換された無線IDを同期又はマッピングする別の手段によって行うことが好ましい。
パイル10用の低電力差分信号を使用することで、ネットワーク化された監視ノード314の接続性への電流パイルセンサ(1つ以上)122、124が達成される。デジタル信号構造は、無線及び材料の干渉への高い耐性を有しながら、干渉の機会を全て排除し、無線/監視モジュールをトランスデューサ転送機能から断絶する能力により優れている。本発明によれば、デジタルバス構造はシステム内で使用される全てのセンサに用いられる。この構成では、
−センサの詳細及びキャリブレーション情報が先端センサの調整電子機器に保持され、デジタルバスは、センサキャリブレーション、センサデータ、全てのNVRAMコンテンツを通信する手段を提供し、
−複数の計器と様々な一意識別された計器タイプが、1つの物理的に配線されたバックボーンを共用できるようにする共用バスを使用し、
−高速かつ電力効率的なバスプロトコルを使用して、各計器からのデータ量を指示し、
−高性能なプラグアンドプレイシステムを使用することで、複数の計器構成を使用し、設置された計器に基づいて自動識別及び自己構成を実行できるようにし、
−無線/監視モジュール60を取り外す必要がある場合には、交換用のネットワーク化された監視モジュール314により繰り返し使用される先端センサ16b電子機器を設けた電子機器(例えばNVRAM)によって、計器とパイル10の寿命履歴との構成/キャリブレーションが維持又は反映される。
本発明は、最終的なパイル構成に関係なく、先端計器データと、調整電子機器NVRAMに記憶されたデータとによって長期監視機能を提供するものである。ネットワーク化された監視ノード314がキャップ350内に封入されていることに加え、ひずみ計及び別のセンサをキャップ350内に配置し、さらに、キャップ計器及びセンサのネットワークノードに接続することも可能である。この接続をゲートウェイ312で行えば、キャップデータを捕獲して、パイルデータと共に送信できるようになる。例えば、図35に示すキャップ350に配置したピア又は路床のような、より多くの構造を監視するためのさらなる監視機能を提供することもできる。これら追加的な監視機能は、自己適合型のネットワーク機能を設けたノードを提供することによって達成できる。したがって、以降で詳細に説明する基本パイル監視システム上に構築した積層可能なネットワークトポロジーを使用することで、所与の構造内の全ての要素を監視することが可能になる。これにより、パイルセンサがキャップ内の他のセンサと配線され、次にこれがピア内の別のセンサと配線され、次に路床内の別のセンサと配線されて、最終的に部分的又は完全に統合された構造(記述した構成要素及び/又は他の構造構成要素のうち1つ以上を含む)に遠隔測定アップリンクを介してデータを提供する、システム又は構造が提供される。
次に図36を参照すると、本発明によるパイルのパイル貫通度と、最終的には耐負荷能力とを決定できる向上した手段が提供されている。コンクリートパイルのパイル貫通度(及び最終的な能力)決定する電流手段には、パイルの一側部に手動でマーキングを行う工程と、ハンマーによるパイル打撃のカウントと(サクシメータ(saximeter)を使用してカウントする)、及び上昇基準マーカを通過して移動するマークの動作/貫通の記録を担当する検査官とが関与する。この工程では、駆動行程全体を通して労力と作業員が必要である。本発明は、ハンマーによる打撃を、パイル10内で設定閾値を超えた計器122、124の励起によって内部で、又は受信した信号から自動的かつ正確にカウントし、これを、パイルワークステーション(SPW)320のような追跡/監視装置によって解釈し、次にこれを、以降で説明する高さを感知するパイル貫通システムとインターフェースさせ、打撃カウントを追跡し(内部的又は外部的)、変位毎の打撃数を計算し、パイル駆動中に収集したダイナミックデータと同期させ、また、検査官に駆動を制御させるために情報をリアルタイムで通信し、パイル負荷能力データをリアルタイムで提供する。上記のパイルワークステーション(SPW)320は中心に設置されたシステム制御装置であり、パイル10内のセンサ及び計器からリアルタイムの駆動データを収集するものである。
本発明によるパイル10の変位の追跡は、数種ある方法のうちの1つによって実施できる。
第1の方法は、レーザレーダ(laser lidar)「飛行時間」と三角測量概念を利用してSPW320を結合する。この構成では、レーザレーダシステム322は、直角三角形Aの隣接した側部を決定するために、直立したパイル10に関連した基準高さに投射する第1の投射レベルにある。次に、直角三角形の関連する斜辺Cを決定するために、このレーダシステム322を、直立パイルの表面にかけて上方へ旋回させて、パイル10の頂部付近にある基準点324に到達させる。パイル10の基準高さ以上の垂直高さは、基準高さから、頂部から既知の距離Xだけ下がった場所にある基準点324までの距離Bに基づく。パイル10の全体長さLと、ダイナミックに算出した距離B及び距離Xがわかったため、基準高さの下のパイル貫通度Pも簡単に計算することができる。高さの変化は、Cの変化に基づいて容易に求めることができる。
パイル10の頂部における基準マーカ324は、直立パイルの場合における自動垂直追跡と、(モータ駆動式サーボ制御システムによる)レーダヘッド(lidar head)の旋回による自己整列調整とを促進するために作製されている。逆反射光線又は鏡を取り付けた物体を使用できる。
レーダシステム322は、基準マーカ324にロックすることで、パイルの駆動に従った基準マーカターゲットの下方移動を連続的に補正する。このシステムは、リアルタイムで計算したパイル高さBの生データ、又は計算したパイル貫通度Pデータを、追跡監視装置SPW320にダイナミックに提供する。これが、内部計器システムによって導出した打撃カウントと共に使用されて、1フィート毎の打撃数を計算/記録/追跡することで、完全に自動化された追跡が提供される。
あるいは、基準高さにて直立パイル(長さ)表面と直交する距離を入手した後に、レーダをパイル10の頂部にある共通点に投射すると、基準マーカがハンマー又はキャップ上に位置する可能性がある。総パイル長さLから、基準高さを超えて測定されたパイル高さ(三角測量で求めたもの)を減算することで、パイル貫通度が連続的に求められる。好ましくは走査システムの垂直再配置(垂直に延びたパイルの場合)を使用して、連続的に減少する高さを明らかにする。本システムでは、パイルを頂部から底部へスイープさせて、直立パイルの角度を求め、基準高さにおいてパイルと直交しない点へ投射を行い、この後、既知の三角法技術を用いて必要なデータを求めることもできる。これをSPW320と結合させれば、検査官がパイル駆動データを物理的に収集する必要性を省くことができる。SPW320は、打撃数をカウント及び追跡し、このデータをパイル貫通度データに対して同期させて、算出したパイル貫通度Pに基づき変位毎の打撃数を計算する。
あるいは、赤外線(IR)ベースのセンサ飛行時間カメラを使用して、ハンマー又はパイル上の所定点の重心を検出及び参照することができる。これには、熱像を使用したパイルクッションを例に挙げることができる。これに加え、3次元画像感知とパターン認識を使用したカメラシステムを旋回させてターゲット識別装置として使用し、上述のレーダヘッドの代わりとすることもできる。
図37に示すように、被駆動パイルの貫通深度を求める第2の方法は、気圧高度計を使用する。2つの気圧高度計340、342が、気圧と高度の2つの測定値を提供する。一般的に、高度を測定する場合、気圧高度計がキャリブレーション後の短い時間にわたって使用され、さらに、気候パターンの変化によって生じた気圧変化をなくすために、定期的に再キャリブレーションを行う。いくつかのシステムでは、違いは気圧であると知った上で、GPS衛星から高度情報を取得することでこれを行う。本発明によれば、パイル10又はハンマーあるいはキャップ(スタンドアロン通信状態)にデジタル式気圧高度計340を取り付け、好ましくは電子モジュールのハウジング61に取り外し可能に取り付け、さらに、無線のデジタルチャネルのうち1つにインターフェースさせている。次に、パイル又はハンマーに取り付けた高度計340から送信されたデータを、これよりも低い、例えば前出のパイル深度マーカーストリングのような固定基準高さ(又はこれ以外の既知の高さ)に取り付けた別の気圧高度計342からのものと差動比較することで、高さBを決定する。高度340、342の出力を測定することで、方程式から共通モード又は絶対気圧を差動効果的に除去し、駆動行程中における純粋な差動局所高度又は相対気圧の読み出しが提供される。上述のものと類似の方法で両方の高度計340、342から信号を受信する監視装置344が生データを収集するのが好ましい。高さが高度計によって供給されるか、又はSPW320内で計算される。好ましくは、高度計340、342は、公差エラーをなくすために使用される前に、同じ高さで相互に対してキャリブレートされる。高度計340、342から行う通信は、場所によって、無線又は有線接続を用いた監視装置344への通信、及び/又は、パイルに取り付けた高度計340用の無線/アンテナアセンブリ60を用いた、及び基準高さ高度計342からの別の有線又は無線接続を用いた、SPW320との直接通信であってよい。作業現場では、底部高度計342が基準高さに維持される限りこれをパイル10から離して配置することができる。
これらのアプローチでは、パイルが重力と共線的に駆動されると仮定しているが、角度付けされたパイルの場合には、傾斜計と三角測量を使用して修正及び調整を加えることができる。高い横方向への負荷を受けるパイルの場合、最大45°の角度で駆動することが一般的である(斜杭)。この場合は、傾斜計を使用して補正角度を求め、周知の三角法を使用して貫通深度を計算する。
本発明の好ましい実施形態を詳細に説明してきたが、本発明は上述した特定の実施形態に限定されるものではない。これらの実施形態は、単純に例証として考慮されるべきである。さらに、本発明の修正及び拡張の展開も可能であり、このような修正は全て添付の特許請求の範囲で定義された本発明の範囲内に包括されると考えられる。
10…パイル、12…ストランド、14…パイルフォーム、16…複数のセンサ

Claims (27)

  1. 無線監視機能を装備したパイルを形成する方法であって、
    パイルフォーム内部に複数のストランドを配置することと、
    センサパッケージの複数のセンサをパイルの核範囲内に配置するように、前記ストランド間にセンサパッケージを挿入することと、
    前記フォーム内に複数のアンテナを、アンテナが前記パイルの頂部付近における少なくとも2つの側部と、前記アンテナに関連した少なくとも1つの無線送信機とに位置されるように、配置することと、
    前記センサパッケージを、ワイヤ又はケーブルを使用して、前記アンテナのうち少なくとも1つに接続することと、
    前記センサパッケージと前記アンテナを組み込むように、前記パイルフォーム内でコンクリートを成型することと、
    を具備する方法。
  2. 前記パイルフォーム内にほぼ垂直に挿入され、少なくとも2つの対向したストランドと係合しているばね負荷型クランプアセンブリを使用して、前記センサパッケージを適所に固定することをさらに具備する、請求項1に記載の方法。
  3. 相互に接続した上方U字型フレームと下方U字型フレームとを有する前記ばね負荷型支持アセンブリを提供することであって、前記フレームのそれぞれには少なくとも1つのフック部材が、前記パイルストランドと係合するために配置されていることと、
    前記U字型フレームの少なくとも1つと接続された、前記センサを受容するための搬送用そりと、
    をさらに具備する、請求項2に記載の方法。
  4. 前記センサの取り付け板を提供することと、
    前記センサを前記取り付け板に付着し、前記取り付け板を搬送そりに付着することと、
    をさらに具備する、請求項3に記載の方法。
  5. 前記フック部材の少なくとも1つは、ばね材で形成されている、請求項3に記載の方法。
  6. 前記センサは、少なくとも1つのひずみ計と加速度計とを備えている、請求項1に記載の方法。
  7. 前記センサパッケージは、第1のセンサパッケージと第2のセンサパッケージとを備え、前記方法はさらに、
    第1のセンサパッケージを、形成中の前記パイルの先端付近の場所に配置することと、
    前記第2のセンサパッケージを、形成中の前記パイルの頂部付近に配置することとを具備し、前記両方のセンサパッケージは、前記アンテナのうち少なくとも1つに接続している、請求項1に記載の方法。
  8. 前記第1のセンサパッケージと、前記パイルの頂部にある前記アンテナのうち少なくとも1つとの間に管を配置することと、
    前記管の先端部に、余分なワイヤ又はケーブル用の容器チャンバを提供することと、
    前記容器から上方へ引き出すことができる余分なワイヤ又はケーブルを、前記容器内に提供することと、
    をさらに具備する、請求項7に記載の方法。
  9. 前記センサパッケージに関連した調整電子機器を提供することをさらに具備する、請求項1に記載の方法。
  10. コンクリート構造内に湿式設置されるアンテナアセンブリであって、
    少なくともλ/4の長さを有するアンテナと、
    このアンテナから約λ/4〜λ/6の位置に配置された少なくとも1つの壁を有し、前記アンテナが内設される空洞を形成する反射装置と、
    この反射装置と前記アンテナとの上にかけて配置されたフラットカバーと、
    を具備するアンテナ。
  11. 前記反射装置は、相互に対して約90〜120°の角度で配置された2つの角度付けした壁を有し、前記壁の対向した開放端部には端部キャップが配置されて前記空洞を画定しており、
    前記端部キャップの開口部を通って中空管が延びており、前記中空管の一端にはキャップが配置されており、別の一端からは前記アンテナが前記中空管内に延びており、
    プラグが前記アンテナの端部を包囲し、前記アンテナを前記中空管及び電子機器ハウジングに対して密封しており、
    前記ハウジングは取り外し可能なカバーを有し、
    前記フラットカバーと前記ハウジングカバーは、コンクリート構造の表面に適合される共通の平面に延びている、請求項10に記載のアンテナアセンブリ。
  12. 前記ハウジングカバーの円周周囲と、前記ハウジング側部の近接した部分とに配置された発泡ガスケットをさらに具備する、請求項11に記載のアンテナアセンブリ。
  13. 前記アンテナは、前記空洞内に受容された位置から、前記アンテナが前記空洞外へと延びる展開位置へ移動することができる、請求項10に記載のアンテナアセンブリ。
  14. 前記アンテナを前記空洞内に支持するための発泡ブロックをさらに具備する、請求項10に記載のアンテナアセンブリ。
  15. コンクリート構造内の複数のストランド間に少なくとも1つのセンサを配置するための垂下アセンブリであって、
    相互に接続している第1のU字型フレームと第2のU字型フレームと、
    これらU字型フレームのそれぞれに互いに反対側を向いた状態で配置され、コンクリート構造の対向する補強ストランド又は棒と係合するようになっている少なくとも1つのフックと、
    少なくとも1つの計器を支持するために前記フレームに付着された滑動可能な搬送部と、
    を具備する垂下アセンブリ。
  16. 前記フックの少なくとも1つがばね材で形成されている、請求項15に記載の垂下アセンブリ。
  17. 前記第1のU字型フレームと第2のU字型フレームとは、相互に離れるようにばね付勢されており、
    前記滑動可能な搬送部を前記U字型フレーム上に中心決めするために、中心決めばねが前記滑動可能な搬送部と前記フレームの間に延びており、前記滑動可能な搬送部は、センサを付着するための設備を含んでいる、請求項15に記載の垂下アセンブリ。
  18. 前記滑動可能な搬送部の内部、又はこれに接続している取り付け板の内部に配置されている第1のセンサハウジングと重ね合わせるための、少なくとも2つの対向したV字型の側壁を設けた第1の開口部と、
    前記滑動可能な搬送部内部、又はこれに接続している前記取り付け板内部に画定された、第2のセンサのための第2の開口部と、
    をさらに具備する、請求項15に記載の垂下アセンブリ。
  19. パイルを監視する方法であって、
    センサをパイルの核範囲内に配置するために、複数のストランド間にセンサパッケージを挿入する、又はパイルフォーム内に補強材を挿入することと、
    前記パイルを成型することと、
    前記パイルを駆動し、この駆動中に前記センサパッケージからデータを取得することと、
    前記駆動中に前記センサパッケージから取得したデータの監視、駆動パラメータを前記パイルに適合させるための前記駆動中におけるデータの監視及び使用のうち、少なくとも1つと、
    を具備する方法。
  20. 前記パイルを、前記センサパッケージに接続されているネットワーク化された監視ノードで改良することと、
    所与のパイルの一意アドレス情報を、センサパッケージアドレスIDを論理的にリンクさせることによって保持することと、
    前記ノードを、長期監視のためのデータ送信用外部ゲートウェイに接続することと、
    をさらに具備する、請求項19に記載の方法。
  21. 前記パイル内に配置されたメモリにパイルデータを記憶させることをさらに具備する、請求項19に記載の方法。
  22. 前記駆動の後に前記頂部切断したパイルについて、余分なワイヤ又はケーブルをワイヤ容器から引き出して、先端ワイヤ又はケーブル容器付近へ移動させ、先端センサパッケージを前記ネットワーク化された監視ノードに接続することをさらに具備する、請求項19に記載の方法。
  23. 前記パイルにてGPSを提供することと、
    前記パイルのための場所を取得することと、
    前記GPSを使用して前記場所の土の性質を取得することと、
    をさらに具備する、請求項19に記載の方法。
  24. センサパッケージを装備した温度センサを提供することと、
    前記センサパッケージからの温度データを使用して、前記パイルの硬化を監視することと、
    をさらに具備する、請求項19に記載の方法。
  25. 前記パイル内に無線/アンテナアセンブリを配置することと、
    前記パイルからのデータを送信することと、
    をさらに具備する、請求項19に記載の方法。
  26. 前記パイル内に書き換え可能メモリを提供することと、
    この書き換え可能メモリにデータを記憶及び更新することと、
    をさらに具備する、請求項19に記載の方法。
  27. パイル駆動データを自動追跡する方法であり、
    パイル内の加速度計とひずみ計のうち少なくとも一方を含むセンサパッケージから送信されたデータによって、多数の打撃を追跡することと、
    前記パイルの頂部にある基準マーカを追跡するレーザレーダを使用して、又は、前記パイルの頂部に配置した高度計と基準高さとの間の差動気圧によって、基準高さを超えたパイルの高さを追跡することと、
    を具備する方法。
JP2010202264A 2004-07-23 2010-09-09 コンクリートパイルの監視システム、及び設置方法 Pending JP2011030242A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US59095504P 2004-07-23 2004-07-23
US64258505P 2005-01-10 2005-01-10
US68580705P 2005-05-31 2005-05-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007522819A Division JP4819808B2 (ja) 2004-07-23 2005-07-25 コンクリートパイルの監視システム、及び設置方法

Publications (1)

Publication Number Publication Date
JP2011030242A true JP2011030242A (ja) 2011-02-10

Family

ID=35786739

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007522819A Expired - Fee Related JP4819808B2 (ja) 2004-07-23 2005-07-25 コンクリートパイルの監視システム、及び設置方法
JP2010202264A Pending JP2011030242A (ja) 2004-07-23 2010-09-09 コンクリートパイルの監視システム、及び設置方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007522819A Expired - Fee Related JP4819808B2 (ja) 2004-07-23 2005-07-25 コンクリートパイルの監視システム、及び設置方法

Country Status (10)

Country Link
US (3) US7637166B2 (ja)
EP (2) EP2604997A1 (ja)
JP (2) JP4819808B2 (ja)
CN (1) CN102277882A (ja)
AU (2) AU2005266976C1 (ja)
CA (1) CA2574833C (ja)
DK (1) DK1774278T3 (ja)
ES (1) ES2410864T3 (ja)
PL (1) PL1774278T3 (ja)
WO (1) WO2006012550A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012346A (ja) * 2018-07-20 2020-01-23 大成建設株式会社 無線通信モジュールの取付構造、無線通信モジュールの設置方法、状態量計測システム及び無線通信モジュール

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7848905B2 (en) * 2000-12-26 2010-12-07 Troxler Electronic Laboratories, Inc. Methods, systems, and computer program products for locating and tracking objects
US10948476B2 (en) 2000-12-26 2021-03-16 Troxler Electronic Laboratories, Inc. Methods, systems, and computer program products for locating and tracking objects
US7034695B2 (en) 2000-12-26 2006-04-25 Robert Ernest Troxler Large area position/proximity correction device with alarms using (D)GPS technology
US9587938B2 (en) 2003-06-17 2017-03-07 Troxler Electronic Laboratories, Inc. Method and apparatus for determining a characteristic of a construction material
US7953559B2 (en) * 2005-04-28 2011-05-31 Caterpillar Inc. Systems and methods for maintaining load histories
US7929410B2 (en) * 2005-06-29 2011-04-19 Interdigital Technology Corporation Protocol engine for processing data in a wireless transmit/receive unit
ATE506610T1 (de) * 2005-12-15 2011-05-15 Smart Structures Inc Verfahren zum bilden von überwachten betonpfeilern
JP2007194915A (ja) * 2006-01-19 2007-08-02 Sony Corp アンテナ装置、アンテナ反射器、並びにアンテナを内蔵する無線通信機器
US20070299297A1 (en) * 2006-06-26 2007-12-27 Robert Jarvik Textured conforming shell for stabilization of the interface of precision heart assist device components to tissues
US7908928B2 (en) * 2006-10-31 2011-03-22 Caterpillar Inc. Monitoring system
FR2918457B1 (fr) * 2007-07-04 2009-09-25 Newsteo Soc Par Actions Simpli Dispositif d'enregistrement de mesures physiques.
US20090260315A1 (en) * 2008-04-21 2009-10-22 William Eugene Hodge Pre-loading of building sites over compressible strata
JP5292074B2 (ja) * 2008-11-30 2013-09-18 ホーチキ株式会社 小型送信機
US10203268B2 (en) 2008-12-04 2019-02-12 Laura P. Solliday Methods for measuring and modeling the process of prestressing concrete during tensioning/detensioning based on electronic distance measurements
US9354043B2 (en) 2008-12-04 2016-05-31 Laura P. Solliday Methods for measuring and modeling the structural health of pressure vessels based on electronic distance measurements
US8209134B2 (en) * 2008-12-04 2012-06-26 Laura P. Solliday Methods for modeling the structural health of a civil structure based on electronic distance measurements
US10331092B1 (en) * 2009-05-22 2019-06-25 United Services Automobile Association (Usaa) System and methods for detecting, reporting, and/or using information about a building foundation
US20100321325A1 (en) * 2009-06-17 2010-12-23 Springer Gregory A Touch and display panel antennas
US8403300B2 (en) * 2009-08-07 2013-03-26 Richard Ziemba Device and method for lifting sheet piles
WO2011060214A1 (en) * 2009-11-13 2011-05-19 Smart Structures, Inc. Integrity monitored concrete pilings
KR101116879B1 (ko) 2010-01-29 2012-03-06 주식회사 가온솔루션 지그비 통신기반의 결함분류알고리즘을 통한 임팩트 말뚝용 결함검출장치 및 방법
MY159657A (en) * 2010-02-17 2017-01-13 Pile Dynamics Inc Pile sensing device and method of using the same
SG10201503846QA (en) * 2010-05-18 2015-06-29 Loadtest Inc Method and apparatus for internally determining a load applied by a jack
US8684632B2 (en) 2010-12-08 2014-04-01 Laserline Mfg., Inc. Systems and methods for laying out and installing a solar panel array
US8860399B2 (en) * 2010-12-22 2014-10-14 Stmicroelectronics S.R.L. Device for monitoring at least a physical characteristic of a building material
US20120200452A1 (en) * 2011-02-08 2012-08-09 Piletrac, LLC Method and apparatus for calculating the displacement and velocity of impact-driven piles
US9995643B2 (en) 2011-02-25 2018-06-12 University Of Florida Research Foundation, Inc. Detection of static tip resistance of a pile
US8919057B1 (en) * 2012-05-28 2014-12-30 Tracbeam, Llc Stay-in-place insulated concrete forming system
WO2013188867A1 (en) * 2012-06-15 2013-12-19 Smart Structures, Inc. Pre-cast sensor assembly for monitored concrete structures
JP5953203B2 (ja) * 2012-10-22 2016-07-20 大成建設株式会社 杭状態検出システム
US9074340B2 (en) 2013-02-06 2015-07-07 Aquadation Technologies, Llc Building foundation and soil stabilization method and system
TW201437669A (zh) * 2013-03-21 2014-10-01 Univ China Sci & Tech 地盤破壞監測元件
NL2011003C2 (en) * 2013-06-18 2014-12-22 Ihc Hydrohammer B V Pile driving methods and systems.
NL2011001C2 (en) * 2013-06-18 2014-12-22 Ihc Hydrohammer B V Method of and driver for installing foundation elements in a ground formation.
US8848180B1 (en) 2013-09-05 2014-09-30 Laserline Mfg., Inc. Reference systems for indicating slope and alignment and related devices, systems, and methods
CN103543025A (zh) * 2013-10-21 2014-01-29 广东省六建集团有限公司 一种混凝土高大模板支撑体系的测试方法
CN103898928A (zh) * 2014-03-12 2014-07-02 广东省建筑科学研究院 一种改进型高应变法
US9977008B2 (en) * 2014-03-28 2018-05-22 Fugro Usa Land, Inc. Method and apparatus for analyzing anomalies in concrete structures
US9773337B2 (en) * 2014-07-31 2017-09-26 Trimble Inc. Three dimensional animation of a past event
US9688518B2 (en) * 2014-07-31 2017-06-27 Trimble Inc. Three dimensional rendering of job site
CN104184097B (zh) * 2014-09-02 2017-01-25 广东南方电信规划咨询设计院有限公司 一种通信管道及缆线的非迁移式悬吊保护系统及方法
CN104538724B (zh) * 2015-01-04 2017-06-16 深圳市骄冠科技实业有限公司 应用于rfid射频识别的地埋天线骨架装置及其地下安装方法
JP6737608B2 (ja) * 2016-03-18 2020-08-12 前田建設工業株式会社 地盤評価システム、加速度センサ付き既製杭
FI20165298L (fi) * 2016-04-06 2017-10-07 Ilmi Solutions Oy Järjestely ja menetelmä mitata paalujen rakenteellista lujuutta
EP3464734B1 (en) * 2016-05-25 2021-07-07 GBM Works B.V. Foundation pile installation device
FI127346B (fi) * 2016-12-13 2018-04-13 Lujabetoni Oy Väline ja menetelmä betonirakenteen kosteuden mittaamiseksi
CN106871882B (zh) * 2017-04-07 2023-07-25 中国建筑土木建设有限公司 挖孔桩垂直度及平整度激光导向装置及其施工方法
RU2642760C1 (ru) * 2017-04-12 2018-01-25 Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) Способ выявления и устранения дефектов изготовляемой в грунте сваи
CN107386342B (zh) * 2017-09-08 2023-08-15 华电重工股份有限公司 海上风电单桩基础桩监测装置
US10458088B2 (en) * 2017-09-14 2019-10-29 Jordan Alan Soil adaptive smart caisson
CN108169002A (zh) * 2017-12-22 2018-06-15 云南民族大学 一种测试钢-混凝土组合梁徐变特性的缩尺试验模型及方法
CN107989080B (zh) * 2018-01-04 2023-08-22 宁波宁大工程建设监理有限公司 一种装配式的矩形模型桩及其制作方法
US20200363392A1 (en) * 2018-02-07 2020-11-19 Porous Technologies, Llc Smart porous concrete slab
CA3028911C (en) 2018-02-28 2022-03-22 Scott Carrington Portable power generator
EP3564445B1 (de) * 2018-05-04 2021-08-11 BAUER Spezialtiefbau GmbH Verfahren und vorrichtung zum erstellen eines gründungselementes im boden
TWI667630B (zh) * 2018-06-13 2019-08-01 中國鋼鐵股份有限公司 鋼品倉儲管理系統及鋼品倉儲管理方法
CN109472788B (zh) * 2018-11-20 2022-03-22 成都信息工程大学 一种飞机铆钉表面的伤痕检测方法
US11171402B2 (en) * 2018-12-21 2021-11-09 HYDRO-QUéBEC Wireless telecommunication system for an equipment in an underground structure
JP6675656B1 (ja) * 2019-04-01 2020-04-01 ジオ・サーチ株式会社 鋼床版橋評価装置、鋼床版橋評価方法、及びプログラム
US20230040904A1 (en) * 2019-05-29 2023-02-09 Tony Cooper Foundation position measurement using altimeters
EP3748374B8 (en) 2019-06-06 2023-02-15 Rohde & Schwarz GmbH & Co. KG System and method for calibrating radio frequency test chambers
WO2021003556A1 (en) * 2019-07-05 2021-01-14 Ronald Chun Yu Lam Force and inclination monitoring system with self-position recognition
WO2021155358A1 (en) * 2020-01-30 2021-08-05 Tensar International Corporation Sensor-enabled system and method for monitoring the health, condition, and/or status of infrastructure
CN112647547A (zh) * 2021-01-04 2021-04-13 李金芳 一种用于深层地下基坑多场的监测方法
AU2022214613A1 (en) * 2021-01-27 2023-08-24 Vuyk Technology Holdings, LLC Methods and apparatus for foundation monitoring
CN113533096B (zh) * 2021-06-29 2023-04-07 哈尔滨工业大学 一种循环压剪土体冻胀试验系统及试验方法
CN113804865B (zh) * 2021-11-19 2022-03-01 中国核工业中原建设有限公司 一种装配式混凝土结构实时监测装置以及方法
CN115387403B (zh) * 2022-08-12 2024-02-27 广州建设工程质量安全检测中心有限公司 一种针对既有基桩完整性的检测装置及其检测方法
CN116752589B (zh) * 2023-08-22 2023-11-17 北京中建建筑科学研究院有限公司 预应力鱼腹式反力架、桩基承载力检测装置及应用
CN117347151B (zh) * 2023-12-04 2024-04-02 中交天津航道局有限公司 一种绞吸船钢桩应力监测系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209978A (ja) * 1998-01-20 1999-08-03 Ohbayashi Corp 杭打設の施工管理装置
US20020148298A1 (en) * 2001-04-17 2002-10-17 Mcvay Michael C. Wireless apparatus and method for analysis of driven piles

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3571835A (en) * 1967-10-30 1971-03-23 Dyckerhoff & Widmann Ag Apparatus for concreting multiple section structures, particularly bridge supports of reinforced or prestressed concrete
FR2049676A5 (ja) * 1969-06-17 1971-03-26 Parez Louis
US4052884A (en) 1976-02-25 1977-10-11 The British Petroleum Company Limited Method and apparatus for determining strain data during piling
NL179527C (nl) * 1977-05-20 1986-09-16 Philips Nv Werkwijze en inrichting voor de vervaardiging van een reflektor met een kunststof steunlichaam.
US4365306A (en) * 1980-06-30 1982-12-21 Conoco Inc. Method and apparatus for remotely monitoring and evaluating pile driving hammers
US4586366A (en) * 1984-03-14 1986-05-06 Milberger Lionel J Method and apparatus for measuring driving resistance and velocity of piles during driving
US4943930A (en) * 1986-04-18 1990-07-24 Radjy Farrokh F Method and apparatus for non-destructive evaluation of concrete
US5099696A (en) * 1988-12-29 1992-03-31 Takechi Engineering Co., Ltd. Methods of determining capability and quality of foundation piles and of designing foundation piles, apparatus for measuring ground characteristics, method of making hole for foundation pile such as cast-in-situ pile and apparatus therefor
JPH0622048Y2 (ja) * 1989-01-10 1994-06-08 末来工業株式会社 埋設ボックスに取り付けられる架設具及び埋設ボックス
JPH0310294A (ja) * 1989-06-07 1991-01-17 Nec Corp 画像表示装置
US5172587A (en) * 1991-03-13 1992-12-22 Arctic Foundations, Inc. Pile load testing device
JPH06232622A (ja) * 1993-01-29 1994-08-19 Nippon Motorola Ltd 携帯無線機のアンテナ装置
US5581013A (en) * 1993-06-16 1996-12-03 Frederick Engineering Company Method and system for obtaining useful foundation information
JPH07263949A (ja) 1994-03-16 1995-10-13 Fujitsu Ltd 携帯無線機の送受信利得向上装置および方法
US5625993A (en) * 1995-01-06 1997-05-06 The Burke Group Concrete structure having load transferring insert and method for making same
GB2323174B (en) * 1997-03-14 2000-08-09 Kvaerner Cementation Found Ltd Automatic static load testing for piles
US5978749A (en) * 1997-06-30 1999-11-02 Pile Dynamics, Inc. Pile installation recording system
US6301551B1 (en) * 1998-10-01 2001-10-09 Pile Dynamics, Inc. Remote pile driving analyzer
US6772091B1 (en) * 1998-12-08 2004-08-03 Geophysical Survey Systems, Inc. Determining the depth of reinforcing bars in a concrete structure using electromagnetic signals
US6127937A (en) * 1999-05-07 2000-10-03 Arr-Maz Products, L.P. System and method for monitoring environmental conditions inside a granulated pile
CA2426021A1 (en) * 2000-12-08 2002-06-13 The Johns Hopkins University Wireless multi-functional sensor platform and method for its use
JP4048825B2 (ja) * 2002-05-09 2008-02-20 日本電気株式会社 アンテナ
JP4049664B2 (ja) * 2002-12-03 2008-02-20 盛雄 安里 アウトレットボックス取付金具
US7156188B2 (en) * 2003-05-12 2007-01-02 Bermingham Construction Limited Pile driver with energy monitoring and control circuit
US7180404B2 (en) * 2004-03-17 2007-02-20 Battelle Energy Alliance, Llc Wireless sensor systems and methods, and methods of monitoring structures
WO2006015278A2 (en) * 2004-07-30 2006-02-09 Loadtest, Inc. Method and apparatus for automatic load testing using bi-directional testing
ATE506610T1 (de) * 2005-12-15 2011-05-15 Smart Structures Inc Verfahren zum bilden von überwachten betonpfeilern
US8402837B1 (en) * 2011-11-29 2013-03-26 International Marketing & Research, Inc. System for field testing helical piles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209978A (ja) * 1998-01-20 1999-08-03 Ohbayashi Corp 杭打設の施工管理装置
US20020148298A1 (en) * 2001-04-17 2002-10-17 Mcvay Michael C. Wireless apparatus and method for analysis of driven piles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012346A (ja) * 2018-07-20 2020-01-23 大成建設株式会社 無線通信モジュールの取付構造、無線通信モジュールの設置方法、状態量計測システム及び無線通信モジュール
JP7132009B2 (ja) 2018-07-20 2022-09-06 大成建設株式会社 無線通信モジュールの取付構造、無線通信モジュールの設置方法及び状態量計測システム

Also Published As

Publication number Publication date
US8596136B2 (en) 2013-12-03
AU2005266976C1 (en) 2010-10-07
JP4819808B2 (ja) 2011-11-24
CA2574833C (en) 2012-05-15
AU2005266976B2 (en) 2010-02-04
ES2410864T3 (es) 2013-07-03
EP1774278B1 (en) 2013-02-13
JP2008507925A (ja) 2008-03-13
CN102277882A (zh) 2011-12-14
US20120107056A1 (en) 2012-05-03
AU2005266976A1 (en) 2006-02-02
WO2006012550A2 (en) 2006-02-02
US7637166B2 (en) 2009-12-29
EP1774278A2 (en) 2007-04-18
WO2006012550A3 (en) 2007-02-22
AU2010201772B2 (en) 2012-04-19
US20100092247A1 (en) 2010-04-15
DK1774278T3 (da) 2013-05-06
US8091432B2 (en) 2012-01-10
EP1774278A4 (en) 2012-01-25
US20060021447A1 (en) 2006-02-02
AU2010201772A1 (en) 2010-05-27
EP2604997A1 (en) 2013-06-19
PL1774278T3 (pl) 2013-09-30
CA2574833A1 (en) 2006-02-02
WO2006012550A9 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4819808B2 (ja) コンクリートパイルの監視システム、及び設置方法
CA2768769C (en) Monitoring system for concrete pilings and method of installation
US10330823B2 (en) Borehole testing device
US10690805B2 (en) Borehold testing device
CN103727911B (zh) 基于mems阵列的组装式深部位移监测设备及系统
CN102822649A (zh) 桩传感设备及其使用方法
KR20170021219A (ko) 레이저 거리 센서 어레이를 이용한 터널 내공 변위 자동 계측 장치 및 그에 의한 터널 내공 변위 자동 계측 방법
KR102199043B1 (ko) 레이저 거리 센서 어레이를 이용한 터널 내공 변위 자동 계측 장치 및 그에 의한 터널 내공 변위 자동 계측 방법
AU2012205171A1 (en) Monitoring system for concrete pilings and method of installation
CN101040180A (zh) 混凝土打桩监视系统及安装方法
KR20170125763A (ko) 레이저 거리 센서 어레이를 이용한 터널 내공 변위 자동 계측 장치 및 그에 의한 터널 내공 변위 자동 계측 방법
KR20230113200A (ko) 구조물 부착형 계측 단말기 및 그 시공 방법
KR102685219B1 (ko) 부착형 계측 단말기를 이용한 교량 구조물의 무선 계측 및 모니터링 시스템
CN114018149B (zh) 一种竖直方向变形位移检测装置及其检测方法
KR101512800B1 (ko) 지형의 현장관측을 통한 지표와 고도정보 데이터 기반 수치지도 확인방법이 적용된 시스템
KR102563494B1 (ko) 3차원 수치와 측지측량데이터의 합성에 의해 지형지물을 관리할 수 있는 측지측량시스템
US11693145B1 (en) Airborne sensor for underground object detection
Allen et al. Proof of concept of wireless TERS monitoring
CN117433434A (zh) 一种隧道混凝土喷射审计证据收集系统及审计方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130619

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130624

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130719

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130819

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029