RU2642760C1 - Способ выявления и устранения дефектов изготовляемой в грунте сваи - Google Patents

Способ выявления и устранения дефектов изготовляемой в грунте сваи Download PDF

Info

Publication number
RU2642760C1
RU2642760C1 RU2017112617A RU2017112617A RU2642760C1 RU 2642760 C1 RU2642760 C1 RU 2642760C1 RU 2017112617 A RU2017112617 A RU 2017112617A RU 2017112617 A RU2017112617 A RU 2017112617A RU 2642760 C1 RU2642760 C1 RU 2642760C1
Authority
RU
Russia
Prior art keywords
well
defects
soil
composition
cement
Prior art date
Application number
RU2017112617A
Other languages
English (en)
Inventor
Мария Алексеевна Авдушева
Александр Леонидович Невзоров
Аркадий Михайлович Айзенштадт
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ)
Priority to RU2017112617A priority Critical patent/RU2642760C1/ru
Application granted granted Critical
Publication of RU2642760C1 publication Critical patent/RU2642760C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D33/00Testing foundations or foundation structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Piles And Underground Anchors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Изобретение относится к строительству, а именно к технологии изготовления буровых и набивных свай. Способ выявления и устранения дефектов изготавливаемой в грунте сваи включает формирование скважины, установку в нее арматурного каркаса, прокладку линий связи, подачу в скважину отверждаемого состава, например бетонной смеси. Перед установкой арматурного каркаса на нем закрепляют электроды и соединяют их с линиями связи. После подачи в скважину отверждаемого состава осуществляют мониторинг его электропроводности, а при обнаружении дефекта ствола выполняют частичную откачку отверждаемого состава, устраняют дефект и повторно подают отверждаемый состав в скважину. Технический результат состоит в повышении надежности изготовляемых в грунте свай за счет обеспечения возможности контроля сплошности ствола и устранения дефектов в процессе производства работ. 1 табл., 4 ил.

Description

Изобретение относится к строительству, а именно к технологии изготовления буровых и набивных свай.
Основной проблемой при изготовлении свай в грунте является обеспечение сплошности ствола, то есть выявление и устранение вывалов грунта в скважину, пережимов ствола и других дефектов.
Контроль качества ствола сваи может выполняться после набора бетоном прочности путем измерения времени прохождения продольной волны или с помощью ультразвукового зондирования.
В первом методе по верхнему торцу сваи наносят удар. Возникающая при этом ударная волна перемещается по стволу и отражается на границе бетона с другой средой, например с грунтом. Измеряя время возвращения ударного импульса, определяют полную длину сваи или расстояние от верхнего торца до имеющегося дефекта (M.N. Hussein, G. Likins. Deep foundations quality control and quality assurance testing methods. Florida Engineering Society Journal, March, 2005, p. 10-13).
Во втором методе в стволе сваи устраивают «каналы доступа», размещая в скважине до начала бетонирования вертикальные трубки. Наличие дефектов определяют, перемещая в двух параллельных каналах излучатель и датчик-ресивер (K. Beckhaus, Н. Heinzelmann. Ultrasonic Integrity Testing for Bored Piles - A Challenge. Proceedings of the Int. Symp. on Non Destructive Testing in Civil Eng. NDT - CE, 2015, Berlin).
Недостатком рассмотренных методов является осуществление контроля после набора бетоном прочности, когда устранение дефектов ствола невозможно, поэтому требуемая несущая способность свайного фундамента обеспечивается за счет устройства дополнительных свай-дублеров.
Существуют также способы контроля, осуществляемые в процессе производства работ.
Известен способ контроля характеристик жидкой колонны, например сваи, в процессе ее образования, включающий нагнетание в массив грунта вяжущего состава, обладающего магнитной восприимчивостью, например, за счет включения в его состав 0,5-1,5% порошка карбонильного железа, электротехнической стали или магнетита, и определение характеристик колонны до начала схватывания вяжущего состава, путем замеров магнитной проницаемости среды. С этой целью на L-образной штанге для нагнетания состава в грунт размещаются датчики, например, в виде катушек индуктивности. Вращая и поднимая штангу, регистрируют изменение индуктивности катушек, определяя тем самым размеры колонны и ее однородность (Патент РФ №2165495, МПК E02D 5/46, 1999 - аналог).
Недостатком метода является зависимость измеряемых значений магнитной проницаемости среды от положения элементов арматурного каркаса. Кроме того, при вращении L-образной штанги происходит перемешивание включений грунта в дефектных зонах ствола с бетонной смесью, поэтому для устранения выявленного дефекта потребуется полная откачка указанной смеси из скважины без возможности ее повторного использования.
Известен способ определения количества цемента в грунтоцементном материале конструкции, создаваемой посредством струйной цементации, заключающийся в добавлении в цементный раствор порошкообразного графита в количестве 1-10% от массы цемента и замере электропроводности выделяемой из скважины грунтоцементной пульпы. Исходя из условия пропорциональности содержания цементного раствора в пульпе и ее электропроводности, определяют массу цемента, ушедшего на закрепление грунта (Патент РФ №2513567, МПК E02D 3/12, 2012 - аналог).
Метод является малоинформативным, так как известно, что при струйной цементации формируется неоднородный грунтоцементный массив, в котором содержание цемента уменьшается от центра к периферии. При этом пульпа, истекающая на поверхность вдоль штанги, не может использоваться для оценки состава грунтоцемента на некотором удалении от нее.
Наиболее близким к предлагаемому изобретению является способ использования устройства для контроля изготовления свай, включающий последовательное выполнение операций формирования скважины, установки в ней и закрепления на каркасе, например арматурном, датчиков, прокладки линий связи, подачи в скважину отверждаемого состава, например бетонной смеси, мониторинга его температуры с помощью датчиков. Измерение температуры позволяет контролировать процесс заполнения скважины отверждаемым составом, а также выявлять по температурным аномалиям дефекты ствола. С учетом того, что реакция гидратации цемента является экзотермической, по температуре бетона, измеряемой с помощью датчиков, можно следить за набором им прочности (Патент РФ №2538362, МПК G01K 13/00, 2011 - прототип).
Недостатком способа является зависимость температурных полей в свае от внешних факторов - теплопроводности грунта, вмещающего сваю, температуры и скорости движения грунтовых вод и др. Существенное влияние на показания датчиков оказывает и каркас, на котором они закреплены, с отличными от бетона значениями теплоемкости и теплопроводности.
С учетом того, что выделение тепловой энергии бетонной смесью происходит при наборе прочности, для выявления дефектов ствола на начальной стадии, то есть сразу после подачи бетонной смеси в скважину, для обеспечения контрастных значений температуры бетонной смеси и грунта перед подачей в скважину потребуется выполнять подогрев смеси, что связано с дополнительными затратами.
Задачей, на решение которой направлено предлагаемое изобретение, является повышение надежности изготовляемых в грунте свай за счет обеспечения возможности контроля сплошности ствола и устранения дефектов в процессе производства работ.
Поставленная задача решается за счет того, что в способе, включающем формирование скважины, установку в нее арматурного каркаса, прокладку линий связи, подачу в скважину отверждаемого состава, например бетонной смеси, перед установкой арматурного каркаса на нем закрепляют электроды и соединяют их с линиями связи, после подачи в скважину отверждаемого состава осуществляют мониторинг его электропроводности, а при обнаружении дефекта ствола выполняют частичную откачку отверждаемого состава, устраняют дефект и повторно подают отверждаемый состав в скважину.
Изобретение поясняется чертежами, где на фиг. 1 показан вертикальный разрез сваи с дефектом, а на фиг. 2 - ее горизонтальный разрез, а на фиг. 3 и 4 - вертикальный разрез сваи в ходе работ по устранению дефекта.
Способ осуществляется следующим образом.
В массиве грунта одним из известных способов формируют скважину 1. В частности, при изготовлении буровой сваи скважину формируют путем выбуривания грунта под защитой обсадной трубы, а набивной сваи - вытеснением грунта с помощью инвентарной обсадной трубы с теряемым или раскрывающимся наконечником (башмаком). На арматурном каркасе 2, выполненном из неметаллического материала, например стеклопластика, или из стали, при условии покрытия стержней арматуры электроизоляционным составом, закрепляют электроды 3 и соединенные с ними линии связи (на чертеже не показаны). Электроды равномерно распределяют с заданным шагом в поперечном сечении сваи и по высоте.
Заполнив скважину 1 отверждаемым составом 4, выполняют замеры электропроводности вещества между смежными электродами в горизонтальном и вертикальном направлениях одним из известных методов. Наличие дефектов 5, таких как вывалы грунта, пережимы ствола, определяют по аномальным значениям электропроводности, благодаря отличию электрической проводимости грунта и бетонной смеси.
При обнаружении дефекта осуществляется погружение обсадной трубы 6 на такую глубину, чтобы ее торец оказался ниже выявленного дефекта 5 (фиг. 3). Из скважины от устья до дефекта 5 откачивают отверждаемый состав 4 и сохраняют его для повторной подачи в скважину. Дефект устраняют одним из известных способов, например, размывая струей воды вывал грунта или пережим ствола и откачивая из скважины образовавшуюся пульпу 7, представляющую собой смесь отверждаемого состава, грунта и воды. При выполнении указанных операций осуществляют контроль электропроводности вещества, заполняющего скважину. Пульпу 7 откачивают до глубины, на которой значения электропроводности вещества являются характерными для отверждаемого состава, верхнюю часть скважины повторно заполняют ранее удаленным составом и, добавив необходимый объем состава для заполнения скважины, извлекают обсадную трубу.
Для обеспечения значений электропроводности отверждаемого состава, существенно отличающихся от электропроводности околосвайного грунта, в отверждаемый состав может добавляться порошок электропроводного материала, например магнетита.
В лабораторных исследованиях при помощи прибора - измерителя иммитанса Е7-20М исследовалась электрическая проводимость цементного раствора и грунта. Состав раствора выражался соотношением массы цемента и песка 1:2; водоцементным отношением 0,5. В качестве добавки использовался порошок магнетита с размерами зерен не более 0,1 мм. Содержание магнетита составляло 1%, 3% и 5% от массы цемента. В качестве исследуемого грунта использовался суглинок мягкопластичный с влажностью W=46%.
В таблице представлены результаты измерений электрической проводимости цементного раствора.
Figure 00000001
Удельная электрическая проводимость суглинка при частоте 50 Гц составила σ=0,0092 См/м, при 60 Гц - σ=0,0102 См/м.
Следует заметить, что добавка 5% магнетита от массы цемента приводит к повышению прочности бетона (Pawel Sikora, Elzbieta Horszczaruk, Krzysztof Cendrowski, and Ewa Mijowska. The Influence of Nano-Fe3O4 on the Microstructure and Mechanical Properties of Cementitious Composites. Nanoscale Res Letters. 2016).
Так как электропроводность грунтов зависит от их состава, влажности и других факторов и может изменяться в широком интервале, следует определять эту характеристику на стадии инженерно-геологических изысканий.
Предлагаемый способ позволяет определить наличие, положение и размеры дефектов изготовляемой в грунте сваи, а также устранить выявленные дефекты без снижения качества отверждаемого состава на смежных бездефектных участках ствола.
Возможно применение предлагаемого способа при изготовлении конструкций по технологии «стена в грунте».

Claims (1)

  1. Способ выявления и устранения дефектов изготавливаемой в грунте сваи, включающий формирование скважины, установку в нее арматурного каркаса, прокладку линий связи, подачу в скважину отверждаемого состава, например бетонной смеси, отличающийся тем, что перед установкой арматурного каркаса на нем закрепляют электроды и соединяют их с линиями связи, после подачи в скважину отверждаемого состава осуществляют мониторинг его электропроводности, а при обнаружении дефекта ствола выполняют частичную откачку отверждаемого состава, устраняют дефект и повторно подают отверждаемый состав в скважину.
RU2017112617A 2017-04-12 2017-04-12 Способ выявления и устранения дефектов изготовляемой в грунте сваи RU2642760C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017112617A RU2642760C1 (ru) 2017-04-12 2017-04-12 Способ выявления и устранения дефектов изготовляемой в грунте сваи

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017112617A RU2642760C1 (ru) 2017-04-12 2017-04-12 Способ выявления и устранения дефектов изготовляемой в грунте сваи

Publications (1)

Publication Number Publication Date
RU2642760C1 true RU2642760C1 (ru) 2018-01-25

Family

ID=61023587

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017112617A RU2642760C1 (ru) 2017-04-12 2017-04-12 Способ выявления и устранения дефектов изготовляемой в грунте сваи

Country Status (1)

Country Link
RU (1) RU2642760C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2165495C1 (ru) * 1999-12-17 2001-04-20 Закрытое акционерное общество "НЕЙРОКОМ" Способ контроля характеристик жидкой колонны в процессе ее образования
RU2257563C2 (ru) * 2003-02-19 2005-07-27 Федеральное государственное унитарное научно-производственное предприятие "Геологоразведка" Способ определения состояния свай и устройство для его реализации
RU2364852C1 (ru) * 2008-01-09 2009-08-20 Учреждение Ханты-Мансийского автономного округа-Югры Россия "Югорский научно-исследовательский институт информационных технологий" Способ определения упругих характеристик сваи и вмещающего грунта
US7637166B2 (en) * 2004-07-23 2009-12-29 Smart Structures, Inc. Monitoring system for concrete pilings and method of installation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2165495C1 (ru) * 1999-12-17 2001-04-20 Закрытое акционерное общество "НЕЙРОКОМ" Способ контроля характеристик жидкой колонны в процессе ее образования
RU2257563C2 (ru) * 2003-02-19 2005-07-27 Федеральное государственное унитарное научно-производственное предприятие "Геологоразведка" Способ определения состояния свай и устройство для его реализации
US7637166B2 (en) * 2004-07-23 2009-12-29 Smart Structures, Inc. Monitoring system for concrete pilings and method of installation
RU2364852C1 (ru) * 2008-01-09 2009-08-20 Учреждение Ханты-Мансийского автономного округа-Югры Россия "Югорский научно-исследовательский институт информационных технологий" Способ определения упругих характеристик сваи и вмещающего грунта

Similar Documents

Publication Publication Date Title
Wan et al. Field study on post-grouting effects of cast-in-place bored piles in extra-thick fine sand layers
Touma et al. Behavior of bored piles in sand
Yin et al. An innovative laboratory box for testing nail pull-out resistance in soil
JP6384954B2 (ja) ソイルセメントの圧縮強度推定方法およびソイルセメント保管器
CN102912780A (zh) 黄土湿陷性变形的砂土浸水测试方法
Karlovsek et al. Investigation of voids and cavities in bored tunnels using GPR
RU2580316C1 (ru) Способ определения количества незамерзшей воды в мерзлых грунтах
Chen et al. Axial resistance of bored piles socketed into soft rock
Chang et al. Construction effect on load transfer along bored piles
Su Laboratory pull-out testing study on soil nails in compacted completely decomposed granite fill
Stone Jr et al. A novel short pile foundation system bonded to highly cemented layers for settlement control
Ling et al. Shaft resistance of pre-bored precast piles in Shanghai clay
RU2642760C1 (ru) Способ выявления и устранения дефектов изготовляемой в грунте сваи
Wen et al. Equivalent diameter of grouted micropile embedded in marine soft clay under lateral load
Vanapalli et al. Experimental and simple semiempirical methods for interpreting the axial load versus settlement behaviors of single model piles in unsaturated sands
Chan A laboratory investigation of shear wave velocity in stabilised soft soils.
Chen et al. Comparative analysis of anchor cables in pullout tests using distributed fiber optic sensors
KR20070068006A (ko) 비배출 콘크리트 압밀 타설 그라우팅 공법
JP5646309B2 (ja) 探査方法
CN206873512U (zh) 一种预留管底激振旁孔接收波速测试桩底注浆测试装置
Lindh et al. Ultrasonic P-and S-Wave Reflection and CPT Soundings for Measuring Shear Strength in Soil Stabilized by Deep Lime/Cement Columns in Stockholm Norvik Port
Bogati Ground Improvement by Jet Grouting Techniques
RU2642762C1 (ru) Способ усиления фундамента
Ganesharatnam et al. Large-diameter piles in chalk–part 2, design and construction
Kanagawa et al. Acoustic emission and over coring methods for measuring tectonic stresses

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190413