JP2011029891A - 光受信器および光受信方法 - Google Patents

光受信器および光受信方法 Download PDF

Info

Publication number
JP2011029891A
JP2011029891A JP2009173110A JP2009173110A JP2011029891A JP 2011029891 A JP2011029891 A JP 2011029891A JP 2009173110 A JP2009173110 A JP 2009173110A JP 2009173110 A JP2009173110 A JP 2009173110A JP 2011029891 A JP2011029891 A JP 2011029891A
Authority
JP
Japan
Prior art keywords
optical
transmission path
switching speed
light intensity
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009173110A
Other languages
English (en)
Other versions
JP5471116B2 (ja
Inventor
Yuichi Suzuki
裕一 鈴木
Toshihiro Otani
俊博 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009173110A priority Critical patent/JP5471116B2/ja
Priority to US12/835,297 priority patent/US8676054B2/en
Publication of JP2011029891A publication Critical patent/JP2011029891A/ja
Application granted granted Critical
Publication of JP5471116B2 publication Critical patent/JP5471116B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/275Ring-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】 光増幅器の光サージを抑制することができる光受信器および光受信方法を提供する。
【解決手段】 光受信器は、伝送路がアナログ的に切り替わる光スイッチと、光スイッチの伝送路切替速度を変更する切替速度変更手段と、光スイッチの伝送路切替後の光を増幅する光増幅器と、を備える。光受信方法は、光スイッチと光スイッチの伝送路切替後の光を増幅する光増幅器とを備える光受信器において、光スイッチの伝送路切替速度を変更するステップと、光スイッチの伝送路をアナログ的に切り替えるステップと、を含む。
【選択図】 図1

Description

本発明は、光受信器および光受信方法に関する。
信頼性設計の観点から、光伝送装置(光伝送システム)はネットワーク回線に冗長構成を持つことがある。この中継回線冗長方式の一例として、OUPSR(Optical Unidirectional Path Switched Ring)方式がある。OUPSR方式は、1つのトランスポンダーユニット内部の受信側に搭載された光スイッチの切替えにより、波長単位での中継回線冗長を実現するものである。
特開平11−17261号公報
ネットワーク網の長距離化および複雑化が進むにつれて、受信側ユニットに要求される光入力ダイナミックレンジは非常に広くなる。これにより、OUPSR機能による光スイッチ切替えによって、上記の光入力ダイナミックレンジ相当の光入力パワーレベル変動が瞬間的に発生することがある。受信器前方に光増幅器が配置される構成を持つ光トランスポンダーユニットを使用する場合、受信器直前に配置される光増幅器にて光サージが発生する。この光サージは受信器の受光素子にダメージを与える可能性がある。
伝送レートが低い伝送システムでは受信器モジュール自身が広い入力ダイナミックレンジをもっているため、受信器前に光増幅器を配置する必要はなかった。また、受信器前に光増幅器が配置された場合でも、光増幅器に要求される光サージ抑圧量は緩いものであった。
高速の伝送特性が要求される伝送システムにおいては、波長分散補償器等の光部品がトランスポンダーユニット内に搭載される。この構成では、光部品の損失を補償して受信レベルが受信モジュールのダイナミックレンジ内に収まるよう光パワーレベルを調整するために、光増幅器が必要となる。伝送レートが高い高速伝送用光モジュールは、低速のものと同等な広い入力ダイナミックレンジが取れないため、同じサージ量が発生するとダイナミックレンジを超えてしまう。
なお、複数の光増幅器を設けて複数段構成とすることによって光サージ量を抑制することができる。しかしながら、トランスポンダーの将来的な小型化、低消費電力化およびコストダウンに向けて光増幅器は1段化構成とされていく方向性にあると考えられる。なお、特許文献1の技術は、増幅媒体の下流側の伝送路への光の伝送方法に関するものであるため、光スイッチの後段に光増幅器が配置される構成に適用できる技術ではない。
本発明は上記課題に鑑みなされたものであり、光増幅器の光サージを抑制することができる光受信器および光受信方法を提供することを目的とする。
上記課題を解決するために、明細書開示の光受信器は、伝送路がアナログ的に切り替わる光スイッチと、光スイッチの伝送路切替速度を変更する切替速度変更手段と、光スイッチの伝送路切替後の光を増幅する光増幅器と、を備えるものである。
上記課題を解決するために、明細書開示の光受信方法は、光スイッチと光スイッチの伝送路切替後の光を増幅する光増幅器とを備える光受信器において、光スイッチの伝送路切替速度を変更するステップと、光スイッチの伝送路をアナログ的に切り替えるステップと、を含むものである。
明細書開示の光受信器および光受信方法によれば、光増幅器で発生する光サージ量を抑制することができる。
実施例1に係る光受信器の全体構成を説明するためのブロック図である。 光スイッチの伝送路切替速度が大きい場合に光増幅器に入力される光強度について説明するための図である。 光スイッチの伝送路切替速度を説明するための図である。 光スイッチに入力される光強度と光スイッチの伝送路切替速度との関係の一例を説明するための図である。 メモリに格納されるデータの一例を説明するための図である。 伝送路切替速度と光サージ量との関係についての実験結果について説明するための図である。 実験装置における立ち上がり時間(Tf)と光サージ量との関係を説明するための図である。 実施例2に係る光受信器の全体構成を説明するためのブロック図である。 実施例3に係る光受信器の全体構成を説明するためのブロック図である。 メモリに格納されるデータの一例を説明するための図である。 分散設定値が最大分散補償範囲を超える場合について説明するための図である。 実施例4に係る光受信器の全体構成を説明するためのブロック図である。
以下、図面を参照しつつ、実施例について説明する。
図1は、実施例1に係る光受信器100の全体構成を説明するためのブロック図である。光受信器100は、冗長回線(Work側回線およびProtection側回線)に接続される光受信器である。図1を参照して、光受信器100は、入力部10、光スイッチ20、光増幅器30、受光器40、および回路部50を含む。回路部50は、制御回路51、駆動回路52、D/A変換回路53、I/V変換回路54、A/D変換回路55、駆動回路56、D/A変換回路57、およびメモリ58を含む。
入力部10は、第1入力ポート11および第2入力ポート12を含む。第1入力ポート11は、Work側の回線Aに接続されている。第2入力ポート12は、Protection側の回線Bに接続されている。Work側の回線は稼動回線と称されることもあり、Protection側の回線は待機回線または予備回線と称されることもある。
光スイッチ20は、伝送路を切り替えるスイッチである。本実施例においては、光スイッチ20は、駆動回路52から与えられる電流に応じて、第1入力ポート11から光増幅器30に到達する第1伝送路と第2入力ポート12から光増幅器30に到達する第2伝送路との間で切替を行う。また、光スイッチ20は、第1伝送路と第2伝送路とを不連続的に(デジタル的に)切り替えるのではなく、連続的に(アナログ的に)切り替える。すなわち、伝送路が第1伝送路から第2伝送路に切り替わる場合、光スイッチ20を通過する光のうち、第1入力ポート11から入力される光の出力比率が見かけ上連続的に低下するとともに、第2入力ポート12から入力される光の出力比率が見かけ上連続的に上昇する。例えば、光スイッチ20として、プレーナ光回路(PLC)等の導波型熱制御タイプの光スイッチを用いることができる。
光増幅器30は、入力される光を増幅して出力する光部品である。光増幅器30として、例えば、希土類ファイバ光増幅器を用いることができる。光増幅器30は、駆動回路56から与えられる電流によって駆動される励起光に応じたゲインで、光スイッチ20から入力される光を増幅して出力する。光増幅器30は、受光素子31を含む。受光器40は、光増幅器30によって出力された光を受光する。
制御回路51は、光増幅器30を駆動するための駆動電流を算出し、その算出結果をD/A変換回路57にデジタル信号を入力する。D/A変換回路57は、入力されたデジタル信号を電圧信号に変換し、駆動回路56に入力する。駆動回路56は、入力された電圧信号に応じた電流を駆動電流として光増幅器30に入力する。本実施例においては、制御回路51は、光増幅器30から出力される光強度が一定値または一定範囲内の値になるように駆動回路56を制御することによって、光増幅器30をAPC(Automatic Power Control)制御する。したがって、本実施例においては、制御回路51、D/A変換回路57および駆動回路56が利得制御手段として機能する。
また、制御回路51は、受光素子31の検出結果に基づいて光スイッチ20の伝送路切替速度を制御する。まず、受光素子31は光増幅器30に入力された光強度に応じて電流をI/V変換回路54に入力する。I/V変換回路54は、入力された電流に応じて電圧信号を生成し、A/D変換回路55に入力する。A/D変換回路55は、入力された電圧信号に応じてデジタル信号を生成し、制御回路51に入力する。それにより、制御回路51は、光増幅器30に入力される光強度を得ることができる。したがって、本実施例においては、受光素子31が光強度検出手段として機能する。
制御回路51は、入力されたデジタル信号に基づいて光スイッチ20を駆動するための駆動電流を算出し、その算出結果に基づいてD/A変換回路53にデジタル信号を入力する。D/A変換回路53は、入力されたデジタル信号を電圧信号に変換し、駆動回路52に入力する。駆動回路52は、入力された電圧信号に応じた電流を駆動電流として光スイッチ20に入力する。光スイッチ20は、入力された駆動電流に応じた切替速度で伝送路を切り替える。したがって、本実施例においては、制御回路51、D/A変換回路53および駆動回路52が切替速度変更手段として機能する。
例えば、光スイッチ20が導波型熱制御タイプの光スイッチである場合には、導波路に備わっているヒータへの供給電流の増減速度を制御することによって、光スイッチ20の伝送路切替速度を制御することができる。
次に、光スイッチ20の伝送路切替速度について説明する。図2は、光スイッチ20の伝送路切替速度が大きい場合に光増幅器30に入力される光強度について説明するための図である。図2において、横軸は時間を示し、縦軸は光スイッチ20から出力される光強度を示す。また、図2においては、第2入力ポート12に入力される光強度が第1入力ポート11に入力される光強度よりも大きくかつ光スイッチ20の入力ポートが第1入力ポートから第2入力ポートに切り替わる場合が描かれている。
図2で説明されるように、光スイッチ20の伝送路切替速度が大きい場合、光スイッチ20によって出力される光強度の変動速度が大きくなり、制御回路51によるAPC制御が間に合わなくなる。その結果、光増幅器から見ると、見かけ上、光強度が不連続に突然大きくなる。第1入力ポート11に入力される光の強度と第2入力ポート12に入力される光の強度との差分(以下、差分Dと称する。)が小さい場合には、光スイッチ20の伝送路切替速度が大きくても光増幅器30における光サージの発生量が小さい。しかしながら、差分Dが大きくなると、光増幅器30において光サージが発生しやすくなる。
そこで、本実施例においては、制御回路51は、差分Dに応じて光スイッチ20における伝送路切替速度を変更する制御を行う。具体的には、制御回路51は、光増幅器30の出力光強度が後段の光学部品の許容範囲に入るようAPC制御が間に合うように、伝送路切替速度を変更する。図3は、光スイッチ20の伝送路切替速度を説明するための図である。図3において、横軸は時間を示し、縦軸は各入力ポートに入力される光の、光スイッチ20からの出力比率を示す。
制御回路51は、差分Dが大きい場合には、図3のケース(1)で説明されるように、光スイッチ20を通過する伝送路を第1伝送路から第2伝送路にアナログ的(連続的)に低い切替速度で切り替える。図3のケース(1)の場合では、第1入力ポート11に入力される光の出力比率が徐々に低下するとともに、第2入力ポート12に入力される光の出力比率が徐々に増加する。
図3のケース(2)はケース(1)の場合よりも差分Dが大きい場合であり、ケース(3)はケース(2)の場合よりも差分Dが大きい場合である。制御回路51は、図3で説明されるように、ケース(2)の伝送路切替速度をケース(1)よりも小さく制御し、ケース(3)の伝送路切替速度をケース(2)よりもさらに小さく制御する。この場合、時間に対する光スイッチ20の出力変動率を低下させることができる。それにより、光増幅器30の光サージの発生を抑制することができる。なお、ここでは図3(1)のケースを差分Dが大きい場合として説明したが、図3(1)のケースは光スイッチ20の切替速度の初期値であってもよい。
図4は、光スイッチ20に入力される光強度と光スイッチ20の伝送路切替速度との関係の一例を説明するための図である。図1の受光素子31は、現時点で接続されている伝送路から光増幅器30に入力される光強度を検出することができるが、伝送路切替後の光強度を伝送路切替前に検出することができない。そこで、図4で説明されるように、制御回路51は、受光素子31が現在検出している光強度から、切替後に予想される最大変動量を推定し、切替後の光増幅器30に光サージが発生しないような切替速度を設定する。したがって、本実施例においては、制御回路51が光強度推定手段として機能する。
例えば、図4を参照して、光増幅器30の入力ダイナミックレンジが−22dBm〜+2dBm(24dB)の場合に、光スイッチ20が第1伝送路(Work側伝送路)を選択し、第1伝送路を経由して光スイッチ20に入力される光強度が−10dBmであるとする。この場合、伝送路が第2伝送路に切り替えられたとすると、光増幅器30に入力される光強度の変動量は最大で12dBとなる。この光変動量を持つ光が光増幅器30に入力されることを想定して、制御回路51は、光サージ量が光増幅器30の後段の光学部品に許容されるように光スイッチ20の伝送路切替速度を制御する。
なお、受光素子31によって検出される光強度と伝送路切替速度との関係をあらかじめメモリ58に格納しておき、制御回路51は、メモリ58に格納してある伝送路切替速度を読み出してもよい。図5は、メモリ58に格納されるデータの一例を説明するための図である。図5を参照して、メモリ58は、例えば、受光素子31の検出光強度、想定される最大光変動量、伝送路切替速度等を格納する。
次に、伝送路切替速度と光サージ量との関係についての実験結果について説明する。図6(a)は、実験装置200の構成を説明するための図である。図6(a)で説明されるように、実験装置200は、光源201(レーザダイオード)、任意波形発生器202、光増幅器203、減衰器204、および受光器205を含む。
光源201は、光を任意波形発生器202に対して出力する。任意波形発生器202は、光源201からの光の波形を調整して光増幅器203に出力する。光増幅器203は、入力された光を増幅して減衰器204に出力する。減衰器204は、光増幅器203の出力が急変する前の、受光器205に入力される光強度を調整する。受光器205は、減衰器204からの光を受光する。
実験においては、任意波形発生器202に、複数種類の立ち上がり時間(Tf)で、光増幅器203への入力光強度を−21.7dBmから+1.3dBmまで23dBm変動させた。なお、立ち上がり時間は、図6(b)で説明されるように、光強度の最大変動量の10%から90%までの間の時間と定義した。
図7(a)は、実験装置200における立ち上がり時間(Tf)と光サージ量との関係を説明するための図である。図7(a)を参照して、光サージ量は、立ち上がり時間(Tf)が50μsの場合は12.0dB程度、立ち上がり時間(Tf)が100μsの場合は9.6dB程度となった。
図7(b)は、図7(a)の関係に、光増幅器が2つ設けられた場合の立ち上がり時間(Tf)と光サージ量との関係を付加した図である。図7(b)を参照して、光増幅器を2つ設ける方が光サージ量は小さくなったが、立ち上がり時間(Tf)が短いほど光サージ量は大きくなった。したがって、光増幅器の数によらず、光サージ量は立ち上がり時間(Tf)が短くになるにつれて大きくなった。
図7(a)および図7(b)の実験結果から、立ち上がり時間(Tf)を長くすることによって、光サージ量が抑制され、受信器等の故障が抑制されることがわかった。したがって、本実施例のように差分Dが大きいほど伝送路切替速度を小さくすることによって、光サージの発生を抑制することができることが立証された。
本実施例によれば、冗長構成のネットワーク回線に接続される光受信器100において、光スイッチ20の伝送路切替速度を変更することによって、光増幅器30における光サージを抑制することができる。また、受光素子31の受光結果に基づいて伝送路切替速度を変更することによって、光増幅器30における光サージを効果的に抑制することができる。さらに、差分Dが大きくなるほど伝送路切替速度を小さくすることによって、光増幅器30における光サージをより効果的に抑制することができる。
図8は、実施例2に係る光受信器100aの全体構成を説明するためのブロック図である。光受信器100aが図1の光受信器100と異なる点は、受光素子31の代わりに受光素子61,62を備える点である。受光素子61は、第1入力ポート11と光スイッチ20との間に設けられている。受光素子62は、第2入力ポート12と光スイッチ20との間に設けられている。
実施例2によれば、受光素子61,62を用いて各入力ポートに入力される光強度を検出することによって、差分Dを正確に検出することができる。この検出された差分Dに基づいて伝送路切替速度を設定することによって、伝送路切替速度を最適化することができる。それにより、光サージの発生をより効果的に抑制することができる。
図9は、実施例3に係る光受信器100bの全体構成を説明するためのブロック図である。光受信器100bが図8の光受信器100aと異なる点は、光増幅器30と受光器40との間に可変波長分散補償器(TDC:Tunable Dispersion Compensator)63および光増幅器64をさらに備え、また、警告手段65を備える点である。光増幅器30の出力光は可変波長分散補償器63に入力される。可変波長分散補償器63の出力光は、光増幅器64に入力される。光増幅器64の出力光は、受光器40に入力される。
本実施例においては、制御回路51は、受光素子61,62の検出結果に基づいて差分Dを検出し、検出された差分Dに基づいて光スイッチ20の伝送路切替後における波長分散量の変動量を推定する。制御回路51は、伝送路切替と同時に、上記の推定された波長分散量をフィードフォワード制御によって可変波長分散補償器63に粗調整レベルで設定する。それにより、伝送路切替後における信号疎通までの時間を短縮化することができる。本実施例においては、制御回路51が変化量推定手段および分散量変更手段として機能する。
その後、ビットエラーが最小となるように、最適調整および微調整を行ってもよい。なお、可変波長分散補償器63に設定する分散量の符号は、伝送路で生じる波長分散量の符号と逆になる。例えば、伝送路の波長分散量が+1000ps/nmである場合に、可変波長分散補償器63への設定量は−1000ps/nmとなる。
ビットエラーが最小になるまで可変波長分散補償器63の分散量設定およびビットエラーレート確認を繰り返すと、粗調整および微調整を含めた最適化調整までに数十秒の時間を要してしまう。しかしながら、本実施例においては、短時間で粗調整を行うことができるため、最適な分散値設定までの時間を短縮化することができる。
例えば、第1入力ポート11に入力される光強度が−10dBmの場合に可変波長分散補償器63の分散設定値がXXXps/nm(XXXは適当な値)であるとする。また、第2入力ポート12に入力される光強度が−20dBmであるとする。
この場合、光スイッチ20の伝送路が第1伝送路から第2伝送路に切り替わると、光強度の変動量は10dB減少となる。10dBの減少変動によって変更される伝送距離の概算値は、伝送路の損失を0.2dB/kmであるとすると、50km(増加)となる。SMF(Single Mode Fiber)伝送路を用いた場合、「50km」は850ps/nmの残留分散シフト量に相当する。したがって、光スイッチ20による伝送路切替後に即座に可変波長分散補償器63に対して(XXX−850)ps/nmの分散値(粗調整)を設定すればよい。
なお、受光素子61,62によって検出される光強度差と概算伝送距離と分散補正値との関係をあらかじめメモリ58に格納しておき、制御回路51は、メモリ58に格納してある分散補正値を読み出してもよい。図10は、メモリ58に格納されるデータの一例を説明するための図である。図10を参照して、メモリ58は、例えば、受光素子61,62によって検出される光強度差、概算伝送距離、分散補正値等を格納する。
ところで、演算の結果、伝送路の切替後に設定される分散量が可変波長分散補償器63の設定可能範囲を超える場合もありえる。例えば、光受信器100bは、切替後の分散補償に問題がある旨をユーザにあらかじめ伝える警告を発してもよい。図11は、分散設定値が最大分散補償範囲を超える場合について説明するための図である。
例えば、可変波長分散補償器63の最大分散補償範囲が±1000ps/nmである場合において、第1入力ポート11に入力される光強度が−10dBm、可変波長分散補償器63の分散設定値が−500ps/nmであるとする。この場合、第2入力ポート12に入力される光強度が−20dBmであれば、伝送路切替による光強度の変動量は10dB減少となる。
10dBの減少変動によって変更される伝送距離の概算値は、伝送路の損失を0.2dB/kmであるとすると、50kmとなる。SMF伝送路を用いた場合、「50km」は850ps/nmの残留分散シフト量に相当する。したがって、光スイッチ20による伝送路切替後に即座に可変波長分散補償器63に対して設定すべき値は、(−500−850)=−1350ps/nmとなって可変波長分散補償器63の可変範囲(±1000ps/nm)を越える。制御回路51は、この場合に、警告手段65からユーザに警告が発せされるように、警告手段65に信号を送信する。
図12は、実施例4に係る光受信器100cの全体構成を説明するためのブロック図である。光受信器100cは、1本の回線に接続され光増幅器および受光器を2組備える冗長構成を有する光受信器である。図12を参照して、光受信器100cが図1の光受信器100と異なる点は、入力部10の代わりに入力部10cを備える点、および、光増幅器30cおよび受光器40cをさらに備える点である。光増幅器30cは、受光素子31cを備える。
入力部10cは、入力ポートを1つ備える。本実施例においては、光スイッチ20は、図1とは逆向きに配置されている。具体的には、光スイッチ20は、入力部10cから光増幅器30に到達する第1伝送路(Work側伝送路)と入力部10cから光増幅器30cに到達する第2伝送路(Protection側伝送路)とを切り替える。本実施例においては、光増幅器30および受光器40をWork側ユニットと称し、光増幅器30cおよび受光器40cをProtection側ユニットと称する。
光受信器100cにおいては、制御回路51は、Protection側ユニットの光増幅器30cにホットスタンバイ(光増幅器の励起光を光らせた状態)させるように、駆動回路56を制御する。この場合、光増幅器30cの立ち上がり時間を短縮することができる。しかしながら、光スイッチ20の伝送路切替速度が大きい場合には光増幅器30cにとっては入力レベルが急激に変化することになる。その結果、光増幅器30cにて光サージを発生させてしまうことになる。
本実施例においては、制御回路51は、上記各実施例と同様の手順により、APC制御ループよりも長い時間かけて光スイッチ20の伝送路が切り替わるように、伝送路切替速度を変更する。それにより、光増幅器30cにおける光サージの発生を抑制することができる。
このように、最適な伝送路切替速度を選択して光サージの発生を抑えることができるため、光増幅器をホットスタンバイ状態で待機させた冗長構成を採ることができる。その結果、伝送路切替時のProtection側ユニットの立ち上がり時間を短縮させることができる。
以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 入力部
11 第1入力ポート
12 第2入力ポート
20 光スイッチ
30 光増幅器
31 受光素子
40 受光器
50 回路部
51 制御回路
52 駆動回路
53 D/A変換回路
54 I/V変換回路
55 A/D変換回路
56 駆動回路
57 D/A変換回路
58 メモリ
100 光受信器

Claims (14)

  1. 伝送路がアナログ的に切り替わる光スイッチと、
    前記光スイッチの伝送路切替速度を変更する切替速度変更手段と、
    前記光スイッチの伝送路切替後の光を増幅する光増幅器と、を備えることを特徴とする光受信器。
  2. 前記光増幅器の出力が所定値または所定範囲内の値になるように前記光増幅器の利得を制御する利得制御手段をさらに備えることを特徴とする請求項1記載の光受信器。
  3. 前記光スイッチによる伝送路切替前において前記光増幅器に入力される光強度を検出する光強度検出手段をさらに備え、
    前記切替速度変更手段は、前記受光素子の検出結果に基づいて前記伝送路切替速度を変更することを特徴とする請求項1または2記載の光受信器。
  4. 前記光強度検出手段の検出結果に基づいて、前記光増幅器に入力される光の伝送路切替前後での光強度差を推定する光強度差推定手段をさらに備え、
    前記切替速度変更手段は、前記推定手段によって推定された光強度差に基づいて、前記伝送路切替速度を変更することを特徴とする請求項3記載の光受信器。
  5. 前記光スイッチは、複数の入力ポートを備え、
    前記光強度検出手段は、前記複数の入力ポートのそれぞれに入力される光強度を検出することを特徴とする請求項3記載の光受信器。
  6. 前記切替速度変更手段は、前記複数の入力ポートに入力される光強度差に基づいて、前記伝送路切替速度を変更することを特徴とする請求項5記載の光受信器。
  7. 前記切替速度変更手段は、前記光増幅器出力光強度が許容範囲に入るように前記利得制御手段によって利得が制御されるように、前記伝送路切替速度を変更することを特徴とする請求項4または6記載の光受信器。
  8. 前記切替速度変更手段は、前記伝送路切替前後での光強度差が大きいほど、前記伝送路切替速度を小さくすることを特徴とする請求項4,6または7記載の光受信器。
  9. 前記光強度検出手段の検出結果と前記伝送路切替速度との対応関係をあらかじめ格納したメモリをさらに備え、
    前記切替速度変更手段は、前記メモリに格納された対応関係に従って前記伝送路切替速度を変更することを特徴とする請求項3〜8のいずれかに記載の光受信器。
  10. 前記伝送路切替前後での光強度差に基づいて、波長分散補償量の最適値の変化量を推定する変化量推定手段と、
    前記変化量推定手段の推定結果に基づいて、前記光増幅器の後段の可変波長分散補償器の分散量の設定を変更する分散量変更手段と、をさらに備えることを特徴とする請求項4または6記載の光受信器。
  11. 前記変化量推定手段の推定結果と前記可変波長分散補償器の分散量との対応関係をあらかじめ格納したメモリをさらに備え、
    前記分散量変更手段は、前記メモリに格納された対応関係に従って前記可変波長分散補償器の分散量の設定を変更することを特徴とする請求項10記載の光受信器。
  12. 前記分散量変更手段による変更後の分散量が前記可変波長分散補償器の設定範囲を超える場合に、警告を発する警告手段をさらに備えることを特徴とする請求項10記載の光受信器。
  13. 前記利得制御手段は、前記光増幅器をホットスタンバイさせ、
    前記切替速度変更手段は、前記利得制御手段による前記光増幅器のAPC制御ループよりも長い時間をかけて前記光スイッチの伝送路が切り替わるように前記伝送路切替速度を変更することを特徴とする請求項2記載の光受信器。
  14. 光スイッチと、前記光スイッチの伝送路切替後の光を増幅する光増幅器と、を備える光受信器において、
    前記光スイッチの伝送路切替速度を変更するステップと、
    前記光スイッチの伝送路をアナログ的に切り替えるステップと、を含むことを特徴とする光受信方法。
JP2009173110A 2009-07-24 2009-07-24 光受信器および光受信方法 Expired - Fee Related JP5471116B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009173110A JP5471116B2 (ja) 2009-07-24 2009-07-24 光受信器および光受信方法
US12/835,297 US8676054B2 (en) 2009-07-24 2010-07-13 Optical transmission receiver and method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009173110A JP5471116B2 (ja) 2009-07-24 2009-07-24 光受信器および光受信方法

Publications (2)

Publication Number Publication Date
JP2011029891A true JP2011029891A (ja) 2011-02-10
JP5471116B2 JP5471116B2 (ja) 2014-04-16

Family

ID=43497407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173110A Expired - Fee Related JP5471116B2 (ja) 2009-07-24 2009-07-24 光受信器および光受信方法

Country Status (2)

Country Link
US (1) US8676054B2 (ja)
JP (1) JP5471116B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049794A1 (ja) * 2013-10-04 2015-04-09 三菱電機株式会社 光伝送路切替装置および光伝送システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699760B2 (ja) * 2011-04-04 2015-04-15 富士通株式会社 光増幅装置、光増幅装置の制御方法、光受信局及び光伝送システム
JP5879776B2 (ja) * 2011-07-01 2016-03-08 沖電気工業株式会社 局側装置、光通信ネットワーク、及び電源制御方法
JP5970943B2 (ja) * 2012-05-01 2016-08-17 富士通株式会社 光伝送装置、及び光伝送方法
US10009102B2 (en) * 2013-07-11 2018-06-26 Nec Corporation Optical communication system, optical receiver, optical receiver control method, and non-transitory computer readable medium
EP3432489A4 (en) * 2016-03-14 2019-11-20 Nec Corporation OPTICAL CONTROL DEVICE AND OPTICAL BRANCHING DEVICE
JP7028256B2 (ja) * 2017-12-15 2022-03-02 日本電気株式会社 海底光伝送装置及び海底光通信システム
WO2021181665A1 (ja) * 2020-03-13 2021-09-16 日本電信電話株式会社 光伝送装置及び光伝送方法
EP3996295A1 (en) 2020-11-04 2022-05-11 Viavi Solutions Inc. High-speed bidirectional optical time-domain reflectometer (otdr)-based testing of device under test

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013315A (ja) * 1998-06-23 2000-01-14 Hitachi Ltd 光伝送装置および光伝送システム
JP2001339344A (ja) * 2000-05-29 2001-12-07 Hitachi Ltd 光信号切替装置
JP2002062549A (ja) * 2000-08-14 2002-02-28 Fujitsu Ltd 光スイッチ切り替え制御方法、光ノード装置および光スイッチシステム
JP2003215481A (ja) * 2002-01-25 2003-07-30 Mitsubishi Electric Corp 光信号切換装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US780400A (en) * 1904-08-01 1905-01-17 Vacuum Dyeing Machine Company Compression-top for dye-vats.
US5457555A (en) * 1992-01-10 1995-10-10 Fujitsu Limited Optical transmission system
JP3112070B2 (ja) * 1997-04-28 2000-11-27 日本電気株式会社 光ネットワークおよびそのスイッチ制御方法
JPH1117261A (ja) 1997-06-26 1999-01-22 Hitachi Ltd 損失補償光セレクタおよび光ネットワーク
JP4481540B2 (ja) * 2001-12-07 2010-06-16 富士通株式会社 光増幅器
JP3740413B2 (ja) * 2001-12-20 2006-02-01 株式会社日立製作所 高周波重畳方法およびこれを用いた光ディスク装置
JP4020809B2 (ja) * 2003-03-26 2007-12-12 富士通株式会社 波長分割多重伝送システム
JP2005340931A (ja) * 2004-05-24 2005-12-08 Freescale Semiconductor Inc バースト信号受信装置
JP4678647B2 (ja) * 2005-08-31 2011-04-27 富士通株式会社 光ノードのアップグレード方法および光ノード装置
US7978240B2 (en) * 2005-10-03 2011-07-12 Konica Minolta Photo Imaging, Inc. Enhancing image quality imaging unit and image sensor
JP2007173969A (ja) * 2005-12-19 2007-07-05 Fujitsu Ltd 光パワー調整方法、光送信装置、及び光受信装置
DE602006017892D1 (de) * 2006-03-02 2010-12-09 Verigy Pte Ltd Singapore Kalibrieren von signalen durch zeitjustierung
JP4633664B2 (ja) * 2006-03-24 2011-02-16 富士通株式会社 光スイッチシステム
WO2008107949A1 (ja) * 2007-03-01 2008-09-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
US7880400B2 (en) * 2007-09-21 2011-02-01 Exclara, Inc. Digital driver apparatus, method and system for solid state lighting
JP2010045606A (ja) * 2008-08-13 2010-02-25 Fujitsu Ltd 伝送装置および光伝送装置
US8582985B2 (en) * 2011-06-09 2013-11-12 Oracle International Corporation Input isolation of a transimpedance amplifier in optical receivers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013315A (ja) * 1998-06-23 2000-01-14 Hitachi Ltd 光伝送装置および光伝送システム
JP2001339344A (ja) * 2000-05-29 2001-12-07 Hitachi Ltd 光信号切替装置
JP2002062549A (ja) * 2000-08-14 2002-02-28 Fujitsu Ltd 光スイッチ切り替え制御方法、光ノード装置および光スイッチシステム
JP2003215481A (ja) * 2002-01-25 2003-07-30 Mitsubishi Electric Corp 光信号切換装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049794A1 (ja) * 2013-10-04 2015-04-09 三菱電機株式会社 光伝送路切替装置および光伝送システム
JPWO2015049794A1 (ja) * 2013-10-04 2017-03-09 三菱電機株式会社 光伝送路切替装置および光伝送システム
US9628173B2 (en) 2013-10-04 2017-04-18 Mitsubishi Electric Corporation Optical transmission line switching apparatus and optical transmission system

Also Published As

Publication number Publication date
US20110019995A1 (en) 2011-01-27
JP5471116B2 (ja) 2014-04-16
US8676054B2 (en) 2014-03-18

Similar Documents

Publication Publication Date Title
JP5471116B2 (ja) 光受信器および光受信方法
US20070286609A1 (en) Bias circuit for Burst-Mode/TDM systems with power save feature
JP6838165B2 (ja) 線形バーストモードトランスインピーダンス増幅器における閉ループ自動利得制御
JP4765669B2 (ja) 光送信機
US6798567B2 (en) Method and apparatus for controlling power transients in an optical communication system
US8867924B2 (en) Low power consumption small form-factor pluggable transceiver
JP2009182841A (ja) 光受信装置
US20150124313A1 (en) Optical communication apparatus and control method of optical communication apparatus
JP2004282025A (ja) 光ファイバ増幅器及びその制御方法
JP3989430B2 (ja) 光増幅方法、その装置およびその装置を用いた光増幅中継システム
US7388711B2 (en) Controlling apparatus for optical amplifier and controlling method thereof
US6901222B2 (en) Optical transmission system and terminal device applicable to the system
US6207949B1 (en) Method and apparatus for stabilizing attenuators in optical networks
US20070196105A1 (en) Optical network unit and control method thereof
CN110445544B (zh) 光传输的增益控制方法、系统、光放大器与光模块
JP2004119979A (ja) 長波長光ファイバ増幅器
US8164826B2 (en) Multi-stage optical amplifier and method of controlling the same
JP2008306250A (ja) バースト光受信方法および装置
JP6713767B2 (ja) 光増幅装置および光増幅方法
Nishihara et al. 10.3 Gbit/s burst-mode PIN-TIA module with high sensitivity, wide dynamic range and quick response
JP2010041495A (ja) 光受信機及び光受信機の出力制御方法
JP2011253843A (ja) 半導体レーザ駆動装置及び光通信装置
JP4773703B2 (ja) 光増幅器
JP2007074511A (ja) 光増幅装置および光通信システム
WO2007134635A1 (en) Optical amplifiers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5471116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees