WO2022118722A1 - Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board, and build-up film - Google Patents

Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board, and build-up film Download PDF

Info

Publication number
WO2022118722A1
WO2022118722A1 PCT/JP2021/043091 JP2021043091W WO2022118722A1 WO 2022118722 A1 WO2022118722 A1 WO 2022118722A1 JP 2021043091 W JP2021043091 W JP 2021043091W WO 2022118722 A1 WO2022118722 A1 WO 2022118722A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
compound
phenolic hydroxyl
hydroxyl group
resin
Prior art date
Application number
PCT/JP2021/043091
Other languages
French (fr)
Japanese (ja)
Inventor
和賢 青山
和久 矢本
源祐 秋元
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2022118722A1 publication Critical patent/WO2022118722A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to an epoxy resin, a curable composition, a cured product, a semiconductor encapsulating material, a semiconductor device, a prepreg, a circuit board, and a build-up film.
  • Epoxy resin compositions containing epoxy resin and its curing agent as essential components are excellent in various physical properties such as high heat resistance, moisture resistance, and low viscosity, and thus are excellent in various physical properties such as semiconductor encapsulation materials, electronic parts such as printed circuit boards, and conductive pastes. It is widely used in conductive adhesives such as, other adhesives, matrices for composite materials, paints, photoresist materials, and color-developing materials.
  • the semiconductor encapsulation material is used by filling the resin material with an inorganic filler such as silica, the resin material has a low viscosity and excellent fluidity in order to increase the filling rate of the filler. It is also required.
  • a semiconductor encapsulating material having solder crack resistance is disclosed by using an epoxy resin obtained by reacting a mixture of a novolak type phenol resin and 4,4'-biphenol with epihalohydrin. (See, for example, Patent Document 1).
  • the problem to be solved by the present invention is an epoxy resin that can contribute to fluidity and moldability, a curable composition containing the epoxy resin, and a toughness property obtained by using the curable composition.
  • Another object of the present invention is to provide a cured product having excellent low moisture absorption, a semiconductor encapsulating material, a semiconductor device, a prepreg, a circuit board, and a build-up film.
  • the present inventors have conducted an epoxy resin that can contribute to excellent fluidity and moldability, a curable composition containing the epoxy resin, and the curable composition.
  • the present invention was completed by finding that a cured product, a semiconductor encapsulating material, a semiconductor device, a prepreg, a circuit board, and a build-up film, which are obtained by using a material and have excellent toughness and low moisture absorption, can be obtained. I came to do.
  • the present invention comprises a glycidyl etherified product (E1) of a biphenol compound (P1) and a glycidyl etherified product (P2) of a phenolic hydroxyl group-containing resin (P2) using a phenolic hydroxyl group-containing compound and an aromatic divinyl compound as reaction raw materials.
  • the present invention relates to an epoxy resin containing E2).
  • the present invention is an epoxy resin containing a biphenol compound (P1) and a glycidyl etherified product (E3) of a mixture of a phenolic hydroxyl group-containing compound and an aromatic divinyl compound as a reaction raw material. Regarding.
  • the ratio of the biphenol compound (P1) to the total mass of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) is 0.5% by mass or more and 40% by mass or less. It is preferable to have.
  • the aromatic divinyl compound preferably contains divinylbenzene.
  • the phenolic hydroxyl group-containing resin (P2) uses the phenolic hydroxyl group-containing compound, the aromatic divinyl compound, and the aromatic monovinyl compound as reaction raw materials, and the aromatic divinyl is used as a reaction raw material.
  • the mass ratio of the compound and the aromatic monovinyl compound is preferably 99/1 to 50/50.
  • the epoxy resin of the present invention preferably has a melt viscosity at 150 ° C. measured by an ICI viscometer of 0.01 to 5 dPa ⁇ s.
  • the present invention relates to a curable composition containing the epoxy resin and a curing agent for an epoxy resin.
  • the present invention relates to a cured product of the curable composition.
  • the present invention relates to a semiconductor encapsulating material containing the curable composition.
  • the present invention relates to a semiconductor device containing a cured product of the semiconductor encapsulating material.
  • the present invention relates to a prepreg having a reinforcing base material and a semi-cured product of the curable composition impregnated in the reinforcing base material.
  • the present invention relates to the circuit board which is a laminated body of the prepreg and copper foil.
  • the present invention relates to a build-up film containing the curable composition.
  • the epoxy resin has excellent fluidity
  • the curable composition containing the epoxy resin has excellent moldability
  • the cured product obtained by using the curable composition has high toughness properties and high toughness properties. It is particularly useful in applications such as encapsulating electronic parts because it can exhibit low hygroscopicity and can dramatically improve reflow resistance.
  • the present invention comprises a glycidyl etherified product (E1) of a biphenol compound (P1) and a glycidyl etherified product (E2) of a phenolic hydroxyl group-containing resin (P2) using a phenolic hydroxyl group-containing compound and an aromatic divinyl compound as reaction raw materials.
  • Containing epoxy resin Containing epoxy resin.
  • the epoxy resin is preferable because it can exhibit high toughness characteristics and low hygroscopicity in a cured product while having excellent fluidity. ..
  • the biphenol compound (P1) is not particularly limited, and is, for example, 2,2'-biphenol, 2,4'-biphenol, 3,3'-biphenol, 4,4'-biphenol, and on the aromatic ring thereof. Examples thereof include various compounds in which one or more aliphatic hydrocarbon groups, alkoxy groups, halogen atoms and the like are substituted.
  • the biphenol compound (P1) may be used alone or in combination of two or more.
  • the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure.
  • those having 1 to 4 carbon atoms are preferable, and specifically, a methyl group, an ethyl group, a propyl group, and an isopropyl group, because the effect (low moisture absorption) of the present invention is more remarkable.
  • examples thereof include a butyl group, a t-butyl group, an isobutyl group, a vinyl group, an allyl group and the like.
  • the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • the halogen atom include a fluorine atom, a chlorine atom and a bromine atom.
  • the phenolic hydroxyl group-containing resin (P2) uses a phenolic hydroxyl group-containing compound and an aromatic divinyl compound as reaction raw materials.
  • the cured product obtained by using the epoxy resin obtained by using the phenolic hydroxyl group-containing resin (P2) is derived from the molecular length of the aromatic divinyl compound, the distance between the cross-linking points between the epoxy groups is widened, and plastic deformation is caused. It is preferable because it can be enhanced and the toughness is remarkably improved, and the toughness can be improved by increasing the molecular weight.
  • phenolic hydroxyl group-containing compound examples include phenol, naphthol, and various compounds in which one or a plurality of aliphatic hydrocarbon groups, alkoxy groups, halogen atoms, etc. are substituted on these aromatic rings.
  • the phenolic hydroxyl group-containing resin (P2) may be used alone or in combination of two or more.
  • the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure.
  • those having 1 to 4 carbon atoms are preferable, and specifically, a methyl group, an ethyl group, a propyl group, and an isopropyl group, because the effect (low moisture absorption) of the present invention is more remarkable.
  • examples thereof include a butyl group, a t-butyl group, an isobutyl group, a vinyl group, an allyl group and the like.
  • the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • the halogen atom include a fluorine atom, a chlorine atom and a bromine atom.
  • phenol and a compound having a substituent on the aromatic ring thereof are preferable, and phenol and cresol are preferable.
  • the cresol may be any of o-cresol, m-cresol, and p-cresol, but o-cresol and p-cresol are more preferable because they are epoxy resins having particularly excellent fluidity.
  • the aromatic divinyl compound has two vinyl groups as substituents on the aromatic ring and can be used without particular limitation as long as it can react with the phenolic hydroxyl group-containing compound.
  • examples thereof include various compounds in which one or a plurality of alkyl groups, alkoxy groups, halogen atoms and the like are substituted on these aromatic rings.
  • the alkyl group may be either a linear type or a branched type. Of these, those having 1 to 4 carbon atoms are preferable, and specifically, methyl group, ethyl group, propyl group, isopropyl group, etc.
  • Examples thereof include a butyl group, a t-butyl group and an isobutyl group.
  • the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • the halogen atom include a fluorine atom, a chlorine atom and a bromine atom.
  • the aromatic divinyl compound divinylbenzene and a compound having a substituent on the aromatic ring thereof are preferable, and divinylbenzene is more preferable.
  • substitution position of the vinyl group of the divinylbenzene is not particularly limited, but it is preferable to use a meta-form as a main component.
  • the content of the meta form in divinylbenzene is preferably 40% by mass or more, more preferably 50% by mass or more.
  • phenolic hydroxyl group-containing resin (P2) in addition to the phenolic hydroxyl group-containing compound and the aromatic divinyl compound, other compounds may be used as a reaction raw material.
  • other compounds include aromatic monovinyl compounds.
  • a stopping material it is preferable because it has excellent fluidity and good moldability can be obtained.
  • the aromatic monovinyl compound the aromaticity is improved, which is useful for improving the fluidity, moisture resistance, and low dielectric property.
  • the aromatic monovinyl compound examples include vinylbenzene, vinylbiphenyl, vinylnaphthalene, and various compounds in which one or more alkyl groups, alkoxy groups, halogen atoms, etc. are substituted on these aromatic rings.
  • the alkyl group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Of these, those having 1 to 4 carbon atoms are preferable, and specifically, a methyl group, an ethyl group, a propyl group, and an isopropyl group, because the effect (low moisture absorption) of the present invention is more remarkable.
  • Examples thereof include a butyl group, a t-butyl group, an isobutyl group, a vinyl group, an allyl group and the like.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom.
  • vinylbenzene and a compound having a substituent on the aromatic ring thereof are preferable, and ethylvinylbenzene is more preferable.
  • substitution positions of the vinyl group and the ethyl group of the ethyl vinylbenzene are not particularly limited, but it is preferable to use a meta-form as a main component, and the content of the meta-form in ethyl vinylbenzene is 40% by mass or more. More preferably, it is more preferably 50% by mass or more.
  • the ratio of the total of the phenolic hydroxyl group-containing compound, the aromatic divinyl compound, and the aromatic monovinyl compound in the reaction raw material is 80% by mass or more. It is preferably 90% by mass or more, and more preferably 90% by mass or more.
  • the method for producing the phenolic hydroxyl group-containing resin (P2) is not particularly limited, but for example, a phenolic hydroxyl group-containing compound and an aromatic divinyl compound (for example, divinylbenzene), and if necessary, an aromatic monovinyl compound (for example, other compounds such as ethylvinylbenzene) can be reacted in the presence of an acid catalyst to produce a phenolic hydroxyl group-containing resin (P2).
  • an aromatic divinyl compound for example, divinylbenzene
  • an aromatic monovinyl compound for example, other compounds such as ethylvinylbenzene
  • the phenolic hydroxyl group-containing resin (P2) obtained by the above-mentioned production method can control the hydroxyl group equivalent and the like according to the blending ratio of the aromatic divinyl compound and the aromatic monovinyl compound that can be further used.
  • the blending ratio of the phenolic hydroxyl group-containing compound and the aromatic divinyl compound is based on 1 mol of the phenolic hydroxyl group-containing compound in consideration of the balance between moldability and curability during production of the obtained cured product.
  • the molar ratio of the aromatic divinyl compound is preferably 0.1 to 1 mol, more preferably 0.1 to 0.8 mol.
  • the total molar ratio of the aromatic divinyl compound and the aromatic monovinyl compound to 1 mol of the phenolic hydroxyl group-containing compound is 0.1 to 1.
  • the molar amount is preferable, and 0.1 to 0.8 mol is more preferable.
  • Lewis acid such as aluminum chloride, iron chloride and boron trifluoride, ion exchange resin, active clay, silica-alumina, solid acid such as zeolite and the like.
  • the amount of the acid catalyst used is preferably 0.01 to 50 parts by mass, more preferably 0.01 to 10 parts by mass, based on 100 parts by mass of the total raw material of the phenolic hydroxyl group-containing resin (P2). Parts, more preferably 0.1 to 5 parts by mass.
  • the reaction is usually carried out at 10 to 250 ° C. for 1 to 20 hours.
  • alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve and ethyl cellosolve, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, dimethyl ether, diethyl ether and diisopropyl
  • ethers such as ether, tetrahydrofuran and dioxane
  • aromatic compounds such as benzene, toluene, chlorobenzene and dichlorobenzene.
  • a general method is to react while dropping an aromatic divinyl compound or other compound. At this time, the dropping time is usually 1 to 10 hours, preferably 5 hours or less.
  • the solvent and the unreactant can be distilled off to obtain the phenolic hydroxyl group-containing resin (P2), and when the solvent is not used, the unreactant can be obtained. By distilling off, the target phenolic hydroxyl group-containing resin (P2) can be obtained.
  • the hydroxyl group equivalent of the phenolic hydroxyl group-containing resin (P2) is preferably 200 to 500 g / equivalent, and more preferably 200 to 400 g / equivalent.
  • the softening point of the phenolic hydroxyl group-containing resin (P2) is preferably 40 to 150 ° C, preferably 50 to 120 ° C.
  • the softening point here is measured based on JIS K7234 (ring ball method).
  • phenolic hydroxyl group-containing resin (P2) examples include those represented by the following structural formulas.
  • n is an integer of 1 to 10
  • m is an independent integer of 0 to 4, respectively.
  • epihalohydrin is added to a mixture of (2) a biphenol compound (P1) and a phenolic hydroxyl group-containing resin (P2) obtained by reacting a phenolic hydroxyl group-containing compound with an aromatic divinyl compound or the like, and the biphenol compound is added.
  • a glycidyl etherified compound (E3) containing the glycidyl etherified compound (E1) and the glycidyl etherified compound (E2) is synthesized.
  • the compound containing this can be used as the epoxy resin of the present invention.
  • the manufacturing method (2) described above is preferable because it is excellent in convenience and workability.
  • epichlorohydrin examples include epichlorohydrin, epibromohydrin, ⁇ -methylepichlorohydrin and the like.
  • the amount of epihalohydrin added is excessively used with respect to a total of 1 mol of the hydroxyl groups of the biphenol compound (P1) or the phenolic hydroxyl group-containing resin (P2), but is usually 1.5 to 30 mol. Yes, preferably in the range of 2 to 15 mol.
  • the basic catalyst examples include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides. Of these, alkali metal hydroxides are preferable from the viewpoint of excellent catalytic activity, and specifically, sodium hydroxide, potassium hydroxide and the like are more preferable. Further, these basic catalysts may be used in a solid state or in an aqueous solution state. The amount of the basic catalyst added may be in the range of 0.9 to 2 mol with respect to a total of 1 mol of the hydroxyl groups of the biphenol compound (P1) or the phenolic hydroxyl group-containing resin (P2). preferable.
  • the reaction between the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) and epihalohydrin may be carried out in an organic solvent.
  • organic solvent include ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol and tertiary butanol, methyl cellosolve and ethyl cellosolve.
  • Examples thereof include cellosolves, ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane, and aprotonic polar solvents such as acetonitrile, dimethylsulfoxide and dimethylformamide.
  • ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane
  • aprotonic polar solvents such as acetonitrile, dimethylsulfoxide and dimethylformamide.
  • a crude product can be obtained by distilling off the excess epihalohydrin. If necessary, the hydrolyzable halogen may be reduced by dissolving the obtained crude product in an organic solvent again, adding a basic catalyst and reacting again.
  • the salt generated in the reaction can be removed by filtration, washing with water, or the like.
  • an organic solvent it may be distilled off to take out only the resin solid content, or it may be used as it is as a solution.
  • the mass ratio of the glycidyl etherified product (E1) to the glycidyl etherified product (E2) is not particularly limited, but the fluidity is excellent and the toughness property of the cured product is high.
  • the ratio of the glycidyl etherified product (E1) to the total mass of both ((E1) + (E2)) is preferably 0.5% by mass or more, because the epoxy resin has excellent low moisture absorption. It is preferably 1% by mass or more, and preferably 5% by mass or more.
  • the upper limit thereof is preferably 40% by mass or less, more preferably 25% by mass or less.
  • the mass ratio of both in the mixture of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) is excellent in fluidity and in the cured product. Since the epoxy resin has high toughness and low moisture absorption, the ratio of the biphenol compound (P1) to the total mass of both ((P1) + (P2)) is 0.5% by mass or more. It is preferably 1% by mass or more, and preferably 5% by mass or more. The upper limit thereof is preferably 40% by mass or less, more preferably 25% by mass or less.
  • the reaction of the mixture of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) with epihalohydrin can be carried out by the same method as the method for producing the epoxy resin of (1).
  • the amount of the epihalohydrin added is excessively used with respect to a total of 1 mol of the hydroxyl groups of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2), but is usually 1.5 to 30 mol, preferably 1.5 to 30 mol. It ranges from 2 to 15 mol.
  • a basic catalyst can be used, and the amount of the basic catalyst added is the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2). It is preferably in the range of 0.9 to 2 mol with respect to 1 mol of the total hydroxyl group contained in.
  • the epoxy equivalent of the epoxy resin of the present invention is preferably 150 to 400 g / equivalent, more preferably 200 to 350 g / equivalent, and even more preferably 240 to 300 g / equivalent.
  • the epoxy equivalent of the epoxy resin is within the above range, the generation of active hydroxyl groups generated when the epoxy resin reacts with the curing agent is suppressed, and the heat resistance and low moisture absorption of the obtained cured product are caused by this. It is preferable because it is also excellent in reflow resistance.
  • the measurement of the epoxy equivalent here is based on JIS K7236.
  • the epoxy resin of the present invention preferably has a melt viscosity at 150 ° C. measured by an ICI viscometer of 0.01 to 5 dPa ⁇ s, more preferably 0.01 to 2 dPa ⁇ s, and 0.01. It is more preferably ⁇ 0.6 dPa ⁇ s.
  • the melt viscosity here is based on ASTM D4287 and is measured by an ICI viscometer.
  • the number average molecular weight (Mn) is in the range of 430 to 1500. Further, the weight average molecular weight (Mw) is preferably in the range of 800 to 2000. The degree of dispersion (Mw / Mn) is preferably in the range of 1.5 to 3.
  • the molecular weight of the epoxy resin is measured by gel permeation chromatography (hereinafter abbreviated as "GPC") under the measurement conditions described in Examples described later.
  • n is an integer of 1 to 10
  • m is an independent integer of 0 to 4
  • r is an integer of 0 to 10.
  • the present invention relates to a curable composition containing the epoxy resin and a curing agent for an epoxy resin.
  • the curable composition contains the epoxy resin
  • the obtained cured product is preferable because, for example, the warp of the semiconductor encapsulating material can be reduced by improving the hygroscopicity and toughness. ..
  • an epoxy resin curing agent capable of cross-linking reaction with the epoxy group of the epoxy resin can be used without particular limitation.
  • the curing agent include a phenol curing agent, an amine curing agent, an acid anhydride curing agent, an active ester resin, and a cyanate ester resin.
  • the curing agent may be used alone or in combination of two or more.
  • phenol curing agent examples include phenol novolac resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadienephenol-added resin, phenol aralkyl resin (Zyroc resin), naphthol aralkyl resin, and triphenylol.
  • Biphenyl-modified naphthol resin polyvalent naphthol compound in which phenol nuclei are linked by bismethylene groups
  • aminotriazine-modified phenol resin polyvalent phenolic hydroxyl group-containing compound in which phenol nuclei are linked by melamine, benzoguanamine, etc.
  • alkoxy groups examples thereof include polyvalent phenolic hydroxyl group-containing compounds such as a contained aromatic ring-modified novolak resin (a polyvalent phenolic hydroxyl group-containing compound in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde).
  • phenol novolac trees and the like are more preferable from the viewpoint of moldability.
  • the compound containing the phenolic hydroxyl group may be used alone or in combination of two or more.
  • amine curing agent examples include diethylenetriamine (DTA), triethylenetetramine (TTA), tetraethylenepentamine (TEPA), diproprendamine (DPDA), diethylaminopropylamine (DEAPA), N-aminoethylpiperazine and mensendiamine.
  • DTA diethylenetriamine
  • TTA triethylenetetramine
  • TEPA tetraethylenepentamine
  • DPDA diproprendamine
  • DEAPA diethylaminopropylamine
  • mensendiamine examples include diethylenetriamine (DTA), triethylenetetramine (TTA), tetraethylenepentamine (TEPA), diproprendamine (DPDA), diethylaminopropylamine (DEAPA), N-aminoethylpiperazine and mensendiamine.
  • MDA Isophorondiamine
  • IPDA 1,3-bisaminomethylcyclohexane
  • piperidine N, N, -dimethylpiperazine, triethylenediamine and other aliphatic amines
  • m-xylenediamine XDA
  • methanephenylenediamine MPDA
  • diaminodiphenylmethane DDM
  • diaminodiphenylsulfone DDS
  • benzylmethylamine 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol, etc.
  • Aromatic amines and the like can be mentioned.
  • acid anhydride curing agent examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, ethylene glycol bistrimeritate, glycerol tristrimeritate, maleic anhydride, and tetrahydrophthalic anhydride.
  • the amount of the curing agent used with respect to the amount of the epoxy resin used is not particularly limited as, for example, the functional group equivalent ratio (for example, the hydroxyl group equivalent of the phenol curing agent / the epoxy equivalent of the epoxy resin). Since the mechanical properties of the cured product to be obtained are good, the number of active groups in the curing agent is 0 with respect to a total of 1 equivalent of the epoxy group with the epoxy resin and other epoxy resins used in combination as needed.
  • the amount is preferably 5.5 to 1.5 equivalents, more preferably 0.8 to 1.2 equivalents.
  • epoxy resins other than the epoxy resin maleimide resin, bismaleimide resin, polymaleimide resin, polyphenylene ether resin, polyimide resin, benzoxazine resin, triazine-containing cresol novolak resin, styrene-maleic anhydride resin, diallyl bisphenol and triallyl.
  • epoxy resins other than the epoxy resin maleimide resin, bismaleimide resin, polymaleimide resin, polyphenylene ether resin, polyimide resin, benzoxazine resin, triazine-containing cresol novolak resin, styrene-maleic anhydride resin, diallyl bisphenol and triallyl.
  • examples thereof include an allyl group-containing resin such as isocyanurate, a polyphosphate ester, and a phosphate ester-carbonate copolymer.
  • the curable composition of the present invention may be prepared without a solvent, or may contain a solvent.
  • the solvent has a function of adjusting the viscosity of the curable composition and the like.
  • the solvent are not particularly limited, but are ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ether solvents such as diethyl ether and tetrahydrofuran; ethyl acetate, butyl acetate, cellosolve acetate and propylene glycol monomethyl.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • ether solvents such as diethyl ether and tetrahydrofuran
  • Ester solvents such as ether acetate and carbitol acetate; carbitols such as cellosolve and butyl carbitol, toluene, xylene, ethylbenzene, mecitylene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene and the like.
  • Examples thereof include amide-based solvents such as aromatic hydrocarbons, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the curable composition.
  • the amount of the solvent used is 10% by mass or more, it is preferable because the handling property is excellent.
  • the amount of the solvent used is 90% by mass or less, it is preferable from the viewpoint of economy.
  • the curable composition of the present invention contains various additives such as a curing accelerator, a flame retardant, an inorganic filler, a silane coupling agent, a mold release agent, a pigment, a colorant, and an emulsifier, if necessary. Can be done.
  • the curing accelerator is not particularly limited, and examples thereof include a phosphorus-based curing accelerator, an amine-based curing accelerator, an imidazole-based curing accelerator, a guanidine-based curing accelerator, and a urea-based curing accelerator.
  • the curing accelerator may be used alone or in combination of two or more.
  • Examples of the phosphorus-based curing accelerator include organic phosphine compounds such as triphenylphosphine, tributylphosphine, triparatrilphosphine, diphenylcyclohexylphosphine and tricyclohexylphosphine; organic phosphite compounds such as trimethylphosphine and triethylphosphine; ethyltriphenyl.
  • organic phosphine compounds such as triphenylphosphine, tributylphosphine, triparatrilphosphine, diphenylcyclohexylphosphine and tricyclohexylphosphine
  • organic phosphite compounds such as trimethylphosphine and triethylphosphine
  • ethyltriphenyl ethyltriphenyl.
  • Phosphonium bromide benzyltriphenylphosphonium chloride, butylphosphonium tetraphenylborate, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-trilborate, triphenylphosphine triphenylboran, tetraphenylphosphonium thiocyanate, tetraphenylphosphonium disianamide, Examples thereof include phosphonium salts such as butylphenylphosphonium dicyanamide and tetrabutylphosphonium decanoate.
  • imidazole-based curing accelerator examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and 2-phenyl.
  • Examples of the guanidine-based curing accelerator include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1, 5,7-Triazabicyclo [4.4.0] deca-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] deca-5-ene, 1-methylbiguanide , 1-ethylbiguanide, 1-butylbiguanide, 1-cyclohexylbiguanide, 1-allylbiguanide, 1-phenylbiguanide and the like.
  • triphenylphosphine and tertiary amines are used as phosphorus compounds because they are excellent in curability, heat resistance, electrical properties, moisture resistance reliability, etc., especially when used as a semiconductor encapsulating material. It is preferable to use 1,8-diazabicyclo- [5.4.0] -undecene (DBU).
  • DBU 1,8-diazabicyclo- [5.4.0] -undecene
  • the amount of the curing accelerator used can be appropriately adjusted in order to obtain the desired curability, but it is 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the mixture of the epoxy resin and the curing agent. Is preferable, and 0.1 to 5 parts by mass is more preferable. When the amount of the curing accelerator used is within the above range, the curing property and the insulation reliability are excellent, which is preferable.
  • the flame retardant is not particularly limited, and examples thereof include an inorganic phosphorus flame retardant, an organic phosphorus flame retardant, and a halogen flame retardant.
  • the flame retardant may be used alone or in combination of two or more.
  • the organic phosphorus-based flame retardant is not particularly limited, but is limited to methyl acid phosphate, ethyl acid phosphate, isopropyl acid phosphate, dibutyl phosphate, monobutyl phosphate, butoxyethyl acid phosphate, 2-ethylhexyl acid phosphate, and bis (2-ethylhexyl).
  • Phosphate Monoisodecyl Acid Phosphate, Lauryl Acid Phosphate, Tridecyl Acid Phosphate, Stearyl Acid Phosphate, Isostearyl Acid Phosphate, Oleyl Acid Phosphate, Butyl Pyrophosphate, Tetracosyl Acid Phosphate, Ethylene Glycol Acid Phosphate, (2-Hydroxyethyl) ) Phosphate esters such as methacrylate acid phosphate; 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphine oxide and the like diphenylphosphine; 10- (2,5-dihydroxyphenyl) -10H- 9-Oxa-10-phosphaphenanthrene-10-oxide, 10- (1,4-dioxynaphthalene) -10H-9-oxa-10-phosphaphenanthrene-10-
  • the halogen-based flame retardant is not particularly limited, but is limited to brominated polystyrene, bis (pentabromophenyl) ethane, tetrabromobisphenol A bis (dibromopropyl ether), 1,2, -bis (tetrabromophthalimide), 2, Examples thereof include 4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine and tetrabromophthalic acid.
  • the amount of the flame retardant used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the inorganic filler is not particularly limited, but is silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, and nitrided.
  • silica Boron, aluminum hydroxide, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, zirconium oxide, barium titanate, barium zirconate, barium zirconate , Calcium zirconate, zirconium phosphate, zirconium tungstate phosphate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, carbon black and the like.
  • silica it is preferable to use silica.
  • the molten silica is preferable because it is possible to add a larger amount of the inorganic filler.
  • the fused silica can be used in either a crushed form or a spherical shape, but in order to increase the blending amount of the fused silica and suppress the increase in the melt viscosity of the curable composition, a spherical one is mainly used. Is preferable. Further, in order to increase the blending amount of spherical silica, it is preferable to appropriately adjust the particle size distribution of spherical silica.
  • the inorganic filler may be used alone or in combination of two or more.
  • the inorganic filler may be surface-treated if necessary.
  • the surface treatment agent that can be used is not particularly limited, but is an aminosilane-based coupling agent, an epoxysilane-based coupling agent, a mercaptosilane-based coupling agent, a silane-based coupling agent, an organosilazane compound, and a titanate-based cup. Ring agents and the like can be used.
  • the amount of the inorganic filler used is preferably 0.5 to 95 parts by mass with respect to 100 parts by mass of the total amount of the mixture of the epoxy resin and the curing agent.
  • the amount of the inorganic filler used is within the above range, flame retardancy and insulation reliability are excellent, which is preferable.
  • organic filler can be blended in addition to the inorganic filler as long as the characteristics of the present invention are not impaired.
  • examples of the organic filler include polyamide particles and the like.
  • the present invention relates to a cured product of the curable composition.
  • the cured product obtained from the curable composition containing the epoxy resin can exhibit high toughness and low hygroscopicity, which is a preferable embodiment.
  • the heating temperature at the time of heat curing is not particularly limited, but is usually 100 to 300 ° C., and the heating time is 1 to 1 to 1. 24 hours.
  • the cured product of the present invention preferably has a hygroscopicity of 1.3% or less.
  • the method for measuring the hygroscopicity is the same as the evaluation method in the examples of the present application.
  • the cured product of the present invention preferably has a Charpy impact strength of 3 J / cm 2 or more, more preferably 3.5 J / cm 2 or more, and particularly preferably 4 J / cm 2 or more.
  • the method for measuring the Charpy impact strength is the same as the evaluation method in the examples of the present application.
  • the present invention relates to a semiconductor encapsulating material containing the curable composition. Since the semiconductor encapsulation material obtained by using the curable composition uses the epoxy resin, it has low viscosity and excellent fluidity, and further has improved hygroscopicity and toughness, so that it can be processed in the manufacturing process. It has excellent moldability and reflow resistance, which is a preferable embodiment.
  • the curable composition used for the semiconductor encapsulant material can contain an inorganic filler.
  • the filling rate of the inorganic filler for example, the inorganic filler can be used in the range of 0.5 to 95 parts by mass with respect to 100 parts by mass of the curable composition.
  • the curable composition is further added with an additive as an optional component, if necessary, using an extruder, a feeder, a roll, or the like until the composition becomes uniform.
  • an additive as an optional component, if necessary, using an extruder, a feeder, a roll, or the like until the composition becomes uniform. Examples thereof include a method of sufficiently melting and mixing.
  • the present invention relates to a semiconductor device containing a cured product of the semiconductor encapsulating material. Since the semiconductor device obtained by using the semiconductor encapsulating material obtained by using the curable composition uses the epoxy resin, it has low viscosity and excellent fluidity, and further has improved moisture absorption and toughness. Therefore, it is excellent in processability, moldability, and reflow resistance in the manufacturing process, which is a preferable embodiment.
  • the semiconductor encapsulant material is cast or molded using a transfer molding machine, an injection molding machine, or the like, and further heat-cured in a temperature range of room temperature (20 ° C.) to 250 ° C. There is a way to do it.
  • the present invention relates to a prepreg having a reinforcing base material and a semi-cured product of the curable composition impregnated in the reinforcing base material.
  • a curable composition varnished by blending an organic solvent described later is used as a reinforcing base material (paper, glass cloth, glass non-woven fabric, aramid paper, aramid cloth, glass).
  • a method of obtaining the material by impregnating it with a mat, a glass roving cloth, etc.) and then heating it at a heating temperature according to the solvent type used, preferably 50 to 170 ° C. can be mentioned.
  • the mass ratio of the curable composition and the reinforcing base material used at this time is not particularly limited, but it is usually preferable to prepare the resin content in the prepreg to be 20 to 60% by mass.
  • organic solvent used here examples include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like. It can be appropriately selected depending on the application, but for example, when further producing a printed circuit board from prepylene as described below, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, or dimethylformamide. , It is preferable to use the non-volatile content at a ratio of 40 to 80% by mass.
  • the present invention relates to the circuit board which is a laminated body of the prepreg and a copper foil.
  • the prepregs are laminated by a conventional method, copper foils are appropriately laminated, and the pressure is 170 to 300 ° C. for 10 minutes to 3 hours under a pressure of 1 to 10 MPa.
  • An example is a method of heat-bonding.
  • the present invention relates to a build-up film containing the curable composition.
  • the curable composition is applied onto a support film to form a curable composition layer to form an adhesive film for a multilayer printed wiring board. The method can be mentioned.
  • the film When a build-up film is produced from a curable composition, the film is softened under the temperature conditions of laminating (usually 70 to 140 ° C.) in the vacuum laminating method, and at the same time as laminating the circuit board, via holes existing in the circuit board. Alternatively, it is important to exhibit fluidity (resin flow) capable of filling the through hole with the resin, and it is preferable to blend each of the above components so as to exhibit such characteristics.
  • laminating usually 70 to 140 ° C.
  • fluidity resin flow
  • the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm, and it is usually preferable to enable resin filling in this range. .. When laminating both sides of the circuit board, it is desirable to fill about 1/2 of the through hole.
  • the varnish-like composition is applied to the surface of the support film (Y), and further heated.
  • it can be produced by drying an organic solvent by blowing hot air or the like to form a composition layer (X) made of a curable composition.
  • the thickness of the composition layer (X) to be formed is usually preferably equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m, the thickness of the resin composition layer is preferably 10 to 100 ⁇ m.
  • composition layer (X) in the present invention may be protected by a protective film described later.
  • a protective film By protecting with a protective film, it is possible to prevent dust and the like from adhering to the surface of the resin composition layer and scratches.
  • the above-mentioned support film and protective film include polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter, may be abbreviated as "PET"), polyesters such as polyethylene naphthalate, polycarbonate, polyimide, and further.
  • PET polyethylene terephthalate
  • polyesters such as polyethylene naphthalate, polycarbonate, polyimide
  • metal foils such as patterns, copper foils, and aluminum foils.
  • the support film and the protective film may be subjected to a mold release treatment in addition to the mud treatment and the corona treatment.
  • the thickness of the support film is not particularly limited, but is usually 10 to 150 ⁇ m, and is preferably used in the range of 25 to 50 ⁇ m.
  • the thickness of the protective film is preferably 1 to 40 ⁇ m.
  • the above-mentioned support film (Y) is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film (Y) is peeled off after the adhesive film is heat-cured, it is possible to prevent dust and the like from adhering in the curing step. When peeling after curing, the support film is usually subjected to a mold release treatment in advance.
  • the cured product obtained by the curable composition of the present invention is excellent in low moisture absorption and high toughness, it is only used for semiconductor encapsulation materials, semiconductor devices, prepregs, circuit boards, build-up films and the like. However, it can be suitably used for various applications such as build-up substrates, adhesives, resist materials, and matrix resins of fiber-reinforced resins, and the applications are not limited to these.
  • the softening point (° C.) was measured according to JIS K7234 (ring ball method).
  • the obtained phenolic hydroxyl group-containing resin (P2-1) had a solid appearance, a hydroxyl group equivalent of 208 g / equivalent, and a softening point of 55 ° C.
  • the phenolic hydroxyl group-containing resin (P2-1) obtained above contained the phenolic hydroxyl group-containing resin represented by the following structural formula.
  • n is an integer of 1 to 10
  • m is an independent integer of 0 to 4, respectively.
  • Example 1 Synthesis of epoxy resin (1)
  • a flask equipped with a thermometer, a dropping funnel, a cooling tube, and a stirrer was purged with nitrogen gas to obtain 278.8 g of the phenolic hydroxyl group-containing resin (P2-1) in Synthesis Example 1, 4,4'-biphenol. 61.2 g, epichlorhydrin 1109 g, n-butanol 388 g, and water 55 g were charged and dissolved. After raising the temperature to 70 ° C., 450 g of a 20 mass% sodium hydroxide aqueous solution was added dropwise over 5 hours. Then, stirring was continued for 0.5 hours under the same conditions.
  • the epoxy resin (1) obtained above contained an epoxy resin represented by the following structural formula.
  • n is an integer of 1 to 10
  • m is an independent integer of 0 to 4
  • r is an integer of 0 to 10.
  • Example 2 Synthesis of epoxy resin (2)
  • the reaction was carried out in the same manner as in Example 1 except that the phenolic hydroxyl group-containing resin (P2-1) was changed to 306.0 g and 4,4'-biphenol 34.0 g, and the epoxy resin (2) was used. ) was obtained.
  • the physical characteristics of the obtained epoxy resin (2) are shown in Table 1.
  • the epoxy resin (2) obtained above contained an epoxy resin represented by the following structural formula.
  • n is an integer of 1 to 10
  • m is an independent integer of 0 to 4
  • r is an integer of 0 to 10.
  • Example 3 Synthesis of epoxy resin (3)
  • the reaction was carried out in the same manner as in Example 1 except that the phenolic hydroxyl group-containing resin (P2-1) was changed to 329.8 g and 4,4'-biphenol 10.2 g, and the epoxy resin (3) was used. ) was obtained.
  • the physical characteristics of the obtained epoxy resin (3) are shown in Table 1.
  • the epoxy resin (3) obtained above contained an epoxy resin represented by the following structural formula.
  • n is an integer of 1 to 10
  • m is an independent integer of 0 to 4
  • r is an integer of 0 to 10.
  • Examples 4 to 6 and Comparative Example 2 ⁇ Preparation of curable composition>
  • the epoxy resins produced in Examples 1 to 3 and Comparative Example 1 are blended in the compositions shown in Table 2 below and melt-kneaded to form a curable composition (epoxy resin composition for semiconductor encapsulation). ) was prepared.
  • Each curable composition was transferred according to JIS K 6911 at 175 ° C. for 120 seconds under the condition of a molding pressure of 6.9 MPa, and further subjected to post-cure treatment at 175 ° C. for 5 hours.
  • a test piece for Charpy impact strength test was prepared. The obtained test piece was measured for Charpy impact strength (J / cm 2 ) using a Pendulum Impact Tester Zwick 5102, and the toughness was evaluated.
  • TD-2131 in Table 2 above is a curing agent and is a phenol novolac type phenol resin ("TD-2131” hydroxyl group equivalent manufactured by DIC Corporation, 104 g / equivalent). Further, “TPP” is a curing accelerator and is triphenylphosphine ("TPP” manufactured by Hokuko Chemical Industry Co., Ltd.).
  • the epoxy resins obtained in all the examples have low viscosity, excellent high fluidity, can contribute to good moldability, and provide a curable composition (blended product).
  • the cured product obtained by using it has low hygroscopicity and excellent reflow resistance, and also shows a high value in the Charpy impact test, confirming that it has high toughness, and achieves both low hygroscopicity and high toughness. It was confirmed that it is particularly useful for use in electronic component encapsulation material applications.
  • Comparative Example 2 using the epoxy resin (1') of Comparative Example 1 was inferior in toughness as compared with Example.

Landscapes

  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

The present invention provides an epoxy resin containing a glycidyletherified product (E1) of a biphenol compound (P1), and a glycidyletherified product (E2) of a phenolic hydroxyl-group-containing resin (P2) that has a phenolic hydroxyl-group-containing compound and an aromatic divinyl compound as reaction raw materials. The epoxy resin has exceptional fluidity and molding properties. A cured product of a curable composition containing the epoxy resin has exceptional toughness characteristics and low hygroscopic properties, and can therefore be used in semiconductor sealing materials, semiconductor devices, prepregs, circuit boards, and build-up films.

Description

エポキシ樹脂、硬化性組成物、硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、及び、ビルドアップフィルムEpoxy resin, curable composition, cured product, semiconductor encapsulant material, semiconductor device, prepreg, circuit board, and build-up film
 本発明は、エポキシ樹脂、硬化性組成物、硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、及び、ビルドアップフィルムに関するものである。 The present invention relates to an epoxy resin, a curable composition, a cured product, a semiconductor encapsulating material, a semiconductor device, a prepreg, a circuit board, and a build-up film.
 エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、高耐熱性、耐湿性、低粘性等の諸物性に優れる点から、半導体封止材料やプリント回路基板等の電子部品、導電ペースト等の導電性接着剤、その他接着剤、複合材料用マトリックス、塗料、フォトレジスト材料、及び、顕色材料等で広く用いられている。 Epoxy resin compositions containing epoxy resin and its curing agent as essential components are excellent in various physical properties such as high heat resistance, moisture resistance, and low viscosity, and thus are excellent in various physical properties such as semiconductor encapsulation materials, electronic parts such as printed circuit boards, and conductive pastes. It is widely used in conductive adhesives such as, other adhesives, matrices for composite materials, paints, photoresist materials, and color-developing materials.
 これらの各種用途のうち、半導体封止材料の分野では、BGA、CSPといった半導体パッケージの表面実装化が進展しているが、表面実装するために、半導体パッケージがリフロー工程で高温に曝されると、吸湿した半導体パッケージから水分が気化することにより発生する応力によって、リフロー工程でのクラック・界面剥離等が発生する。この不良抑制のため、封止用の樹脂材料には、低吸湿性と低応力化が求められている。 Among these various applications, in the field of semiconductor encapsulation materials, surface mounting of semiconductor packages such as BGA and CSP is progressing, but when the semiconductor package is exposed to high temperature in the reflow process for surface mounting. The stress generated by the vaporization of water from the absorbed semiconductor package causes cracks, surface peeling, etc. in the reflow process. In order to suppress this defect, the resin material for sealing is required to have low hygroscopicity and low stress.
 さらに、近年の電子機器の小型化・薄型化や一括封止プロセスにて発生する半導体封止材料の反りを低減するため、高靭性が付与された樹脂材料が求められている。 Further, in order to reduce the warp of the semiconductor encapsulation material generated in the recent miniaturization and thinning of electronic devices and the batch encapsulation process, a resin material with high toughness is required.
 また、上記各性能に加え、半導体封止材料は樹脂材料にシリカ等の無機充填剤を充填させて用いることから、充填剤の充填率を高めるために、樹脂材料が低粘度で流動性に優れることも求められている。 Further, in addition to the above-mentioned performances, since the semiconductor encapsulation material is used by filling the resin material with an inorganic filler such as silica, the resin material has a low viscosity and excellent fluidity in order to increase the filling rate of the filler. It is also required.
 かかる要求特性に応えるため、ノボラック型フェノール樹脂と4,4’-ビフェノールの混合物をエピハロヒドリンと反応させて得られるエポキシ樹脂を用いることで、耐ハンダクラック性を有する半導体封止材料物が開示されている(例えば、特許文献1参照)。 In order to meet such required characteristics, a semiconductor encapsulating material having solder crack resistance is disclosed by using an epoxy resin obtained by reacting a mixture of a novolak type phenol resin and 4,4'-biphenol with epihalohydrin. (See, for example, Patent Document 1).
 しかしながら、特許文献1におけるエポキシ樹脂を用いた場合、溶融粘度が高く、作業性に劣り、低吸湿性についても、十分なものではなく、靭性特性などについては、明らかにはなっていない。 However, when the epoxy resin in Patent Document 1 is used, the melt viscosity is high, the workability is inferior, the low hygroscopicity is not sufficient, and the toughness characteristics and the like have not been clarified.
 このように、半導体封止材料の分野において、とりわけ低粘度で流動性に優れたエポキシ樹脂組成物や、高靭性を十分に具備した硬化物を得ることができるエポキシ樹脂組成物が得られていないのが現状であった。 As described above, in the field of semiconductor encapsulation materials, an epoxy resin composition having a particularly low viscosity and excellent fluidity and an epoxy resin composition capable of obtaining a cured product having sufficient high toughness have not been obtained. Was the current situation.
特許第3973773号公報Japanese Patent No. 3973773
 そこで、本発明が解決しようとする課題は、流動性、及び、成形性に寄与できるエポキシ樹脂、前記エポキシ樹脂を含有する硬化性組成物、前記硬化性組成物を用いて得られ、靭性特性、及び、低吸湿性に優れた硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、及び、ビルドアップフィルムを提供することにある。 Therefore, the problem to be solved by the present invention is an epoxy resin that can contribute to fluidity and moldability, a curable composition containing the epoxy resin, and a toughness property obtained by using the curable composition. Another object of the present invention is to provide a cured product having excellent low moisture absorption, a semiconductor encapsulating material, a semiconductor device, a prepreg, a circuit board, and a build-up film.
 本発明者らは、上述した課題を解決すべく鋭意研究を重ねた結果、優れた流動性、及び、成形性に寄与できるエポキシ樹脂、前記エポキシ樹脂を含有する硬化性組成物、前記硬化性組成物を用いて得られ、靭性特性、及び、低吸湿性に優れた硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、及び、ビルドアップフィルムが得られることを見いだし、本発明を完成するに至った。 As a result of diligent research to solve the above-mentioned problems, the present inventors have conducted an epoxy resin that can contribute to excellent fluidity and moldability, a curable composition containing the epoxy resin, and the curable composition. The present invention was completed by finding that a cured product, a semiconductor encapsulating material, a semiconductor device, a prepreg, a circuit board, and a build-up film, which are obtained by using a material and have excellent toughness and low moisture absorption, can be obtained. I came to do.
 すなわち、本発明は、ビフェノール化合物(P1)のグリシジルエーテル化物(E1)、及び、フェノール性水酸基含有化合物と芳香族ジビニル化合物とを反応原料とするフェノール性水酸基含有樹脂(P2)のグリシジルエーテル化物(E2)を含有するエポキシ樹脂に関する。 That is, the present invention comprises a glycidyl etherified product (E1) of a biphenol compound (P1) and a glycidyl etherified product (P2) of a phenolic hydroxyl group-containing resin (P2) using a phenolic hydroxyl group-containing compound and an aromatic divinyl compound as reaction raw materials. The present invention relates to an epoxy resin containing E2).
 本発明は、ビフェノール化合物(P1)、及び、フェノール性水酸基含有化合物と芳香族ジビニル化合物とを反応原料とするフェノール性水酸基含有樹脂(P2)の混合物のグリシジルエーテル化物(E3)を含有するエポキシ樹脂に関する。 The present invention is an epoxy resin containing a biphenol compound (P1) and a glycidyl etherified product (E3) of a mixture of a phenolic hydroxyl group-containing compound and an aromatic divinyl compound as a reaction raw material. Regarding.
 本発明のエポキシ樹脂は、前記ビフェノール化合物(P1)と前記フェノール性水酸基含有樹脂(P2)との合計質量に対する前記ビフェノール化合物(P1)の割合が、0.5質量%以上、40質量%以下であることが好ましい。 In the epoxy resin of the present invention, the ratio of the biphenol compound (P1) to the total mass of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) is 0.5% by mass or more and 40% by mass or less. It is preferable to have.
 本発明のエポキシ樹脂は、前記芳香族ジビニル化合物が、ジビニルベンゼンを含有することが好ましい。 In the epoxy resin of the present invention, the aromatic divinyl compound preferably contains divinylbenzene.
 本発明のエポキシ樹脂は、前記フェノール性水酸基含有樹脂(P2)が、前記フェノール性水酸基含有化合物、前記芳香族ジビニル化合物、及び、芳香族モノビニル化合物を反応原料とするものであり、前記芳香族ジビニル化合物、及び、前記芳香族モノビニル化合物の質量比が、99/1~50/50であることが好ましい。 In the epoxy resin of the present invention, the phenolic hydroxyl group-containing resin (P2) uses the phenolic hydroxyl group-containing compound, the aromatic divinyl compound, and the aromatic monovinyl compound as reaction raw materials, and the aromatic divinyl is used as a reaction raw material. The mass ratio of the compound and the aromatic monovinyl compound is preferably 99/1 to 50/50.
 本発明のエポキシ樹脂は、ICI粘度計で測定した150℃における溶融粘度が、0.01~5dPa・sであることが好ましい。 The epoxy resin of the present invention preferably has a melt viscosity at 150 ° C. measured by an ICI viscometer of 0.01 to 5 dPa · s.
 本発明は、前記エポキシ樹脂、及び、エポキシ樹脂用硬化剤を含有する硬化性組成物に関する。 The present invention relates to a curable composition containing the epoxy resin and a curing agent for an epoxy resin.
 本発明は、前記硬化性組成物の硬化物に関する。 The present invention relates to a cured product of the curable composition.
 本発明は、前記硬化性組成物を含有する半導体封止材料に関する。 The present invention relates to a semiconductor encapsulating material containing the curable composition.
 本発明は、前記半導体封止材料の硬化物を含む半導体装置に関する。 The present invention relates to a semiconductor device containing a cured product of the semiconductor encapsulating material.
 本発明は、補強基材、及び、前記補強基材に含浸した前記硬化性組成物の半硬化物を有するプリプレグに関する。 The present invention relates to a prepreg having a reinforcing base material and a semi-cured product of the curable composition impregnated in the reinforcing base material.
 本発明は、前記プリプレグ、及び、銅箔の積層体である回路基板に関する。 The present invention relates to the circuit board which is a laminated body of the prepreg and copper foil.
 本発明は、前記硬化性組成物を含有するビルドアップフィルムに関する。 The present invention relates to a build-up film containing the curable composition.
 本発明によれば、エポキシ樹脂が流動性に優れ、これを含む硬化性組成物は、成形性に優れたものとなり、前記硬化性組成物を用いて得られる硬化物は、高い靭性特性、及び、低吸湿性を発揮でき、特に、耐リフロー性を飛躍的に改善することができるため、電子部品封止材料用途などにおいて、特に有用である。 According to the present invention, the epoxy resin has excellent fluidity, the curable composition containing the epoxy resin has excellent moldability, and the cured product obtained by using the curable composition has high toughness properties and high toughness properties. It is particularly useful in applications such as encapsulating electronic parts because it can exhibit low hygroscopicity and can dramatically improve reflow resistance.
<エポキシ樹脂>
 本発明は、ビフェノール化合物(P1)のグリシジルエーテル化物(E1)、及び、フェノール性水酸基含有化合物と芳香族ジビニル化合物とを反応原料とするフェノール性水酸基含有樹脂(P2)のグリシジルエーテル化物(E2)を含有するエポキシ樹脂に関する。前記エポキシ樹脂は、前記グリシジルエーテル化物(E1)と前記グリシジルエーテル化物(E2)とを含むことにより、流動性に優れながらも、硬化物における高い靭性特性や低吸湿性を発揮できるものとなり、好ましい。
<Epoxy resin>
The present invention comprises a glycidyl etherified product (E1) of a biphenol compound (P1) and a glycidyl etherified product (E2) of a phenolic hydroxyl group-containing resin (P2) using a phenolic hydroxyl group-containing compound and an aromatic divinyl compound as reaction raw materials. Containing epoxy resin. By containing the glycidyl etherified product (E1) and the glycidyl etherified product (E2), the epoxy resin is preferable because it can exhibit high toughness characteristics and low hygroscopicity in a cured product while having excellent fluidity. ..
<ビフェノール化合物(P1)>
 前記ビフェノール化合物(P1)としては、特に制限されないが、例えば、2,2’-ビフェノール、2,4’-ビフェノール、3,3’-ビフェノール、4,4’-ビフェノール、及びこれらの芳香環上に脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が1つ乃至複数置換した各種の化合物等が挙げられる。前記ビフェノール化合物(P1)は、単独で用いても、2種以上を組み合わせて用いてもよい。
 前記脂肪族炭化水素基は、直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。中でも、本発明が奏する効果(低吸湿性)が一層顕著なものとなることから、炭素原子数1~4のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、イソブチル基、ビニル基、アリル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられる。特に、最終的に得られるエポキシ樹脂の溶融粘度を好ましい値に調整しやすいことから、4,4’-ビフェノール及びその芳香環上に置換基を有するが好ましく、4,4’-ビフェノールが好ましい。
<Biphenol compound (P1)>
The biphenol compound (P1) is not particularly limited, and is, for example, 2,2'-biphenol, 2,4'-biphenol, 3,3'-biphenol, 4,4'-biphenol, and on the aromatic ring thereof. Examples thereof include various compounds in which one or more aliphatic hydrocarbon groups, alkoxy groups, halogen atoms and the like are substituted. The biphenol compound (P1) may be used alone or in combination of two or more.
The aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Of these, those having 1 to 4 carbon atoms are preferable, and specifically, a methyl group, an ethyl group, a propyl group, and an isopropyl group, because the effect (low moisture absorption) of the present invention is more remarkable. Examples thereof include a butyl group, a t-butyl group, an isobutyl group, a vinyl group, an allyl group and the like. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like. Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. In particular, since it is easy to adjust the melt viscosity of the finally obtained epoxy resin to a preferable value, it is preferable to have a substituent on 4,4'-biphenol and its aromatic ring, and 4,4'-biphenol is preferable.
<フェノール性水酸基含有樹脂(P2)>
 前記フェノール性水酸基含有樹脂(P2)は、フェノール性水酸基含有化合物と芳香族ジビニル化合物とを反応原料とする。前記フェノール性水酸基含有樹脂(P2)を用いて得られるエポキシ樹脂を用いて得られる硬化物は、芳香族ジビニル化合物の分子長に由来し、エポキシ基同士の架橋点間距離が広がり、塑性変形を増進させ、靭性が著しく向上し、また、分子量の増大により、靭性が向上させることができるため、好ましい。
<Phenolic hydroxyl group-containing resin (P2)>
The phenolic hydroxyl group-containing resin (P2) uses a phenolic hydroxyl group-containing compound and an aromatic divinyl compound as reaction raw materials. The cured product obtained by using the epoxy resin obtained by using the phenolic hydroxyl group-containing resin (P2) is derived from the molecular length of the aromatic divinyl compound, the distance between the cross-linking points between the epoxy groups is widened, and plastic deformation is caused. It is preferable because it can be enhanced and the toughness is remarkably improved, and the toughness can be improved by increasing the molecular weight.
<フェノール性水酸基含有化合物>
 前記フェノール性水酸基含有化合物としては、例えば、フェノール、ナフトール、及び、これらの芳香環上に脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が1つまたは複数置換した各種の化合物等が挙げられる。前記フェノール性水酸基含有樹脂(P2)は、単独で用いても、2種以上を組み合わせて用いてもよい。
 前記脂肪族炭化水素基は、直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。中でも、本発明が奏する効果(低吸湿性)が一層顕著なものとなることから、炭素原子数1~4のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、イソブチル基、ビニル基、アリル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられる。特に、流動性の観点から、フェノール及びその芳香環上に置換基を有する化合物が好ましく、フェノール、クレゾールが好ましい。前記クレゾールとしては、o-クレゾール、m-クレゾール、p-クレゾールのいずれであってもよいが、特に流動性に優れるエポキシ樹脂となることから、o-クレゾール、及び、p-クレゾールがより好ましい。
<Phenolic hydroxyl group-containing compound>
Examples of the phenolic hydroxyl group-containing compound include phenol, naphthol, and various compounds in which one or a plurality of aliphatic hydrocarbon groups, alkoxy groups, halogen atoms, etc. are substituted on these aromatic rings. The phenolic hydroxyl group-containing resin (P2) may be used alone or in combination of two or more.
The aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Of these, those having 1 to 4 carbon atoms are preferable, and specifically, a methyl group, an ethyl group, a propyl group, and an isopropyl group, because the effect (low moisture absorption) of the present invention is more remarkable. Examples thereof include a butyl group, a t-butyl group, an isobutyl group, a vinyl group, an allyl group and the like. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like. Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. In particular, from the viewpoint of fluidity, phenol and a compound having a substituent on the aromatic ring thereof are preferable, and phenol and cresol are preferable. The cresol may be any of o-cresol, m-cresol, and p-cresol, but o-cresol and p-cresol are more preferable because they are epoxy resins having particularly excellent fluidity.
<芳香族ジビニル化合物>
 前記芳香族ジビニル化合物として、芳香環上の置換基として2つのビニル基を有し、前記フェノール性水酸基含有化合物と反応できれば、特に制限なく使用できるが、例えば、ジビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン、及びこれらの芳香環上にアルキル基やアルコキシ基、ハロゲン原子等が1つ乃至複数置換した各種の化合物等が挙げられる。前記アルキル基は、直鎖型及び分岐型のいずれでもよい。中でも、本発明が奏する効果(高靭性特性)が一層顕著なものとなることから、炭素原子数1~4のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、イソブチル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられる。特に、流動性の観点から、前記芳香族ジビニル化合物として、ジビニルベンゼン及びその芳香環上に置換基を有する化合物が好ましく、ジビニルベンゼンがより好ましい。
<Aromatic divinyl compound>
The aromatic divinyl compound has two vinyl groups as substituents on the aromatic ring and can be used without particular limitation as long as it can react with the phenolic hydroxyl group-containing compound. For example, divinylbenzene, divinylbiphenyl, divinylnaphthalene, etc. Examples thereof include various compounds in which one or a plurality of alkyl groups, alkoxy groups, halogen atoms and the like are substituted on these aromatic rings. The alkyl group may be either a linear type or a branched type. Of these, those having 1 to 4 carbon atoms are preferable, and specifically, methyl group, ethyl group, propyl group, isopropyl group, etc. Examples thereof include a butyl group, a t-butyl group and an isobutyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like. Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. In particular, from the viewpoint of fluidity, as the aromatic divinyl compound, divinylbenzene and a compound having a substituent on the aromatic ring thereof are preferable, and divinylbenzene is more preferable.
 また、前記ジビニルベンゼンのビニル基の置換位置は、特に限定されないが、メタ体を主成分とすることが好ましい。ジビニルベンゼン中のメタ体の含有量は40質量%以上であることが好ましく、50質量%以上であることがより好ましい。 Further, the substitution position of the vinyl group of the divinylbenzene is not particularly limited, but it is preferable to use a meta-form as a main component. The content of the meta form in divinylbenzene is preferably 40% by mass or more, more preferably 50% by mass or more.
 前記フェノール性水酸基含有樹脂(P2)は、前記フェノール性水酸基含有化合物、及び記芳香族ジビニル化合物の他、更に、その他の化合物を反応原料として用いてもよい。その他の化合物としては、例えば、芳香族モノビニル化合物等が挙げられる。前記フェノール性水酸基含有樹脂(P2)が、その反応原料として前記フェノール性水酸基含有化合物、前記芳香族ジビニル化合物に加えて、芳香族モノビニル化合物を用いることで、最終的に得られるエポキシ樹脂を半導体封止用材料として使用した場合、流動性に優れることから、良好な成形性が得られ、好ましい。また、前記芳香族モノビニル化合物を用いることにより、芳香族性が向上し、流動性や耐湿性、低誘電特性の向上にも有用である。 As the phenolic hydroxyl group-containing resin (P2), in addition to the phenolic hydroxyl group-containing compound and the aromatic divinyl compound, other compounds may be used as a reaction raw material. Examples of other compounds include aromatic monovinyl compounds. The phenolic hydroxyl group-containing resin (P2) semiconductor-seals the epoxy resin finally obtained by using the aromatic monovinyl compound in addition to the phenolic hydroxyl group-containing compound and the aromatic divinyl compound as the reaction raw material thereof. When used as a stopping material, it is preferable because it has excellent fluidity and good moldability can be obtained. Further, by using the aromatic monovinyl compound, the aromaticity is improved, which is useful for improving the fluidity, moisture resistance, and low dielectric property.
 前記芳香族モノビニル化合物は、例えば、ビニルベンゼン、ビニルビフェニル、ビニルナフタレン、及びこれらの芳香環上にアルキル基やアルコキシ基、ハロゲン原子等が1つ乃至複数置換した各種の化合物等が挙げられる。前記アルキル基は、直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。中でも、本発明が奏する効果(低吸湿性)が一層顕著なものとなることから、炭素原子数1~4のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、イソブチル基、ビニル基、アリル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられる。特に、流動性の観点から、ビニルベンゼン及びその芳香環上に置換基を有する化合物が好ましく、エチルビニルベンゼンがより好ましい。 Examples of the aromatic monovinyl compound include vinylbenzene, vinylbiphenyl, vinylnaphthalene, and various compounds in which one or more alkyl groups, alkoxy groups, halogen atoms, etc. are substituted on these aromatic rings. The alkyl group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Of these, those having 1 to 4 carbon atoms are preferable, and specifically, a methyl group, an ethyl group, a propyl group, and an isopropyl group, because the effect (low moisture absorption) of the present invention is more remarkable. Examples thereof include a butyl group, a t-butyl group, an isobutyl group, a vinyl group, an allyl group and the like. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like. Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. In particular, from the viewpoint of fluidity, vinylbenzene and a compound having a substituent on the aromatic ring thereof are preferable, and ethylvinylbenzene is more preferable.
 また、前記エチルビニルベンゼンのビニル基及びエチル基の置換位置は、特に限定されないが、メタ体を主成分とすることが好ましく、エチルビニルベンゼン中のメタ体の含有量は40質量%以上であることがより好ましく、50質量%以上であることが更に好ましい。 Further, the substitution positions of the vinyl group and the ethyl group of the ethyl vinylbenzene are not particularly limited, but it is preferable to use a meta-form as a main component, and the content of the meta-form in ethyl vinylbenzene is 40% by mass or more. More preferably, it is more preferably 50% by mass or more.
 前記フェノール性水酸基含有樹脂(P2)の反応原料として、前記芳香族モノビニル化合物を用いる場合、前記芳香族ジビニル化合物と前記芳香族モノビニル化合物との質量比が、99/1~50/50であることが好ましく、より好ましくは、98/2~70/30である。前記質量比が前記範囲内であることにより、得られるエポキシ樹脂の取り扱い性や、前記エポキシ樹脂を使用し得られる硬化物の製造時の成形性、硬化性の物性バランスをとることができ、好ましい。 When the aromatic monovinyl compound is used as the reaction raw material of the phenolic hydroxyl group-containing resin (P2), the mass ratio of the aromatic divinyl compound to the aromatic monovinyl compound is 99/1 to 50/50. Is preferable, and more preferably 98/2 to 70/30. When the mass ratio is within the above range, it is possible to balance the handleability of the obtained epoxy resin, the moldability at the time of manufacturing the cured product obtained by using the epoxy resin, and the physical properties of the curable property, which is preferable. ..
 また、前記フェノール性水酸基含有樹脂(P2)において、その反応原料における前記フェノール性水酸基含有化合物、前記芳香族ジビニル化合物、及び、前記芳香族モノビニル化合物の合計が占める割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。 Further, in the phenolic hydroxyl group-containing resin (P2), the ratio of the total of the phenolic hydroxyl group-containing compound, the aromatic divinyl compound, and the aromatic monovinyl compound in the reaction raw material is 80% by mass or more. It is preferably 90% by mass or more, and more preferably 90% by mass or more.
 以下に、前記フェノール性水酸基含有樹脂(P2)の製造方法について説明する。 The method for producing the phenolic hydroxyl group-containing resin (P2) will be described below.
 前記フェノール性水酸基含有樹脂(P2)の製造方法としては、特に制限されないが、例えば、フェノール性水酸基含有化合物と芳香族ジビニル化合物(例えば、ジビニルベンゼン)、更に必要に応じて、芳香族モノビニル化合物(例えば、エチルビニルベンゼン)等のその他の化合物を、酸触媒の存在下で反応させて、フェノール性水酸基含有樹脂(P2)を製造することができる。 The method for producing the phenolic hydroxyl group-containing resin (P2) is not particularly limited, but for example, a phenolic hydroxyl group-containing compound and an aromatic divinyl compound (for example, divinylbenzene), and if necessary, an aromatic monovinyl compound ( For example, other compounds such as ethylvinylbenzene) can be reacted in the presence of an acid catalyst to produce a phenolic hydroxyl group-containing resin (P2).
 前記製造方法で得られるフェノール性水酸基含有樹脂(P2)は、芳香族ジビニル化合物や、更に使用できる芳香族モノビニル化合物の配合割合に応じて、水酸基当量等を制御することができる。 The phenolic hydroxyl group-containing resin (P2) obtained by the above-mentioned production method can control the hydroxyl group equivalent and the like according to the blending ratio of the aromatic divinyl compound and the aromatic monovinyl compound that can be further used.
 前記フェノール性水酸基含有化合物と、前記芳香族ジビニル化合物の配合割合としては、得られる硬化物の製造時の成形性、硬化性の物性バランスを考慮すると、前記フェノール性水酸基含有化合物1モルに対して、前記芳香族ジビニル化合物のモル割合として、0.1~1モルが好ましく、0.1~0.8モルがより好ましい。また、前記芳香族モノビニル化合物を併用する場合には、前記フェノール性水酸基含有化合物1モルに対して、前記芳香族ジビニル化合物と前記芳香族モノビニル化合物との合計のモル割合として、0.1~1モルが好ましく、0.1~0.8モルがより好ましい。 The blending ratio of the phenolic hydroxyl group-containing compound and the aromatic divinyl compound is based on 1 mol of the phenolic hydroxyl group-containing compound in consideration of the balance between moldability and curability during production of the obtained cured product. The molar ratio of the aromatic divinyl compound is preferably 0.1 to 1 mol, more preferably 0.1 to 0.8 mol. When the aromatic monovinyl compound is used in combination, the total molar ratio of the aromatic divinyl compound and the aromatic monovinyl compound to 1 mol of the phenolic hydroxyl group-containing compound is 0.1 to 1. The molar amount is preferable, and 0.1 to 0.8 mol is more preferable.
 前記フェノール性水酸基含有化合物と、前記芳香族ジビニル化合物等との反応は、酸触媒の存在下で行うことができる。この酸触媒としては、周知の無機酸、有機酸から適宜選択することができる。例えば、塩酸、硫酸、燐酸等の鉱酸や、ギ酸、シュウ酸、トリフルオロ酢酸、p-トルエンスルホン酸、p-トルエンスルホン酸水和物、ジメチル硫酸、ジエチル硫酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸あるいはイオン交換樹脂、活性白土、シリカ-アルミナ、ゼオライト等の固体酸等が挙げられる。前記酸触媒の使用量は、前記フェノール性水酸基含有樹脂(P2)の原料の合計100質量部に対して、0.01~50質量部配合することが好ましく、より好ましくは0.01~10質量部であり、更に好ましくは0.1~5質量部である。また、上記反応は通常、10~250℃で1~20時間行われる。 The reaction between the phenolic hydroxyl group-containing compound and the aromatic divinyl compound or the like can be carried out in the presence of an acid catalyst. The acid catalyst can be appropriately selected from well-known inorganic acids and organic acids. For example, mineral acids such as hydrochloric acid, sulfuric acid and phosphoric acid, organic acids such as formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, p-toluenesulfonic acid hydrate, dimethylsulfate and diethylsulfate, and zinc chloride. , Lewis acid such as aluminum chloride, iron chloride and boron trifluoride, ion exchange resin, active clay, silica-alumina, solid acid such as zeolite and the like. The amount of the acid catalyst used is preferably 0.01 to 50 parts by mass, more preferably 0.01 to 10 parts by mass, based on 100 parts by mass of the total raw material of the phenolic hydroxyl group-containing resin (P2). Parts, more preferably 0.1 to 5 parts by mass. The reaction is usually carried out at 10 to 250 ° C. for 1 to 20 hours.
 上記反応の際に使用できる溶媒として、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、メチルセロソルブ、エチルセロソルブ等のアルコール類や、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、ベンゼン、トルエン、クロロベンゼン、ジクロロベンゼン等の芳香族化合物等が挙げられる。 As a solvent that can be used in the above reaction, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve and ethyl cellosolve, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, dimethyl ether, diethyl ether and diisopropyl Examples thereof include ethers such as ether, tetrahydrofuran and dioxane, and aromatic compounds such as benzene, toluene, chlorobenzene and dichlorobenzene.
 上記反応を実施する具体的方法としては、全原料を一括装入し、そのまま所定の温度で反応させるか、または、フェノール性水酸基含有化合物と酸触媒を装入し、所定の温度に保ちつつ、芳香族ジビニル化合物やその他の化合物等を滴下させながら反応させる方法が一般的である。この際、滴下時間は、通常、1~10時間であり、5時間以下が好ましい。反応後、溶媒を使用した場合は、必要により、溶媒と未反応物を留去させて、前記フェノール性水酸基含有樹脂(P2)を得ることができ、溶媒を使用しない場合は、未反応物を留去することによって目的物である前記フェノール性水酸基含有樹脂(P2)を得ることができる。 As a specific method for carrying out the above reaction, all the raw materials are charged at once and reacted at a predetermined temperature as they are, or a phenolic hydroxyl group-containing compound and an acid catalyst are charged and maintained at a predetermined temperature. A general method is to react while dropping an aromatic divinyl compound or other compound. At this time, the dropping time is usually 1 to 10 hours, preferably 5 hours or less. After the reaction, when a solvent is used, the solvent and the unreactant can be distilled off to obtain the phenolic hydroxyl group-containing resin (P2), and when the solvent is not used, the unreactant can be obtained. By distilling off, the target phenolic hydroxyl group-containing resin (P2) can be obtained.
 前記フェノール性水酸基含有樹脂(P2)の水酸基当量としては、200~500g/当量であることが好ましく、より好ましくは200~400g/当量である。 The hydroxyl group equivalent of the phenolic hydroxyl group-containing resin (P2) is preferably 200 to 500 g / equivalent, and more preferably 200 to 400 g / equivalent.
 前記フェノール性水酸基含有樹脂(P2)の軟化点は、40~150℃であることがよく、好ましくは50~120℃の範囲である。ここでの軟化点は、JIS K 7234(環球法)に基づき測定されるものである。 The softening point of the phenolic hydroxyl group-containing resin (P2) is preferably 40 to 150 ° C, preferably 50 to 120 ° C. The softening point here is measured based on JIS K7234 (ring ball method).
 前記フェノール性水酸基含有樹脂(P2)の具体例として、以下の構造式で表されるものが挙げられる。 Specific examples of the phenolic hydroxyl group-containing resin (P2) include those represented by the following structural formulas.
Figure JPOXMLDOC01-appb-C000001
[上記式中、nは1~10の整数であり、mはそれぞれ独立して0~4の整数である。]
Figure JPOXMLDOC01-appb-C000001
[In the above equation, n is an integer of 1 to 10, and m is an independent integer of 0 to 4, respectively. ]
 本発明のエポキシ樹脂は、前記ビフェノール化合物(P1)のグリシジルエーテル化物(E1)、及び、前記フェノール性水酸基含有樹脂(P2)のグリシジルエーテル化物(E2)を含有するものであれば、その製法は特に限定されず、どのように製造されたものでもよい。 If the epoxy resin of the present invention contains the glycidyl etherified product (E1) of the biphenol compound (P1) and the glycidyl etherified product (E2) of the phenolic hydroxyl group-containing resin (P2), the production method thereof may be as follows. It is not particularly limited, and may be manufactured in any way.
 本発明のエポキシ樹脂の製造方法としては、例えば、(1)ビフェノール化合物(P1)をエピハロヒドリンを用いて、グリシジルエーテル化したグリシジルエーテル化物(E1)を合成し、別途、フェノール性水酸基含有化合物と芳香族ジビニル化合物等とを反応させて得られるフェノール性水酸基含有樹脂(P2)をエピハロヒドリンを用いて、グリシジルエーテル化したグリシジルエーテル化物(E2)を合成し、これらを混合(含有)したものを本発明のエポキシ樹脂とすることができる。
 また、(2)ビフェノール化合物(P1)と、フェノール性水酸基含有化合物と芳香族ジビニル化合物等とを反応させて得られるフェノール性水酸基含有樹脂(P2)との混合物に、エピハロヒドリンを加え、前記ビフェノール化合物(P1)と前記フェノール性水酸基含有樹脂(P2)のそれぞれとエピハロヒドリンを反応させることにより、前記グリシジルエーテル化物(E1)と前記グリシジルエーテル化物(E2)とを含有するグリシジルエーテル化物(E3)を合成し、これを含有したものを本発明のエポキシ樹脂とすることができる。
 特に、上記(2)の製造方法は、簡便性、及び、作業性に優れるため、好ましい。
As a method for producing the epoxy resin of the present invention, for example, (1) a glycidyl etherified product (E1) obtained by glycidyl etherifying a biphenol compound (P1) using epihalohydrin is synthesized, and a phenolic hydroxyl group-containing compound and an aromatic compound are separately synthesized. The present invention is obtained by synthesizing a glycidyl etherified product (E2) obtained by reacting a group divinyl compound or the like with a phenolic hydroxyl group-containing resin (P2) using epihalohydrin, and mixing (containing) these. Can be an epoxy resin.
Further, epihalohydrin is added to a mixture of (2) a biphenol compound (P1) and a phenolic hydroxyl group-containing resin (P2) obtained by reacting a phenolic hydroxyl group-containing compound with an aromatic divinyl compound or the like, and the biphenol compound is added. By reacting (P1) with each of the phenolic hydroxyl group-containing resin (P2) and epihalohydrin, a glycidyl etherified compound (E3) containing the glycidyl etherified compound (E1) and the glycidyl etherified compound (E2) is synthesized. However, the compound containing this can be used as the epoxy resin of the present invention.
In particular, the manufacturing method (2) described above is preferable because it is excellent in convenience and workability.
 前記(1)のエポキシ樹脂の製造方法において、前記ビフェノール化合物(P1)とエピハロヒドリンとの反応、及び、前記フェノール性水酸基含有樹脂(P2)とエピハロヒドリンとの反応は、例えば、塩基性触媒の存在下、通常20~150℃、好ましくは、30~80℃の範囲で0.5~10時間反応させる方法などが挙げられる。 In the method for producing an epoxy resin according to (1), the reaction between the biphenol compound (P1) and epihalohydrin and the reaction between the phenolic hydroxyl group-containing resin (P2) and epihalohydrin are carried out, for example, in the presence of a basic catalyst. Examples thereof include a method of reacting at 20 to 150 ° C., preferably 30 to 80 ° C. for 0.5 to 10 hours.
 前記エピハロヒドリンとしては、エピクロルヒドリン、エピブロモヒドリン、β-メチルエピクロルヒドリン等が挙げられる。エピハロヒドリンの添加量は、前記ビフェノール化合物(P1)、または、前記フェノール性水酸基含有樹脂(P2)が有する水酸基の合計1モルに対して、過剰に用いられるが、通常、1.5~30モルであり、好ましくは、2~15モルの範囲である。 Examples of the epichlorohydrin include epichlorohydrin, epibromohydrin, β-methylepichlorohydrin and the like. The amount of epihalohydrin added is excessively used with respect to a total of 1 mol of the hydroxyl groups of the biphenol compound (P1) or the phenolic hydroxyl group-containing resin (P2), but is usually 1.5 to 30 mol. Yes, preferably in the range of 2 to 15 mol.
 前記塩基性触媒としては、例えば、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、及び、アルカリ金属水酸化物等が挙げられる。中でも、触媒活性に優れる点からアルカリ金属水酸化物が好ましく、具体的には、水酸化ナトリウムや水酸化カリウム等がより好ましい。また、これら塩基性触媒は、固形の状態で使用してもよいし、水溶液の状態で使用してもよい。前記塩基性触媒の添加量は、前記ビフェノール化合物(P1)、または、前記フェノール性水酸基含有樹脂(P2)が有する水酸基の合計1モルに対して、0.9~2モルの範囲であることが好ましい。 Examples of the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides. Of these, alkali metal hydroxides are preferable from the viewpoint of excellent catalytic activity, and specifically, sodium hydroxide, potassium hydroxide and the like are more preferable. Further, these basic catalysts may be used in a solid state or in an aqueous solution state. The amount of the basic catalyst added may be in the range of 0.9 to 2 mol with respect to a total of 1 mol of the hydroxyl groups of the biphenol compound (P1) or the phenolic hydroxyl group-containing resin (P2). preferable.
 前記ビフェノール化合物(P1)、及び、前記フェノール性水酸基含有樹脂(P2)と、エピハロヒドリンとの反応は、有機溶媒中で行ってもよい。用いる有機溶媒としては、例えば、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコール、1-ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、テトラヒドロフラン、1、4-ジオキサン、1、3-ジオキサン、ジエトキシエタン等のエーテル類、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調製するために適宜2種以上を併用してもよい。 The reaction between the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) and epihalohydrin may be carried out in an organic solvent. Examples of the organic solvent used include ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol and tertiary butanol, methyl cellosolve and ethyl cellosolve. Examples thereof include cellosolves, ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane, and aprotonic polar solvents such as acetonitrile, dimethylsulfoxide and dimethylformamide. Each of these organic solvents may be used alone, or two or more kinds may be used in combination as appropriate for adjusting the polarity.
 前記エピハロヒドリンとの反応終了後は、過剰のエピハロヒドリンを留去することにより、粗生成物を得ることができる。必要に応じて、得られた粗生成物を再度有機溶剤に溶解させ、塩基性触媒を加えて再度反応させることにより、加水分解性ハロゲンを低減させてもよい。反応で生じた塩は濾過や水洗等により除去することができる。また、有機溶媒を用いた場合には、留去して樹脂固形分のみを取り出してもよいし、そのまま溶液として用いてもよい。 After the reaction with the epihalohydrin is completed, a crude product can be obtained by distilling off the excess epihalohydrin. If necessary, the hydrolyzable halogen may be reduced by dissolving the obtained crude product in an organic solvent again, adding a basic catalyst and reacting again. The salt generated in the reaction can be removed by filtration, washing with water, or the like. When an organic solvent is used, it may be distilled off to take out only the resin solid content, or it may be used as it is as a solution.
 前記(1)のエポキシ樹脂の製造方法において、前記グリシジルエーテル化物(E1)と前記グリシジルエーテル化物(E2)との質量比は特に限定されないが、流動性に優れ、かつ、硬化物における高い靭性特性や低吸湿性に優れるエポキシ樹脂となることから、両者((E1)+(E2))の合計質量に対する前記グリシジルエーテル化物(E1)の割合が、0.5質量%以上であることが好ましく、1質量%以上であることが好ましく、5質量%以上であることが好ましい。また、その上限値は、40質量%以下であることが好ましく、25質量%以下であることがより好ましい。 In the method for producing an epoxy resin according to (1), the mass ratio of the glycidyl etherified product (E1) to the glycidyl etherified product (E2) is not particularly limited, but the fluidity is excellent and the toughness property of the cured product is high. The ratio of the glycidyl etherified product (E1) to the total mass of both ((E1) + (E2)) is preferably 0.5% by mass or more, because the epoxy resin has excellent low moisture absorption. It is preferably 1% by mass or more, and preferably 5% by mass or more. The upper limit thereof is preferably 40% by mass or less, more preferably 25% by mass or less.
 前記(2)のエポキシ樹脂の製造方法において、前記ビフェノール化合物(P1)、と前記フェノール性水酸基含有樹脂(P2)との混合物中の両者の質量比は、流動性に優れ、かつ、硬化物における高い靭性特性や低吸湿性に優れるエポキシ樹脂となることから、両者((P1)+(P2))の合計質量に対する前記ビフェノール化合物(P1)の割合が、0.5質量%以上であることが好ましく、1質量%以上であることが好ましく、5質量%以上であることが好ましい。また、その上限値は、40質量%以下であることが好ましく、25質量%以下であることがより好ましい。 In the method for producing an epoxy resin according to (2), the mass ratio of both in the mixture of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) is excellent in fluidity and in the cured product. Since the epoxy resin has high toughness and low moisture absorption, the ratio of the biphenol compound (P1) to the total mass of both ((P1) + (P2)) is 0.5% by mass or more. It is preferably 1% by mass or more, and preferably 5% by mass or more. The upper limit thereof is preferably 40% by mass or less, more preferably 25% by mass or less.
 前記ビフェノール化合物(P1)と前記フェノール性水酸基含有樹脂(P2)との混合物とエピハロヒドリンとの反応は、前記(1)のエポキシ樹脂の製造方法と同様の方法にて行うことができる。前記エピハロヒドリンの添加量は、前記ビフェノール化合物(P1)及び前記フェノール性水酸基含有樹脂(P2)が有する水酸基の合計1モルに対し、過剰に用いられるが、通常、1.5~30モル、好ましくは、2~15モルの範囲である。また、前記(1)のエポキシ樹脂の製造方法と同様、塩基性触媒を使用することができ、前記塩基性触媒の添加量は、前記ビフェノール化合物(P1)及び前記フェノール性水酸基含有樹脂(P2)が有する水酸基の合計1モルに対して、0.9~2モルの範囲であることが好ましい。 The reaction of the mixture of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) with epihalohydrin can be carried out by the same method as the method for producing the epoxy resin of (1). The amount of the epihalohydrin added is excessively used with respect to a total of 1 mol of the hydroxyl groups of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2), but is usually 1.5 to 30 mol, preferably 1.5 to 30 mol. It ranges from 2 to 15 mol. Further, as in the method for producing the epoxy resin of (1), a basic catalyst can be used, and the amount of the basic catalyst added is the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2). It is preferably in the range of 0.9 to 2 mol with respect to 1 mol of the total hydroxyl group contained in.
 本発明のエポキシ樹脂のエポキシ当量は、150~400g/当量であることが好ましく、200~350g/当量であることがより好ましく、240~300g/当量であることが更に好ましい。前記エポキシ樹脂のエポキシ当量が前記範囲内であると、エポキシ樹脂が硬化剤と反応する際に発生する活性水酸基の発生が抑えられ、得られる硬化物の耐熱性と低吸湿性、及びこれに起因する耐リフロー性にも優れることから好ましい。ここでのエポキシ当量の測定は、JIS K 7236に基づいて測定されるものである。 The epoxy equivalent of the epoxy resin of the present invention is preferably 150 to 400 g / equivalent, more preferably 200 to 350 g / equivalent, and even more preferably 240 to 300 g / equivalent. When the epoxy equivalent of the epoxy resin is within the above range, the generation of active hydroxyl groups generated when the epoxy resin reacts with the curing agent is suppressed, and the heat resistance and low moisture absorption of the obtained cured product are caused by this. It is preferable because it is also excellent in reflow resistance. The measurement of the epoxy equivalent here is based on JIS K7236.
 本発明のエポキシ樹脂は、ICI粘度計で測定した150℃における溶融粘度が、0.01~5dPa・sであることが好ましく、0.01~2dPa・sであることがより好ましく、0.01~0.6dPa・sであることが更に好ましい。前記エポキシ樹脂の溶融粘度が前記範囲内であると、低粘度で流動性に優れるため、得られる硬化物の成形性が優れることから好ましい。ここでの溶融粘度は、ASTM D4287に準拠し、ICI粘度計にて測定されるものである。 The epoxy resin of the present invention preferably has a melt viscosity at 150 ° C. measured by an ICI viscometer of 0.01 to 5 dPa · s, more preferably 0.01 to 2 dPa · s, and 0.01. It is more preferably ~ 0.6 dPa · s. When the melt viscosity of the epoxy resin is within the above range, the viscosity is low and the fluidity is excellent, and the moldability of the obtained cured product is excellent, which is preferable. The melt viscosity here is based on ASTM D4287 and is measured by an ICI viscometer.
 本発明のエポキシ樹脂は、低粘度で流動性に優れるものとなることから、数平均分子量(Mn)が430~1500の範囲であることが好ましい。また、重量平均分子量(Mw)は800~2000の範囲であることが好ましい。分散度(Mw/Mn)は1.5~3の範囲であることが好ましい。本発明においてエポキシ樹脂の分子量はゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)を用いて、後述する実施例に記載の測定条件で測定したものである。 Since the epoxy resin of the present invention has a low viscosity and excellent fluidity, it is preferable that the number average molecular weight (Mn) is in the range of 430 to 1500. Further, the weight average molecular weight (Mw) is preferably in the range of 800 to 2000. The degree of dispersion (Mw / Mn) is preferably in the range of 1.5 to 3. In the present invention, the molecular weight of the epoxy resin is measured by gel permeation chromatography (hereinafter abbreviated as "GPC") under the measurement conditions described in Examples described later.
 本発明のエポキシ樹脂の具体例として、以下の構造式で表されるものが挙げられる。 Specific examples of the epoxy resin of the present invention include those represented by the following structural formulas.
Figure JPOXMLDOC01-appb-C000002
[上記式中、nは1~10の整数であり、mはそれぞれ独立して0~4の整数であり、rは0~10の整数である。]
Figure JPOXMLDOC01-appb-C000002
[In the above equation, n is an integer of 1 to 10, m is an independent integer of 0 to 4, and r is an integer of 0 to 10. ]
<硬化性組成物の調製>
 本発明は、前記エポキシ樹脂、及び、エポキシ樹脂用硬化剤を含有する硬化性組成物に関する。前記硬化性組成物が、前記エポキシ樹脂を含有することで、得られる硬化物は、耐吸湿性や靭性が改善されることにより、例えば、半導体封止材料の反り低減が可能となるため、好ましい。
<Preparation of curable composition>
The present invention relates to a curable composition containing the epoxy resin and a curing agent for an epoxy resin. When the curable composition contains the epoxy resin, the obtained cured product is preferable because, for example, the warp of the semiconductor encapsulating material can be reduced by improving the hygroscopicity and toughness. ..
 本発明の硬化性組成物は、前記エポキシ樹脂のエポキシ基と架橋反応が可能なエポキシ樹脂用硬化剤を、特に制限なく使用できる。前記硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、活性エステル樹脂、シアネートエステル樹脂等が挙げられる。前記硬化剤は、単独で用いても、2種以上を組み合わせて用いてもよい。 In the curable composition of the present invention, an epoxy resin curing agent capable of cross-linking reaction with the epoxy group of the epoxy resin can be used without particular limitation. Examples of the curing agent include a phenol curing agent, an amine curing agent, an acid anhydride curing agent, an active ester resin, and a cyanate ester resin. The curing agent may be used alone or in combination of two or more.
 前記フェノール硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリフェニロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール性水酸基含有化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール性水酸基含有化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール性水酸基含有化合物)等の多価フェノール性水酸基含有化合物が挙げられる。中でも、成形性の観点から、フェノールノボラック樹などがより好ましい。なお、前記フェノール性水酸基を含有する化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。 Examples of the phenol curing agent include phenol novolac resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadienephenol-added resin, phenol aralkyl resin (Zyroc resin), naphthol aralkyl resin, and triphenylol. Methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyvalent phenolic hydroxyl group-containing compound in which phenol nuclei are linked by bismethylene groups). ), Biphenyl-modified naphthol resin (polyvalent naphthol compound in which phenol nuclei are linked by bismethylene groups), aminotriazine-modified phenol resin (polyvalent phenolic hydroxyl group-containing compound in which phenol nuclei are linked by melamine, benzoguanamine, etc.) and alkoxy groups. Examples thereof include polyvalent phenolic hydroxyl group-containing compounds such as a contained aromatic ring-modified novolak resin (a polyvalent phenolic hydroxyl group-containing compound in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde). Among them, phenol novolac trees and the like are more preferable from the viewpoint of moldability. The compound containing the phenolic hydroxyl group may be used alone or in combination of two or more.
 前記アミン硬化剤としては、ジエチレントリアミン(DTA)、トリエチレンテトラミン(TTA)、テトラエチレンペンタミン(TEPA)、ジプロプレンジアミン(DPDA)、ジエチルアミノプロピルアミン(DEAPA)、N-アミノエチルピペラジン、メンセンジアミン(MDA)、イソフオロンジアミン(IPDA)、1,3-ビスアミノメチルシクロヘキサン(1,3-BAC)、ピペリジン、N,N,-ジメチルピペラジン、トリエチレンジアミン等の脂肪族アミン;m-キシレンジアミン(XDA)、メタンフェニレンジアミン(MPDA)、ジアミノジフェニルメタン(DDM)、ジアミノジフェニルスルホン(DDS)、ベンジルメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等の芳香族アミン等が挙げられる。 Examples of the amine curing agent include diethylenetriamine (DTA), triethylenetetramine (TTA), tetraethylenepentamine (TEPA), diproprendamine (DPDA), diethylaminopropylamine (DEAPA), N-aminoethylpiperazine and mensendiamine. (MDA), Isophorondiamine (IPDA), 1,3-bisaminomethylcyclohexane (1,3-BAC), piperidine, N, N, -dimethylpiperazine, triethylenediamine and other aliphatic amines; m-xylenediamine ( XDA), methanephenylenediamine (MPDA), diaminodiphenylmethane (DDM), diaminodiphenylsulfone (DDS), benzylmethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol, etc. Aromatic amines and the like can be mentioned.
 前記酸無水物硬化剤としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水コハク酸、メチルシクロヘキセンジカルボン酸無水物等が挙げられる。 Examples of the acid anhydride curing agent include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, ethylene glycol bistrimeritate, glycerol tristrimeritate, maleic anhydride, and tetrahydrophthalic anhydride. Methyltetrahydrochloride phthalic acid, endomethylenetetrahydrochloride phthalic acid, methylendomethylenetetrahydrochloride phthalic acid, methylbutenyltetrahydrochloride phthalic acid, dodecenyl succinic anhydride, hexahydrochloride phthalic acid, methylhexahydrohydride phthalic acid, succinic anhydride, Methylcyclohexene dicarboxylic acid anhydride and the like can be mentioned.
 前記エポキシ樹脂の使用量に対する前記硬化剤の使用量としては、例えば、官能基当量比(例えば、フェノール硬化剤の水酸基当量/エポキシ樹脂のエポキシ当量)として、特に制限されるものではないが、得られる硬化物の機械的物性等が良好である点から、前記エポキシ樹脂及び必要に応じて併用されるその他のエポキシ樹脂とのエポキシ基の合計1当量に対して、硬化剤中の活性基が0.5~1.5当量になる量が好ましく、0.8~1.2当量であることがより好ましい。 The amount of the curing agent used with respect to the amount of the epoxy resin used is not particularly limited as, for example, the functional group equivalent ratio (for example, the hydroxyl group equivalent of the phenol curing agent / the epoxy equivalent of the epoxy resin). Since the mechanical properties of the cured product to be obtained are good, the number of active groups in the curing agent is 0 with respect to a total of 1 equivalent of the epoxy group with the epoxy resin and other epoxy resins used in combination as needed. The amount is preferably 5.5 to 1.5 equivalents, more preferably 0.8 to 1.2 equivalents.
 なお、前記硬化性組成物には、前記エポキシ樹脂、及び、前記硬化剤以外に、本発明の効果を損なわない範囲において、他の樹脂を併用することができる。例えば、前記エポキシ樹脂以外のエポキシ樹脂、マレイミド樹脂、ビスマレイミド樹脂、ポリマレイミド樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、トリアジン含有クレゾールノボラック樹脂、スチレン-無水マレイン酸樹脂、ジアリルビスフェノールやトリアリルイソシアヌレート等のアリル基含有樹脂、ポリリン酸エステル、リン酸エステル-カーボネート共重合体等が挙げられる。これらの他の樹脂は、単独で用いても、2種以上を組み合わせて用いてもよい。 In addition to the epoxy resin and the curing agent, other resins can be used in combination with the curable composition as long as the effects of the present invention are not impaired. For example, epoxy resins other than the epoxy resin, maleimide resin, bismaleimide resin, polymaleimide resin, polyphenylene ether resin, polyimide resin, benzoxazine resin, triazine-containing cresol novolak resin, styrene-maleic anhydride resin, diallyl bisphenol and triallyl. Examples thereof include an allyl group-containing resin such as isocyanurate, a polyphosphate ester, and a phosphate ester-carbonate copolymer. These other resins may be used alone or in combination of two or more.
<溶媒>
 本発明の硬化性組成物は、無溶剤で調製しても構わないし、溶媒を含んでいてもよい。前記溶媒は、硬化性組成物の粘度を調整する機能等を有する。
<Solvent>
The curable composition of the present invention may be prepared without a solvent, or may contain a solvent. The solvent has a function of adjusting the viscosity of the curable composition and the like.
 前記溶媒の具体例としては、特に制限されないが、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等のエステル系溶剤;セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン、エチルベンゼン、メシチレン、1,2,3-トリメチルベンゼン、1,2,4-トリメチルベンゼン等の芳香族炭化水素、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶剤等が挙げられる。これらの溶媒は単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the solvent are not particularly limited, but are ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ether solvents such as diethyl ether and tetrahydrofuran; ethyl acetate, butyl acetate, cellosolve acetate and propylene glycol monomethyl. Ester solvents such as ether acetate and carbitol acetate; carbitols such as cellosolve and butyl carbitol, toluene, xylene, ethylbenzene, mecitylene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene and the like. Examples thereof include amide-based solvents such as aromatic hydrocarbons, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. These solvents may be used alone or in combination of two or more.
 前記溶媒の使用量としては、硬化性組成物の全質量に対して、10~90質量%であることが好ましく、20~80質量%であることがより好ましい。溶媒の使用量が10質量%以上であると、ハンドリング性に優れることから好ましい。一方、溶媒の使用量が90質量%以下であると、経済性の観点から好ましい。 The amount of the solvent used is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the curable composition. When the amount of the solvent used is 10% by mass or more, it is preferable because the handling property is excellent. On the other hand, when the amount of the solvent used is 90% by mass or less, it is preferable from the viewpoint of economy.
<添加剤>
 本発明の硬化性組成物は、必要に応じて、硬化促進剤、難燃剤、無機充填剤、シランカップリング剤、離型剤、顔料、着色剤、乳化剤等の種々の添加剤を配合することができる。
<Additives>
The curable composition of the present invention contains various additives such as a curing accelerator, a flame retardant, an inorganic filler, a silane coupling agent, a mold release agent, a pigment, a colorant, and an emulsifier, if necessary. Can be done.
<硬化促進剤>
 前記硬化促進剤としては、特に制限されないが、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、尿素系硬化促進剤等が挙げられる。なお、前記硬化促進剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
<Curing accelerator>
The curing accelerator is not particularly limited, and examples thereof include a phosphorus-based curing accelerator, an amine-based curing accelerator, an imidazole-based curing accelerator, a guanidine-based curing accelerator, and a urea-based curing accelerator. The curing accelerator may be used alone or in combination of two or more.
 前記リン系硬化促進剤としては、トリフェニルホスフィン、トリブチルホスフィン、トリパラトリルホスフィン、ジフェニルシクロヘキシルホスフィン、トリシクロヘキシルホスフィン等の有機ホスフィン化合物;トリメチルホスファイト、トリエチルホスファイト等の有機ホスファイト化合物;エチルトリフェニルホスホニウムブロミド、ベンジルトリフェニルホスホニウムクロリド、ブチルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ-p-トリルボレート、トリフェニルホスフィントリフェニルボラン、テトラフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムジシアナミド、ブチルフェニルホスホニウムジシアナミド、テトラブチルホスホニウムデカン酸塩等のホスホニウム塩等が挙げられる。 Examples of the phosphorus-based curing accelerator include organic phosphine compounds such as triphenylphosphine, tributylphosphine, triparatrilphosphine, diphenylcyclohexylphosphine and tricyclohexylphosphine; organic phosphite compounds such as trimethylphosphine and triethylphosphine; ethyltriphenyl. Phosphonium bromide, benzyltriphenylphosphonium chloride, butylphosphonium tetraphenylborate, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-trilborate, triphenylphosphine triphenylboran, tetraphenylphosphonium thiocyanate, tetraphenylphosphonium disianamide, Examples thereof include phosphonium salts such as butylphenylphosphonium dicyanamide and tetrabutylphosphonium decanoate.
 前記アミン系硬化促進剤としては、トリエチルアミン、トリブチルアミン、N,N-ジメチル-4-アミノピリジン(4-ジメチルアミノピリジン、DMAP)、2,4,6-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5.4.0]-ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]-ノネン-5(DBN)等が挙げられる。 Examples of the amine-based curing accelerator include triethylamine, tributylamine, N, N-dimethyl-4-aminopyridine (4-dimethylaminopyridine, DMAP), 2,4,6-tris (dimethylaminomethyl) phenol, 1, Examples thereof include 8-diazabicyclo [5.4.0] -undecene-7 (DBU) and 1,5-diazabicyclo [4.3.0] -Nonen-5 (DBN).
 前記イミダゾール系硬化促進剤としては、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン等が挙げられる。 Examples of the imidazole-based curing accelerator include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and 2-phenyl. -4-Methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl -4-Methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2-phenylimidazole isocyanuric acid adduct , 2-Phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5 hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl-2 -Methyl-3-benzylimidazolium chloride, 2-methylimidazoline and the like can be mentioned.
 前記グアニジン系硬化促進剤としては、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-ブチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド等が挙げられる。 Examples of the guanidine-based curing accelerator include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1, 5,7-Triazabicyclo [4.4.0] deca-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] deca-5-ene, 1-methylbiguanide , 1-ethylbiguanide, 1-butylbiguanide, 1-cyclohexylbiguanide, 1-allylbiguanide, 1-phenylbiguanide and the like.
 前記尿素系硬化促進剤としては、3-フェニル-1,1-ジメチル尿素、3-(4-メチルフェニル)-1,1-ジメチル尿素、クロロフェニル尿素、3-(4-クロロフェニル)-1,1-ジメチル尿素、3-(3,4-ジクロルフェニル)-1,1-ジメチル尿素等が挙げられる。 Examples of the urea-based curing accelerator include 3-phenyl-1,1-dimethylurea, 3- (4-methylphenyl) -1,1-dimethylurea, chlorophenylurea, and 3- (4-chlorophenyl) -1,1. -Dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea and the like can be mentioned.
 前記硬化促進剤のうち、特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルホスフィン、第3級アミンでは1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)を用いることが好ましい。 Among the curing accelerators, triphenylphosphine and tertiary amines are used as phosphorus compounds because they are excellent in curability, heat resistance, electrical properties, moisture resistance reliability, etc., especially when used as a semiconductor encapsulating material. It is preferable to use 1,8-diazabicyclo- [5.4.0] -undecene (DBU).
 前記硬化促進剤の使用量は、所望の硬化性を得るために適宜調整できるが、前記エポキシ樹脂と硬化剤の混合物の合計量100質量部に対して、0.01~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。前記硬化促進剤の使用量が前記範囲内にあると、硬化性、及び、絶縁信頼性に優れ、好ましい。 The amount of the curing accelerator used can be appropriately adjusted in order to obtain the desired curability, but it is 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the mixture of the epoxy resin and the curing agent. Is preferable, and 0.1 to 5 parts by mass is more preferable. When the amount of the curing accelerator used is within the above range, the curing property and the insulation reliability are excellent, which is preferable.
<難燃剤>
 前記難燃剤としては、特に制限されないが、無機リン系難燃剤、有機リン系難燃剤、ハロゲン系難燃剤等が挙げられる。なお、難燃剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
<Flame retardant>
The flame retardant is not particularly limited, and examples thereof include an inorganic phosphorus flame retardant, an organic phosphorus flame retardant, and a halogen flame retardant. The flame retardant may be used alone or in combination of two or more.
 前記無機リン系難燃剤としては、特に制限されないが、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等が挙げられる。 The inorganic phosphorus-based flame retardant is not particularly limited, and examples thereof include red phosphorus; ammonium phosphate such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; and phosphoric acid amide.
 前記有機リン系難燃剤としては、特に制限されないが、メチルアシッドホスフェート、エチルアシッドホスフェート、イソプロピルアシッドホスフェート、ジブチルホスフェート、モノブチルホスフェート、ブトキシエチルアシッドホスフェート、2-エチルヘキシルアシッドホスフェート、ビス(2-エチルヘキシル)ホスフェート、モノイソデシルアシッドホスフェート、ラウリルアシッドホスフェート、トリデシルアシッドホスフェート、ステアリルアシッドホスフェート、イソステアリルアシッドホスフェート、オレイルアシッドホスフェート、ブチルピロホスフェート、テトラコシルアシッドホスフェート、エチレングリコールアシッドホスフェート、(2-ヒドロキシエチル)メタクリレートアシッドホスフェート等のリン酸エステル;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、ジフェニルホスフィンオキシド等ジフェニルホスフィン;10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(1,4-ジオキシナフタレン)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、ジフェニルホスフィニルヒドロキノン、ジフェニルホスフェニル-1,4-ジオキシナフタリン、1,4-シクロオクチレンホスフィニル-1,4-フェニルジオール、1,5-シクロオクチレンホスフィニル-1,4-フェニルジオール等のリン含有フェノール;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5-ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状リン化合物;前記リン酸エステル、前記ジフェニルホスフィン、前記リン含有フェノールと、エポキシ樹脂やアルデヒド化合物、フェノール化合物と反応させて得られる化合物等が挙げられる。 The organic phosphorus-based flame retardant is not particularly limited, but is limited to methyl acid phosphate, ethyl acid phosphate, isopropyl acid phosphate, dibutyl phosphate, monobutyl phosphate, butoxyethyl acid phosphate, 2-ethylhexyl acid phosphate, and bis (2-ethylhexyl). Phosphate, Monoisodecyl Acid Phosphate, Lauryl Acid Phosphate, Tridecyl Acid Phosphate, Stearyl Acid Phosphate, Isostearyl Acid Phosphate, Oleyl Acid Phosphate, Butyl Pyrophosphate, Tetracosyl Acid Phosphate, Ethylene Glycol Acid Phosphate, (2-Hydroxyethyl) ) Phosphate esters such as methacrylate acid phosphate; 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphine oxide and the like diphenylphosphine; 10- (2,5-dihydroxyphenyl) -10H- 9-Oxa-10-phosphaphenanthrene-10-oxide, 10- (1,4-dioxynaphthalene) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphinylhydroquinone, diphenylphos Phosphorus-containing phenols such as phenyl-1,4-dioxynaphthalin, 1,4-cyclooctylenephosphinyl-1,4-phenyldiol, 1,5-cyclooctylenephosphinyl-1,4-phenyldiol 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10 -Cyclic phosphorus compounds such as (2,7-dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide; the phosphoric acid ester, the diphenylphosphine, the phosphorus-containing phenol, and epoxy resins. Examples thereof include an aldehyde compound and a compound obtained by reacting with a phenol compound.
 前記ハロゲン系難燃剤としては、特に制限されないが、臭素化ポリスチレン、ビス(ペンタブロモフェニル)エタン、テトラブロモビスフェノールAビス(ジブロモプロピルエーテル)、1,2、-ビス(テトラブロモフタルイミド)、2,4,6-トリス(2,4,6-トリブロモフェノキシ)-1,3,5-トリアジン、テトラブロモフタル酸等が挙げられる。 The halogen-based flame retardant is not particularly limited, but is limited to brominated polystyrene, bis (pentabromophenyl) ethane, tetrabromobisphenol A bis (dibromopropyl ether), 1,2, -bis (tetrabromophthalimide), 2, Examples thereof include 4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine and tetrabromophthalic acid.
 前記難燃剤の使用量は、前記エポキシ樹脂100質量部に対して、0.1~20質量部であることが好ましい。 The amount of the flame retardant used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin.
<無機充填剤>
 前記無機充填剤としては、特に制限されないが、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、リン酸タングステン酸ジルコニウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、カーボンブラック等が挙げられる。これらのうち、シリカを用いることが好ましい。この際、シリカとしては、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が用いられうる。中でも、無機質充填剤をより多く配合することが可能となることから、前記溶融シリカが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、且つ、硬化性組成物の溶融粘度の上昇を抑制するためには、球状のものを主に用いることが好ましい。更に、球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。なお、前記無機充填剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
<Inorganic filler>
The inorganic filler is not particularly limited, but is silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, and nitrided. Boron, aluminum hydroxide, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, zirconium oxide, barium titanate, barium zirconate, barium zirconate , Calcium zirconate, zirconium phosphate, zirconium tungstate phosphate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, carbon black and the like. Of these, it is preferable to use silica. At this time, as the silica, amorphous silica, fused silica, crystalline silica, synthetic silica, hollow silica and the like can be used. Above all, the molten silica is preferable because it is possible to add a larger amount of the inorganic filler. The fused silica can be used in either a crushed form or a spherical shape, but in order to increase the blending amount of the fused silica and suppress the increase in the melt viscosity of the curable composition, a spherical one is mainly used. Is preferable. Further, in order to increase the blending amount of spherical silica, it is preferable to appropriately adjust the particle size distribution of spherical silica. The inorganic filler may be used alone or in combination of two or more.
 また、前記無機充填剤は、必要に応じて表面処理されていてもよい。この際、使用されうる表面処理剤としては、特に制限されないが、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物、チタネート系カップリング剤等が使用されうる。表面処理剤の具体例としては、3-グリシドキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、ヘキサメチルジシラザン等が挙げられる。 Further, the inorganic filler may be surface-treated if necessary. At this time, the surface treatment agent that can be used is not particularly limited, but is an aminosilane-based coupling agent, an epoxysilane-based coupling agent, a mercaptosilane-based coupling agent, a silane-based coupling agent, an organosilazane compound, and a titanate-based cup. Ring agents and the like can be used. Specific examples of the surface treatment agent include 3-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and hexamethyldi. Silazan and the like can be mentioned.
 前記無機充填剤の使用量は、前記エポキシ樹脂と前記硬化剤の混合物の合計量100質量部に対して、0.5~95質量部であることが好ましい。前記無機充填剤の使用量が前記範囲内にあると、難燃性、及び、絶縁信頼性に優れ、好ましい。 The amount of the inorganic filler used is preferably 0.5 to 95 parts by mass with respect to 100 parts by mass of the total amount of the mixture of the epoxy resin and the curing agent. When the amount of the inorganic filler used is within the above range, flame retardancy and insulation reliability are excellent, which is preferable.
 また、本発明の特性を損なわない範囲であれば、前記無機充填剤に加えて、有機充填剤を配合することができる。前記有機充填剤としては、例えば、ポリアミド粒子等が挙げられる。 Further, an organic filler can be blended in addition to the inorganic filler as long as the characteristics of the present invention are not impaired. Examples of the organic filler include polyamide particles and the like.
 本発明は、前記硬化性組成物の硬化物に関する。前記エポキシ樹脂を用いることで、前記エポキシ樹脂を含有する前記硬化性組成物から得られる硬化物は、高靭性で低吸湿性を発揮でき、好ましい態様となる。 The present invention relates to a cured product of the curable composition. By using the epoxy resin, the cured product obtained from the curable composition containing the epoxy resin can exhibit high toughness and low hygroscopicity, which is a preferable embodiment.
 前記硬化性組成物を硬化反応させた硬化物を得る方法としては、例えば、加熱硬化する際の加熱温度は、特に制限されないが、通常、100~300℃であり、加熱時間としては、1~24時間である。 As a method for obtaining a cured product obtained by subjecting the curable composition to a curing reaction, for example, the heating temperature at the time of heat curing is not particularly limited, but is usually 100 to 300 ° C., and the heating time is 1 to 1 to 1. 24 hours.
 本発明の硬化物は、吸湿率が1.3%以下であることが好ましい。前記吸湿率の測定方法は、本願実施例における評価方法と同様である。 The cured product of the present invention preferably has a hygroscopicity of 1.3% or less. The method for measuring the hygroscopicity is the same as the evaluation method in the examples of the present application.
 また、本願発明の硬化物は、シャルピー衝撃強度が3J/cm以上であることが好ましく、3.5J/cm以上であることがより好ましく、4J/cm以上であることが特に好ましい。シャルピー衝撃強度の測定方法は、本願実施例における評価方法と同様である。 Further, the cured product of the present invention preferably has a Charpy impact strength of 3 J / cm 2 or more, more preferably 3.5 J / cm 2 or more, and particularly preferably 4 J / cm 2 or more. The method for measuring the Charpy impact strength is the same as the evaluation method in the examples of the present application.
<半導体封止材料>
 本発明は、前記硬化性組成物を含有する半導体封止材料に関する。前記硬化性組成物を用いて得られる半導体封止材料は、前記エポキシ樹脂を使用するため、低粘度で流動性に優れ、更に吸湿性と靭性が改善されているため、製造工程における加工性や成形性、耐リフロー性に優れ、好ましい態様となる。
<Semiconductor encapsulation material>
The present invention relates to a semiconductor encapsulating material containing the curable composition. Since the semiconductor encapsulation material obtained by using the curable composition uses the epoxy resin, it has low viscosity and excellent fluidity, and further has improved hygroscopicity and toughness, so that it can be processed in the manufacturing process. It has excellent moldability and reflow resistance, which is a preferable embodiment.
 前記半導体封止材料に用いられる前記硬化性組成物には、無機充填剤を含有することができる。なお、前記無機充填剤の充填率としては、前記硬化性組成物100質量部に対して、例えば、無機充填剤を0.5~95質量部の範囲で用いることができる。 The curable composition used for the semiconductor encapsulant material can contain an inorganic filler. As the filling rate of the inorganic filler, for example, the inorganic filler can be used in the range of 0.5 to 95 parts by mass with respect to 100 parts by mass of the curable composition.
 前記半導体封止材料を得る方法としては、前記硬化性組成物に、更に任意成分である添加剤とを必要に応じて、押出機、ニ-ダ、ロ-ル等を用いて均一になるまで充分に溶融混合する方法などが挙げられる。 As a method for obtaining the semiconductor encapsulating material, the curable composition is further added with an additive as an optional component, if necessary, using an extruder, a feeder, a roll, or the like until the composition becomes uniform. Examples thereof include a method of sufficiently melting and mixing.
<半導体装置>
 本発明は、前記半導体封止材料の硬化物を含む半導体装置に関する。前記硬化性組成物を用いて得られる半導体封止材料を用いて得られる半導体装置は、前記エポキシ樹脂を使用するため、低粘度で流動性に優れ、更に、吸湿性と靭性が改善されているため、製造工程における加工性や成形性、耐リフロー性に優れ、好ましい態様となる。
<Semiconductor device>
The present invention relates to a semiconductor device containing a cured product of the semiconductor encapsulating material. Since the semiconductor device obtained by using the semiconductor encapsulating material obtained by using the curable composition uses the epoxy resin, it has low viscosity and excellent fluidity, and further has improved moisture absorption and toughness. Therefore, it is excellent in processability, moldability, and reflow resistance in the manufacturing process, which is a preferable embodiment.
 前記半導体装置を得る方法としては、前記半導体封止材料を注型、または、トランスファー成形機、射出成形機などを用いて成形し、さらに室温(20℃)~250℃の温度範囲で、加熱硬化する方法が挙げられる。 As a method for obtaining the semiconductor device, the semiconductor encapsulant material is cast or molded using a transfer molding machine, an injection molding machine, or the like, and further heat-cured in a temperature range of room temperature (20 ° C.) to 250 ° C. There is a way to do it.
<プリプレグ>
 本発明は、補強基材、及び、前記補強基材に含浸した前記硬化性組成物の半硬化物を有するプリプレグに関する。上記硬化性組成物からプリプレグを得る方法としては、後述する有機溶媒を配合して、ワニス化した硬化性組成物を、補強基材(紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布など)に含浸したのち、用いた溶媒種に応じた加熱温度、好ましくは50~170℃で加熱することによって、得る方法が挙げられる。この時用いる硬化性組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。
<Prepreg>
The present invention relates to a prepreg having a reinforcing base material and a semi-cured product of the curable composition impregnated in the reinforcing base material. As a method for obtaining a prepreg from the curable composition, a curable composition varnished by blending an organic solvent described later is used as a reinforcing base material (paper, glass cloth, glass non-woven fabric, aramid paper, aramid cloth, glass). A method of obtaining the material by impregnating it with a mat, a glass roving cloth, etc.) and then heating it at a heating temperature according to the solvent type used, preferably 50 to 170 ° C. can be mentioned. The mass ratio of the curable composition and the reinforcing base material used at this time is not particularly limited, but it is usually preferable to prepare the resin content in the prepreg to be 20 to 60% by mass.
 ここで用いる有機溶媒としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、下記のようにプリプレグからプリント回路基板をさらに製造する場合には、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶媒を用いることが好ましく、また、不揮発分が40~80質量%となる割合で用いることが好ましい。 Examples of the organic solvent used here include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like. It can be appropriately selected depending on the application, but for example, when further producing a printed circuit board from prepylene as described below, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, or dimethylformamide. , It is preferable to use the non-volatile content at a ratio of 40 to 80% by mass.
<回路基板>
 本発明は、前記プリプレグ、及び、銅箔の積層体である回路基板に関する。上記硬化性組成物からプリント回路基板を得る方法としては、上記プリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~300℃で10分~3時間、加熱圧着させる方法が挙げられる。
<Circuit board>
The present invention relates to the circuit board which is a laminated body of the prepreg and a copper foil. As a method for obtaining a printed circuit board from the curable composition, the prepregs are laminated by a conventional method, copper foils are appropriately laminated, and the pressure is 170 to 300 ° C. for 10 minutes to 3 hours under a pressure of 1 to 10 MPa. An example is a method of heat-bonding.
<ビルドアップフィルム>
 本発明は、前記硬化性組成物を含有するビルドアップフィルムに関する。本発明のビルドアップフィルムを製造する方法としては、上記硬化性組成物を、支持フィルム上に塗布し、硬化性組成物層を形成させて多層プリント配線板用の接着フィルムとすることにより製造する方法が挙げられる。
<Build-up film>
The present invention relates to a build-up film containing the curable composition. As a method for producing the build-up film of the present invention, the curable composition is applied onto a support film to form a curable composition layer to form an adhesive film for a multilayer printed wiring board. The method can be mentioned.
 硬化性組成物からビルドアップフィルムを製造する場合、該フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70~140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール、あるいは、スルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。 When a build-up film is produced from a curable composition, the film is softened under the temperature conditions of laminating (usually 70 to 140 ° C.) in the vacuum laminating method, and at the same time as laminating the circuit board, via holes existing in the circuit board. Alternatively, it is important to exhibit fluidity (resin flow) capable of filling the through hole with the resin, and it is preferable to blend each of the above components so as to exhibit such characteristics.
 ここで、多層プリント配線板のスルーホールの直径は、通常0.1~0.5mm、深さは通常0.1~1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。 Here, the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm, and it is usually preferable to enable resin filling in this range. .. When laminating both sides of the circuit board, it is desirable to fill about 1/2 of the through hole.
 上記した接着フィルムを製造する方法は、具体的には、ワニス状の上記硬化性組成物を調製した後、支持フィルム(Y)の表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶媒を乾燥させて硬化性組成物からなる組成物層(X)を形成させることにより製造することができる。 Specifically, in the method for producing the adhesive film described above, after preparing the varnish-like curable composition, the varnish-like composition is applied to the surface of the support film (Y), and further heated. Alternatively, it can be produced by drying an organic solvent by blowing hot air or the like to form a composition layer (X) made of a curable composition.
 形成される組成物層(X)の厚さは、通常、導体層の厚さ以上とすることが好ましい。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層の厚さは10~100μmの厚みを有するのが好ましい。 The thickness of the composition layer (X) to be formed is usually preferably equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm.
 なお、本発明における組成物層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。 The composition layer (X) in the present invention may be protected by a protective film described later. By protecting with a protective film, it is possible to prevent dust and the like from adhering to the surface of the resin composition layer and scratches.
 上記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。 The above-mentioned support film and protective film include polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter, may be abbreviated as "PET"), polyesters such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples include metal foils such as patterns, copper foils, and aluminum foils. The support film and the protective film may be subjected to a mold release treatment in addition to the mud treatment and the corona treatment.
 支持フィルムの厚さは特に限定されないが、通常10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。 The thickness of the support film is not particularly limited, but is usually 10 to 150 μm, and is preferably used in the range of 25 to 50 μm. The thickness of the protective film is preferably 1 to 40 μm.
 上記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。 The above-mentioned support film (Y) is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film (Y) is peeled off after the adhesive film is heat-cured, it is possible to prevent dust and the like from adhering in the curing step. When peeling after curing, the support film is usually subjected to a mold release treatment in advance.
<その他の用途>
 本発明の硬化性組成物により得られる硬化物は、低吸湿性、及び、高靭性などに優れることから、半導体封止材料、半導体装置、プリプレグ、回路基板、及び、ビルドアップフィルム等の用途だけでなく、ビルドアップ基板、接着剤、レジスト材料、繊維強化樹脂のマトリクス樹脂など、各種用途にも好適に使用可能であり、用途においては、これらに限定されるものではない。
<Other uses>
Since the cured product obtained by the curable composition of the present invention is excellent in low moisture absorption and high toughness, it is only used for semiconductor encapsulation materials, semiconductor devices, prepregs, circuit boards, build-up films and the like. However, it can be suitably used for various applications such as build-up substrates, adhesives, resist materials, and matrix resins of fiber-reinforced resins, and the applications are not limited to these.
 以下に実施例を用いて、本発明を更に詳細に説明するが、本発明は、これらの範囲に限定されるものではない。なお、物性・特性の測定・評価は、以下の通り実施し、評価結果を表1、及び、表2に示した。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these scopes. The measurement and evaluation of physical properties and characteristics were carried out as follows, and the evaluation results are shown in Tables 1 and 2.
<軟化点>
 JIS K7234(環球法)に準拠して、軟化点(℃)を測定した。
<Softening point>
The softening point (° C.) was measured according to JIS K7234 (ring ball method).
<エポキシ当量>
 JIS K 7236に基づいて測定した。
<Epoxy equivalent>
Measured based on JIS K 7236.
<150℃における溶融粘度>
 ASTM D4287に準拠し、ICI粘度計にて測定した。
<Melting viscosity at 150 ° C>
It was measured with an ICI viscometer according to ASTM D4287.
<GPC測定>
 測定装置:東ソー株式会社製「HLC-8320 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器:RI(示差屈折計)
 データ処理:東ソー株式会社製「GPCワークステーション EcoSEC-WorkStation」
 測定条件:カラム温度  40℃
      展開溶媒   テトラヒドロフラン
      流速     1.0ml/分
 標準  :前記「GPCワークステーション EcoSEC―WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料:以下に示す合成例・実施例等で得られたエポキシ樹脂などの固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)を使用し、前記GPCの測定結果より、得られたエポキシ樹脂等の合成を確認した。また、得られたエポキシ樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、及び、分散度(Mw/Mn)を算出した。
<GPC measurement>
Measuring device: "HLC-8320 GPC" manufactured by Tosoh Corporation,
Column: Guard column "HXL-L" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G3000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G4000HXL" manufactured by Tosoh Corporation
Detector: RI (Differential Refractometer)
Data processing: "GPC Workstation EcoSEC-WorkStation" manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene with a known molecular weight was used in accordance with the measurement manual of the above-mentioned "GPC workstation EcoSEC-WorkStation".
(Polystyrene used)
"A-500" manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
"F-1" manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
"F-4" manufactured by Tosoh Corporation
"F-10" manufactured by Tosoh Corporation
"F-20" manufactured by Tosoh Corporation
"F-40" manufactured by Tosoh Corporation
"F-80" manufactured by Tosoh Corporation
"F-128" manufactured by Tosoh Corporation
Sample: The measurement result of the GPC was obtained by filtering 1.0 mass% of a tetrahydrofuran solution in terms of solid content such as epoxy resin obtained in the following synthesis examples and examples with a microfilter (50 μl). The synthesis of the obtained epoxy resin and the like was confirmed. In addition, the number average molecular weight (Mn), weight average molecular weight (Mw), and dispersity (Mw / Mn) of the obtained epoxy resin were calculated.
(合成例1:フェノール性水酸基含有樹脂(P2-1)の合成)
 温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、フェノール627.4g(6.66モル)とトルエン313gを仕込み、p-トルエンスルホン酸6.3gを加えて、115℃まで昇温した。原料が完全に溶解したことを確認後、ジビニルベンゼンとエチルビニルベンゼンの混合物(新日鉄化学社製「DVB-810」(ジビニルベンゼンとエチルビニルベンゼンとの質量比:82/18)520.8gを2時間かけて滴下し、そのまま115℃で2時間反応させた。反応終了後、80℃まで降温し、水酸化ナトリウム水溶液でp-トルエンスルホン酸を中和した。未反応のフェノール及びトルエンを加熱減圧下に除去し、フェノール性水酸基含有樹脂(P2-1)を得た。
 得られたフェノール性水酸基含有樹脂(P2-1)の外観は固形であり、水酸基当量は208g/当量であり、軟化点は55℃であった。
(Synthesis Example 1: Synthesis of phenolic hydroxyl group-containing resin (P2-1))
In a flask equipped with a thermometer, a cooling tube, a fractional distillation tube, a nitrogen gas introduction tube, and a stirrer, 627.4 g (6.66 mol) of phenol and 313 g of toluene were charged, and 6.3 g of p-toluenesulfonic acid was added. , The temperature was raised to 115 ° C. After confirming that the raw materials were completely dissolved, 20.8 g of a mixture of divinylbenzene and ethylvinylbenzene (“DVB-810” (mass ratio of divinylbenzene to ethylvinylbenzene: 82/18) manufactured by Nippon Steel Chemical Co., Ltd.) was added. The mixture was added dropwise over time and reacted at 115 ° C. for 2 hours. After the reaction was completed, the temperature was lowered to 80 ° C., and p-toluenesulfonic acid was neutralized with an aqueous sodium hydroxide solution. Unreacted phenol and toluene were heated and reduced in pressure. It was removed below to obtain a phenolic hydroxyl group-containing resin (P2-1).
The obtained phenolic hydroxyl group-containing resin (P2-1) had a solid appearance, a hydroxyl group equivalent of 208 g / equivalent, and a softening point of 55 ° C.
 上記で得られたフェノール性水酸基含有樹脂(P2-1)は、以下の構造式で表されるフェノール性水酸基含有樹脂を含有するものであった。 The phenolic hydroxyl group-containing resin (P2-1) obtained above contained the phenolic hydroxyl group-containing resin represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000003
[上記式中、nは1~10の整数であり、mはそれぞれ独立して0~4の整数である。]
Figure JPOXMLDOC01-appb-C000003
[In the above equation, n is an integer of 1 to 10, and m is an independent integer of 0 to 4, respectively. ]
(実施例1:エポキシ樹脂(1)の合成)
 温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、合成例1で得られたフェノール性水酸基含有樹脂(P2-1)278.8g、4,4’-ビフェノール61.2g、エピクロルヒドリン1109g、n-ブタノール388g、水55gを仕込み溶解させた。70℃に昇温した後、20質量%水酸化ナトリウム水溶液450gを5時間かけて滴下した。その後、同条件で0.5時間撹拌を続けた。その後、未反応のエピクロルヒドリンを減圧蒸留によって留去させた。続いて、得られた粗エポキシ樹脂にメチルイソブチルケトン1000gを加え溶解した。更にこの溶液に5質量%水酸化ナトリウム水溶液33gを添加して、80℃で2時間反応させた後に、洗浄液のpHが中性となるまで水220gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して、エポキシ樹脂(1)を得た。得られたエポキシ樹脂(1)の物性値を表1に示した。
(Example 1: Synthesis of epoxy resin (1))
A flask equipped with a thermometer, a dropping funnel, a cooling tube, and a stirrer was purged with nitrogen gas to obtain 278.8 g of the phenolic hydroxyl group-containing resin (P2-1) in Synthesis Example 1, 4,4'-biphenol. 61.2 g, epichlorhydrin 1109 g, n-butanol 388 g, and water 55 g were charged and dissolved. After raising the temperature to 70 ° C., 450 g of a 20 mass% sodium hydroxide aqueous solution was added dropwise over 5 hours. Then, stirring was continued for 0.5 hours under the same conditions. Then, unreacted epichlorohydrin was distilled off by vacuum distillation. Subsequently, 1000 g of methyl isobutyl ketone was added to the obtained crude epoxy resin and dissolved. Further, 33 g of a 5 mass% sodium hydroxide aqueous solution was added to this solution and reacted at 80 ° C. for 2 hours, and then washing with 220 g of water was repeated 3 times until the pH of the washing solution became neutral. Then, the inside of the system was dehydrated by azeotrope, and after undergoing microfiltration, the solvent was distilled off under reduced pressure to obtain an epoxy resin (1). The physical characteristics of the obtained epoxy resin (1) are shown in Table 1.
 上記で得られたエポキシ樹脂(1)は、以下の構造式で表されるエポキシ樹脂を含有するものであった。 The epoxy resin (1) obtained above contained an epoxy resin represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000004
[上記式中、nは1~10の整数であり、mはそれぞれ独立して0~4の整数であり、rは0~10の整数である。]
Figure JPOXMLDOC01-appb-C000004
[In the above equation, n is an integer of 1 to 10, m is an independent integer of 0 to 4, and r is an integer of 0 to 10. ]
(実施例2:エポキシ樹脂(2)の合成)
 実施例1において、フェノール性水酸基含有樹脂(P2-1)306.0g、及び、4,4’-ビフェノール34.0gに変更した以外は、実施例1と同様に反応を行い、エポキシ樹脂(2)を得た。得られたエポキシ樹脂(2)の物性値は表1に示した。
(Example 2: Synthesis of epoxy resin (2))
In Example 1, the reaction was carried out in the same manner as in Example 1 except that the phenolic hydroxyl group-containing resin (P2-1) was changed to 306.0 g and 4,4'-biphenol 34.0 g, and the epoxy resin (2) was used. ) Was obtained. The physical characteristics of the obtained epoxy resin (2) are shown in Table 1.
 上記で得られたエポキシ樹脂(2)は、以下の構造式で表されるエポキシ樹脂を含有するものであった。 The epoxy resin (2) obtained above contained an epoxy resin represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000005
[上記式中、nは1~10の整数であり、mはそれぞれ独立して0~4の整数であり、rは0~10の整数である。]
Figure JPOXMLDOC01-appb-C000005
[In the above equation, n is an integer of 1 to 10, m is an independent integer of 0 to 4, and r is an integer of 0 to 10. ]
(実施例3:エポキシ樹脂(3)の合成)
 実施例1において、フェノール性水酸基含有樹脂(P2-1)329.8g、及び、4,4’-ビフェノール10.2gに変更した以外は、実施例1と同様に反応を行い、エポキシ樹脂(3)を得た。得られたエポキシ樹脂(3)の物性値は表1に示した。
(Example 3: Synthesis of epoxy resin (3))
In Example 1, the reaction was carried out in the same manner as in Example 1 except that the phenolic hydroxyl group-containing resin (P2-1) was changed to 329.8 g and 4,4'-biphenol 10.2 g, and the epoxy resin (3) was used. ) Was obtained. The physical characteristics of the obtained epoxy resin (3) are shown in Table 1.
 上記で得られたエポキシ樹脂(3)は、以下の構造式で表されるエポキシ樹脂を含有するものであった。 The epoxy resin (3) obtained above contained an epoxy resin represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000006
[上記式中、nは1~10の整数であり、mはそれぞれ独立して0~4の整数であり、rは0~10の整数である。]
Figure JPOXMLDOC01-appb-C000006
[In the above equation, n is an integer of 1 to 10, m is an independent integer of 0 to 4, and r is an integer of 0 to 10. ]
(比較例1:エポキシ樹脂(1’)の合成)
 実施例1におけるフェノール性水酸基含有樹脂(P2-1)、及び、4,4’-ビフェノールの混合物の代わりに、フェノール性水酸基含有樹脂(P2-1)300.0gのみを用いた以外は、実施例1と同様に反応を行い、エポキシ樹脂(1’)を得た。得られたエポキシ樹脂(1’)の物性値は表1に示した。
(Comparative Example 1: Synthesis of Epoxy Resin (1'))
Implementation except that only 300.0 g of the phenolic hydroxyl group-containing resin (P2-1) was used instead of the mixture of the phenolic hydroxyl group-containing resin (P2-1) and 4,4'-biphenol in Example 1. The reaction was carried out in the same manner as in Example 1 to obtain an epoxy resin (1'). The physical characteristics of the obtained epoxy resin (1') are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
 注)上記表1中の「混合物中」とは、ビフェノール化合物(P1)とフェノール性水酸基含有樹脂(P2)の混合物中の、ビフェノール化合物(P1)に相当する4,4’-ビフェノールの含有量(質量%)を示す。
Figure JPOXMLDOC01-appb-T000007
Note) "In the mixture" in Table 1 above means the content of 4,4'-biphenol corresponding to the biphenol compound (P1) in the mixture of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2). (Mass%) is shown.
 実施例4~6、及び、比較例2
<硬化性組成物の調製>
 実施例1~3、及び、比較例1で製造したエポキシ樹脂を用いて、下記表2に示す組成で配合し、溶融混練をすることで、硬化性組成物(半導体封止用エポキシ樹脂組成物)を調製した。
Examples 4 to 6 and Comparative Example 2
<Preparation of curable composition>
The epoxy resins produced in Examples 1 to 3 and Comparative Example 1 are blended in the compositions shown in Table 2 below and melt-kneaded to form a curable composition (epoxy resin composition for semiconductor encapsulation). ) Was prepared.
<吸湿性評価>
 各硬化性組成物を用いて、硬化物の厚さが2.4mmになるように、常圧プレス中で150℃、10分間の条件で硬化させた後、アフターキュアを175℃、5時間することで評価用硬化物を得た。この評価用硬化物を、温度/湿度:85℃/85%の環境下で、300時間放置した後、下記式にて、吸湿率(%)を算出し、吸湿性を評価した。
 吸湿率(%)=[100×(試験後の試験片の質量-試験前の試験片の質量)/(試験前の試験片の質量)]
<Hygroscopic evaluation>
Each curable composition is cured in a normal pressure press at 150 ° C. for 10 minutes so that the thickness of the cured product is 2.4 mm, and then aftercure is performed at 175 ° C. for 5 hours. As a result, a cured product for evaluation was obtained. The cured product for evaluation was left to stand for 300 hours in an environment of temperature / humidity: 85 ° C./85%, and then the hygroscopicity (%) was calculated by the following formula to evaluate the hygroscopicity.
Hygroscopicity (%) = [100 x (mass of test piece after test-mass of test piece before test) / (mass of test piece before test)]
<靭性評価>
 各硬化性組成物を用いて、JIS K 6911に準拠し、175℃×120秒間、成型圧6.9MPaの条件で、トランスファー成型し、更にポストキュアとして、175℃で5時間の処理を行い、シャルピー衝撃強度試験用の試験片を作成した。得られた試験片をPendulum Impact Tester Zwick 5102を用いて、シャルピー衝撃強度(J/cm)を測定し、靭性を評価した。
<Toughness evaluation>
Each curable composition was transferred according to JIS K 6911 at 175 ° C. for 120 seconds under the condition of a molding pressure of 6.9 MPa, and further subjected to post-cure treatment at 175 ° C. for 5 hours. A test piece for Charpy impact strength test was prepared. The obtained test piece was measured for Charpy impact strength (J / cm 2 ) using a Pendulum Impact Tester Zwick 5102, and the toughness was evaluated.
Figure JPOXMLDOC01-appb-T000008
 注)上記表2中の「TD-2131」は硬化剤であり、フェノールノボラック型フェノール樹脂(DIC株式会社製「TD-2131」水酸基当量104g/当量)である。また、「TPP」は硬化促進剤であり、トリフェニルホスフィン(北興化学工業株式会社製「TPP」)である。
Figure JPOXMLDOC01-appb-T000008
Note) "TD-2131" in Table 2 above is a curing agent and is a phenol novolac type phenol resin ("TD-2131" hydroxyl group equivalent manufactured by DIC Corporation, 104 g / equivalent). Further, "TPP" is a curing accelerator and is triphenylphosphine ("TPP" manufactured by Hokuko Chemical Industry Co., Ltd.).
 上記表1、及び、表2の評価結果より、全ての実施例において得られたエポキシ樹脂は低粘度で高流動性に優れ、良好な成形性に寄与でき、硬化性組成物(ブレンド品)を用いて得られた硬化物は、低吸湿性で耐リフロー性に優れると共に、シャルピー衝撃試験においても高い値を示し、高靭性であることが確認でき、低吸湿性と高靭性の両立を図ることができ、電子部品封止材料用途においての使用が特に有用であることが確認できた。 From the evaluation results in Tables 1 and 2 above, the epoxy resins obtained in all the examples have low viscosity, excellent high fluidity, can contribute to good moldability, and provide a curable composition (blended product). The cured product obtained by using it has low hygroscopicity and excellent reflow resistance, and also shows a high value in the Charpy impact test, confirming that it has high toughness, and achieves both low hygroscopicity and high toughness. It was confirmed that it is particularly useful for use in electronic component encapsulation material applications.
 一方、上記表1、及び、表2の評価結果より、比較例1のエポキシ樹脂(1’)を用いた比較例2は、実施例と比較して、靭性に劣る結果となった。 On the other hand, from the evaluation results of Tables 1 and 2 above, Comparative Example 2 using the epoxy resin (1') of Comparative Example 1 was inferior in toughness as compared with Example.

Claims (13)

  1.  ビフェノール化合物(P1)のグリシジルエーテル化物(E1)、及び、
     フェノール性水酸基含有化合物と芳香族ジビニル化合物とを反応原料とするフェノール性水酸基含有樹脂(P2)のグリシジルエーテル化物(E2)を含有するエポキシ樹脂。
    The glycidyl etherified product (E1) of the biphenol compound (P1), and
    An epoxy resin containing a glycidyl etherified product (E2) of a phenolic hydroxyl group-containing resin (P2) using a phenolic hydroxyl group-containing compound and an aromatic divinyl compound as reaction raw materials.
  2.  ビフェノール化合物(P1)、及び、フェノール性水酸基含有化合物と芳香族ジビニル化合物とを反応原料とするフェノール性水酸基含有樹脂(P2)の混合物のグリシジルエーテル化物(E3)を含有するエポキシ樹脂。 An epoxy resin containing a biphenol compound (P1) and a glycidyl etherified product (E3) of a mixture of a phenolic hydroxyl group-containing resin (P2) using a phenolic hydroxyl group-containing compound and an aromatic divinyl compound as reaction raw materials.
  3.  前記ビフェノール化合物(P1)と前記フェノール性水酸基含有樹脂(P2)との合計質量に対する前記ビフェノール化合物(P1)の割合が、0.5質量%以上、40質量%以下である請求項2に記載のエポキシ樹脂。 The second aspect of claim 2, wherein the ratio of the biphenol compound (P1) to the total mass of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) is 0.5% by mass or more and 40% by mass or less. Epoxy resin.
  4.  前記芳香族ジビニル化合物が、ジビニルベンゼンを含有する請求項1~3のいずれか1項に記載のエポキシ樹脂。 The epoxy resin according to any one of claims 1 to 3, wherein the aromatic divinyl compound contains divinylbenzene.
  5.  前記フェノール性水酸基含有樹脂(P2)が、前記フェノール性水酸基含有化合物、前記芳香族ジビニル化合物、及び、芳香族モノビニル化合物を反応原料とするものであり、
     前記芳香族ジビニル化合物、及び、前記芳香族モノビニル化合物の質量比が、99/1~50/50である請求項1~4のいずれか1項に記載のエポキシ樹脂。
    The phenolic hydroxyl group-containing resin (P2) uses the phenolic hydroxyl group-containing compound, the aromatic divinyl compound, and the aromatic monovinyl compound as reaction raw materials.
    The epoxy resin according to any one of claims 1 to 4, wherein the aromatic divinyl compound and the aromatic monovinyl compound have a mass ratio of 99/1 to 50/50.
  6.  ICI粘度計で測定した150℃における溶融粘度が、0.01~5dPa・sである請求項1~5のいずれか1項に記載のエポキシ樹脂。 The epoxy resin according to any one of claims 1 to 5, wherein the melt viscosity at 150 ° C. measured by an ICI viscometer is 0.01 to 5 dPa · s.
  7.  請求項1~6のいずれか1項に記載のエポキシ樹脂、及び、エポキシ樹脂用硬化剤を含有する硬化性組成物。 A curable composition containing the epoxy resin according to any one of claims 1 to 6 and a curing agent for an epoxy resin.
  8.  請求項7に記載の硬化性組成物の硬化物。 A cured product of the curable composition according to claim 7.
  9.  請求項7に記載の硬化性組成物を含有する半導体封止材料。 A semiconductor encapsulating material containing the curable composition according to claim 7.
  10.  請求項9に記載の半導体封止材料の硬化物を含む半導体装置。 A semiconductor device containing a cured product of the semiconductor encapsulating material according to claim 9.
  11.  補強基材、及び、前記補強基材に含浸した請求項7に記載の硬化性組成物の半硬化物を有するプリプレグ。 A prepreg having a reinforcing base material and a semi-cured product of the curable composition according to claim 7, which is impregnated with the reinforcing base material.
  12.  請求項11に記載のプリプレグ、及び、銅箔の積層体である回路基板。 The circuit board which is a laminated body of the prepreg and the copper foil according to claim 11.
  13.  請求項7に記載の硬化性組成物を含有するビルドアップフィルム。 A build-up film containing the curable composition according to claim 7.
PCT/JP2021/043091 2020-12-03 2021-11-25 Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board, and build-up film WO2022118722A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-200910 2020-12-03
JP2020200910A JP2024010251A (en) 2020-12-03 2020-12-03 Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board, and build-up film

Publications (1)

Publication Number Publication Date
WO2022118722A1 true WO2022118722A1 (en) 2022-06-09

Family

ID=81853473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043091 WO2022118722A1 (en) 2020-12-03 2021-11-25 Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board, and build-up film

Country Status (3)

Country Link
JP (1) JP2024010251A (en)
TW (1) TW202231706A (en)
WO (1) WO2022118722A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212225B2 (en) * 1981-09-02 1990-03-19 Mitsubishi Petrochemical Co
JPH1160681A (en) * 1997-08-14 1999-03-02 Jsr Corp Biphenol epoxy resin and its composition
JP2000044775A (en) * 1998-07-28 2000-02-15 Yuka Shell Epoxy Kk Epoxy resin composition for semiconductor sealing
JP2007039551A (en) * 2005-08-03 2007-02-15 Dainippon Ink & Chem Inc Epoxy resin, epoxy resin composition, cured product, semiconductor device, and method for producing the epoxy resin
JP2011026385A (en) * 2009-07-22 2011-02-10 Dic Corp Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device and epoxy resin
WO2015037584A1 (en) * 2013-09-10 2015-03-19 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
JP2017066268A (en) * 2015-09-30 2017-04-06 新日鉄住金化学株式会社 Polyhydric hydroxy resin, epoxy resin, methods of producing them, epoxy resin composition and cured article thereof
JP2018138681A (en) * 2016-04-04 2018-09-06 Dic株式会社 Method for producing epoxy resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212225B2 (en) * 1981-09-02 1990-03-19 Mitsubishi Petrochemical Co
JPH1160681A (en) * 1997-08-14 1999-03-02 Jsr Corp Biphenol epoxy resin and its composition
JP2000044775A (en) * 1998-07-28 2000-02-15 Yuka Shell Epoxy Kk Epoxy resin composition for semiconductor sealing
JP2007039551A (en) * 2005-08-03 2007-02-15 Dainippon Ink & Chem Inc Epoxy resin, epoxy resin composition, cured product, semiconductor device, and method for producing the epoxy resin
JP2011026385A (en) * 2009-07-22 2011-02-10 Dic Corp Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device and epoxy resin
WO2015037584A1 (en) * 2013-09-10 2015-03-19 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
JP2017066268A (en) * 2015-09-30 2017-04-06 新日鉄住金化学株式会社 Polyhydric hydroxy resin, epoxy resin, methods of producing them, epoxy resin composition and cured article thereof
JP2018138681A (en) * 2016-04-04 2018-09-06 Dic株式会社 Method for producing epoxy resin composition

Also Published As

Publication number Publication date
JP2024010251A (en) 2024-01-24
TW202231706A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
EP1992653B1 (en) Epoxy resin composition, hardening product thereof, novel epoxy resin, novel phenolic resin and semiconductor sealing material
JP5685604B2 (en) Thermosetting monomer and composition containing phosphorus group and cyanato group
JP4259536B2 (en) Method for producing phenol resin and method for producing epoxy resin
CN107343380B (en) Flame-retardant epoxy resin composition, and prepreg and laminated board formed by using same
KR101143131B1 (en) Epoxy compound, preparation method thereof, and use thereof
US9546262B1 (en) Phosphorous containing compounds and process for synthesis
JP5813222B2 (en) Curable composition
JP4655490B2 (en) Epoxy resin composition and cured product thereof
WO2023153160A1 (en) Phenolic resin, epoxy resin, curable resin composition, cured product, fiber-reinforced composite material, and fiber-reinforced resin molded article
WO2023074205A1 (en) Phenolic resin, epoxy resin, curable resin composition, cured object, fiber-reinforced composite material, and molded fiber-reinforced resin article
WO2022118722A1 (en) Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board, and build-up film
WO2022118723A1 (en) Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board and buildup film
JP2006335797A (en) Epoxy resin composition, its cured product, new epoxy resin and method for producing the same
JP2022173168A (en) Phenolic resin, epoxy resin, curable resin composition, cured article, fiber-reinforced composite material, and fiber-reinforced resin molded article
WO2017175560A1 (en) Epoxy resin composition, curable composition, and semiconductor-encapsulating material
JP7541664B2 (en) Epoxy resin composition, cured product, semiconductor encapsulant, and semiconductor device
JP7059633B2 (en) Epoxy resin, manufacturing method, epoxy resin composition and its cured product
JP7541665B2 (en) Epoxy resin, epoxy resin composition, cured product, semiconductor encapsulant, and semiconductor device
JP7024227B2 (en) Epoxy resin manufacturing method, epoxy resin, epoxy resin composition and cured product thereof
JP6809206B2 (en) Epoxy resin, curable resin composition and its cured product
JP2023074978A (en) Epoxy resin composition and manufacturing method thereof, curable composition, cured material, semiconductor sealing material, semiconductor device, prepreg, circuit board, as well as, build-up film
JP2023074974A (en) Epoxy resin
JP2023007254A (en) Epoxy resin and curable composition containing epoxy resin
JP2023074975A (en) Semiconductor sealing resin composition, semiconductor sealing material and semiconductor device
JP2023074976A (en) polyhydric hydroxy resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP