JP2011026385A - Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device and epoxy resin - Google Patents

Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device and epoxy resin Download PDF

Info

Publication number
JP2011026385A
JP2011026385A JP2009171079A JP2009171079A JP2011026385A JP 2011026385 A JP2011026385 A JP 2011026385A JP 2009171079 A JP2009171079 A JP 2009171079A JP 2009171079 A JP2009171079 A JP 2009171079A JP 2011026385 A JP2011026385 A JP 2011026385A
Authority
JP
Japan
Prior art keywords
epoxy resin
group
aromatic hydrocarbon
resin composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009171079A
Other languages
Japanese (ja)
Other versions
JP5689230B2 (en
Inventor
Yoshiyuki Takahashi
芳行 高橋
Shinya Nakamura
信哉 中村
Hiroshi Hayashi
弘司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2009171079A priority Critical patent/JP5689230B2/en
Publication of JP2011026385A publication Critical patent/JP2011026385A/en
Application granted granted Critical
Publication of JP5689230B2 publication Critical patent/JP5689230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the heat resistance of a cured product and continuous formability after adjustment of a composition. <P>SOLUTION: As a main agent is used an epoxy resin produced by reacting a mixture of a phenolic resin (ph1) that has a structural site of each of (P) an aromatic hydrocarbon group containing a phenolic hydroxyl group, (B) a condensed polycyclic aromatic hydrocarbon group containing an alkoxy group and (X) a divalent hydrocarbon group selected from among a methylene group, an alkylidene group and a methylene group containing an aromatic hydrocarbon structure and that has in the molecular structure a structure in which the aromatic hydrocarbon group (P) containing a phenolic hydroxyl group and the condensed polycyclic aromatic hydrocarbon group (B) containing an alkoxy group are bonded via the divalent hydrocarbon group (X) selected from among a methylene group, an alkylidene group and a methylene group containing an aromatic hydrocarbon structure and a 4,4'-biphenol, with an epihalohydrin. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、低粘度で連続性形成に優れ、かつ非ハロゲン系で高度な難燃性と耐ハンダクラック性を兼備した硬化物を与えるエポキシ樹脂、エポキシ樹脂組成物、硬化物、半導体封止材料に関する。 The present invention relates to an epoxy resin, an epoxy resin composition, a cured product, and a semiconductor encapsulating material that provide a cured product having low viscosity, excellent continuity formation, non-halogen, and having high flame retardancy and solder crack resistance. About.

エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、電気絶縁性、高耐熱性、耐湿性、寸法安定性等の諸物性に優れる点から半導体封止材やプリント回路基板、ビルドアップ基板、レジストインキ等の電子部品、導電ペースト等の導電性接着剤やその他接着剤、アンダーフィルなどの液状封止材、液晶シール材、フレキシブル基板用カバーレイ、複合材料用マトリックス、塗料、フォトレジスト材料、顕色材料等で広く用いられている。これらの中でも半導体やプリント配線基板などのエレクトロニクス材料分野においては、封止材や基板材料等として用いられており、これらの分野における技術革新に伴って高性能化への要求が高まっている。
近年、これら各種用途、とりわけ先端材料用途において、硬化物の高耐熱化の向上が求められており、例えば、半導体封止材料分野では、BGA、CSPといった表面実装パッケージへの移行、更に鉛フリー半田への対応により、リフロー処理温度が高温化するに至り、よって、これまでに増して耐湿耐半田性に優れる電子部品封止樹脂材料が求められている。
かかる要求特性に応える電子部品封止材料としては、例えば、ヒドロキシ基含有芳香族化合物とアルコキシ基含有芳香族化合物とカルボニル基含有化合物とを反応させたフェノール樹脂をエピハロヒドリンと反応させたエポキシ樹脂が開示されている(下記特許文献1参照)。
Epoxy resin compositions containing an epoxy resin and its curing agent as essential components are excellent in various properties such as electrical insulation, high heat resistance, moisture resistance, and dimensional stability. Substrates, electronic components such as resist ink, conductive adhesives such as conductive paste and other adhesives, liquid sealing materials such as underfill, liquid crystal sealing materials, flexible substrate coverlays, matrix for composite materials, paints, photoresists Widely used in materials and color developing materials. Among these, in the field of electronic materials such as semiconductors and printed wiring boards, they are used as sealing materials and substrate materials, and the demand for higher performance is increasing with technological innovation in these fields.
In recent years, these various uses, especially advanced materials, have been required to improve the heat resistance of cured products. For example, in the field of semiconductor sealing materials, the transition to surface mount packages such as BGA and CSP, and lead-free soldering As a result, the temperature of the reflow treatment is increased, and therefore, there is a demand for an electronic component encapsulating resin material that is more excellent in moisture resistance and solder resistance than ever before.
As an electronic component sealing material that meets such required characteristics, for example, an epoxy resin obtained by reacting a phenol resin obtained by reacting a hydroxy group-containing aromatic compound, an alkoxy group-containing aromatic compound, and a carbonyl group-containing compound with epihalohydrin is disclosed. (See Patent Document 1 below).

特開2006−274236号公報JP 2006-274236 A

しかしながら、上記特許文献1において開示されているエポキシ樹脂は、硬化物の耐熱性には優れるものの、エポキシ樹脂自体の成形時の溶融粘度が高く、また、組成物調整後の連続性形成性に劣る為、電子部品封止材料用途における耐ハンダクラック性の改善効果も充分ではなかった。
従って、本発明が解決しようとする課題は、硬化物の耐熱性に優れ、また、エポキシ樹脂自体の成形時の溶融粘度が低く組成物調整後の連続性形成性に優れ、電子部品封止材料用途における耐ハンダクラック性が飛躍的に改善されたエポキシ樹脂組成物を提供することにある。
However, although the epoxy resin disclosed in Patent Document 1 is excellent in the heat resistance of the cured product, it has a high melt viscosity at the time of molding the epoxy resin itself, and is inferior in continuity formation after composition adjustment. For this reason, the effect of improving the solder crack resistance in the electronic component sealing material application is not sufficient.
Therefore, the problems to be solved by the present invention are excellent in heat resistance of the cured product, low in melt viscosity at the time of molding of the epoxy resin itself, excellent in continuity formation after composition adjustment, and electronic component sealing material An object of the present invention is to provide an epoxy resin composition having drastically improved solder crack resistance in use.

本発明者らは上記課題を解決するために鋭意検討した結果、フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するフェノール樹脂(ph1)と、4,4’−ビフェノールとを予め混合した混合物をエピハロヒドリンと反応させて得られるエポキシ樹脂が、低粘度であり、且つ硬化剤との組成物としたときに硬化性と連続成形性に優れ、また硬化物に優れた耐ハンダクラック性を付与することが可能であることを見出し本発明の完成に至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a phenolic hydroxyl group-containing aromatic hydrocarbon group (P), an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B), and a methylene group. Each having a structural site of a divalent hydrocarbon group (X) selected from an alkylidene group and an methylene group containing an aromatic hydrocarbon structure, and the phenolic hydroxyl group-containing aromatic hydrocarbon group (P) And the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B) via a divalent hydrocarbon group (X) selected from the methylene group, alkylidene group, and aromatic hydrocarbon structure-containing methylene group. An epoxy resin obtained by reacting a mixture of a phenol resin (ph1) having a bonded structure in its molecular structure and 4,4′-biphenol in advance with epihalohydrin, Finding that it is a viscosity and has excellent curability and continuous moldability when it is a composition with a curing agent, and that it can impart excellent solder cracking resistance to the cured product. It came.

すなわち、本発明は、エポキシ樹脂(A)と硬化剤(B)を必須成分とするエポキシ樹脂組成物であって、前記エポキシ樹脂(A)が、
フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するフェノール樹脂(ph1)と、
4,4’−ビフェノールとの混合物をエピハロヒドリンと反応させて得られるものであることを特徴とするエポキシ樹脂組成物に関する。
本発明は、更に、前記エポキシ樹脂組成物を硬化させてなる硬化物に関する。
本発明は、更に、前記エポキシ樹脂組成物を用いることを特徴とする半導体封止材料。
本発明は、更に、前記半導体封止材料を用いることを特徴とする半導体装置。
本発明は、更に、フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するフェノール樹脂(ph1)と、
4,4’−ビフェノールとの混合物をエピハロヒドリンと反応させて得られる分子構造を有することを特徴とするエポキシ樹脂に関する。
That is, this invention is an epoxy resin composition which has an epoxy resin (A) and a hardening | curing agent (B) as an essential component, Comprising: The said epoxy resin (A) is,
2 selected from a phenolic hydroxyl group-containing aromatic hydrocarbon group (P), an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B), and a methylene group, an alkylidene group, and an aromatic hydrocarbon structure-containing methylene group. Each having a structural site of a valent hydrocarbon group (X), the phenolic hydroxyl group-containing aromatic hydrocarbon group (P) and the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B) A phenolic resin (ph1) having a molecular structure with a structure bonded through a divalent hydrocarbon group (X) selected from the methylene group, alkylidene group, and aromatic hydrocarbon structure-containing methylene group;
The present invention relates to an epoxy resin composition obtained by reacting a mixture of 4,4′-biphenol with epihalohydrin.
The present invention further relates to a cured product obtained by curing the epoxy resin composition.
The present invention further provides a semiconductor sealing material using the epoxy resin composition.
The present invention further uses the semiconductor sealing material.
The present invention further includes a phenolic hydroxyl group-containing aromatic hydrocarbon group (P), an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B), a methylene group, an alkylidene group, and an aromatic hydrocarbon structure-containing methylene. Each having a structural part of a divalent hydrocarbon group (X) selected from a group, and the phenolic hydroxyl group-containing aromatic hydrocarbon group (P) and the alkoxy group-containing condensed polycyclic aromatic group Phenol having a structure in which a hydrocarbon group (B) is bonded via a divalent hydrocarbon group (X) selected from the methylene group, alkylidene group, and aromatic hydrocarbon structure-containing methylene group in the molecular structure Resin (ph1);
The present invention relates to an epoxy resin having a molecular structure obtained by reacting a mixture of 4,4′-biphenol with epihalohydrin.

本発明によれば、硬化物の耐熱性には優れ、また、エポキシ樹脂自体の成形時の溶融粘度が低く組成物調整後の連続性形成性に優れ、電子部品封止材料用途における耐ハンダクラック性が飛躍的に改善されたエポキシ樹脂組成物を提供できる。   According to the present invention, the cured product has excellent heat resistance, low melt viscosity at the time of molding of the epoxy resin itself, excellent continuity formation after composition adjustment, and resistance to solder cracks in electronic component sealing material applications. It is possible to provide an epoxy resin composition having dramatically improved properties.

図1は実施例1で得られたエポキシ樹脂(A−1)のGPCチャート図である。FIG. 1 is a GPC chart of the epoxy resin (A-1) obtained in Example 1. 図2は実施例2で得られたエポキシ樹脂(A−2)のGPCチャート図である。FIG. 2 is a GPC chart of the epoxy resin (A-2) obtained in Example 2. 図3は実施例3で得られたエポキシ樹脂(A−3)のGPCチャート図である。FIG. 3 is a GPC chart of the epoxy resin (A-3) obtained in Example 3.

以下、本発明を詳細に説明する。
本発明で用いるエポキシ樹脂(A)は、前記フェノール樹脂(ph1)と4,4’−ビフェノールの混合物をエピハロヒドリンとを反応させて得られるエポキシ樹脂である。
Hereinafter, the present invention will be described in detail.
The epoxy resin (A) used in the present invention is an epoxy resin obtained by reacting a mixture of the phenol resin (ph1) and 4,4′-biphenol with epihalohydrin.

本発明の半導体封止用エポキシ樹脂組成物で用いられるエポキシ樹脂(A)の原料の一成分である前記フェノール樹脂(ph1)は、
フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するフェノール樹脂であることを特徴としている。
The phenol resin (ph1), which is one component of the raw material of the epoxy resin (A) used in the epoxy resin composition for semiconductor encapsulation of the present invention,
Selected from phenolic hydroxyl group-containing aromatic hydrocarbon group (P), alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B), and methylene group, alkylidene group, and aromatic hydrocarbon structure-containing methylene group It has each structural site of a divalent hydrocarbon group (X), and the phenolic hydroxyl group-containing aromatic hydrocarbon group (P) and the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B ) Is a phenol resin having in its molecular structure a structure bonded via a divalent hydrocarbon group (X) selected from the methylene group, alkylidene group, and aromatic hydrocarbon structure-containing methylene group. It is a feature.

ここで、前記フェノール樹脂は、フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)(以下、これを単に「メチレン基等(X)」と略記する)の各構造単位をそれぞれ、「P」、「B」、「X」で表した場合、下記構造部位A1   Here, the phenol resin includes a phenolic hydroxyl group-containing aromatic hydrocarbon group (P), an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B), a methylene group, an alkylidene group, and an aromatic hydrocarbon. Each structural unit of a divalent hydrocarbon group (X) selected from structure-containing methylene groups (hereinafter simply referred to as “methylene group etc. (X)”) is represented by “P”, “B”, When represented by “X”, the following structural site A1

Figure 2011026385
であらわされる構造部位を必須として分子構造内に含むものである。
Figure 2011026385
The structural part represented by is included in the molecular structure as essential.

本発明では、このような特徴的な化学構造を有することから、分子構造中の芳香族含有率が高くなる。   In this invention, since it has such a characteristic chemical structure, the aromatic content rate in a molecular structure becomes high.

ここで、前記フェノール性水酸基含有芳香族炭化水素基(P)は、様々な構造をとり得るものであり、具体的には、以下のP1〜P16の構造式で表されるフェノール、ナフトール、及びこれらの芳香核上の置換基としてアルキル基を有する化合物から形成される芳香族炭化水素基であることが誘電性能に優れる点から好ましい。   Here, the phenolic hydroxyl group-containing aromatic hydrocarbon group (P) can have various structures, specifically, phenol, naphthol represented by the following structural formulas of P1 to P16, and An aromatic hydrocarbon group formed from a compound having an alkyl group as a substituent on these aromatic nuclei is preferable from the viewpoint of excellent dielectric performance.

Figure 2011026385
Figure 2011026385

ここで、前記各構造は、該構造が分子末端に位置する場合には、1価の芳香族炭化水素基となる。また、上掲した構造のうちナフタレン骨格上に他の構造部位との結合位置を二つ以上有するものは、それらの結合位置は同一核上であってもよいし、或いは、それぞれ異核上にあってもよい。   Here, each structure becomes a monovalent aromatic hydrocarbon group when the structure is located at the molecular end. In addition, among the structures listed above, those having two or more bonding positions with other structural sites on the naphthalene skeleton may be on the same nucleus or on different nuclei. There may be.

以上詳述したフェノール性水酸基含有芳香族炭化水素基(P)は、特に芳香核上の置換基としてメチル基を有するものは、エポキシ樹脂硬化物自体に優れた難燃性を付与でき、近年、電子部品分野において要求の高いハロゲンフリーの材料の設計が可能となる。   The phenolic hydroxyl group-containing aromatic hydrocarbon group (P) described in detail above, particularly those having a methyl group as a substituent on the aromatic nucleus can impart excellent flame retardancy to the cured epoxy resin itself, This makes it possible to design halogen-free materials that are highly demanded in the field of electronic components.

更に、前記フェノール性水酸基含有芳香族炭化水素基(P)は、前記構造式P6、P7、P8、及びP9に代表されるようにフェノール骨格のオルソ位にメチル基を有するものが、硬化物の耐熱性及び誘電特性の改善効果が顕著なものとなり好ましい。   Further, the phenolic hydroxyl group-containing aromatic hydrocarbon group (P) has a methyl group in the ortho position of the phenol skeleton as represented by the structural formulas P6, P7, P8, and P9. The improvement effect of heat resistance and dielectric properties is remarkable, which is preferable.

次に、フェノール樹脂構造中に含まれる前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)は、縮合多環式芳香核上の置換基としてアルコキシ基を有する1価又は多価の芳香族炭化水素基であり、具体的には下記構造式B1〜B15で表されるアルコシキナフタレン型の構造、又は、下記構造式B16で表されるアルコキシアントラセンが挙げられる。   Next, the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B) contained in the phenol resin structure is a monovalent or polyvalent aromatic having an alkoxy group as a substituent on the condensed polycyclic aromatic nucleus. A hydrocarbon group, specifically, an alkoxyquinephthalene structure represented by the following structural formulas B1 to B15 or an alkoxyanthracene represented by the following structural formula B16.

Figure 2011026385
Figure 2011026385

ここで、前記各構造は、該構造が分子末端に位置する場合には、1価の芳香族炭化水素基となる。また、上掲した構造のうちナフタレン骨格上に他の構造部位との結合位置を二つ以上有するものは、それらの結合位置は同一核上であってもよいし、或いは、それぞれ異核上にあってもよい。   Here, each structure becomes a monovalent aromatic hydrocarbon group when the structure is located at the molecular end. In addition, among the structures listed above, those having two or more bonding positions with other structural sites on the naphthalene skeleton may be on the same nucleus or on different nuclei. There may be.

以上詳述した前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)のうち、とりわけ、エポキシ樹脂硬化物の耐熱性が良好なものとなる点からアルコキシナフタレン型の構造を有するものが好ましく、特に、エポキシ樹脂硬化物の難燃性に優れ、近年、電子部品分野において要求の高いハロゲンフリーの材料の設計が可能となる点から、前記構造式B1〜B13に代表される、メトキシ基又はエトキシ基を置換基として有するナフタレン構造、およびそれらに更にメチル基を置換基として有する構造から形成される芳香族炭化水素基であることが好ましい。   Among the alkoxy group-containing condensed polycyclic aromatic hydrocarbon groups (B) described in detail above, those having an alkoxynaphthalene type structure are particularly preferable from the viewpoint that the heat resistance of the cured epoxy resin is good. In particular, the epoxy resin cured product is excellent in flame retardancy, and in recent years, it has become possible to design a halogen-free material that is highly demanded in the field of electronic components, so that a methoxy group represented by the structural formulas B1 to B13 or An aromatic hydrocarbon group formed from a naphthalene structure having an ethoxy group as a substituent and a structure further having a methyl group as a substituent is preferable.

次に、フェノール樹脂構造中に有する、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)は、例えば、メチレン基の他、アルキリデン基としては、エチリデン基、1,1−プロピリデン基、2,2−プロピリデン基、ジメチレン基、プロパン−1,1,3,3−テトライル基、n−ブタン−1,1,4,4−テトライル基、n−ペンタン−1,1,5,5−テトライル基が挙げられる。また、芳香族炭化水素構造含有メチレン基は、下記X1〜X9の構造のものが挙げられる。   Next, the divalent hydrocarbon group (X) selected from the methylene group, the alkylidene group, and the aromatic hydrocarbon structure-containing methylene group in the phenol resin structure is, for example, an methylene group or an alkylidene group. Are ethylidene group, 1,1-propylidene group, 2,2-propylidene group, dimethylene group, propane-1,1,3,3-tetrayl group, n-butane-1,1,4,4-tetrayl group, An n-pentane-1,1,5,5-tetrayl group may be mentioned. In addition, examples of the aromatic hydrocarbon structure-containing methylene group include those having the following structures X1 to X9.

Figure 2011026385

これらの中でも特に誘電効果に優れる点からメチレン基であることが好ましい。
Figure 2011026385

Among these, a methylene group is preferable from the viewpoint of excellent dielectric effect.

本発明で用いるフェノール樹脂は、各構造部位(P)、(B)及び(X)の上記各具体例で示した構造の任意の組み合わせを採り得る。このような各構成部位から構成されるフェノール樹脂の分子構造は、前記した通り、フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、およびメチレン基等(X)の各構造単位をそれぞれ、「P」、「B」、「X」で表した場合、下記構造部位A1   The phenol resin used in the present invention can take any combination of the structures shown in the specific examples of the structural sites (P), (B), and (X). As described above, the molecular structure of the phenol resin composed of each of such constituent parts is as follows: phenolic hydroxyl group-containing aromatic hydrocarbon group (P), alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B), And when each structural unit of (X) such as methylene group is represented by “P”, “B”, “X”, the following structural site A1

Figure 2011026385
であらわされる構造部位を必須として分子構造内に含むものであるが、更に具体的には、下記構造式A2及びA3で表される構造、
Figure 2011026385
The structure represented by the formula is essentially included in the molecular structure, more specifically, structures represented by the following structural formulas A2 and A3,

Figure 2011026385
Figure 2011026385

下記構造式A4又はA5

Figure 2011026385

で表される構造を繰り返し単位とするノボラック構造の分子末端に、下記構造式A6 Structural formula A4 or A5
Figure 2011026385

At the molecular end of the novolak structure having the structure represented by

Figure 2011026385
で表される構造を有する構造、その他下記構造式A7〜A8
Figure 2011026385
Other structures having the structure represented by the following structural formulas A7 to A8

Figure 2011026385

で表される構造を繰り返し単位とする交互共重合体構造が挙げられる。
Figure 2011026385

The alternating copolymer structure which makes the structure represented by repeating unit a repeating unit is mentioned.

本発明においては、前記フェノール樹脂(ph1)は、上記のように各種の構造をとり得るが、その分子末端に前記構造式A6で表される構造を有することにより、エポキシ樹脂硬化物の誘電正接を著しく低減できることができる。よって、特に前記構造式A3の構造を有するフェノール樹脂、或いは、前記A4又はA7を繰り返し単位とし、かつ、その分子末端に前記構造式A6で表される構造を有するフェノール樹脂が好ましく、特に本発明の効果が顕著に現れる点から、前記構造式A3の構造を有するフェノール樹脂、或いは、前記A4を繰り返し単位とし、かつ、その分子末端に前記構造式A6で表される構造を有するフェノール樹脂が好ましい。   In the present invention, the phenolic resin (ph1) can have various structures as described above. By having the structure represented by the structural formula A6 at the molecular end, the dielectric loss tangent of the cured epoxy resin is obtained. Can be significantly reduced. Therefore, in particular, the phenol resin having the structure of the structural formula A3 or the phenol resin having the structure represented by the structural formula A6 at the molecular end of the A4 or A7 as a repeating unit is particularly preferable. From the point that the effect of the above appears remarkably, the phenol resin having the structure of the structural formula A3, or the phenol resin having the structure represented by the structural formula A6 at the molecular end of the A4 as a repeating unit is preferable. .

更に、前記フェノール樹脂(ph1)は、後述するようにヒドロキシ基含有芳香族化合物(a1)とアルコキシ基含有芳香族化合物(a2)と、カルボニル基含有化合物(a3)とを、反応させることによって製造することができ、この際、上記した各種の構造の他、フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、及びメチレン基等(X)の各構造単位をそれぞれ、「P」、「B」、及び「X」で表した場合に、下記構造式   Furthermore, the phenol resin (ph1) is produced by reacting a hydroxy group-containing aromatic compound (a1), an alkoxy group-containing aromatic compound (a2), and a carbonyl group-containing compound (a3) as described later. In this case, in addition to the various structures described above, a phenolic hydroxyl group-containing aromatic hydrocarbon group (P), an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B), a methylene group, and the like ( When each structural unit of X) is represented by “P”, “B”, and “X”,

Figure 2011026385
で表される構造の化合物も同時に生成し、該フェノール樹脂中に含まれる。本発明では該化合物の含有量が比較的高い方が、該フェノール樹脂自体の溶融粘度を低減でき、かつ得られるエポキシ樹脂硬化物の誘電特性に優れたものとなる為好ましく、具体的には該樹脂中、1〜30質量%となる範囲でフェノール樹脂中に含まれることが好ましい。特に、このような効果が顕著なものとなる点から、3〜25質量%、なかでも3〜15質量%の範囲であることが好ましい。
Figure 2011026385
A compound having a structure represented by the following formula is simultaneously generated and contained in the phenol resin. In the present invention, a relatively high content of the compound is preferable because the melt viscosity of the phenol resin itself can be reduced and the resulting epoxy resin cured product has excellent dielectric properties. It is preferable that it is contained in a phenol resin in the range which becomes 1-30 mass% in resin. In particular, from the point that such an effect becomes remarkable, the range of 3 to 25% by mass, particularly 3 to 15% by mass is preferable.

また、同様に、ヒドロキシ基含有芳香族化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)と、カルボニル基含有化合物(a3)とを反応させる結果、その生成物たるフェノール樹脂中に、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基等(X)の各構造単位をそれぞれ、「B」、「X」で表した場合に、下記構造式   Similarly, as a result of reacting the hydroxy group-containing aromatic compound (a1), the alkoxy group-containing condensed polycyclic aromatic compound (a2), and the carbonyl group-containing compound (a3), the product is a phenol resin. In addition, when the structural units of the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B) and the methylene group (X) are represented by “B” and “X” respectively,

Figure 2011026385
で表される構造を有する化合物が混入する場合がある。本発明では、エポキシ樹脂硬化物の耐熱性の点から、かかる化合物の含有率は低いことが望ましく、できれば全く存在しないことが好ましい。よって、フェノール樹脂(ph1)中に占める該化合物の含有率は、5質量%以下、なかでも3質量%以下、特に2質量%以下であることが好ましい。
Figure 2011026385
In some cases, a compound having a structure represented by In the present invention, from the viewpoint of heat resistance of the cured epoxy resin, it is desirable that the content of such a compound is low, and it is preferable that it is not present at all. Therefore, the content of the compound in the phenol resin (ph1) is preferably 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 2% by mass or less.

また、前記フェノール樹脂(ph1)は、ICI粘度計で測定した150℃における溶融粘度が0.1〜5.0dPa・sの範囲であるのものが、成形時の流動性や硬化物の耐熱性などが優れる点で好ましい。更に、前記フェノール樹脂は、その水酸基当量が、120〜500g/eq.の範囲のものが、硬化物の難燃性と誘電特性が一層良好となる点から好ましい。また、ここで、本発明では、このような水酸基当量及び溶融粘度の条件を具備するものが、本発明の新規フェノール樹脂となる。上記水酸基当量は、特に150〜350g/eq.の範囲のであることが、硬化物の誘電特性と、組成物の硬化性とのバランスが特に優れたものとなる。   The phenol resin (ph1) has a melt viscosity at 150 ° C. measured with an ICI viscometer in the range of 0.1 to 5.0 dPa · s, and has fluidity during molding and heat resistance of the cured product. Etc. are preferable in that they are excellent. Furthermore, the phenol resin has a hydroxyl group equivalent of 120 to 500 g / eq. Those in the range are preferable from the viewpoint of further improving the flame retardancy and dielectric properties of the cured product. Moreover, in this invention, what comprises the conditions of such a hydroxyl equivalent and melt viscosity becomes the novel phenol resin of this invention here. The hydroxyl equivalent is particularly 150 to 350 g / eq. Within this range, the balance between the dielectric properties of the cured product and the curability of the composition is particularly excellent.

更に、前記フェノール樹脂(ph1)は、フェノール性水酸基含有芳香族炭化水素基(P)と、前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)との存在比が、モル比で前者/後者=30/70〜98/2なる範囲であるであることが、硬化物の難燃性と誘電特性が一層良好となる点から好ましい。   Further, the phenol resin (ph1) has a molar ratio of the abundance ratio of the phenolic hydroxyl group-containing aromatic hydrocarbon group (P) and the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B). / The latter = 30/70 to 98/2 is preferable because the flame retardancy and dielectric properties of the cured product are further improved.

前記フェノール樹脂(ph1)は、ヒドロキシ基含有芳香族化合物(a1)とアルコキシ基含有芳香族化合物(a2)と、カルボニル基含有化合物(a3)とを、反応させることによって製造することができる。   The phenol resin (ph1) can be produced by reacting a hydroxy group-containing aromatic compound (a1), an alkoxy group-containing aromatic compound (a2), and a carbonyl group-containing compound (a3).

上記製造方法に用いられるヒドロキシ基含有芳香族化合物(a1)は、具体的には、フェノール、レゾルシノール、ヒドロキノンなどの無置換フェノール類、クレゾール、フェニルフェノール、エチルフェノール、n−プロピルフェノール、iso−プロピルフェノール、t−ブチルフェノールなどの一置換フェノール類、キシレノール、メチルプロピルフェノール、メチルブチルフェノール、メチルヘキシルフェノール、ジプロピルフェノール、ジブチルフェノールなどの二置換フェノール類、メシトール、2,3,5−トリメチルフェノール、2,3,6−トリメチルフェノール等の三置換フェノール類、1−ナフトール、2−ナフトール、メチルナフトールなどのナフトール類が挙げられる。
これらは、2種類以上を併用してもよい。
Specific examples of the hydroxy group-containing aromatic compound (a1) used in the above production method include unsubstituted phenols such as phenol, resorcinol and hydroquinone, cresol, phenylphenol, ethylphenol, n-propylphenol, and iso-propyl. Monosubstituted phenols such as phenol and t-butylphenol, disubstituted phenols such as xylenol, methylpropylphenol, methylbutylphenol, methylhexylphenol, dipropylphenol, dibutylphenol, mesitol, 2,3,5-trimethylphenol, 2 , 3,6-trimethylphenol and the like, and naphthols such as 1-naphthol, 2-naphthol and methylnaphthol.
Two or more of these may be used in combination.

これらのなかでも、硬化物及び難燃性の点から1−ナフトール、2−ナフトール、クレゾール、フェノールが特に好ましい。   Among these, 1-naphthol, 2-naphthol, cresol, and phenol are particularly preferable from the viewpoint of a cured product and flame retardancy.

次に、アルコキシ基含有芳香族化合物(a2)は、具体的には、1−メトキシナフタレン、2−メトキシナフタレン、1−メチル−2−メトキシナフタレン、1−メトキシ−2−メチルナフタレン、1,3,5−トリメチル−2−メトキシナフタレン、2,6−ジメトキシナフタレン、2,7−ジメトキシナフタレン、1−エトキシナフタレン、
1,4−ジメトキシナフタレン、1−t−ブトキシナフタレン、1−メトキシアントラセン、等が挙げられる。
これらの中でも成形時の硬度を高められることから、1−メトキシナフタレン、2−メトキシナフタレンが好ましい。
Next, the alkoxy group-containing aromatic compound (a2) specifically includes 1-methoxynaphthalene, 2-methoxynaphthalene, 1-methyl-2-methoxynaphthalene, 1-methoxy-2-methylnaphthalene, 1,3. , 5-trimethyl-2-methoxynaphthalene, 2,6-dimethoxynaphthalene, 2,7-dimethoxynaphthalene, 1-ethoxynaphthalene,
1,4-dimethoxynaphthalene, 1-t-butoxynaphthalene, 1-methoxyanthracene, and the like can be given.
Among these, 1-methoxynaphthalene and 2-methoxynaphthalene are preferable because the hardness during molding can be increased.

次に、カルボニル基含有化合物(a3)は、具体的には、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族系アルデヒド、グリオキザール等のジアルデヒド、ベンズアルデヒド、4−メチルベンズアルデヒド、3,4−ジメチルベンズアルデヒド、4−ビフェニルアルデヒド、ナフチルアルデヒド等の芳香族系アルデヒド、ベンゾフェノン、フルオレノン、インダノン等のケトン化合物が挙げられる。   Next, the carbonyl group-containing compound (a3) is specifically an aliphatic aldehyde such as formaldehyde, acetaldehyde or propionaldehyde, a dialdehyde such as glyoxal, benzaldehyde, 4-methylbenzaldehyde, 3,4-dimethylbenzaldehyde, Examples include aromatic aldehydes such as 4-biphenylaldehyde and naphthylaldehyde, and ketone compounds such as benzophenone, fluorenone, and indanone.

これらのなかでも得られる硬化物の難燃性にすぐれる点からホルムアルデヒド、ベンズアルデヒド、4−ビフェニルアルデヒド、ナフチルアルデヒドが好ましい。   Among these, formaldehyde, benzaldehyde, 4-biphenylaldehyde, and naphthylaldehyde are preferable because the cured product obtained has excellent flame retardancy.

上記したヒドロキシ基含有芳香族化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)と、カルボニル基含有化合物(a3)とを反応させる方法としては、具体的には、
1)ヒドロキシ基含有芳香族系化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)とカルボニル基含有化合物(a3)とを実質的に同時に仕込み、適当な重合触媒の存在下で加熱撹拌して反応を行う方法、また、
2)アルコキシ基含有縮合多環式芳香族化合物(a2)1モルに対して、0.05〜30モル、好ましくは2〜30モルのカルボニル基含有化合物(a3)を反応させた後に、ヒドロキシ基含有芳香族系化合物(a1)を仕込んで反応させる方法
3)ヒドロキシ基含有芳香族系化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)とを予め混合しておき、ここにカルボニル基含有化合物(a3)を連続的乃至断続的に系内に加えることによって、反応を行う方法
が挙げられる。尚、ここで実質的に同時とは、加熱によって反応が加速されるまでの間に全ての原料を仕込むことを意味するものである。
As a method of reacting the hydroxy group-containing aromatic compound (a1), the alkoxy group-containing condensed polycyclic aromatic compound (a2), and the carbonyl group-containing compound (a3), specifically,
1) A hydroxy group-containing aromatic compound (a1), an alkoxy group-containing condensed polycyclic aromatic compound (a2), and a carbonyl group-containing compound (a3) are charged substantially simultaneously and in the presence of a suitable polymerization catalyst. A method of performing the reaction by heating and stirring, and
2) After reacting 0.05 to 30 mol, preferably 2 to 30 mol, of the carbonyl group-containing compound (a3) with respect to 1 mol of the alkoxy group-containing condensed polycyclic aromatic compound (a2), a hydroxy group Method of charging and reacting containing aromatic compound (a1) 3) Hydroxy group-containing aromatic compound (a1) and alkoxy group-containing condensed polycyclic aromatic compound (a2) are mixed in advance, The method of reacting by adding a carbonyl group containing compound (a3) in a system continuously thru | or intermittently is mentioned. Here, “substantially simultaneously” means that all raw materials are charged until the reaction is accelerated by heating.

次に、本発明のエポキシ樹脂(A)は、前記したフェノール樹脂(ph1)と4,4’−ビフェノールを混合して混合物を得た後、これをエピハロヒドリンと反応させることによって得られるものである。   Next, the epoxy resin (A) of the present invention is obtained by mixing the above-described phenol resin (ph1) and 4,4′-biphenol to obtain a mixture, and then reacting it with epihalohydrin. .

ここで、前記フェノール樹脂(ph1)と4,4’−ビフェノールとの混合割合は、フェノール樹脂(ph1)70質量%以上90質量%以下に対し、4,4’−ビフェノールが10質量%以上30質量%以下であり、好ましくはフェノール樹脂(ph1)75質量%以上85質量%以下に対し、4,4’−ビフェノールが15質量%以上25質量%以下である。4,4’−ビフェノールの使用量が少なすぎると、低溶融粘度が十分得られず、また連続成形性改善が効果も少ない。更に得られたエポキシ樹脂が結晶化しないので、軟化点が低く作業性に問題がある。ここで本発明のエポキシ樹脂(A)の溶融粘度は、150℃のICI粘度で0.1〜1.0dPa・sの範囲、特に0.1〜0.7dPa・sの範囲であることが好ましい。一方、4,4′−ビフェノールの使用量が多すぎると、溶融粘度は低くなるが、官能基濃度が高くなり吸湿性が高まり使用可能な耐ハンダクラック性が得られないし、それ以上多量に使用すると、4,4’−(2,3−エポキシプロポキシ)ビフェノールが混練時に相溶せず充分な特性を発現する硬化物が得られない。   Here, the mixing ratio of the phenol resin (ph1) and 4,4′-biphenol is 10% by mass to 30% by mass of 4,4′-biphenol with respect to 70% by mass to 90% by mass of the phenol resin (ph1). The amount of 4,4′-biphenol is preferably 15% by mass or more and 25% by mass or less with respect to 75% by mass or more and 85% by mass or less of the phenol resin (ph1). If the amount of 4,4'-biphenol used is too small, a sufficiently low melt viscosity cannot be obtained, and improvement of continuous moldability is less effective. Further, since the obtained epoxy resin does not crystallize, the softening point is low and there is a problem in workability. Here, the melt viscosity of the epoxy resin (A) of the present invention is preferably in the range of 0.1 to 1.0 dPa · s, particularly in the range of 0.1 to 0.7 dPa · s, at an ICI viscosity of 150 ° C. . On the other hand, if the amount of 4,4′-biphenol used is too large, the melt viscosity will be low, but the functional group concentration will be high and the hygroscopicity will be increased, so that usable solder crack resistance will not be obtained, and more will be used. As a result, 4,4 ′-(2,3-epoxypropoxy) biphenol is not compatible during kneading, and a cured product exhibiting sufficient characteristics cannot be obtained.

前記混合物とエピハロヒドリンと反応させる方法は、具体的には、前記混合物中のフェノール性水酸基1モルに対し、エピハロヒドリン2〜10モルを添加し、更に、フェノール性水酸基1モルに対し0.9〜2.0モルの塩基性触媒を一括添加または徐々に添加しながら20〜120℃の温度で0.5〜10時間反応させる方法が挙げられる。この塩基性触媒は固形でもその水溶液を使用してもよく、水溶液を使用する場合は、連続的に添加すると共に反応混合物中から減圧下、または常圧下、連続的に水及びエピハロヒドリン類を留出せしめ、更に分液して水は除去しエピハロヒドリン類は反応混合物中に連続的に戻す方法を採用してもよい。   Specifically, the method of reacting the mixture with epihalohydrin is such that 2 to 10 mol of epihalohydrin is added to 1 mol of phenolic hydroxyl group in the mixture, and further 0.9 to 2 to 1 mol of phenolic hydroxyl group. A method of reacting at a temperature of 20 to 120 ° C. for 0.5 to 10 hours while adding or gradually adding 0.0 mol of a basic catalyst. The basic catalyst may be solid or an aqueous solution thereof. When an aqueous solution is used, it is continuously added and water and epihalohydrins are continuously distilled from the reaction mixture under reduced pressure or normal pressure. It is possible to adopt a method in which the mixture is further separated to remove water and the epihalohydrins are continuously returned to the reaction mixture.

これらのなかでも反応中にビフェノール骨格含有化合物の結晶析出を抑制するために、アルカリ濃度を30質量%以下、反応温度を60℃以上で反応させるのが好ましい。   Among these, in order to suppress crystallization of the biphenol skeleton-containing compound during the reaction, it is preferable to react at an alkali concentration of 30% by mass or less and a reaction temperature of 60 ° C. or more.

なお、工業生産を行う際、エポキシ樹脂生産の初バッチでは仕込みに用いるエピハロヒドリン類の全てが新しいものであるが、次バッチ以降は、粗反応生成物から回収されたエピハロヒドリン類と、反応で消費される分で消失する分に相当する新しいエピハロヒドリン類とを併用することが好ましい。この時、使用するエピハロヒドリンは特に限定されないが、例えばエピクロルヒドリン、エピブロモヒドリン、β−メチルエピクロルヒドリン等が挙げられる。なかでも工業的入手が容易なことからエピクロルヒドリンが好ましい。   In the first batch of epoxy resin production, all of the epihalohydrins used for preparation are new in industrial production, but the subsequent batches are consumed by the reaction with epihalohydrins recovered from the crude reaction product. It is preferable to use in combination with new epihalohydrins corresponding to the amount disappeared. At this time, the epihalohydrin used is not particularly limited, and examples thereof include epichlorohydrin, epibromohydrin, β-methylepichlorohydrin, and the like. Of these, epichlorohydrin is preferred because it is easily available industrially.

また、前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられる。特にエポキシ樹脂合成反応の触媒活性に優れる点からアルカリ金属水酸化物が好ましく、例えば水酸化ナトリウム、水酸化カリウム等が挙げられる。使用に際しては、これらの塩基性触媒を10〜55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用しても構わない。また、有機溶媒を併用することにより、エポキシ樹脂の合成における反応速度を高めることができる。このような有機溶媒としては特に限定されないが、例えば、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、1−プロピルアルコール、イソプロピルアルコール、1−ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、テトラヒドロフラン、1、4−ジオキサン、1、3−ジオキサン、ジエトキシエタン等のエーテル類、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調整するために適宜二種以上を併用してもよい。   Specific examples of the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides. In particular, alkali metal hydroxides are preferable from the viewpoint of excellent catalytic activity of the epoxy resin synthesis reaction, and examples thereof include sodium hydroxide and potassium hydroxide. In use, these basic catalysts may be used in the form of an aqueous solution of about 10 to 55% by mass, or in the form of a solid. Moreover, the reaction rate in the synthesis | combination of an epoxy resin can be raised by using an organic solvent together. Examples of such organic solvents include, but are not limited to, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol, and tertiary butanol, methyl Examples include cellosolves such as cellosolve and ethyl cellosolve, ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane, and aprotic polar solvents such as acetonitrile, dimethyl sulfoxide and dimethylformamide. These organic solvents may be used alone or in combination of two or more as appropriate in order to adjust the polarity.

前述のエポキシ化反応の反応物を水洗後、加熱減圧下、蒸留によって未反応のエピハロヒドリンや併用する有機溶媒を留去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、得られたエポキシ樹脂を再びトルエン、メチルイソブチルケトン、メチルエチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、用いるエポキシ樹脂に対して0.1〜3.0質量%の範囲が好ましい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより高純度のエポキシ樹脂(A)を得ることができる。   After the reaction product of the epoxidation reaction is washed with water, unreacted epihalohydrin and the organic solvent to be used in combination are distilled off by distillation under heating and reduced pressure. Further, in order to obtain an epoxy resin with less hydrolyzable halogen, the obtained epoxy resin is again dissolved in an organic solvent such as toluene, methyl isobutyl ketone, methyl ethyl ketone, and alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. Further reaction can be carried out by adding an aqueous solution of the product. At this time, a phase transfer catalyst such as a quaternary ammonium salt or crown ether may be present for the purpose of improving the reaction rate. When the phase transfer catalyst is used, the amount used is preferably in the range of 0.1 to 3.0% by mass with respect to the epoxy resin used. After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and a solvent such as toluene and methyl isobutyl ketone is distilled off under heating and reduced pressure to obtain a high purity epoxy resin (A).

このようにして得られたエポキシ樹脂(A)は、それ自体溶融粘度が低いものとなる。具体的には、該エポキシ樹脂(A)は、150℃におけるICI粘度計における溶融粘度が0.1〜1.0dPa・sの範囲であって、かつ、エポキシ当量が220g/eq.〜300g/eq.の範囲であることが、組成物調整後の連続性形成性に優れ、電子部品封止材料用途における耐ハンダクラック性が飛躍的に改善される点から好ましい。   The epoxy resin (A) thus obtained itself has a low melt viscosity. Specifically, the epoxy resin (A) has a melt viscosity in an ICI viscometer at 150 ° C. of 0.1 to 1.0 dPa · s and an epoxy equivalent of 220 g / eq. -300 g / eq. It is preferable from the point of being excellent in the continuity forming property after the composition adjustment and the solder crack resistance in the electronic component sealing material application being drastically improved.

本発明のエポキシ樹脂組成物はエポキシ樹脂成分として前記したエポキシ樹脂(A)の他、本発明の特性を損なわない範囲においてその他のエポキシ樹脂と併用して使用することもできる。この場合、前記エポキシ樹脂(A)が全エポキシ樹脂100質量%中、30質量%以上含有されていることが好ましく、特に50質量%以上含有されていることが好ましい。   The epoxy resin composition of the present invention can be used in combination with other epoxy resins as long as it does not impair the characteristics of the present invention, in addition to the epoxy resin (A) described above as an epoxy resin component. In this case, the epoxy resin (A) is preferably contained in an amount of 30% by mass or more, more preferably 50% by mass or more, based on 100% by mass of the total epoxy resin.

前記その他のエポキシ樹脂としては、特に制限されるものではなく、種々のエポキシ樹脂を用いることができるが、例えば、ビスフェノールA型エポキシ樹脂,ビスフェノールF型エポキシ樹脂,ビスフェノールS型エポキシ樹脂,ビスフェノールAD型エポキシ樹脂,レゾルシン型エポキシ樹脂,ハイドロキノン型エポキシ樹脂,カテコール型エポキシ樹脂,ジヒドロキシナフタレン型エポキシ樹脂,ビフェニル型エポキシ樹脂,テトラメチルビフェニル型エポキシ樹脂,硫黄含有エポキシ樹脂,スチルベン型エポキシ樹脂等の2官能型エポキシ樹脂,トリグリシジルシソシアヌレート、メトキシナフタレン変性アラルキル型エポキシ樹脂、メトキシナフタレン変性ノボラック樹脂、フェノールノボラック型エポキシ樹脂,クレゾールノボラック型エポキシ樹脂,トリフェニルメタン型エポキシ樹脂,テトラフェニルエタン型エポキシ樹脂,ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂,フェノールアラルキル型エポキシ樹脂(通称ザイロック樹脂のエポキシ化物),ナフトールホルムアルデヒド縮合型エポキシ樹脂,ナフトールノボラック型エポキシ樹脂,ナフトールアラルキル型エポキシ樹脂,ナフトール−フェノール共縮ノボラック型エポキシ樹脂,ナフトール−クレゾール共縮ノボラック型エポキシ樹脂,芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂,ビフェニル変性ノボラック型エポキシ樹脂(ビスメチレン基でフェノール核が連結された多価フェノール樹脂のエポキシ化物),ビフェニル変性ナフトール型エポキシ樹脂(ビスメチレン基でナフトール核が連結された多価ナフトール樹脂のエポキシ化合物)、アルコキシ基含有ノボラック型エポキシ樹脂、アルコキシ基含有フェノールアラルキル樹脂、テトラブロモビスフェノールA型エポキシ樹脂,特開平4−11662号や特開平11−166035号に記載された各種9,10−ジヒドロ−9−オキサー10−ホスファフェナントレン=10−オキシドから誘導されるエポキシ樹脂などが挙げられる。また,前記エポキシ樹脂は単独で用いてもよく,2種以上を混合してもよい。これらのエポキシ樹脂の中でも、特に低粘度である点では、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂が好ましく、難燃性に優れる点では、フェノールアラルキル型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂が好ましい。   The other epoxy resin is not particularly limited, and various epoxy resins can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type Bifunctional type such as epoxy resin, resorcinol type epoxy resin, hydroquinone type epoxy resin, catechol type epoxy resin, dihydroxynaphthalene type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type epoxy resin, sulfur containing epoxy resin, stilbene type epoxy resin Epoxy resin, triglycidyl isosocyanurate, methoxynaphthalene modified aralkyl epoxy resin, methoxynaphthalene modified novolak resin, phenol novolac epoxy resin, cresol novo Type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin (commonly known as epoxide of zylock resin), naphthol formaldehyde condensation type epoxy Resin, naphthol novolac type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenolic resin type epoxy resin, biphenyl modified novolak Type epoxy resin (epoxidized polyhydric phenol resin in which phenol nucleus is linked by bismethylene group), biphenyl modified naphthol type epoxy resin ( (Epoxy compound of polyvalent naphthol resin in which naphthol nuclei are linked by smethylene group), alkoxy group-containing novolak type epoxy resin, alkoxy group-containing phenol aralkyl resin, tetrabromobisphenol A type epoxy resin, Examples thereof include epoxy resins derived from various 9,10-dihydro-9-oxa-10-phosphaphenanthrene = 10-oxide described in JP-A-11-166035. Moreover, the said epoxy resin may be used independently and may mix 2 or more types. Among these epoxy resins, bisphenol F-type epoxy resins, biphenyl-type epoxy resins, and tetramethylbiphenyl-type epoxy resins are preferable in terms of particularly low viscosity, and phenol aralkyl-type epoxy resins and biphenyls are preferable in terms of excellent flame retardancy. A modified novolac type epoxy resin is preferred.

発明のエポキシ樹脂組成物に用いられる硬化剤(B)は、種々のエポキシ樹脂用硬化剤が使用でき、例えば、アミン系化合物、酸無水物系化合物、アミド系化合物、フェノ−ル系化合物などのエポキシ樹脂用硬化剤が挙げられる。   As the curing agent (B) used in the epoxy resin composition of the invention, various curing agents for epoxy resins can be used, such as amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and the like. Examples include a curing agent for epoxy resin.

具体的には、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂;フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノールアラルキル樹脂等のビスアラルキルを結節基として水酸基含有芳香族構造が連結された構造を含有する多価芳香族化合物;フェノールトリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、アミノトリアジン変性フェノール樹脂、アルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物等を始めとする多価フェノール化合物、及びこれらの変性物、イミダゾ−ル、BF−アミン錯体、並びにグアニジン誘導体などが挙げられる。またこれらの硬化剤は単独で用いてもよく、2種以上を混合してもよい。 Specifically, polyamide resin synthesized from diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, linolenic acid and ethylenediamine, phthalic anhydride, trimellitic anhydride, pyrone anhydride Mellitic acid, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin modified Phenol resin, dicyclopentadiene phenol addition resin; phenol aralkyl resin, cresol aralkyl resin, naphthol aralkyl resin, biphenyl modified A polyvalent aromatic compound having a structure in which a hydroxyl group-containing aromatic structure is linked with a bisaralkyl as a nodule group such as an enol aralkyl resin; a phenol trimethylol methane resin, a tetraphenylol ethane resin, a naphthol novolak resin, a naphthol-phenol co-polymer Condensed novolak resin, naphthol-cresol co-condensed novolac resin, biphenyl-modified phenol resin, aminotriazine-modified phenol resin, alkoxy group-containing aromatic ring-modified novolak resin (polyhydric phenol compound in which phenol nucleus and alkoxy group-containing aromatic ring are connected with formaldehyde And the like, and modified products thereof, imidazoles, BF 3 -amine complexes, guanidine derivatives, and the like. Moreover, these hardening | curing agents may be used independently and may mix 2 or more types.

これらの硬化剤のなかでも、ビスアラルキルを結節基として水酸基含有芳香族構造が連結された構造を含有する多価芳香族化合物、前記したフェノール樹脂(ph1)、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)、アルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が難燃性に優れる点から好ましく、アラルキル型フェノール樹脂が好ましい。また、例えば、成形性を高めたい場合は、フェノールノボラック樹脂が好ましく、また、上記硬化剤は用途及び要求特性により適宜併用することができる。   Among these curing agents, polyvalent aromatic compounds having a structure in which a hydroxyl group-containing aromatic structure is linked with bisaralkyl as a nodule group, the above-described phenol resin (ph1), an aromatic hydrocarbon formaldehyde resin-modified phenol resin , Aminotriazine-modified phenolic resin (polyhydric phenol compound in which phenol nucleus is linked with melamine or benzoguanamine), alkoxy group-containing aromatic ring-modified novolak resin (polyhydric phenol in which phenol nucleus and alkoxy group-containing aromatic ring are linked with formaldehyde) Polyhydric phenol compounds such as (compound) are preferred from the viewpoint of excellent flame retardancy, and aralkyl type phenol resins are preferred. For example, when it is desired to improve moldability, a phenol novolac resin is preferable, and the curing agent can be used in combination as appropriate depending on the application and required characteristics.

ビスアラルキルを結節基として水酸基含有芳香族構造が連結された構造を含有する多価芳香族化合物としては、具体的には、下記一般式(1)   Specific examples of the polyvalent aromatic compound having a structure in which a hydroxyl group-containing aromatic structure is linked using bisaralkyl as a nodule group include the following general formula (1)

Figure 2011026385
(式中、Xはベンゼン環、ナフタレン環、若しくはこれらの芳香核にアルキル基を有する構造部位であり、Arはベンゼン骨格、ビフェニル骨格、ナフタレン骨格、若しくはこれらの芳香核にアルキル基を有する構造部位であり、Rは同一でも異なっていてもよい水素原子又は炭素数1〜6の炭化水素基であり、nは1〜4である。)で表されるアラルキル型フェノール類;
Figure 2011026385
(In the formula, X 1 is a benzene ring, a naphthalene ring, or a structural part having an alkyl group in an aromatic nucleus thereof, and Ar 1 has an alkyl group in a benzene skeleton, a biphenyl skeleton, a naphthalene skeleton, or an aromatic nucleus thereof. An aralkyl-type phenol represented by the following formula: R 1 is a hydrogen atom which may be the same or different or a hydrocarbon group having 1 to 6 carbon atoms, and n is 1 to 4.

また、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂としては、具体的には、下記一般式(2) As the aromatic hydrocarbon formaldehyde resin-modified phenol resin, specifically, the following general formula (2)

Figure 2011026385

(式中、Xは置換基を有していてもよい芳香環であり、Arはフェニル基、ビフェニル基、ナフチル基、若しくはこれらの芳香核にアルキル基を有する構造部位でありnは1〜4である。)で表されるフェノール樹脂が挙げられる。
これらの硬化剤はそれぞれ単独で用いてもよく、また、2種以上併用してもよい。
Figure 2011026385

(In the formula, X 2 is an aromatic ring which may have a substituent, Ar 2 is a phenyl group, a biphenyl group, a naphthyl group, or a structural site having an alkyl group in the aromatic nucleus, and n is 1 To 4)).
These curing agents may be used alone or in combination of two or more.

本発明のエポキシ樹脂組成物における硬化剤(B)の配合量としては、特に制限されるものではないが、得られる硬化物の機械的物性等が良好である点から、エポキシ樹脂(A)及び必要に応じて併用されるその他のエポキシ樹脂とのエポキシ基の合計1当量に対して、硬化剤中の活性基が0.5〜1.5当量になる量が好ましい。   Although it does not restrict | limit especially as a compounding quantity of the hardening | curing agent (B) in the epoxy resin composition of this invention, From the point that the mechanical physical property etc. of the hardened | cured material obtained are favorable, epoxy resin (A) and The amount of the active group in the curing agent is preferably 0.5 to 1.5 equivalents with respect to a total of 1 equivalent of epoxy groups with other epoxy resins used in combination as necessary.

また、必要に応じて本発明のエポキシ樹脂組成物に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5,4,0]−ウンデセン(DBU)が好ましい。   Moreover, a hardening accelerator can also be suitably used together with the epoxy resin composition of this invention as needed. Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts. In particular, when used as a semiconductor encapsulating material, it is excellent in curability, heat resistance, electrical characteristics, moisture resistance reliability, etc., so that triphenylphosphine is used for phosphorus compounds and 1,8-diazabicyclo is used for tertiary amines. -[5,4,0] -undecene (DBU) is preferred.

以上詳述した本発明のエポキシ樹脂組成物は、当該樹脂自体が優れた難燃性付与効果を有するものである為、従来用いられている難燃剤を配合しなくても、硬化物の難燃性が良好である。しかしながら、より高度な難燃性を発揮させるために、例えば半導体封止材料の分野においては、封止工程での成形性や半導体装置の信頼性を低下させない範囲で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤(C)を配合してもよい。   Since the epoxy resin composition of the present invention described in detail above has an excellent flame retardancy imparting effect, the flame retardant of the cured product can be obtained without adding a conventionally used flame retardant. Good properties. However, in order to exert a higher degree of flame retardancy, for example, in the field of semiconductor sealing materials, it contains substantially halogen atoms in a range that does not reduce the moldability in the sealing process and the reliability of the semiconductor device. A non-halogen flame retardant (C) may be added.

かかる非ハロゲン系難燃剤(C)を配合したエポキシ樹脂組成物は、実質的にハロゲン原子を含有しないものであるが、例えばエポキシ樹脂に含まれるエピハロヒドリン由来の5000ppm以下程度の微量の不純物によるハロゲン原子は含まれていても良い。   The epoxy resin composition containing such a non-halogen flame retardant (C) is substantially free of halogen atoms. For example, halogen atoms due to trace amounts of impurities of about 5000 ppm or less derived from epihalohydrin contained in the epoxy resin. May be included.

前記非ハロゲン系難燃剤(C)としては、例えば、
リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
Examples of the non-halogen flame retardant (C) include:
Phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, organometallic salt flame retardants, etc., are not limited in any way, and even if used alone A plurality of flame retardants of the same system may be used, and different types of flame retardants may be used in combination.

前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。   As the phosphorus flame retardant, either inorganic or organic can be used. Examples of the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .

また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。   The red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like. Examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide For example, a method of double coating with a resin may be used.

前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサー10−ホスファフェナントレン=10−オキシド、10−(2,5−ジヒドロオキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10−(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。   Examples of the organic phosphorus compound include, for example, general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, organic nitrogen-containing phosphorus compounds, and 9,10- Dihydro-9-oxa 10-phosphaphenanthrene = 10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,7- Examples thereof include cyclic organophosphorus compounds such as dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide, and derivatives obtained by reacting them with compounds such as epoxy resins and phenol resins.

それらの配合量としては、リン系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。   The blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. For example, epoxy resin, curing agent, non-halogen In 100 parts by mass of the epoxy resin composition containing all of the flame retardant and other fillers and additives, when using red phosphorus as a non-halogen flame retardant, in the range of 0.1 to 2.0 parts by mass It is preferable to mix, and when using an organophosphorus compound, it is also preferable to mix in the range of 0.1 to 10.0 parts by mass, particularly in the range of 0.5 to 6.0 parts by mass. Is preferred.

また、前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。   Also, when using the phosphorus flame retardant, hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. are used in combination with the phosphorus flame retardant. Also good.

前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。   Examples of the nitrogen-based flame retardant include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazines, and the like, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.

前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。   Examples of the triazine compound include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, (i) guanylmelamine sulfate, melem sulfate, sulfate (Iii) co-condensates of phenols such as phenol, cresol, xylenol, butylphenol, nonylphenol with melamines such as melamine, benzoguanamine, acetoguanamine, formguanamine and formaldehyde, (iii) (Ii) a mixture of a co-condensate of (ii) and a phenolic resin such as a phenol formaldehyde condensate, (iv) those obtained by further modifying (ii) and (iii) with paulownia oil, isomerized linseed oil, etc. It is.

前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。   Specific examples of the cyanuric acid compound include cyanuric acid and cyanuric acid melamine.

前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。   The amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to mix in the range of 0.05 to 10 parts by mass, especially in the range of 0.05 to 10 parts by mass, in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives. It is preferable to mix in the range of 5 parts by mass.

また、前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。   Moreover, when using the said nitrogen-type flame retardant, you may use a metal hydroxide, a molybdenum compound, etc. together.

前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。   The silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.

前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。   The amount of the silicone-based flame retardant is appropriately selected according to the type of the silicone-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to mix in the range of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.

前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。   Examples of the inorganic flame retardant include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.

前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。   Specific examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.

前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。   Specific examples of the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide. Bismuth oxide, chromium oxide, nickel oxide, copper oxide, tungsten oxide and the like.

前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。   Specific examples of the metal carbonate compound include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.

前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。   Specific examples of the metal powder include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.

前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。   Specific examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.

前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。 Specific examples of the low-melting-point glass include, for example, Ceeley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O 5 —B 2 O 3 —PbO—MgO, P—Sn—O—F, PbO—V 2 O 5 —TeO 2 , Al 2 O 3 —H 2 O, lead borosilicate, etc. The glassy compound can be mentioned.

前記無機系難燃剤の配合量としては、無機系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましく、特に0.5〜15質量部の範囲で配合することが好ましい。   The blending amount of the inorganic flame retardant is appropriately selected according to the type of the inorganic flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. For example, epoxy resin, cured It is preferable to mix in the range of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition in which all of the agent, non-halogen flame retardant and other fillers and additives are blended. It is preferable to mix in the range of 15 parts by mass.

前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。   Examples of the organic metal salt flame retardant include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound.

前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.005〜10質量部の範囲で配合することが好ましい。   The amount of the organometallic salt-based flame retardant is appropriately selected depending on the type of the organometallic salt-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to mix in the range of 0.005 to 10 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the epoxy resin, the curing agent, the non-halogen flame retardant, and other fillers and additives.

本発明のエポキシ樹脂組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、エポキシ樹脂組成物の全体量に対して65質量%、より好ましくは85質量%から95質量%が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。   An inorganic filler can be blended in the epoxy resin composition of the present invention as necessary. Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica. The fused silica can be used in either a crushed shape or a spherical shape. However, in order to increase the blending amount of the fused silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape. In order to further increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica. In consideration of flame retardancy, the filling rate is preferably as high as possible, and is particularly preferably 65% by mass, more preferably 85% by mass to 95% by mass with respect to the total amount of the epoxy resin composition. Moreover, when using for uses, such as an electrically conductive paste, electroconductive fillers, such as silver powder and copper powder, can be used.

本発明のエポキシ樹脂組成物には、必要に応じて、シランカップリング剤、離型剤、イオントラップ剤、顔料、乳化剤等の種々の配合剤を添加することができる。   Various compounding agents, such as a silane coupling agent, a mold release agent, an ion trap agent, a pigment, an emulsifier, can be added to the epoxy resin composition of this invention as needed.

本発明のエポキシ樹脂組成物は、上記した各成分を均一に混合することにより得られる。本発明のエポキシ樹脂、硬化剤、更に必要により硬化促進剤の配合された本発明のエポキシ樹脂組成物は、各種用途に応じて従来知られている方法に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。   The epoxy resin composition of the present invention can be obtained by uniformly mixing the above-described components. The epoxy resin composition of the present invention in which the epoxy resin of the present invention, a curing agent and, if necessary, a curing accelerator are blended can be made into a cured product by a conventionally known method according to various uses. Examples of the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films.

本発明のエポキシ樹脂組成物が用いられる用途としては、半導体封止材料、積層板、ビルドアップ基板用層間絶縁材料、ダイアタッチ剤、アンダーフィル、グラブットプ材、TCP用液状封止材、導電性接着剤、液晶シール材、フレキシブル基板用カバーレイ、レジストインキなどの電子回路基板等に用いられる樹脂組成物、高い屈折率が求められる光導波路,樹脂注型材料、複合材料、接着剤、絶縁塗料等のコーティング材料等が挙げられ、これらの中でも特に半導体封止材料に好適に用いることができる。   Applications for which the epoxy resin composition of the present invention is used include semiconductor sealing materials, laminates, interlayer insulating materials for build-up substrates, die attach agents, underfills, grab top materials, liquid sealing materials for TCP, and conductive adhesives. Resin composition used for electronic circuit boards such as adhesives, liquid crystal sealing materials, flexible substrate coverlays, resist inks, optical waveguides, resin casting materials, composite materials, adhesives, insulating paints, etc. that require a high refractive index Among these, among these, it can be suitably used as a semiconductor sealing material.

半導体封止材用に調製されたエポキシ樹脂組成物を作製するためには、エポキシ樹脂と硬化剤、充填剤等の配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合して溶融混合型のエポキシ樹脂組成物を得ればよい。その際、充填剤としては、通常シリカが用いられるが、その充填率はエポキシ樹脂組成物100質量部当たり、充填剤を30〜95質量%の範囲が用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上が特に好ましく、それらの効果を格段に上げるためには、80質量部以上が一層その効果を高めることができる。半導体パッケージ成形としては、該組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間に加熱することにより成形物である半導体装置を得る方法がある。   In order to produce an epoxy resin composition prepared for a semiconductor encapsulant, an epoxy resin, a curing agent, a compounding agent such as a filler, and the like, if necessary, an extruder, a kneader, a roll, etc. It is sufficient to obtain a melt-mixed type epoxy resin composition by mixing well until it is uniform. At that time, silica is usually used as the filler, and the filling ratio is preferably in the range of 30 to 95% by mass per 100 parts by mass of the epoxy resin composition. In order to improve moisture resistance and solder crack resistance, and to reduce the linear expansion coefficient, it is particularly preferably 70 parts by mass or more, and in order to significantly increase these effects, 80 parts by mass or more further enhances the effect. be able to. For semiconductor package molding, the composition is molded by casting, using a transfer molding machine, an injection molding machine or the like, and further heated at 50 to 200 ° C. for 2 to 10 hours to form a semiconductor device which is a molded product. There is a way to get it.

本発明のエポキシ樹脂組成物をプリント回路基板用組成物に加工するには、例えばプリプレグ用樹脂組成物とすることができる。該エポキシ樹脂組成物の粘度によっては無溶媒で用いることもできるが、有機溶剤を用いてワニス化することでプリプレグ用樹脂組成物とすることが好ましい。前記有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤を用いることが好ましく、単独でも2種以上の混合溶剤としても使用することができる。得られた該ワニスを、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などの各種補強基材に含浸し、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得ることができる。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。また該エポキシ樹脂組成物を用いて銅張り積層板を製造する場合は、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、銅張り積層板を得ることができる。   In order to process the epoxy resin composition of the present invention into a printed circuit board composition, for example, a resin composition for a prepreg can be used. Although it can be used without a solvent depending on the viscosity of the epoxy resin composition, it is preferable to obtain a resin composition for prepreg by varnishing using an organic solvent. As the organic solvent, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower such as methyl ethyl ketone, acetone, dimethylformamide, etc., and it can be used alone or as a mixed solvent of two or more kinds. The obtained varnish is impregnated into various reinforcing substrates such as paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth, and the heating temperature according to the solvent type used, preferably 50 By heating at ˜170 ° C., a prepreg that is a cured product can be obtained. The mass ratio of the resin composition and the reinforcing substrate used at this time is not particularly limited, but it is usually preferable that the resin content in the prepreg is 20 to 60% by mass. Moreover, when manufacturing a copper clad laminated board using this epoxy resin composition, the prepreg obtained as mentioned above is laminated | stacked by a conventional method, copper foil is laminated | stacked suitably, and it is under pressure of 1-10 MPa. A copper-clad laminate can be obtained by thermocompression bonding at 170 to 250 ° C. for 10 minutes to 3 hours.

本発明のエポキシ樹脂組成物をレジストインキとして使用する場合には、例えば該エポキシ樹脂を各種不飽和二重結合又は不飽和二重結合とカルボキシル基を分子内に含有した樹脂の硬化剤として用い、カチオン重合触媒、顔料、タルク、及びフィラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。   When using the epoxy resin composition of the present invention as a resist ink, for example, the epoxy resin is used as a curing agent for resins containing various unsaturated double bonds or unsaturated double bonds and carboxyl groups in the molecule, A method of preparing a resist ink composition by adding a cationic polymerization catalyst, a pigment, talc, and a filler, and then applying the resist ink composition on a printed circuit board by a screen printing method, followed by a method of forming a resist ink cured product.

本発明のエポキシ樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該エポキシ樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。   When the epoxy resin composition of the present invention is used as a conductive paste, for example, a method of dispersing fine conductive particles in the epoxy resin composition to form a composition for an anisotropic conductive film, which is liquid at room temperature Examples of the method include a paste resin composition for circuit connection and an anisotropic conductive adhesive.

本発明のエポキシ樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては例えば、ゴム、フィラーなどを適宜配合した当該硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。   Examples of a method for obtaining an interlayer insulating material for a build-up board from the epoxy resin composition of the present invention include, for example, a spray coating method, a curtain, and the like on a wiring board on which a circuit is formed by using the curable resin composition appropriately blended with rubber, filler, After applying using a coating method or the like, it is cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness | corrugation by washing the surface with hot water, and metal-treats, such as copper. As the plating method, electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent. Such operations are sequentially repeated as desired, and a build-up substrate can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern. However, the through-hole portion is formed after the outermost resin insulating layer is formed. In addition, a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil is thermocompression-bonded at 170 to 250 ° C. on a circuit board on which a circuit is formed, thereby forming a roughened surface and plating treatment. It is also possible to produce a build-up substrate by omitting the process.

本発明の硬化物を得る方法としては、一般的なエポキシ樹脂組成物の硬化方法に準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、上記方法によって得られた組成物を、室温〜250℃程度の温度範囲で加熱すればよい。成形方法などもエポキシ樹脂組成物の一般的な方法が用いられ、特に本発明のエポキシ樹脂組成物に特有の条件は不要である。   The method for obtaining the cured product of the present invention may be based on a general method for curing an epoxy resin composition. For example, the heating temperature condition may be appropriately selected depending on the type and use of the curing agent to be combined. What is necessary is just to heat the composition obtained by the said method in the temperature range of about room temperature-250 degreeC. As the molding method and the like, a general method of the epoxy resin composition is used, and a condition specific to the epoxy resin composition of the present invention is not particularly required.

次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、150℃における溶融粘度はASTM D4287に準拠し測定した。また、GPCは下記の条件にて測定した。
[GPCの測定条件]
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折径)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
Next, the present invention will be specifically described with reference to Examples and Comparative Examples. In the following, “parts” and “%” are based on mass unless otherwise specified. The melt viscosity at 150 ° C. was measured according to ASTM D4287. GPC was measured under the following conditions.
[GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column “H XL -L” manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ Tosoh Corporation “TSK-GEL G4000HXL”
Detector: RI (Differential refraction diameter)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II version 4.10”.
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids and filtered through a microfilter (50 μl).

合成例1〔フェノール樹脂(B−1)の合成〕
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、o−クレゾール432.4g(4.00モル)と2−メトキシナフタレン158.2g(1.00モル)と41%ホルムアルデヒド水溶液179.3g(2.45モル)を仕込み、シュウ酸9.0gを加えて、100℃まで昇温し100℃で3時間反応させた。ついで、水を分留管で捕集しながら41%ホルムアルデヒド水溶液73.2g(1.00モル)を1時間かけて滴下した。滴下終了後,150℃まで1時間で昇温し、更に150℃で2時間反応させた。反応終了後、更にメチルイソブチルケトン1500gを加え、分液ロートに移し水洗した。次いで洗浄水が中性を示すまで水洗後、有機層から未反応のo−クレゾールと2−メトキシナフタレン、及びメチルイソブチルケトンを加熱減圧下に除去し、フェノール樹脂(B−1)を得た。得られたフェノール樹脂の軟化点は76℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は1.0dPa・s、水酸基当量は164g/eq.であった。
Synthesis Example 1 [Synthesis of phenol resin (B-1)]
To a flask equipped with a thermometer, a condenser tube, a fractionating tube, a nitrogen gas inlet tube, and a stirrer, 432.4 g (4.00 mol) of o-cresol and 158.2 g (1.00 mol) of 2-methoxynaphthalene 179.3 g (2.45 mol) of 41% formaldehyde aqueous solution was added, 9.0 g of oxalic acid was added, the temperature was raised to 100 ° C., and the mixture was reacted at 100 ° C. for 3 hours. Subsequently, 73.2 g (1.00 mol) of a 41% aqueous formaldehyde solution was added dropwise over 1 hour while collecting water with a fractionating tube. After completion of the dropwise addition, the temperature was raised to 150 ° C. over 1 hour and further reacted at 150 ° C. for 2 hours. After completion of the reaction, 1500 g of methyl isobutyl ketone was further added, transferred to a separatory funnel and washed with water. Subsequently, after washing with water until the washing water showed neutrality, unreacted o-cresol, 2-methoxynaphthalene, and methyl isobutyl ketone were removed from the organic layer under heating and reduced pressure to obtain a phenol resin (B-1). The softening point of the obtained phenol resin was 76 ° C. (B & R method), the melt viscosity (measurement method: ICI viscometer method, measurement temperature: 150 ° C.) was 1.0 dPa · s, and the hydroxyl group equivalent was 164 g / eq. Met.

合成例2〔フェノール樹脂(B−2)の合成〕
o−クレゾール324.3g(3.00モル)と,最初に用いる41%ホルムアルデヒド水溶液132.3g(1.83モル)を用いた以外は合成例1と同様にしてフェノール樹脂(B−2)を得た。得られたフェノール樹脂の軟化点は71℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は0.4dPa・s、水酸基当量は178g/eq.であった。
Synthesis Example 2 [Synthesis of phenol resin (B-2)]
The phenol resin (B-2) was prepared in the same manner as in Synthesis Example 1 except that 324.3 g (3.00 mol) of o-cresol and 132.3 g (1.83 mol) of the first 41% formaldehyde aqueous solution used were used. Obtained. The obtained phenol resin had a softening point of 71 ° C. (B & R method), a melt viscosity (measurement method: ICI viscometer method, measurement temperature: 150 ° C.) of 0.4 dPa · s, and a hydroxyl group equivalent of 178 g / eq. Met.

実施例1 〔エポキシ樹脂(A−1)の合成〕
温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、合成例1で得られたフェノール樹脂(B−1)の113.8g(水酸基0.69当量)、4,4’−ビフェノール28.5g(水酸基当量0.31当量)、エピクロルヒドリン463g(5.0モル)、n−ブタノール139g、テトラエチルベンジルアンモニウムクロライド2gを仕込み溶解させた。70℃に昇温した後、20%水酸化ナトリウム水溶液220g(1.1モル)を5時間かけて滴下した。その後、同条件で0.5時間撹拌を続けた。その後、未反応のエピクロルヒドリンを減圧蒸留によって留去させた。それで得られた粗エポキシ樹脂にメチルイソブチルケトン1000gとn−ブタノール350gとを加え溶解した。更にこの溶液に10%水酸化ナトリウム水溶液10gを添加して80℃で2時間反応させた後に洗浄液のPHが中性となるまで水150gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去してエポキシ樹脂(A−1)176gを得た。得られたエポキシ樹脂(A−1)の溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は0.4dPa・s、エポキシ当量は230g/eq.であった。得られたエポキシ樹樹脂(A−1)のGPCチャートを図1に示す。
Example 1 [Synthesis of Epoxy Resin (A-1)]
A flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer was purged with nitrogen gas, and 113.8 g (0.69 equivalents of hydroxyl group) of the phenol resin (B-1) obtained in Synthesis Example 1 4,4′-biphenol (hydroxyl equivalent 0.31 equivalent), epichlorohydrin 463 g (5.0 mol), n-butanol 139 g and tetraethylbenzylammonium chloride 2 g were charged and dissolved. After the temperature was raised to 70 ° C., 220 g (1.1 mol) of a 20% aqueous sodium hydroxide solution was added dropwise over 5 hours. Thereafter, stirring was continued for 0.5 hours under the same conditions. Thereafter, unreacted epichlorohydrin was distilled off under reduced pressure. Then, 1000 g of methyl isobutyl ketone and 350 g of n-butanol were added to the obtained crude epoxy resin and dissolved. Further, 10 g of a 10% aqueous sodium hydroxide solution was added to this solution and reacted at 80 ° C. for 2 hours, and then washing with water 150 g was repeated three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropic distillation, and after microfiltration, the solvent was distilled off under reduced pressure to obtain 176 g of an epoxy resin (A-1). The resulting epoxy resin (A-1) has a melt viscosity (measurement method: ICI viscometer method, measurement temperature: 150 ° C.) of 0.4 dPa · s, and an epoxy equivalent of 230 g / eq. Met. The GPC chart of the obtained epoxy resin (A-1) is shown in FIG.

実施例2 〔エポキシ樹脂(A−2)の合成〕
実施例1においてフェノール樹脂(B−1)及び4,4’−ビフェノールを、フェノール樹脂(B−1)の137.1g(水酸基0.84当量)、4,4’−ビフェノール15.3g(水酸基当量0.16当量)を用いた以外は実施例1と同様にしてエポキシ樹脂(A−2)185gを得た。得られたエポキシ樹脂(A−2)の溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は0.6dPa・s、エポキシ当量は240g/eq.であった。得られたエポキシ樹樹脂(A−2)のGPCチャートを図2に示す。
Example 2 [Synthesis of Epoxy Resin (A-2)]
In Example 1, the phenol resin (B-1) and 4,4′-biphenol were converted into 137.1 g (hydroxyl group 0.84 equivalent) of phenol resin (B-1) and 15.3 g (hydroxyl group) of 4,4′-biphenol. Except for using 0.16 equivalent), 185 g of epoxy resin (A-2) was obtained in the same manner as in Example 1. The resulting epoxy resin (A-2) has a melt viscosity (measurement method: ICI viscometer method, measurement temperature: 150 ° C.) of 0.6 dPa · s, and an epoxy equivalent of 240 g / eq. Met. The GPC chart of the obtained epoxy resin (A-2) is shown in FIG.

実施例3 〔エポキシ樹脂(A−3)の合成〕
実施例1においてフェノール樹脂(B−1)及び4,4’−ビフェノールを、フェノール樹脂(B−2)97.9g(水酸基0.55当量)、4,4’−ビフェノール41.9g(水酸基当量0.45当量)を用いた以外は実施例1と同様にしてエポキシ樹脂(A−3)178gを得た。得られたエポキシ樹脂(A−3)の溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は0.2dPa・s、エポキシ当量は225g/eq.であった。得られたエポキシ樹樹脂(A−3)のGPCチャートを図3に示す。
Example 3 [Synthesis of Epoxy Resin (A-3)]
In Example 1, the phenol resin (B-1) and 4,4′-biphenol were mixed with 97.9 g of phenol resin (B-2) (hydroxyl group 0.55 equivalent) and 41.9 g of 4,4′-biphenol (hydroxyl group equivalent). Except that 0.45 equivalent) was used, 178 g of an epoxy resin (A-3) was obtained in the same manner as in Example 1. The resulting epoxy resin (A-3) has a melt viscosity (measurement method: ICI viscometer method, measurement temperature: 150 ° C.) of 0.2 dPa · s and an epoxy equivalent of 225 g / eq. Met. The GPC chart of the obtained epoxy resin (A-3) is shown in FIG.

比較例1 〔エポキシ樹脂(A−4)の合成〕
実施例1において、フェノール樹脂(B−1)及び4,4’−ビフェノールの混合物に代え、フェノール樹脂(B−1)164.0g(水酸基当量1.0当量)のみを用いた以外は実施例1と同様にしてエポキシ樹脂(A−4)を得た。得られたエポキシ樹脂(A−4)の溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は1.0dPa・s、エポキシ当量は252g/eq.であった。
Comparative Example 1 [Synthesis of Epoxy Resin (A-4)]
In Example 1, instead of the mixture of phenol resin (B-1) and 4,4′-biphenol, only 164.0 g of phenol resin (B-1) (hydroxyl equivalent 1.0 equivalent) was used. In the same manner as in Example 1, an epoxy resin (A-4) was obtained. The resulting epoxy resin (A-4) has a melt viscosity (measurement method: ICI viscometer method, measurement temperature: 150 ° C.) of 1.0 dPa · s and an epoxy equivalent of 252 g / eq. Met.

比較例2 〔エポキシ樹脂(A−5)の合成〕
実施例1において、フェノール樹脂(B−1)及び4,4’−ビフェノールの混合物に代え、4,4’−ビフェノール93.0g(水酸基当量1.0当量)のみを用いた以外は実施例1と同様の反応を試みたが、水酸化ナトリウムを滴下中に結晶が析出しエポキシ樹脂を得ることができなかった。
Comparative Example 2 [Synthesis of Epoxy Resin (A-5)]
In Example 1, instead of the mixture of the phenol resin (B-1) and 4,4′-biphenol, only 93.0 g (hydroxyl equivalent 1.0 equivalent) of 4,4′-biphenol was used. A similar reaction was attempted, but crystals were precipitated during the dropwise addition of sodium hydroxide, and an epoxy resin could not be obtained.

比較例3〔エポキシ樹脂(A−6)の合成〕
実施例1においてフェノール樹脂(B−1)及び4,4’−ビフェノールの混合物を、オルソクレゾールのボラック樹脂の90.6g(水酸基0.76当量)、4,4’−ビフェノール22.8g(水酸基当量0.25当量)を用いた以外は実施例1と同様にしてエポキシ樹脂(A−6)150gを得た。得られたエポキシ樹脂(A−6)の溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は1.0dPa・s、エポキシ当量は195g/eq.であった。
Comparative Example 3 [Synthesis of Epoxy Resin (A-6)]
In Example 1, a mixture of the phenol resin (B-1) and 4,4′-biphenol was mixed with 90.6 g (0.76 equivalent) of orthocresol borac resin and 22.8 g (hydroxyl group) of 4,4′-biphenol. 150 g of epoxy resin (A-6) was obtained in the same manner as in Example 1 except that 0.25 equivalent) was used. The resulting epoxy resin (A-6) has a melt viscosity (measurement method: ICI viscometer method, measurement temperature: 150 ° C.) of 1.0 dPa · s, and an epoxy equivalent of 195 g / eq. Met.

実施例4〜12と比較例4、5
表1に示す各種の材料を用い、2本ロールを用いて80℃の温度で10分間溶融混練してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物について、下記手法によりゲルタイムを測定し硬化性の評価とスパイラルフローの評価を行った。また、前記エポキシ樹脂組成物は、トランスファー成形機により、金型温度175℃、成形圧力7.0MPa、ラム速度5cm/秒、硬化時間180秒の条件で行った。その後175℃で5時間さらに硬化せしめた後に、下記方法により硬化物の物性を確認した。得られた硬化物の物性は表3〜5にまとめた。
Examples 4 to 12 and Comparative Examples 4 and 5
Various materials shown in Table 1 were used and melt-kneaded for 10 minutes at a temperature of 80 ° C. using two rolls to obtain an epoxy resin composition. About the obtained epoxy resin composition, gel time was measured with the following method, and sclerosis | hardenability evaluation and spiral flow evaluation were performed. The epoxy resin composition was subjected to a transfer molding machine under conditions of a mold temperature of 175 ° C., a molding pressure of 7.0 MPa, a ram speed of 5 cm / second, and a curing time of 180 seconds. After further curing at 175 ° C. for 5 hours, the physical properties of the cured product were confirmed by the following method. The physical properties of the obtained cured product are summarized in Tables 3 to 5.

ゲルタイム: エポキシ樹脂組成物0.15gを175℃に加熱したキュアプレート(THERMO ELECTRIC社製)上に載せ、ストップウォッチで計時を開始する。棒の先端にて試料を均一に攪拌し、糸状に試料が切れてプレートに残るようになった時、ストップウォッチを止める。この試料が切れてプレートに残るようになるまでの時間をゲルタイムとした。
スパイラルフロー: EMEI−1−66に準拠したスパイラルフロー測定金型を用いて、前記2本ロールで混練したエポキシ樹脂組成物を金型温度175℃、成形圧力7.0MPa、ラム速度5cm/秒の条件で流動距離(cm)を求めた。
ショアD: 直径50mm×厚さ3mmの円板状の金型に成形し、成形後ただちにショアD型硬度計を用いて測定した。
連続成形性: 直径50mm×厚さ3mmの円板状の金型に成形し、300、500及び700ショット成形後のパッケージ表面及び金型表面について目視で汚れを評価した。
700ショットまで汚れていないものを◎、500ショットまで汚れていないものを○、300ショットまで汚れていないものを△、300ショット以前に汚れが発生しているものは×とした。
ハンダクラック: 金型温度175℃、成形圧力7.0MPa、ラム速度5cm/秒、硬化時間180秒の条件で、エポキシ樹脂組成物によりシリコンチップ等を封止して80ピン・クワッド・フラット・パッケージ(80pQFP;Cu製リードフレーム、パッケージ外寸:14mm×20mm×2mm厚、パッドサイズ:6.5mm×6.5mm、チップサイズ6.0mm×6.0mm×0.35mm厚)を得る成形を行なった。
成形したパッケージを、175℃、8時間加熱処理を行って後硬化し、次いで85℃、相対湿度60%で168時間加湿処理後、260℃の半田槽にパッケージを10秒間浸漬した。半田に浸漬させたパッケージ20個の半導体素子とエポキシ樹脂組成物の硬化物との界面の密着状態を、超音波探傷装置(日立建機ファインテック社製 mi−scope 10)により観察し、剥離発生率[(剥離発生パッケージ数)/(全パッケージ数)×100]を算出した。耐半田性の判断基準は、剥離が発生しなかったものは◎、剥離発生率が5%以上、10%未満のものは○、10%以上、20%未満のものは△、20%以上のものは×とした。
ピール強度(密着性の指標): 30μm厚みのアルミ箔上に100mm×70mm×3mmの試験片を金型温度175℃、成形圧力7.0MPa、ラム速度5cm/秒、硬化時間180秒の条件で成形し、10mm幅に切りだして試験片を作成した。得られた試験片を用いJIS−K6481に準拠した方法でピール強度を測定した。
難燃性: UL−94試験法に準拠し、厚さ1.6mmの試験片5本を用いて、燃焼試験を行った。
Gel time: 0.15 g of the epoxy resin composition is placed on a cure plate heated to 175 ° C. (manufactured by THERMO ELECTRIC), and time measurement is started with a stopwatch. Stir the sample evenly with the tip of the rod and stop the stopwatch when the sample breaks into a string and remains on the plate. The time until this sample was cut and remained on the plate was defined as the gel time.
Spiral flow: Using a spiral flow measuring mold in accordance with EMEI-1-66, the epoxy resin composition kneaded with the two rolls has a mold temperature of 175 ° C., a molding pressure of 7.0 MPa, and a ram speed of 5 cm / sec. The flow distance (cm) was determined under the conditions.
Shore D: It was molded into a disk-shaped mold having a diameter of 50 mm and a thickness of 3 mm, and immediately after molding, it was measured using a Shore D type hardness meter.
Continuous moldability: Molded into a disk-shaped mold having a diameter of 50 mm and a thickness of 3 mm, and the package surface and mold surface after 300, 500 and 700 shot molding were visually evaluated for dirt.
Those that were not stained up to 700 shots were marked with ◎, those that were not stained up to 500 shots were marked with ○, those that were not smudged up to 300 shots were marked with Δ, and those that were smudged before 300 shots were marked with ×.
Solder crack: 80-pin quad flat package with silicon chip sealed with epoxy resin composition under conditions of mold temperature of 175 ° C., molding pressure of 7.0 MPa, ram speed of 5 cm / sec and curing time of 180 sec. (80pQFP; Cu lead frame, package outer dimension: 14 mm × 20 mm × 2 mm thickness, pad size: 6.5 mm × 6.5 mm, chip size 6.0 mm × 6.0 mm × 0.35 mm thickness) It was.
The molded package was post-cured by heat treatment at 175 ° C. for 8 hours, and then humidified for 168 hours at 85 ° C. and 60% relative humidity, and then immersed in a solder bath at 260 ° C. for 10 seconds. The adhesion state of the interface between the 20 semiconductor elements immersed in the solder and the cured epoxy resin composition is observed with an ultrasonic flaw detector (mi-scope 10 manufactured by Hitachi Construction Machinery Finetech Co., Ltd.), and peeling occurs. The rate [(number of peeled packages) / (total number of packages) × 100] was calculated. The judgment criteria for solder resistance are ◎ for those where no peeling occurred, ◯ for peeling occurrence rates of 5% or more and less than 10%, ◯ for 10% or more, less than 20%, △, or 20% or more. The thing was set as x.
Peel strength (index of adhesion): A test piece of 100 mm × 70 mm × 3 mm on a 30 μm thick aluminum foil under conditions of a mold temperature of 175 ° C., a molding pressure of 7.0 MPa, a ram speed of 5 cm / second, and a curing time of 180 seconds. Molded and cut into a width of 10 mm to prepare a test piece. The peel strength was measured by the method based on JIS-K6481 using the obtained test piece.
Flame retardancy: Based on the UL-94 test method, a flame test was conducted using five test pieces having a thickness of 1.6 mm.

Figure 2011026385
Figure 2011026385

尚、表1中の略号は以下の通りである。   The abbreviations in Table 1 are as follows.

Figure 2011026385
Figure 2011026385

本発明のエポキシ樹脂組成物を用いた実施例4〜8及び11、12では、難燃剤を配合しなくても、得られる硬化物において充分な難燃性を発現すると共に、半導体封止材料、とくにエリアアレイ型の半導体装置に好適に用いることができることを確認した。しかしながら、比較例1は流動性が悪いばかりか、連続性形成と耐ハンダクラック性も悪い。比較例2は、4,4’−(2,3−エポキシプロポキシ)ビフェノールの結晶が残存し評価可能な硬化物が得られなかった。また比較例3は流動性、耐ハンダクラック性が悪いばかりか十分な難燃性を示さなかった。これらの比較例から明らかなように、比較例で用いたエポキシ樹脂組成物では、その硬化物の性能において十分に満足できるレベルではないことが確認できた。   In Examples 4 to 8, 11 and 12 using the epoxy resin composition of the present invention, a sufficient flame retardancy was exhibited in the obtained cured product without blending a flame retardant, and a semiconductor sealing material, In particular, it was confirmed that it can be suitably used for an area array type semiconductor device. However, Comparative Example 1 has not only poor fluidity but also poor continuity formation and solder crack resistance. In Comparative Example 2, 4,4 ′-(2,3-epoxypropoxy) biphenol crystals remained and an evaluation cured product was not obtained. Comparative Example 3 was not only poor in fluidity and solder crack resistance, but also did not show sufficient flame retardancy. As is clear from these comparative examples, it was confirmed that the epoxy resin compositions used in the comparative examples were not sufficiently satisfactory in performance of the cured products.

また、非ハロゲン系難燃剤を配合して得られた実施例9、10においても、流動性、連続成形性、ハンダクラック性に優れることが確認できた。   In Examples 9 and 10 obtained by blending non-halogen flame retardants, it was confirmed that the fluidity, continuous moldability, and solder cracking properties were excellent.

Claims (14)

エポキシ樹脂(A)と硬化剤(B)を必須成分とするエポキシ樹脂組成物であって、前記エポキシ樹脂(A)が、
フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するフェノール樹脂(ph1)と、
4,4’−ビフェノールとの混合物をエピハロヒドリンと反応させて得られるものであることを特徴とするエポキシ樹脂組成物。
An epoxy resin composition comprising an epoxy resin (A) and a curing agent (B) as essential components, the epoxy resin (A) being
2 selected from a phenolic hydroxyl group-containing aromatic hydrocarbon group (P), an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B), and a methylene group, an alkylidene group, and an aromatic hydrocarbon structure-containing methylene group. Each having a structural site of a valent hydrocarbon group (X), the phenolic hydroxyl group-containing aromatic hydrocarbon group (P) and the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B) A phenolic resin (ph1) having a molecular structure with a structure bonded through a divalent hydrocarbon group (X) selected from the methylene group, alkylidene group, and aromatic hydrocarbon structure-containing methylene group;
An epoxy resin composition obtained by reacting a mixture of 4,4'-biphenol with epihalohydrin.
前記エポキシ樹脂(A)が、前記フェノール樹脂(ph1)70質量%〜90質量%と4,4’−ビフェノール10質量%〜30質量%の混合物をエピハロヒドリンと反応させて得られるエポキシ樹脂である請求項1記載のエポキシ樹脂組成物。   The epoxy resin (A) is an epoxy resin obtained by reacting a mixture of 70% by mass to 90% by mass of the phenol resin (ph1) and 10% by mass to 30% by mass of 4,4′-biphenol with epihalohydrin. Item 2. An epoxy resin composition according to Item 1. 前記エポキシ樹脂(A)の150℃におけるICI粘度計における溶融粘度が0.1〜1.0dPa・s、エポキシ当量が220g/eq.〜300g/eq.の範囲であることを特徴とする請求項1記載の組成物。   The epoxy resin (A) has a melt viscosity of 0.1 to 1.0 dPa · s and an epoxy equivalent of 220 g / eq. -300 g / eq. The composition according to claim 1, wherein the composition is in the range. 前記硬化剤(B)が、ビスアラルキルを結節基として水酸基含有芳香族構造が連結された構造を含有するヒドロキシ芳香族化合物である請求項1記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, wherein the curing agent (B) is a hydroxy aromatic compound having a structure in which a hydroxyl group-containing aromatic structure is linked with bisaralkyl as a nodule group. 更に硬化促進剤を含有する請求項1記載のエポキシ樹脂組成物。   Furthermore, the epoxy resin composition of Claim 1 containing a hardening accelerator. 更に無機充填剤を含有する請求項1記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, further comprising an inorganic filler. 更に非ハロゲン系難燃剤(C)を含有する請求項1記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 1, further comprising a non-halogen flame retardant (C). 非ハロゲン系難燃剤(C)が、リン系難燃剤(c1)、窒素系難燃剤(c2)、シリコーン系難燃剤(c3)、無機系難燃剤(c4)、有機金属系難燃剤(c5)からなる群から選ばれる1種以上の難燃剤である請求項7記載のエポキシ樹脂組成物。   Non-halogen flame retardant (C) is phosphorus flame retardant (c1), nitrogen flame retardant (c2), silicone flame retardant (c3), inorganic flame retardant (c4), organometallic flame retardant (c5). The epoxy resin composition according to claim 7, which is one or more flame retardants selected from the group consisting of: 請求項1〜8の何れか1つに記載のエポキシ樹脂組成物を硬化させてなる硬化物。   Hardened | cured material formed by hardening | curing the epoxy resin composition as described in any one of Claims 1-8. 請求項1〜8の何れか1つに記載のエポキシ樹脂組成物を用いることを特徴とする半導体封止材料。   A semiconductor sealing material using the epoxy resin composition according to any one of claims 1 to 8. 請求項10記載の半導体封止材料を用いることを特徴とする半導体装置。   A semiconductor device comprising the semiconductor sealing material according to claim 10. フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するフェノール樹脂(ph1)と、
4,4’−ビフェノールとの混合物をエピハロヒドリンと反応させて得られる分子構造を有することを特徴とするエポキシ樹脂。
2 selected from a phenolic hydroxyl group-containing aromatic hydrocarbon group (P), an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B), and a methylene group, an alkylidene group, and an aromatic hydrocarbon structure-containing methylene group. Each having a structural site of a valent hydrocarbon group (X), the phenolic hydroxyl group-containing aromatic hydrocarbon group (P) and the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B) A phenolic resin (ph1) having a molecular structure with a structure bonded through a divalent hydrocarbon group (X) selected from the methylene group, alkylidene group, and aromatic hydrocarbon structure-containing methylene group;
An epoxy resin having a molecular structure obtained by reacting a mixture of 4,4'-biphenol with epihalohydrin.
前記フェノール樹脂(ph1)70質量%〜90質量%と4,4’−ビフェノール10質量%〜30質量%の混合物をエピハロヒドリンと反応させて得られる分子構造を有する請求項12記載のエポキシ樹脂。   The epoxy resin of Claim 12 which has a molecular structure obtained by making the mixture of said phenol resin (ph1) 70 mass%-90 mass% and 4,4'- biphenol 10 mass%-30 mass% react with epihalohydrin. 150℃におけるICI粘度計における溶融粘度が0.1〜1.0dPa・s、エポキシ当量が220g/eq.〜300g/eq.であることを特徴とする請求項12又は13記載のエポキシ樹脂。   The melt viscosity in an ICI viscometer at 150 ° C. is 0.1 to 1.0 dPa · s, and the epoxy equivalent is 220 g / eq. -300 g / eq. The epoxy resin according to claim 12 or 13, characterized in that:
JP2009171079A 2009-07-22 2009-07-22 Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device, and epoxy resin Active JP5689230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009171079A JP5689230B2 (en) 2009-07-22 2009-07-22 Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device, and epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009171079A JP5689230B2 (en) 2009-07-22 2009-07-22 Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device, and epoxy resin

Publications (2)

Publication Number Publication Date
JP2011026385A true JP2011026385A (en) 2011-02-10
JP5689230B2 JP5689230B2 (en) 2015-03-25

Family

ID=43635511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009171079A Active JP5689230B2 (en) 2009-07-22 2009-07-22 Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device, and epoxy resin

Country Status (1)

Country Link
JP (1) JP5689230B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167167A (en) * 2011-02-14 2012-09-06 Dic Corp Curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material and resin composition for interlayer insulation material for build-up substrate
JP2012172069A (en) * 2011-02-22 2012-09-10 Dic Corp Curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material and resin composition for interlayer insulation material for build-up substrate
WO2015060306A1 (en) * 2013-10-23 2015-04-30 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, prepreg, and cured article thereof
WO2015137299A1 (en) * 2014-03-11 2015-09-17 日本化薬株式会社 Epoxy resin mixture, curable resin composition, cured product thereof, and semiconductor device
WO2022118722A1 (en) * 2020-12-03 2022-06-09 Dic株式会社 Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board, and build-up film
WO2022118723A1 (en) * 2020-12-03 2022-06-09 Dic株式会社 Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board and buildup film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230619A (en) * 1988-03-11 1989-09-14 Yuka Shell Epoxy Kk Epoxy resin composition for sealing
JP2000191885A (en) * 1998-10-20 2000-07-11 Nitto Denko Corp Resin composition for sealing semiconductor and semiconductor device made by using it
JP2006045261A (en) * 2004-07-30 2006-02-16 Nippon Kayaku Co Ltd Modified epoxy resin, epoxy resin composition and cured product thereof
JP2006274236A (en) * 2005-03-02 2006-10-12 Dainippon Ink & Chem Inc Epoxy resin composition, cured object obtained therefrom, semiconductor-encapsulating material, novel phenolic resin, and novel epoxy resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230619A (en) * 1988-03-11 1989-09-14 Yuka Shell Epoxy Kk Epoxy resin composition for sealing
JP2000191885A (en) * 1998-10-20 2000-07-11 Nitto Denko Corp Resin composition for sealing semiconductor and semiconductor device made by using it
JP2006045261A (en) * 2004-07-30 2006-02-16 Nippon Kayaku Co Ltd Modified epoxy resin, epoxy resin composition and cured product thereof
JP2006274236A (en) * 2005-03-02 2006-10-12 Dainippon Ink & Chem Inc Epoxy resin composition, cured object obtained therefrom, semiconductor-encapsulating material, novel phenolic resin, and novel epoxy resin

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167167A (en) * 2011-02-14 2012-09-06 Dic Corp Curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material and resin composition for interlayer insulation material for build-up substrate
JP2012172069A (en) * 2011-02-22 2012-09-10 Dic Corp Curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material and resin composition for interlayer insulation material for build-up substrate
WO2015060306A1 (en) * 2013-10-23 2015-04-30 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, prepreg, and cured article thereof
JPWO2015060306A1 (en) * 2013-10-23 2017-03-09 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, prepreg, and cured product thereof
WO2015137299A1 (en) * 2014-03-11 2015-09-17 日本化薬株式会社 Epoxy resin mixture, curable resin composition, cured product thereof, and semiconductor device
JP2015172105A (en) * 2014-03-11 2015-10-01 日本化薬株式会社 Epoxy resin mixture, curable resin composition, cured product thereof, and semiconductor device
WO2022118722A1 (en) * 2020-12-03 2022-06-09 Dic株式会社 Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board, and build-up film
WO2022118723A1 (en) * 2020-12-03 2022-06-09 Dic株式会社 Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board and buildup film
JPWO2022118723A1 (en) * 2020-12-03 2022-06-09
JP7290205B2 (en) 2020-12-03 2023-06-13 Dic株式会社 Epoxy resins, curable compositions, cured products, semiconductor sealing materials, semiconductor devices, prepregs, circuit boards, and build-up films

Also Published As

Publication number Publication date
JP5689230B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP4941804B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, novel phenol resin, and novel epoxy resin
JP5071602B2 (en) Epoxy compound, curable composition, and cured product thereof
JP5013234B2 (en) Curable resin composition, cured product thereof, phenolic resin, epoxy resin, and semiconductor sealing material
JP5136729B2 (en) Curable resin composition, cured product thereof, phenol resin, epoxy resin, and semiconductor sealing material
JP5689230B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device, and epoxy resin
JP5760794B2 (en) Polyhydroxy compound, epoxy resin, thermosetting resin composition, cured product thereof and semiconductor sealing material
JP5614519B1 (en) Modified phenolic resin, method for producing modified phenolic resin, modified epoxy resin, method for producing modified epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP5168547B2 (en) Epoxy resin composition, semiconductor sealing material, and semiconductor device
JP5233858B2 (en) Epoxy resin composition, cured product thereof, and semiconductor device
JP5954571B2 (en) Curable composition, cured product, and printed wiring board
JP5605629B2 (en) Curable resin composition, cured product thereof, phenol resin, epoxy resin, and semiconductor encapsulant
JP5708306B2 (en) Epoxy resin, curable resin composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP5515878B2 (en) Curable resin composition, cured product thereof, and printed wiring board
JP5339146B2 (en) Epoxy resin composition, cured product thereof, circuit board, build-up material, and semiconductor sealing material
JP5716963B2 (en) Polyhydroxy compound, epoxy resin, thermosetting resin composition, cured product thereof and semiconductor sealing material
JP2014005338A (en) Curable composition, cured product, and printed wiring board
JP5590416B2 (en) Curable resin composition, cured product thereof, phenol resin, epoxy resin, and semiconductor sealing material
JP5035604B2 (en) Epoxy resin composition, cured product thereof, and novel epoxy resin
JP5035602B2 (en) Epoxy resin composition and novel phenol resin
JP6066158B2 (en) Epoxy resin, curable resin composition, cured product thereof, semiconductor sealing material, and semiconductor device
JP5994404B2 (en) Curable resin composition, cured product thereof, and printed wiring board
JP5082492B2 (en) Bifunctional hydroxy compound, epoxy resin, production method thereof, epoxy resin composition, cured product thereof, and semiconductor sealing material
JP5024604B2 (en) Epoxy resin composition, cured product thereof, novel epoxy resin and production method thereof
JP2014024978A (en) Curable composition, cured product and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140227

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150128

R150 Certificate of patent or registration of utility model

Ref document number: 5689230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250