WO2022118723A1 - Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board and buildup film - Google Patents

Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board and buildup film Download PDF

Info

Publication number
WO2022118723A1
WO2022118723A1 PCT/JP2021/043092 JP2021043092W WO2022118723A1 WO 2022118723 A1 WO2022118723 A1 WO 2022118723A1 JP 2021043092 W JP2021043092 W JP 2021043092W WO 2022118723 A1 WO2022118723 A1 WO 2022118723A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
compound
hydroxyl group
resin
Prior art date
Application number
PCT/JP2021/043092
Other languages
French (fr)
Japanese (ja)
Inventor
和賢 青山
和久 矢本
源祐 秋元
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022566870A priority Critical patent/JP7290205B2/en
Priority to CN202180081331.0A priority patent/CN116583943A/en
Priority to KR1020237011018A priority patent/KR20230059829A/en
Publication of WO2022118723A1 publication Critical patent/WO2022118723A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to an epoxy resin, a curable composition, a cured product, a semiconductor encapsulating material, a semiconductor device, a prepreg, a circuit board, and a build-up film.
  • Epoxy resin compositions containing epoxy resin and its curing agent as essential components are excellent in various physical properties such as high heat resistance, moisture resistance, and low viscosity, and thus are excellent in various physical properties such as semiconductor encapsulation materials, electronic parts such as printed circuit boards, and conductive pastes. It is widely used in conductive adhesives such as, other adhesives, matrices for composite materials, paints, photoresist materials, and color-developing materials.
  • the semiconductor encapsulation material is used by filling the resin material with an inorganic filler such as silica, the resin material has a low viscosity and excellent fluidity in order to increase the filling rate of the filler. It is also required.
  • Patent Document 1 As a semiconductor encapsulating material that meets the required characteristics, for example, it is disclosed that an aralkyl-modified poly (oxynaphthalethylene) type epoxy resin is used (see Patent Document 1).
  • Patent Document 1 Although the epoxy resin disclosed in Patent Document 1 is excellent in heat resistance of the obtained cured product, the melt viscosity of the epoxy resin itself is high, and the epoxy resin composition containing the epoxy resin has fluidity and moldability. It is inferior to the above, and the reduction of warpage has not been clarified.
  • an epoxy resin composition having a particularly low viscosity and excellent fluidity and moldability and the epoxy resin composition can be obtained, and have high heat resistance and sufficient toughness.
  • an epoxy resin composition for encapsulating a semiconductor, which can obtain a cured product has not been obtained.
  • the problem to be solved by the present invention is obtained by using an epoxy resin having a low melt viscosity and contributing to fluidity and moldability, a curable composition containing the epoxy resin, and the curable composition. It is an object of the present invention to provide a cured product having high heat resistance and high toughness, a semiconductor encapsulating material, a semiconductor device, a prepreg, a circuit board, and a build-up film.
  • the present inventors have conducted an epoxy resin that can contribute to excellent fluidity and moldability, a curable composition containing the epoxy resin, and the curable composition.
  • a cured product, a semiconductor encapsulant, a semiconductor device, a prepreg, a circuit board, and a build-up film which are obtained by using a material and have excellent heat resistance and high toughness, and have completed the present invention. ..
  • the present invention comprises a glycidyl etherified product (E1) of a biphenol compound (P1), a dihydroxyarene compound ( ⁇ ), and an aralkylating agent represented by the following general formula (1-1) or (1-2).
  • the present invention relates to an epoxy resin containing a glycidyl etherified product (E2) of a phenolic hydroxyl group-containing resin (P2) using ⁇ ) as a reaction raw material.
  • X represents any of a halogen atom, a hydroxyl group, and an alkoxy group.
  • R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 independently represents a hydrogen atom or a methyl group.
  • Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei.
  • a biphenol compound (P1) and a dihydroxyarene compound ( ⁇ ) and an aralkylating agent ( ⁇ ) represented by the following general formula (1-1) or (1-2) are used as reaction raw materials.
  • the present invention relates to an epoxy resin containing a glycidyl etherified compound (E3) of a mixture of a phenolic hydroxyl group-containing resin (P2).
  • X represents any of a halogen atom, a hydroxyl group, and an alkoxy group.
  • R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 independently represents a hydrogen atom or a methyl group.
  • Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei.
  • the ratio of the biphenol compound (P1) to the total mass of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) is 0.5% by mass or more and 40% by mass or less. It is preferable to have.
  • the epoxy resin of the present invention preferably contains the compound (A) in which the phenolic hydroxyl group-containing resin (P2) has three naphthalene ring structures in one molecule.
  • the content of the compound (A) in the phenolic hydroxyl group-containing resin (P2) is 5 to 50 as a value calculated from the area ratio of the gel permeation chromatography (GPC) chart. % Is preferable.
  • the epoxy resin of the present invention preferably has a melt viscosity at 150 ° C. measured by an ICI viscometer of 0.01 to 5 dPa ⁇ s.
  • the present invention relates to a curable composition containing the epoxy resin and a curing agent for an epoxy resin.
  • the present invention relates to a cured product of the curable composition.
  • the present invention relates to a semiconductor encapsulating material containing the curable composition.
  • the present invention relates to a semiconductor device containing a cured product of the semiconductor encapsulating material.
  • the present invention relates to a prepreg having a reinforcing base material and a semi-cured product of the curable composition impregnated in the reinforcing base material.
  • the present invention relates to the circuit board which is a laminated body of the prepreg and copper foil.
  • the present invention relates to a build-up film containing the curable composition.
  • the epoxy resin of the present invention has a low viscosity and is excellent in fluidity and moldability, and the cured product of the curable composition containing the epoxy resin is excellent in high heat resistance and high toughness.
  • it is useful as a resin material for electrical materials such as semiconductor encapsulation materials.
  • 6 is a GPC chart of the phenolic hydroxyl group-containing resin (P2-1) obtained in Synthesis Example 1.
  • 6 is a GPC chart of the epoxy resin (1) obtained in Example 1.
  • 6 is a GPC chart of the epoxy resin (2) obtained in Example 2.
  • 6 is a GPC chart of the epoxy resin (3) obtained in Example 3.
  • the present invention comprises a glycidyl etherified product (E1) of a biphenol compound (P1), a dihydroxyarene compound ( ⁇ ), and an aralkylating agent ( ⁇ ) represented by the following general formula (1-1) or (1-2).
  • E1 a reaction raw material
  • the present invention relates to an epoxy resin containing a glycidyl etherified product (E2) of a phenolic hydroxyl group-containing resin (P2).
  • X represents any of a halogen atom, a hydroxyl group, and an alkoxy group.
  • R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 independently represents a hydrogen atom or a methyl group.
  • Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei.
  • a biphenol compound (P1) and a dihydroxyarene compound ( ⁇ ) and an aralkylating agent ( ⁇ ) represented by the following general formula (1-1) or (1-2) are used as reaction raw materials.
  • the present invention relates to an epoxy resin containing a glycidyl etherified compound (E3) of a mixture of a phenolic hydroxyl group-containing resin (P2).
  • X represents any of a halogen atom, a hydroxyl group, and an alkoxy group.
  • R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 independently represents a hydrogen atom or a methyl group.
  • Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei.
  • the biphenol compound (P1) is not particularly limited, and is, for example, 2,2'-biphenol, 2,4'-biphenol, 3,3'-biphenol, 4,4'-biphenol, and on the aromatic ring thereof. Examples thereof include various compounds in which one or a plurality of aliphatic hydrocarbon groups, alkoxy groups, halogen atoms and the like are substituted.
  • the biphenol compound (P1) may be used alone or in combination of two or more.
  • the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Of these, those having 1 to 4 carbon atoms are preferable, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group, because the effect of excellent heat resistance in the cured product becomes more remarkable. , T-butyl group, isobutyl group, vinyl group, allyl group and the like.
  • the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like.
  • halogen atom examples include a fluorine atom, a chlorine atom and a bromine atom.
  • a substituent on 4,4'-biphenol and its aromatic ring since it is easy to adjust the melt viscosity of the finally obtained epoxy resin to a preferable value, it is preferable to have a substituent on 4,4'-biphenol and its aromatic ring, and 4,4'-biphenol is more preferable. ..
  • phenolic hydroxyl group-containing resin (P2) uses a dihydroxyarene compound ( ⁇ ) and an aralkylating agent ( ⁇ ) represented by the following general formula (1-1) or (1-2) as reaction raw materials.
  • X represents any of a halogen atom, a hydroxyl group, and an alkoxy group.
  • R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 independently represents a hydrogen atom or a methyl group.
  • Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei.
  • X represents any one of a halogen atom, a hydroxyl group, and an alkoxy group.
  • R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 independently represents a hydrogen atom or a methyl group.
  • Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei.
  • the phenolic hydroxyl group-containing resin (P2) contains a component having a (poly) arylene ether structure generated by an intramolecular dehydration reaction of the dihydroxyarene compound ( ⁇ ). Further, the olerousyl group is introduced into a part or all of the aromatic ring in the phenolic hydroxyl group-containing resin (P2) by the oleresin agent ( ⁇ ). As a result, the glycidyl etherified product (E2) of the phenolic hydroxyl group-containing resin (P2) has a relatively long distance between the glycidyl ether groups in the molecule and a high aromatic ring concentration, so that the curing can be obtained. It is possible to combine heat resistance and toughness in an object at a high level.
  • the dihydroxyarene compound ( ⁇ ) may be any compound having two hydroxy groups on the aromatic ring, and its specific structure is not particularly limited, and a wide variety of compounds can be used. Specific examples include dihydroxybenzene, dihydroxynaphthalene, and compounds having one or more substituents such as a halogen atom, an aliphatic hydrocarbon group, and an alkoxy group on their aromatic rings. In the present invention, one type of the dihydroxyarene compound ( ⁇ ) may be used alone, or two or more types may be used in combination.
  • the substitution position of the two hydroxy groups is not particularly limited, and may be any of the ortho position, the para position, and the meta position. Further, in the dihydroxynaphthalene, the substitution positions of the two hydroxy groups are not particularly limited, and are, for example, 1,2-position, 1,4-position, 1,5-position, 1,6-position and 1,7-position. , 2,3-position, 2,6-position, 2,7-position.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and the like.
  • the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group and the like.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propyloxy group, a butyloxy group and the like.
  • dihydroxyarene compounds ( ⁇ ) a halogen atom, an aliphatic hydrocarbon group, and an alkoxy group are placed on the dihydroxynaphthalene and its aromatic ring because the obtained cured product has more remarkable effects on heat resistance and toughness.
  • the position of the hydroxy group on the dihydroxynaphthalene is preferably 1,6-position or 2,7-position, and more preferably 2,7-position.
  • dihydroxyarene compound ( ⁇ ) When a plurality of types of the dihydroxyarene compound ( ⁇ ) are used in combination, dihydroxynaphthalene occupying the dihydroxyarene compound ( ⁇ ) and a halogen atom, an aliphatic hydrocarbon group, an alkoxy group or the like on the aromatic ring thereof.
  • the ratio of the compound having one or a plurality of substituents is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 95% by mass or more.
  • the aralkylating agent ( ⁇ ) has a molecular structure represented by the general formula (1-1) or (1-2).
  • the aralkylating agent ( ⁇ ) one type may be used alone, or two or more types may be used in combination.
  • the X represents any one of a halogen atom, a hydroxyl group, and an alkoxy group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and the like.
  • the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butyloxy group and the like.
  • a halogen atom or a hydroxyl group is preferable, and a hydroxyl group is particularly preferable, from the viewpoint of excellent reactivity.
  • the R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Of these, a hydrogen atom is preferable because of its excellent reactivity.
  • the R 2 independently represents a hydrogen atom or a methyl group, respectively. Of these, a hydrogen atom is preferable because of its excellent reactivity.
  • the Ar 1 has a phenyl group, a naphthyl group, and one or more halogen atoms, an aliphatic hydrocarbon group, and an alkoxy group on these aromatic nuclei. It is one of the structural parts.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and the like.
  • the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group and the like.
  • the alkoxy group examples include a methoxy group, an ethoxy group, a propyloxy group, a butyloxy group and the like.
  • the Ar 1 is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group, because the effect of excellent heat resistance and toughness in the cured product becomes more remarkable.
  • the ratio of the compound in which Ar 1 is a phenyl group to the aralkylating agent ( ⁇ ) is preferably 50% by mass or more, and is 80%. It is more preferably mass% or more, and particularly preferably 95% by mass or more.
  • the phenolic hydroxyl group-containing resin (P2) may use a component other than the dihydroxyarene compound ( ⁇ ) and the aralkylating agent ( ⁇ ) as a part of the reaction raw material.
  • the total mass of the dihydroxyarene compound ( ⁇ ) and the aralkylating agent ( ⁇ ) in the total mass of the reaction raw material of the phenolic hydroxyl group-containing resin (P2) is preferably 80% by mass or more. It is more preferably 95% by mass or more.
  • Examples of the method for producing the phenolic hydroxyl group-containing resin (P2) include a method in which a reaction raw material containing the dihydroxyarene compound ( ⁇ ) and the aralkylating agent ( ⁇ ) is reacted under acid catalyst conditions. Further, the reaction may be carried out in a solvent if necessary.
  • the reaction ratio between the dihydroxyarene compound ( ⁇ ) and the aralkylating agent ( ⁇ ) is an epoxy resin having excellent fluidity
  • the molar ratio [( ⁇ ) / ( ⁇ )] of the two is 1/0. It is preferably in the range of 1 to 1/10, and more preferably in the range of 1 / 0.1 to 1/1.
  • the acid catalyst includes, for example, inorganic acids such as phosphoric acid, sulfuric acid and hydrochloric acid, organic acids such as oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid and fluoromethanesulfonic acid, aluminum chloride, zinc chloride and chloride.
  • inorganic acids such as phosphoric acid, sulfuric acid and hydrochloric acid
  • organic acids such as oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid and fluoromethanesulfonic acid
  • aluminum chloride zinc chloride and chloride
  • Examples thereof include Friedelcraft catalysts such as ditin, ferric chloride and diethylsulfuric acid. These may be used alone or in combination of two or more.
  • an inorganic acid or an organic acid is used as the acid catalyst, it is preferably used in the range of 0.01 to 3 parts by mass with respect to 100 parts by mass of the dihydroxyarene compound ( ⁇ ).
  • a Friedel-Crafts catalyst is used as the acid catalyst, it is preferably used in the range of 0.5 to 2 mol with respect to 1 mol of the dihydroxyarene compound ( ⁇ ).
  • the solvent is, for example, acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, diethylene glycol dimethyl ether, diethylene glycol.
  • the reaction between the dihydroxyarene compound ( ⁇ ) and the aralkylating agent ( ⁇ ) can be carried out under temperature conditions of about 60 to 180 ° C., and the reaction time is about 1 to 24 hours.
  • the reaction can be promoted more efficiently by appropriately distilling off water or the like generated during the reaction.
  • the inside of the reaction system is neutralized with an alkaline compound such as an alkali metal hydroxide, or water is recommended and then dried to obtain the phenolic hydroxyl group-containing resin (P2). Can be done.
  • the hydroxyl group equivalent of the phenolic hydroxyl group-containing resin (P2) is preferably in the range of 100 to 400 g / equivalent, and 110 to 300 g / equivalent, because the effect of excellent heat resistance and toughness in the cured product becomes more remarkable. It is preferably in the range of.
  • the softening point is preferably in the range of 60 to 140 ° C.
  • the phenolic hydroxyl group-containing resin (P2) for example, when 2,7-dihydroxynaphthalene is used as the dihydroxyarene compound ( ⁇ ) and benzyl alcohol is used as the aralkylating agent ( ⁇ ), the phenolic property is used.
  • Specific examples of the specific structure of each component contained in the hydroxyl group-containing resin (P2) include those represented by any of the following structural formulas (2-1) to (2-18).
  • the structural formulas (2-6) to (2-8) and (2-10) It is preferable to contain the compound (A) having three naphthalene ring structures in one molecule as represented by (2-11).
  • the content of the compound (A) in the phenolic hydroxyl group-containing resin (P2) is 5 to 50% as a value calculated from the area ratio of the chart diagram of gel permeation chromatography (GPC). It is preferably 10 to 45%, more preferably 10 to 45%.
  • GPC gel permeation chromatography
  • the production method thereof may be as follows. It is not particularly limited, and may be manufactured in any way.
  • an epoxy resin of the present invention for example, (1) a glycidyl etherified product (E1) obtained by reacting the biphenol compound (P1) with epihalohydrin to form a glycidyl etherified product is synthesized, and the phenolic hydroxyl group-containing resin is separately prepared.
  • the epoxy resin of the present invention can be obtained by reacting (P2) with epihalohydrin to synthesize a glycidyl etherified product (E2) that has been glycidyl etherified, and mixing (containing) these.
  • (2) epihalohydrin is added to a mixture of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2), and the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) are combined with each other.
  • epihalohydrin a glycidyl ether compound (E3) containing the glycidyl ether compound (E1) and the glycidyl ether compound (E2) is synthesized, and the one containing the glycidyl ether compound (E3) is used as the epoxy resin of the present invention. Can be done.
  • the manufacturing method of (2) above is preferable because it is excellent in convenience and workability.
  • the reaction between the biphenol compound (P1) and epihalohydrin and the reaction between the phenolic hydroxyl group-containing resin (P2) and epihalohydrin are carried out, for example, in the presence of a basic catalyst.
  • a basic catalyst examples thereof include a method of reacting at 20 to 150 ° C., preferably 30 to 80 ° C. for 0.5 to 10 hours.
  • epichlorohydrin examples include epichlorohydrin, epibromohydrin, ⁇ -methylepichlorohydrin and the like.
  • the amount of epihalohydrin added is excessively used with respect to a total of 1 mol of the hydroxyl groups of the biphenol compound (P1) or the phenolic hydroxyl group-containing resin (P2), but is usually 1.5 to 30 mol. Yes, preferably in the range of 2 to 15 mol.
  • the basic catalyst examples include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides. Of these, alkali metal hydroxides are preferable from the viewpoint of excellent catalytic activity, and specifically, sodium hydroxide, potassium hydroxide and the like are more preferable. Further, these basic catalysts may be used in a solid state or in an aqueous solution state. The amount of the basic catalyst added may be in the range of 0.9 to 2 mol with respect to a total of 1 mol of the hydroxyl groups of the biphenol compound (P1) or the phenolic hydroxyl group-containing resin (P2). preferable.
  • the reaction between the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) and epihalohydrin may be carried out in an organic solvent.
  • organic solvent include ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol and tertiary butanol, methyl cellosolve and ethyl cellosolve.
  • Examples thereof include cellosolves, ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane, and aprotonic polar solvents such as acetonitrile, dimethylsulfoxide and dimethylformamide.
  • ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane
  • aprotonic polar solvents such as acetonitrile, dimethylsulfoxide and dimethylformamide.
  • a crude product can be obtained by distilling off the excess epihalohydrin. If necessary, the hydrolyzable halogen may be reduced by dissolving the obtained crude product in an organic solvent again, adding a basic catalyst and reacting again.
  • the salt generated in the reaction can be removed by filtration, washing with water, or the like.
  • an organic solvent it may be distilled off to take out only the resin solid content, or it may be used as it is as a solution.
  • the mass ratio of the glycidyl etherified product (E1) to the glycidyl etherified product (E2) is not particularly limited, but the fluidity is excellent and the toughness property of the cured product is high.
  • the ratio of the glycidyl etherified product (E1) to the total mass of both is preferably 0.5% by mass or more, and preferably 1% by mass or more, because the epoxy resin has excellent low moisture absorption. It is more preferably 5% by mass or more, and particularly preferably 15% by mass or more.
  • the upper limit thereof is preferably 40% by mass or less, more preferably 30% by mass or less.
  • the mass ratio of both in the mixture of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) is excellent in fluidity and in the cured product. Since the epoxy resin has high toughness and low moisture absorption, the ratio of the biphenol compound (P1) to the total mass of both is preferably 0.5% by mass or more, preferably 1% by mass or more. Is preferable, 5% by mass or more is more preferable, and 15% by mass or more is particularly preferable. The upper limit thereof is preferably 40% by mass or less, more preferably 30% by mass or less.
  • the reaction of the mixture of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) with epihalohydrin can be carried out by the same method as the method for producing the epoxy resin of (1).
  • the amount of the epihalohydrin added is excessively used with respect to a total of 1 mol of the hydroxyl groups of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2), but is usually 1.5 to 30 mol, preferably 1.5 to 30 mol. It ranges from 2 to 15 mol.
  • a basic catalyst can be used, and the amount of the basic catalyst added is the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2). It is preferably in the range of 0.9 to 2 mol with respect to 1 mol of the total hydroxyl group contained in.
  • the epoxy equivalent of the epoxy resin of the present invention is preferably 140 to 400 g / equivalent, more preferably 140 to 350 g / equivalent.
  • the measurement of the epoxy equivalent here is based on JIS K7236.
  • the epoxy resin of the present invention preferably has a melt viscosity at 150 ° C. measured by an ICI viscometer of 0.01 to 5 dPa ⁇ s, more preferably 0.01 to 2 dPa ⁇ s, and 0.01. It is more preferably ⁇ 1 dPa ⁇ s.
  • the melt viscosity here is based on ASTM D4287 and is measured by an ICI viscometer.
  • the number average molecular weight (Mn) is preferably in the range of 200 to 1500, more preferably in the range of 200 to 800.
  • the weight average molecular weight (Mw) is preferably in the range of 250 to 2000, more preferably in the range of 250 to 800.
  • the dispersity (Mw / Mn) is preferably in the range of 1 to 3.
  • the molecular weight and the degree of dispersion of the epoxy resin are measured by gel permeation chromatography (GPC) under the measurement conditions described in Examples described later.
  • epoxy resin of the present invention include epoxy resins represented by the following structural formulas.
  • n is an integer of 0 to 10.
  • the present invention relates to a curable composition containing the epoxy resin and a curing agent for an epoxy resin.
  • the curable composition contains the epoxy resin, the obtained cured product has excellent heat resistance and toughness, which is preferable.
  • an epoxy resin curing agent capable of cross-linking reaction with the epoxy group of the epoxy resin can be used without particular limitation.
  • the curing agent include a phenol curing agent, an amine curing agent, an acid anhydride curing agent, an active ester resin, and a cyanate ester resin.
  • the curing agent may be used alone or in combination of two or more.
  • phenol curing agent examples include phenol novolac resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadienephenol-added resin, phenol aralkyl resin (Zyroc resin), naphthol aralkyl resin, and triphenylol.
  • Biphenyl-modified naphthol resin polyvalent naphthol compound in which phenol nuclei are linked by bismethylene groups
  • aminotriazine-modified phenol resin polyvalent phenolic hydroxyl group-containing compound in which phenol nuclei are linked by melamine, benzoguanamine, etc.
  • alkoxy groups examples thereof include polyvalent phenolic hydroxyl group-containing compounds such as a contained aromatic ring-modified novolak resin (a polyvalent phenolic hydroxyl group-containing compound in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde).
  • phenol novolac trees and the like are more preferable from the viewpoint of moldability.
  • the compound containing the phenolic hydroxyl group may be used alone or in combination of two or more.
  • amine curing agent examples include diethylenetriamine (DTA), triethylenetetramine (TTA), tetraethylenepentamine (TEPA), diproprendamine (DPDA), diethylaminopropylamine (DEAPA), N-aminoethylpiperazine and mensendiamine.
  • DTA diethylenetriamine
  • TTA triethylenetetramine
  • TEPA tetraethylenepentamine
  • DPDA diproprendamine
  • DEAPA diethylaminopropylamine
  • mensendiamine examples include diethylenetriamine (DTA), triethylenetetramine (TTA), tetraethylenepentamine (TEPA), diproprendamine (DPDA), diethylaminopropylamine (DEAPA), N-aminoethylpiperazine and mensendiamine.
  • MDA Isophorondiamine
  • IPDA 1,3-bisaminomethylcyclohexane
  • piperidine N, N, -dimethylpiperazine, triethylenediamine and other aliphatic amines
  • m-xylenediamine XDA
  • methanephenylenediamine MPDA
  • diaminodiphenylmethane DDM
  • diaminodiphenylsulfone DDS
  • benzylmethylamine 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol, etc.
  • Aromatic amines and the like can be mentioned.
  • acid anhydride curing agent examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, ethylene glycol bistrimeritate, glycerol tristrimeritate, maleic anhydride, and tetrahydrophthalic anhydride.
  • the amount of the curing agent used with respect to the amount of the epoxy resin used is not particularly limited as, for example, the functional group equivalent ratio (for example, the hydroxyl group equivalent of the phenol curing agent / the epoxy equivalent of the epoxy resin). Since the mechanical properties of the cured product to be obtained are good, the number of active groups in the curing agent is 0 with respect to a total of 1 equivalent of the epoxy group with the epoxy resin and other epoxy resins used in combination as needed.
  • the amount is preferably 5.5 to 1.5 equivalents, more preferably 0.8 to 1.2 equivalents.
  • epoxy resins other than the epoxy resin maleimide resin, bismaleimide resin, polymaleimide resin, polyphenylene ether resin, polyimide resin, benzoxazine resin, triazine-containing cresol novolak resin, styrene-maleic anhydride resin, diallyl bisphenol and triallyl.
  • epoxy resins other than the epoxy resin maleimide resin, bismaleimide resin, polymaleimide resin, polyphenylene ether resin, polyimide resin, benzoxazine resin, triazine-containing cresol novolak resin, styrene-maleic anhydride resin, diallyl bisphenol and triallyl.
  • examples thereof include an allyl group-containing resin such as isocyanurate, a polyphosphate ester, and a phosphate ester-carbonate copolymer.
  • the curable composition of the present invention may be prepared without a solvent, or may contain a solvent.
  • the solvent has a function of adjusting the viscosity of the curable composition and the like.
  • the solvent are not particularly limited, but are ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ether solvents such as diethyl ether and tetrahydrofuran; ethyl acetate, butyl acetate, cellosolve acetate and propylene glycol monomethyl.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • ether solvents such as diethyl ether and tetrahydrofuran
  • Ester solvents such as ether acetate and carbitol acetate; carbitols such as cellosolve and butyl carbitol, toluene, xylene, ethylbenzene, mecitylene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene and the like.
  • Examples thereof include amide-based solvents such as aromatic hydrocarbons, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. These solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the curable composition.
  • the amount of the solvent used is 10% by mass or more, it is preferable because the handling property is excellent.
  • the amount of the solvent used is 90% by mass or less, it is preferable from the viewpoint of economy.
  • the curable composition of the present invention contains various additives such as a curing accelerator, a flame retardant, an inorganic filler, a silane coupling agent, a mold release agent, a pigment, a colorant, and an emulsifier, if necessary. Can be done.
  • the curing accelerator is not particularly limited, and examples thereof include a phosphorus-based curing accelerator, an amine-based curing accelerator, an imidazole-based curing accelerator, a guanidine-based curing accelerator, and a urea-based curing accelerator.
  • the curing accelerator may be used alone or in combination of two or more.
  • Examples of the phosphorus-based curing accelerator include organic phosphine compounds such as triphenylphosphine, tributylphosphine, triparatrilphosphine, diphenylcyclohexylphosphine and tricyclohexylphosphine; organic phosphite compounds such as trimethylphosphine and triethylphosphine; ethyltriphenyl.
  • organic phosphine compounds such as triphenylphosphine, tributylphosphine, triparatrilphosphine, diphenylcyclohexylphosphine and tricyclohexylphosphine
  • organic phosphite compounds such as trimethylphosphine and triethylphosphine
  • ethyltriphenyl ethyltriphenyl.
  • Phosphonium bromide benzyltriphenylphosphonium chloride, butylphosphonium tetraphenylborate, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-trilborate, triphenylphosphine triphenylboran, tetraphenylphosphonium thiocyanate, tetraphenylphosphonium disianamide, Examples thereof include phosphonium salts such as butylphenylphosphonium dicyanamide and tetrabutylphosphonium decanoate.
  • Examples of the amine-based curing accelerator include triethylamine, tributylamine, N, N-dimethyl-4-aminopyridine (4-dimethylaminopyridine, DMAP), 2,4,6-tris (dimethylaminomethyl) phenol, 1, Examples thereof include 8-diazabicyclo [5.4.0] -undecene-7 (DBU) and 1,5-diazabicyclo [4.3.0] -Nonen-5 (DBN).
  • DBU 8-diazabicyclo [5.4.0] -undecene-7
  • DBN 1,5-diazabicyclo [4.3.0] -Nonen-5
  • imidazole-based curing accelerator examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and 2-phenyl.
  • Examples of the guanidine-based curing accelerator include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1, 5,7-Triazabicyclo [4.4.0] deca-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] deca-5-ene, 1-methylbiguanide , 1-ethylbiguanide, 1-butylbiguanide, 1-cyclohexylbiguanide, 1-allylbiguanide, 1-phenylbiguanide and the like.
  • urea-based curing accelerator examples include 3-phenyl-1,1-dimethylurea, 3- (4-methylphenyl) -1,1-dimethylurea, chlorophenylurea, and 3- (4-chlorophenyl) -1,1. -Dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea and the like can be mentioned.
  • triphenylphosphine and tertiary amines are used as phosphorus compounds because they are excellent in curability, heat resistance, electrical properties, moisture resistance reliability, etc., especially when used as a semiconductor encapsulating material. It is preferable to use 1,8-diazabicyclo- [5.4.0] -undecene (DBU).
  • DBU 1,8-diazabicyclo- [5.4.0] -undecene
  • the amount of the curing accelerator used can be appropriately adjusted in order to obtain the desired curability, but it is 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the mixture of the epoxy resin and the curing agent. Is preferable, and 0.1 to 5 parts by mass is more preferable. When the amount of the curing accelerator used is within the above range, the curing property and the insulation reliability are excellent, which is preferable.
  • the flame retardant is not particularly limited, and examples thereof include an inorganic phosphorus flame retardant, an organic phosphorus flame retardant, and a halogen flame retardant.
  • the flame retardant may be used alone or in combination of two or more.
  • the inorganic phosphorus-based flame retardant is not particularly limited, and examples thereof include red phosphorus; ammonium phosphate such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; and phosphoric acid amide.
  • the organic phosphorus-based flame retardant is not particularly limited, but is limited to methyl acid phosphate, ethyl acid phosphate, isopropyl acid phosphate, dibutyl phosphate, monobutyl phosphate, butoxyethyl acid phosphate, 2-ethylhexyl acid phosphate, and bis (2-ethylhexyl).
  • Phosphate Monoisodecyl Acid Phosphate, Lauryl Acid Phosphate, Tridecyl Acid Phosphate, Stearyl Acid Phosphate, Isostearyl Acid Phosphate, Oleyl Acid Phosphate, Butyl Pyrophosphate, Tetracosyl Acid Phosphate, Ethylene Glycol Acid Phosphate, (2-Hydroxyethyl) ) Phosphate esters such as methacrylate acid phosphate; 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphine oxide and the like diphenylphosphine; 10- (2,5-dihydroxyphenyl) -10H- 9-Oxa-10-phosphaphenanthrene-10-oxide, 10- (1,4-dioxynaphthalene) -10H-9-oxa-10-phosphaphenanthrene-10-
  • the halogen-based flame retardant is not particularly limited, but is limited to brominated polystyrene, bis (pentabromophenyl) ethane, tetrabromobisphenol A bis (dibromopropyl ether), 1,2, -bis (tetrabromophthalimide), 2, Examples thereof include 4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine and tetrabromophthalic acid.
  • the amount of the flame retardant used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the inorganic filler is not particularly limited, but is silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, and nitrided.
  • silica Boron, aluminum hydroxide, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, zirconium oxide, barium titanate, barium zirconate, barium zirconate , Calcium zirconate, zirconium phosphate, zirconium tungstate phosphate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, carbon black and the like.
  • silica it is preferable to use silica.
  • the molten silica is preferable because it is possible to add a larger amount of the inorganic filler.
  • the fused silica can be used in either a crushed form or a spherical shape, but in order to increase the blending amount of the fused silica and suppress the increase in the melt viscosity of the curable composition, a spherical one is mainly used. Is preferable. Further, in order to increase the blending amount of spherical silica, it is preferable to appropriately adjust the particle size distribution of spherical silica.
  • the inorganic filler may be used alone or in combination of two or more.
  • the inorganic filler may be surface-treated if necessary.
  • the surface treatment agent that can be used is not particularly limited, but is an aminosilane-based coupling agent, an epoxysilane-based coupling agent, a mercaptosilane-based coupling agent, a silane-based coupling agent, an organosilazane compound, and a titanate-based cup. Ring agents and the like can be used.
  • the surface treatment agent examples include 3-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and hexamethyldi. Silazan and the like can be mentioned.
  • the amount of the inorganic filler used is preferably 0.5 to 95 parts by mass with respect to 100 parts by mass of the total amount of the mixture of the epoxy resin and the curing agent.
  • the amount of the inorganic filler used is within the above range, flame retardancy and insulation reliability are excellent, which is preferable.
  • organic filler can be blended in addition to the inorganic filler as long as the characteristics of the present invention are not impaired.
  • examples of the organic filler include polyamide particles and the like.
  • the present invention relates to a cured product of the curable composition.
  • the cured product obtained from the curable composition containing the epoxy resin can exhibit high heat resistance and high toughness, which is a preferable embodiment.
  • the heating temperature at the time of heat curing is not particularly limited, but is usually 100 to 300 ° C., and the heating time is 1 to 1 to 1. 24 hours.
  • the cured product of the present invention preferably has a glass transition temperature (Tg) of 160 ° C. or higher.
  • Tg glass transition temperature
  • the method for measuring the glass transition temperature (Tg) is the same as the evaluation method in the examples of the present application.
  • the cured product of the present invention preferably has a Charpy impact strength of 6.5 J / cm 2 or more, more preferably 7.3 J / cm 2 or more, and 7.8 J / cm 2 or more. Is particularly preferable.
  • the method for measuring the Charpy impact strength is the same as the evaluation method in the examples of the present application.
  • the present invention relates to a semiconductor encapsulating material containing the curable composition. Since the semiconductor encapsulation material obtained by using the curable composition uses the epoxy resin, it has a low viscosity and excellent fluidity, and further, the heat resistance and toughness of the cured product are improved, so that in the manufacturing process. It is excellent in processability and moldability, and is a preferable embodiment.
  • the curable composition used for the semiconductor encapsulant material can contain an inorganic filler.
  • the filling rate of the inorganic filler for example, the inorganic filler can be used in the range of 0.5 to 95 parts by mass with respect to 100 parts by mass of the curable composition.
  • the curable composition is further added with an additive as an optional component, if necessary, using an extruder, a feeder, a roll, or the like until the composition becomes uniform.
  • an additive as an optional component, if necessary, using an extruder, a feeder, a roll, or the like until the composition becomes uniform. Examples thereof include a method of sufficiently melting and mixing.
  • the present invention relates to a semiconductor device containing a cured product of the semiconductor encapsulating material. Since the semiconductor device obtained by using the semiconductor encapsulating material obtained by using the curable composition uses the epoxy resin, it has low viscosity and excellent fluidity, and further, heat resistance and toughness in the cured product are obtained. Since it has been improved, it is excellent in processability and molding in the manufacturing process, which is a preferable embodiment.
  • the semiconductor encapsulant material is cast or molded using a transfer molding machine, an injection molding machine, or the like, and further heat-cured in a temperature range of room temperature (20 ° C.) to 250 ° C. There is a way to do it.
  • the present invention relates to a prepreg having a reinforcing base material and a semi-cured product of the curable composition impregnated in the reinforcing base material.
  • a curable composition varnished by blending an organic solvent described later is used as a reinforcing base material (paper, glass cloth, glass non-woven fabric, aramid paper, aramid cloth, glass).
  • a method of obtaining the material by impregnating it with a mat, a glass roving cloth, etc.) and then heating it at a heating temperature according to the solvent type used, preferably 50 to 170 ° C. can be mentioned.
  • the mass ratio of the curable composition and the reinforcing base material used at this time is not particularly limited, but it is usually preferable to prepare the resin content in the prepreg to be 20 to 60% by mass.
  • organic solvent used here examples include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like. It can be appropriately selected depending on the application, but for example, when further producing a printed circuit board from prepylene as described below, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, or dimethylformamide. , It is preferable to use the non-volatile content at a ratio of 40 to 80% by mass.
  • the present invention relates to the circuit board which is a laminated body of the prepreg and a copper foil.
  • the prepregs are laminated by a conventional method, copper foils are appropriately laminated, and the pressure is 170 to 300 ° C. for 10 minutes to 3 hours under a pressure of 1 to 10 MPa.
  • An example is a method of heat-bonding.
  • the present invention relates to a build-up film containing the curable composition.
  • the curable composition is applied onto a support film to form a curable composition layer to form an adhesive film for a multilayer printed wiring board. The method can be mentioned.
  • the film When a build-up film is produced from a curable composition, the film is softened under the temperature conditions of laminating (usually 70 to 140 ° C.) in the vacuum laminating method, and at the same time as laminating the circuit board, via holes existing in the circuit board. Alternatively, it is important to show fluidity (resin flow) capable of filling the through hole with the resin, and it is preferable to blend each of the above components so as to exhibit such characteristics.
  • the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm, and it is usually preferable to enable resin filling in this range. .. When laminating both sides of the circuit board, it is desirable to fill about 1/2 of the through hole.
  • the varnish-like composition is applied to the surface of the support film (Y), and further heated.
  • it can be produced by drying an organic solvent by blowing hot air or the like to form a composition layer (X) made of a curable composition.
  • the thickness of the composition layer (X) to be formed is usually preferably equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m, the thickness of the resin composition layer is preferably 10 to 100 ⁇ m.
  • composition layer (X) in the present invention may be protected by a protective film described later.
  • a protective film By protecting with a protective film, it is possible to prevent dust and the like from adhering to the surface of the resin composition layer and scratches.
  • the above-mentioned support film and protective film include polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter, may be abbreviated as "PET"), polyesters such as polyethylene naphthalate, polycarbonate, polyimide, and further.
  • PET polyethylene terephthalate
  • polyesters such as polyethylene naphthalate, polycarbonate, polyimide
  • metal foils such as patterns, copper foils, and aluminum foils.
  • the support film and the protective film may be subjected to a mold release treatment in addition to the mud treatment and the corona treatment.
  • the thickness of the support film is not particularly limited, but is usually 10 to 150 ⁇ m, and is preferably used in the range of 25 to 50 ⁇ m.
  • the thickness of the protective film is preferably 1 to 40 ⁇ m.
  • the above-mentioned support film (Y) is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film (Y) is peeled off after the adhesive film is heat-cured, it is possible to prevent dust and the like from adhering in the curing step. When peeling after curing, the support film is usually subjected to a mold release treatment in advance.
  • the cured product obtained by the curable composition of the present invention is excellent in heat resistance and toughness in the cured product, it can be used only for applications such as semiconductor encapsulation materials, semiconductor devices, prepregs, circuit boards, and build-up films. However, it can be suitably used for various applications such as build-up substrates, adhesives, resist materials, and matrix resins of fiber-reinforced resins, and the applications are not limited to these.
  • the softening point (° C.) was measured according to JIS K7234 (ring ball method).
  • GPC gel permeation chromatography
  • Measuring device "HLC-8320 GPC” manufactured by Tosoh Corporation, Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G3000HXL” manufactured by Tosoh Corporation + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation Detector: RI (Differential Refractometer) Data processing: "GPC Workstation EcoSEC-WorkStation” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene with a known molecular weight was used in accordance with the measurement manual of the above-mentioned "GPC workstation EcoSEC-WorkStation".
  • phenolic hydroxyl group-containing resin (P2-1) had a softening point of 97 ° C. and a hydroxyl group equivalent of 146 g / equivalent.
  • the content of the compound (A) having three naphthalene ring structures in one molecule of the phenolic hydroxyl group-containing resin (P2-1) was 33%.
  • the GPC chart of the phenolic hydroxyl group-containing resin (P2-1) is shown in FIG.
  • the content of the compound (A) was calculated from the area ratio of the GPC chart.
  • the compound (A) contained in the phenolic hydroxyl group-containing resin (P2-1) obtained above was represented by the following structural formula.
  • Example 1 Synthesis of epoxy resin (1)
  • 60.0 g, epichlorhydrin 1157 g, n-butanol 347 g, and water 58 g were charged and dissolved.
  • After raising the temperature to 60 ° C. 480 g of a 20 mass% sodium hydroxide aqueous solution was added dropwise over 5 hours. Then, stirring was continued for 0.5 hours under the same conditions.
  • the obtained epoxy resin (1) has an epoxy equivalent of 197 g / equivalent, a melt viscosity at 150 ° C. of 0.2 dPa ⁇ s, a number average molecular weight (Mn) of 314, a weight average molecular weight (Mw) of 372, and a degree of dispersion (Mw). / Mn) was 1.2.
  • the GPC chart of the epoxy resin (1) is shown in FIG.
  • the epoxy resin (1) obtained above contained an epoxy resin represented by the following structural formula.
  • n is an integer of 0 to 10.
  • Example 2 Synthesis of epoxy resin (2)
  • the reaction was carried out in the same manner as in Example 1 except that the phenolic hydroxyl group-containing resin (P2-1) was changed to 192.0 g and 4,4'-biphenol 48.0 g, and the epoxy resin (2) was used. Obtained.
  • the obtained epoxy resin (2) has an epoxy equivalent of 203 g / equivalent, a melt viscosity at 150 ° C. of 0.3 dPa ⁇ s, a number average molecular weight (Mn) of 319, a weight average molecular weight (Mw) of 381, and a degree of dispersion (Mw). / Mn) was 1.2.
  • the GPC chart is shown in FIG.
  • the epoxy resin (2) obtained above contained an epoxy resin represented by the following structural formula.
  • n is an integer of 0 to 10.
  • Example 3 Synthesis of epoxy resin (3)
  • the reaction was carried out in the same manner as in Example 1 except that the phenolic hydroxyl group-containing resin (P2-1) was changed to 232.8 g and 4,4'-biphenol 7.2 g, and the epoxy resin (3) was used. Obtained.
  • the obtained epoxy resin (3) has an epoxy equivalent of 213 g / equivalent, a melt viscosity at 150 ° C. of 0.4 dPa ⁇ s, a number average molecular weight (Mn) of 336, a weight average molecular weight (Mw) of 412, and a degree of dispersion (Mw). / Mn) was 1.2.
  • the GPC chart is shown in FIG.
  • the epoxy resin (3) obtained above contained an epoxy resin represented by the following structural formula.
  • n is an integer of 0 to 10.
  • the inside of the system was azeotropically boiled to dehydrate, and after undergoing microfiltration, the solvent was distilled off under reduced pressure conditions to obtain 176 g of epoxy resin (1').
  • the obtained epoxy resin (1') has an epoxy equivalent of 230 g / equivalent, a melt viscosity at 150 ° C. of 0.3 dPa ⁇ s, a number average molecular weight (Mn) of 426, a weight average molecular weight (Mw) of 666, and a degree of dispersion (Mw).
  • Mw / Mn) was 1.6.
  • the epoxy resins obtained in all the examples have low viscosity, excellent high fluidity, can contribute to good moldability, and are epoxy resins containing the epoxy resin.
  • the cured product obtained by using the composition (curable composition) has a high glass transition temperature, high heat resistance, shows a high value even in a Charpy impact test, and can be confirmed to have high toughness. It was confirmed that both heat resistance and high toughness were achieved.
  • Comparative Example 1 an epoxy resin (1') was synthesized without using a desired phenolic hydroxyl group-containing resin, and an epoxy resin composition using this was synthesized.
  • Comparative Example 2 using (curable composition) the results were inferior in heat resistance and toughness as compared with Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Epoxy Resins (AREA)
  • Epoxy Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

The present invention provides an epoxy resin which contains: a glycidyl etherified product (E1) of a biphenolic compound (P1); and a glycidyl etherified product (E2) of a phenolic hydroxyl group-containing resin (P2) that uses, as reactant materials, a dihydroxyarene compound (α) and an aralkylating agent (β) that is represented by general formula (1-1) or (1-2). (In general formulae (1-1) and (1-2), X represents a halogen atom, a hydroxyl group or an alkoxy group; each R1 independently represents a hydrogen atom or an alkyl group having from 1 to 4 carbon atoms; each R2 independently represents a hydrogen atom or a methyl group; and Ar1 represents a phenyl group, a naphthyl group, or a structural moiety that has one or more halogen atoms, one or more aliphatic hydrocarbon groups, or one or more alkoxy groups on one of these aromatic nuclei.)

Description

エポキシ樹脂、硬化性組成物、硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、及び、ビルドアップフィルムEpoxy resin, curable composition, cured product, semiconductor encapsulant material, semiconductor device, prepreg, circuit board, and build-up film
 本発明は、エポキシ樹脂、硬化性組成物、硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、及び、ビルドアップフィルムに関するものである。 The present invention relates to an epoxy resin, a curable composition, a cured product, a semiconductor encapsulating material, a semiconductor device, a prepreg, a circuit board, and a build-up film.
 エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、高耐熱性、耐湿性、低粘性等の諸物性に優れる点から、半導体封止材料やプリント回路基板等の電子部品、導電ペースト等の導電性接着剤、その他接着剤、複合材料用マトリックス、塗料、フォトレジスト材料、及び、顕色材料等で広く用いられている。 Epoxy resin compositions containing epoxy resin and its curing agent as essential components are excellent in various physical properties such as high heat resistance, moisture resistance, and low viscosity, and thus are excellent in various physical properties such as semiconductor encapsulation materials, electronic parts such as printed circuit boards, and conductive pastes. It is widely used in conductive adhesives such as, other adhesives, matrices for composite materials, paints, photoresist materials, and color-developing materials.
 これらの各種用途のうち、半導体封止材料の分野では、BGA、CSPといった半導体パッケージの表面実装化が進展しているが、表面実装するために、半導体パッケージがリフロー工程で高温に曝されるため、封止用の樹脂材料には、高耐熱性が求められている。 Among these various applications, in the field of semiconductor encapsulation materials, surface mounting of semiconductor packages such as BGA and CSP is progressing, but the semiconductor packages are exposed to high temperatures in the reflow process for surface mounting. , High heat resistance is required for the resin material for sealing.
 さらに、近年の電子機器の小型化・薄型化や一括封止プロセスにて発生する半導体封止材の反りを低減するため、高靭性が付与された樹脂材料が求められている。 Further, in order to reduce the warpage of the semiconductor encapsulant generated in the recent miniaturization and thinning of electronic devices and the batch encapsulation process, a resin material with high toughness is required.
 また、上記各性能に加え、半導体封止材料は樹脂材料にシリカ等の無機充填剤を充填させて用いることから、充填剤の充填率を高めるために、樹脂材料が低粘度で流動性に優れることも求められている。 Further, in addition to the above-mentioned performances, since the semiconductor encapsulation material is used by filling the resin material with an inorganic filler such as silica, the resin material has a low viscosity and excellent fluidity in order to increase the filling rate of the filler. It is also required.
 かかる要求特性に応える半導体封止材料としては、例えば、アラルキル変性ポリ(オキシナフタレチレン)型エポキシ樹脂を使用することが開示されている(特許文献1参照)。 As a semiconductor encapsulating material that meets the required characteristics, for example, it is disclosed that an aralkyl-modified poly (oxynaphthalethylene) type epoxy resin is used (see Patent Document 1).
 しかしながら、特許文献1に開示される前記エポキシ樹脂は、得られる硬化物の耐熱性に優れるものの、エポキシ樹脂自体の溶融粘度が高く、前記エポキシ樹脂を含有するエポキシ樹脂組成物は流動性や成形性に劣るものであり、反りの低減などについても、明らかにされていない。 However, although the epoxy resin disclosed in Patent Document 1 is excellent in heat resistance of the obtained cured product, the melt viscosity of the epoxy resin itself is high, and the epoxy resin composition containing the epoxy resin has fluidity and moldability. It is inferior to the above, and the reduction of warpage has not been clarified.
 このように、半導体封止材料の分野において、とりわけ低粘度で流動性や成形性に優れたエポキシ樹脂組成物や前記エポキシ樹脂組成物により得られ、高耐熱性で、高靭性を十分に具備した硬化物を得ることができる半導体封止用のエポキシ樹脂組成物は、得られていないのが現状であった。 As described above, in the field of semiconductor encapsulation materials, an epoxy resin composition having a particularly low viscosity and excellent fluidity and moldability and the epoxy resin composition can be obtained, and have high heat resistance and sufficient toughness. At present, an epoxy resin composition for encapsulating a semiconductor, which can obtain a cured product, has not been obtained.
特許第5689230号公報Japanese Patent No. 5689230
 そこで、本発明が解決しようとする課題は、溶融粘度が低く、流動性、及び、成形性に寄与できるエポキシ樹脂、前記エポキシ樹脂を含有する硬化性組成物、前記硬化性組成物を用いて得られ、高耐熱性、及び、高靭性に優れた硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、及び、ビルドアップフィルムを提供することにある。 Therefore, the problem to be solved by the present invention is obtained by using an epoxy resin having a low melt viscosity and contributing to fluidity and moldability, a curable composition containing the epoxy resin, and the curable composition. It is an object of the present invention to provide a cured product having high heat resistance and high toughness, a semiconductor encapsulating material, a semiconductor device, a prepreg, a circuit board, and a build-up film.
 本発明者らは、上述した課題を解決すべく鋭意研究を重ねた結果、優れた流動性、及び、成形性に寄与できるエポキシ樹脂、前記エポキシ樹脂を含有する硬化性組成物、前記硬化性組成物を用いて得られ、高耐熱性、及び、高靭性に優れた硬化物、半導体封止材料、半導体装置、プリプレグ、回路基板、及び、ビルドアップフィルムを見いだし、本発明を完成するに至った。 As a result of diligent research to solve the above-mentioned problems, the present inventors have conducted an epoxy resin that can contribute to excellent fluidity and moldability, a curable composition containing the epoxy resin, and the curable composition. We have found a cured product, a semiconductor encapsulant, a semiconductor device, a prepreg, a circuit board, and a build-up film, which are obtained by using a material and have excellent heat resistance and high toughness, and have completed the present invention. ..
 すなわち、本発明は、ビフェノール化合物(P1)のグリシジルエーテル化物(E1)、及び、ジヒドロキシアレーン化合物(α)と下記一般式(1-1)又は(1-2)で表されるアラルキル化剤(β)とを反応原料とするフェノール性水酸基含有樹脂(P2)のグリシジルエーテル化物(E2)を含有するエポキシ樹脂に関する。 That is, the present invention comprises a glycidyl etherified product (E1) of a biphenol compound (P1), a dihydroxyarene compound (α), and an aralkylating agent represented by the following general formula (1-1) or (1-2). The present invention relates to an epoxy resin containing a glycidyl etherified product (E2) of a phenolic hydroxyl group-containing resin (P2) using β) as a reaction raw material.
Figure JPOXMLDOC01-appb-C000003
[上記一般式(1-1)及び(1-2)中、Xは、ハロゲン原子、水酸基、アルコキシ基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、炭素原子数1~4のアルキル基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、メチル基を表す。Arは、フェニル基、ナフチル基、これらの芳香核上にハロゲン原子、脂肪族炭化水素基、アルコキシ基を1つないし複数有する構造部位のいずれかを表す。]
Figure JPOXMLDOC01-appb-C000003
[In the above general formulas (1-1) and (1-2), X represents any of a halogen atom, a hydroxyl group, and an alkoxy group. R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 independently represents a hydrogen atom or a methyl group. Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei. ]
 また、本発明は、ビフェノール化合物(P1)、及び、ジヒドロキシアレーン化合物(α)と下記一般式(1-1)又は(1-2)で表されるアラルキル化剤(β)とを反応原料とするフェノール性水酸基含有樹脂(P2)の混合物のグリシジルエーテル化物(E3)を含有するエポキシ樹脂に関する。 Further, in the present invention, a biphenol compound (P1) and a dihydroxyarene compound (α) and an aralkylating agent (β) represented by the following general formula (1-1) or (1-2) are used as reaction raw materials. The present invention relates to an epoxy resin containing a glycidyl etherified compound (E3) of a mixture of a phenolic hydroxyl group-containing resin (P2).
Figure JPOXMLDOC01-appb-C000004
[上記一般式(1-1)及び(1-2)中、Xは、ハロゲン原子、水酸基、アルコキシ基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、炭素原子数1~4のアルキル基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、メチル基を表す。Arは、フェニル基、ナフチル基、これらの芳香核上にハロゲン原子、脂肪族炭化水素基、アルコキシ基を1つないし複数有する構造部位のいずれかを表す。]
Figure JPOXMLDOC01-appb-C000004
[In the above general formulas (1-1) and (1-2), X represents any of a halogen atom, a hydroxyl group, and an alkoxy group. R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 independently represents a hydrogen atom or a methyl group. Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei. ]
 本発明のエポキシ樹脂は、前記ビフェノール化合物(P1)と前記フェノール性水酸基含有樹脂(P2)との合計質量に対する前記ビフェノール化合物(P1)の割合が、0.5質量%以上、40質量%以下であることが好ましい。 In the epoxy resin of the present invention, the ratio of the biphenol compound (P1) to the total mass of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) is 0.5% by mass or more and 40% by mass or less. It is preferable to have.
 本発明のエポキシ樹脂は、前記フェノール性水酸基含有樹脂(P2)が、1分子中にナフタレン環構造を3つ有する化合物(A)を含有することが好ましい。 The epoxy resin of the present invention preferably contains the compound (A) in which the phenolic hydroxyl group-containing resin (P2) has three naphthalene ring structures in one molecule.
 本発明のエポキシ樹脂は、前記フェノール性水酸基含有樹脂(P2)中の前記化合物(A)の含有量が、ゲル浸透クロマトグラフィー(GPC)のチャート図の面積比から算出される値で5~50%であることが好ましい。 In the epoxy resin of the present invention, the content of the compound (A) in the phenolic hydroxyl group-containing resin (P2) is 5 to 50 as a value calculated from the area ratio of the gel permeation chromatography (GPC) chart. % Is preferable.
 本発明のエポキシ樹脂は、ICI粘度計で測定した150℃における溶融粘度が、0.01~5dPa・sであることが好ましい。 The epoxy resin of the present invention preferably has a melt viscosity at 150 ° C. measured by an ICI viscometer of 0.01 to 5 dPa · s.
 本発明は、前記エポキシ樹脂、及び、エポキシ樹脂用硬化剤を含有する硬化性組成物に関する。 The present invention relates to a curable composition containing the epoxy resin and a curing agent for an epoxy resin.
 本発明は、前記硬化性組成物の硬化物に関する。 The present invention relates to a cured product of the curable composition.
 本発明は、前記硬化性組成物を含有する半導体封止材料に関する。 The present invention relates to a semiconductor encapsulating material containing the curable composition.
 本発明は、前記半導体封止材料の硬化物を含む半導体装置に関する。 The present invention relates to a semiconductor device containing a cured product of the semiconductor encapsulating material.
 本発明は、補強基材、及び、前記補強基材に含浸した前記硬化性組成物の半硬化物を有するプリプレグに関する。 The present invention relates to a prepreg having a reinforcing base material and a semi-cured product of the curable composition impregnated in the reinforcing base material.
 本発明は、前記プリプレグ、及び、銅箔の積層体である回路基板に関する。 The present invention relates to the circuit board which is a laminated body of the prepreg and copper foil.
 本発明は、前記硬化性組成物を含有するビルドアップフィルムに関する。 The present invention relates to a build-up film containing the curable composition.
 本発明のエポキシ樹脂は、低粘度で、流動性、及び、成形性に優れ、また、前記エポキシ樹脂を含む硬化性組成物の硬化物は、高耐熱性、及び、高靭性に優れることから、特に、半導体封止材料等の電材用樹脂材料として、有用である。 The epoxy resin of the present invention has a low viscosity and is excellent in fluidity and moldability, and the cured product of the curable composition containing the epoxy resin is excellent in high heat resistance and high toughness. In particular, it is useful as a resin material for electrical materials such as semiconductor encapsulation materials.
合成例1で得られたフェノール性水酸基含有樹脂(P2-1)のGPCチャートである。6 is a GPC chart of the phenolic hydroxyl group-containing resin (P2-1) obtained in Synthesis Example 1. 実施例1で得られたエポキシ樹脂(1)のGPCチャートである。6 is a GPC chart of the epoxy resin (1) obtained in Example 1. 実施例2で得られたエポキシ樹脂(2)のGPCチャートである。6 is a GPC chart of the epoxy resin (2) obtained in Example 2. 実施例3で得られたエポキシ樹脂(3)のGPCチャートである。6 is a GPC chart of the epoxy resin (3) obtained in Example 3.
 本発明は、ビフェノール化合物(P1)のグリシジルエーテル化物(E1)、及び、ジヒドロキシアレーン化合物(α)と、下記一般式(1-1)又は(1-2)で表されるアラルキル化剤(β)とを反応原料とするフェノール性水酸基含有樹脂(P2)のグリシジルエーテル化物(E2)を含有するエポキシ樹脂に関する。 The present invention comprises a glycidyl etherified product (E1) of a biphenol compound (P1), a dihydroxyarene compound (α), and an aralkylating agent (β) represented by the following general formula (1-1) or (1-2). ) As a reaction raw material, the present invention relates to an epoxy resin containing a glycidyl etherified product (E2) of a phenolic hydroxyl group-containing resin (P2).
Figure JPOXMLDOC01-appb-C000005
[上記一般式(1-1)及び(1-2)中、Xは、ハロゲン原子、水酸基、アルコキシ基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、炭素原子数1~4のアルキル基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、メチル基を表す。Arは、フェニル基、ナフチル基、これらの芳香核上にハロゲン原子、脂肪族炭化水素基、アルコキシ基を1つないし複数有する構造部位のいずれかを表す。]
Figure JPOXMLDOC01-appb-C000005
[In the above general formulas (1-1) and (1-2), X represents any of a halogen atom, a hydroxyl group, and an alkoxy group. R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 independently represents a hydrogen atom or a methyl group. Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei. ]
 また、本発明は、ビフェノール化合物(P1)、及び、ジヒドロキシアレーン化合物(α)と下記一般式(1-1)又は(1-2)で表されるアラルキル化剤(β)とを反応原料とするフェノール性水酸基含有樹脂(P2)の混合物のグリシジルエーテル化物(E3)を含有するエポキシ樹脂に関する。 Further, in the present invention, a biphenol compound (P1) and a dihydroxyarene compound (α) and an aralkylating agent (β) represented by the following general formula (1-1) or (1-2) are used as reaction raw materials. The present invention relates to an epoxy resin containing a glycidyl etherified compound (E3) of a mixture of a phenolic hydroxyl group-containing resin (P2).
Figure JPOXMLDOC01-appb-C000006
[上記一般式(1-1)及び(1-2)中、Xは、ハロゲン原子、水酸基、アルコキシ基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、炭素原子数1~4のアルキル基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、メチル基を表す。Arは、フェニル基、ナフチル基、これらの芳香核上にハロゲン原子、脂肪族炭化水素基、アルコキシ基を1つないし複数有する構造部位のいずれかを表す。]
Figure JPOXMLDOC01-appb-C000006
[In the above general formulas (1-1) and (1-2), X represents any of a halogen atom, a hydroxyl group, and an alkoxy group. R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 independently represents a hydrogen atom or a methyl group. Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei. ]
<ビフェノール化合物(P1)>
 前記ビフェノール化合物(P1)としては、特に制限されないが、例えば、2,2’-ビフェノール、2,4’-ビフェノール、3,3’-ビフェノール、4,4’-ビフェノール、及びこれらの芳香環上に脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が1つないし複数置換した各種の化合物等が挙げられる。前記ビフェノール化合物(P1)は、単独で用いても、2種以上を組み合わせて用いてもよい。
<Biphenol compound (P1)>
The biphenol compound (P1) is not particularly limited, and is, for example, 2,2'-biphenol, 2,4'-biphenol, 3,3'-biphenol, 4,4'-biphenol, and on the aromatic ring thereof. Examples thereof include various compounds in which one or a plurality of aliphatic hydrocarbon groups, alkoxy groups, halogen atoms and the like are substituted. The biphenol compound (P1) may be used alone or in combination of two or more.
 前記脂肪族炭化水素基は、直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。中でも、硬化物における耐熱性に優れる効果が一層顕著なものとなることから、炭素原子数1~4のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、イソブチル基、ビニル基、アリル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられる。特に、最終的に得られるエポキシ樹脂の溶融粘度を好ましい値に調整しやすいことから、4,4’-ビフェノール及びその芳香環上に置換基を有するが好ましく、4,4’-ビフェノールがより好ましい。 The aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Of these, those having 1 to 4 carbon atoms are preferable, and specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group, because the effect of excellent heat resistance in the cured product becomes more remarkable. , T-butyl group, isobutyl group, vinyl group, allyl group and the like. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group and the like. Examples of the halogen atom include a fluorine atom, a chlorine atom and a bromine atom. In particular, since it is easy to adjust the melt viscosity of the finally obtained epoxy resin to a preferable value, it is preferable to have a substituent on 4,4'-biphenol and its aromatic ring, and 4,4'-biphenol is more preferable. ..
<フェノール性水酸基含有樹脂(P2)>
 前記フェノール性水酸基含有樹脂(P2)は、ジヒドロキシアレーン化合物(α)と、下記一般式(1-1)又は(1-2)で表されるアラルキル化剤(β)とを反応原料とする。
<Phenolic hydroxyl group-containing resin (P2)>
The phenolic hydroxyl group-containing resin (P2) uses a dihydroxyarene compound (α) and an aralkylating agent (β) represented by the following general formula (1-1) or (1-2) as reaction raw materials.
Figure JPOXMLDOC01-appb-C000007
[上記一般式(1-1)及び(1-2)中、Xは、ハロゲン原子、水酸基、アルコキシ基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、炭素原子数1~4のアルキル基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、メチル基を表す。Arは、フェニル基、ナフチル基、これらの芳香核上にハロゲン原子、脂肪族炭化水素基、アルコキシ基を1つないし複数有する構造部位のいずれかを表す。]
Figure JPOXMLDOC01-appb-C000007
[In the above general formulas (1-1) and (1-2), X represents any of a halogen atom, a hydroxyl group, and an alkoxy group. R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 independently represents a hydrogen atom or a methyl group. Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei. ]
 上記一般式(1-1)及び(1-2)中、Xは、ハロゲン原子、水酸基、アルコキシ基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、炭素原子数1~4のアルキル基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、メチル基を表す。Arは、フェニル基、ナフチル基、これらの芳香核上にハロゲン原子、脂肪族炭化水素基、アルコキシ基を1つないし複数有する構造部位のいずれかを表す。 In the above general formulas (1-1) and (1-2), X represents any one of a halogen atom, a hydroxyl group, and an alkoxy group. R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 independently represents a hydrogen atom or a methyl group. Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei.
 前記フェノール性水酸基含有樹脂(P2)は、前記ジヒドロキシアレーン化合物(α)の分子間脱水反応により生じる(ポリ)アリーレンエーテル構造を有する成分を含有する。また、前記アラルキル化剤(β)により、前記フェノール性水酸基含有樹脂(P2)中の芳香環の一部又は全部にアラルキル基が導入される。その結果、、前記フェノール性水酸基含有樹脂(P2)のグリシジルエーテル化物(E2)は、分子中のグリシジルエーテル基同士の距離が比較的長く、かつ、芳香環濃度が高くなることから、得られる硬化物における耐熱性と靱性とを高いレベルで兼備することができる。 The phenolic hydroxyl group-containing resin (P2) contains a component having a (poly) arylene ether structure generated by an intramolecular dehydration reaction of the dihydroxyarene compound (α). Further, the olerousyl group is introduced into a part or all of the aromatic ring in the phenolic hydroxyl group-containing resin (P2) by the oleresin agent (β). As a result, the glycidyl etherified product (E2) of the phenolic hydroxyl group-containing resin (P2) has a relatively long distance between the glycidyl ether groups in the molecule and a high aromatic ring concentration, so that the curing can be obtained. It is possible to combine heat resistance and toughness in an object at a high level.
 前記ジヒドロキシアレーン化合物(α)は、芳香環上に2つのヒドロキシ基を有する化合物であればよく、その具体的な構造は、特に限定されず、多種多様なものを用いることができる。具体例としては、ジヒドロキシベンゼン、ジヒドロキシナフタレン、これらの芳香環上にハロゲン原子、脂肪族炭化水素基、アルコキシ基等の置換基を1つないし複数有する化合物等が挙げられる。本発明では、前記ジヒドロキシアレーン化合物(α)として、1種類を単独で用いてもよいし、2種類以上を併用してもよい。 The dihydroxyarene compound (α) may be any compound having two hydroxy groups on the aromatic ring, and its specific structure is not particularly limited, and a wide variety of compounds can be used. Specific examples include dihydroxybenzene, dihydroxynaphthalene, and compounds having one or more substituents such as a halogen atom, an aliphatic hydrocarbon group, and an alkoxy group on their aromatic rings. In the present invention, one type of the dihydroxyarene compound (α) may be used alone, or two or more types may be used in combination.
 前記ジヒドロキシベンゼンにおいて、2つのヒドロキシ基の置換位置は特に限定なく、オルソ位、パラ位、メタ位のいずれであってもよい。また、前記ジヒドロキシナフタレンにおいて、2つのヒドロキシ基の置換位置は特に限定なく、例えば、1,2-位、1,4-位、1,5-位、1,6-位、1,7-位、2,3-位、2,6-位、2,7位のいずれであってもよい。 In the dihydroxybenzene, the substitution position of the two hydroxy groups is not particularly limited, and may be any of the ortho position, the para position, and the meta position. Further, in the dihydroxynaphthalene, the substitution positions of the two hydroxy groups are not particularly limited, and are, for example, 1,2-position, 1,4-position, 1,5-position, 1,6-position and 1,7-position. , 2,3-position, 2,6-position, 2,7-position.
 前記ハロゲン原子は、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。前記脂肪族炭化水素基は、直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。具体的には、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブチルオキシ基等が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and the like. The aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group and the like. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butyloxy group and the like.
 前記ジヒドロキシアレーン化合物(α)の中でも、得られる硬化物における耐熱性と靱性とに優れる効果が一層顕著になることから、ジヒドロキシナフタレン及びその芳香環上にハロゲン原子、脂肪族炭化水素基、アルコキシ基等の置換基を1つないし複数有する化合物が好ましく、ジヒドロキシナフタレンがより好ましい。前記ジヒドロキシナフタレン上のヒドロキシ基の位置は、1,6-位又は2,7-位であることが好ましく、2,7-位であることがより好ましい。また、前記ジヒドロキシアレーン化合物(α)として、複数種を併用する場合には、前記ジヒドロキシアレーン化合物(α)に占めるジヒドロキシナフタレン及びその芳香環上にハロゲン原子、脂肪族炭化水素基、アルコキシ基等の置換基を1つないし複数有する化合物の割合が、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、95質量%以上であることが特に好ましい。 Among the dihydroxyarene compounds (α), a halogen atom, an aliphatic hydrocarbon group, and an alkoxy group are placed on the dihydroxynaphthalene and its aromatic ring because the obtained cured product has more remarkable effects on heat resistance and toughness. Compounds having one or more substituents such as are preferable, and dihydroxynaphthalene is more preferable. The position of the hydroxy group on the dihydroxynaphthalene is preferably 1,6-position or 2,7-position, and more preferably 2,7-position. When a plurality of types of the dihydroxyarene compound (α) are used in combination, dihydroxynaphthalene occupying the dihydroxyarene compound (α) and a halogen atom, an aliphatic hydrocarbon group, an alkoxy group or the like on the aromatic ring thereof. The ratio of the compound having one or a plurality of substituents is preferably 50% by mass or more, more preferably 80% by mass or more, and particularly preferably 95% by mass or more.
 前記アラルキル化剤(β)は、前記一般式(1-1)又は(1-2)で表される分子構造を有する。本発明では、前記アラルキル化剤(β)として、1種類を単独で用いてもよいし、2種類以上を併用してもよい。 The aralkylating agent (β) has a molecular structure represented by the general formula (1-1) or (1-2). In the present invention, as the aralkylating agent (β), one type may be used alone, or two or more types may be used in combination.
 前記一般式(1-1)及び(1-2)中、前記Xは、ハロゲン原子、水酸基、アルコキシ基のいずれかを表す。前記ハロゲン原子は、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブチルオキシ基等が挙げられる。中でも、反応性に優れる点から、ハロゲン原子又は水酸基が好ましく、水酸基が特に好ましい。 In the general formulas (1-1) and (1-2), the X represents any one of a halogen atom, a hydroxyl group, and an alkoxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and the like. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butyloxy group and the like. Among them, a halogen atom or a hydroxyl group is preferable, and a hydroxyl group is particularly preferable, from the viewpoint of excellent reactivity.
 前記一般式(1-1)及び(1-2)中、前記Rは、それぞれ独立して、水素原子、又は、炭素原子数1~4のアルキル基のいずれかを表す。中でも、反応性に優れる点から、水素原子が好ましい。 In the general formulas (1-1) and (1-2), the R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Of these, a hydrogen atom is preferable because of its excellent reactivity.
 前記一般式(1-1)及び(1-2)中、前記Rは、それぞれ独立して、水素原子、又は、メチル基を表す。中でも、反応性に優れる点から、水素原子が好ましい。 In the general formulas (1-1) and (1-2), the R 2 independently represents a hydrogen atom or a methyl group, respectively. Of these, a hydrogen atom is preferable because of its excellent reactivity.
 前記一般式(1-1)及び(1-2)中、前記Arは、フェニル基、ナフチル基、これらの芳香核上にハロゲン原子、脂肪族炭化水素基、アルコキシ基を1つないし複数有する構造部位のいずれかである。 In the general formulas (1-1) and (1-2), the Ar 1 has a phenyl group, a naphthyl group, and one or more halogen atoms, an aliphatic hydrocarbon group, and an alkoxy group on these aromatic nuclei. It is one of the structural parts.
 前記ハロゲン原子は、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。前記脂肪族炭化水素基は、直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。具体的には、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブチルオキシ基等が挙げられる。中でも、硬化物における耐熱性と靱性とに優れる効果が一層顕著になることから、前記Arは、フェニル基又はナフチル基であることが好ましく、フェニル基がより好ましい。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and the like. The aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure. Specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group and the like. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butyloxy group and the like. Among them, the Ar 1 is preferably a phenyl group or a naphthyl group, and more preferably a phenyl group, because the effect of excellent heat resistance and toughness in the cured product becomes more remarkable.
 前記アラルキル化剤(β)として複数種を併用する場合には、前記アラルキル化剤(β)に占める前記Arがフェニル基である化合物の割合が、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、95質量%以上であることが特に好ましい。 When a plurality of types are used in combination as the aralkylating agent (β), the ratio of the compound in which Ar 1 is a phenyl group to the aralkylating agent (β) is preferably 50% by mass or more, and is 80%. It is more preferably mass% or more, and particularly preferably 95% by mass or more.
 前記フェノール性水酸基含有樹脂(P2)は、反応原料の一部として、前記ジヒドロキシアレーン化合物(α)及び前記アラルキル化剤(β)以外の成分を用いてもよい。この場合、前記フェノール性水酸基含有樹脂(P2)の反応原料の総質量に占める前記ジヒドロキシアレーン化合物(α)と前記アラルキル化剤(β)との合計質量が80質量%以上であることが好ましく、95質量%以上であることがより好ましい。 The phenolic hydroxyl group-containing resin (P2) may use a component other than the dihydroxyarene compound (α) and the aralkylating agent (β) as a part of the reaction raw material. In this case, the total mass of the dihydroxyarene compound (α) and the aralkylating agent (β) in the total mass of the reaction raw material of the phenolic hydroxyl group-containing resin (P2) is preferably 80% by mass or more. It is more preferably 95% by mass or more.
 前記フェノール性水酸基含有樹脂(P2)の製造方法としては、例えば、前記ジヒドロキシアレーン化合物(α)及び前記アラルキル化剤(β)を含む反応原料を、酸触媒条件下で反応させる方法が挙げられる。また、反応は必要に応じて溶媒中で行ってもよい。 Examples of the method for producing the phenolic hydroxyl group-containing resin (P2) include a method in which a reaction raw material containing the dihydroxyarene compound (α) and the aralkylating agent (β) is reacted under acid catalyst conditions. Further, the reaction may be carried out in a solvent if necessary.
 前記ジヒドロキシアレーン化合物(α)と前記アラルキル化剤(β)との反応割合は、流動性に優れるエポキシ樹脂となることから、両者のモル比[(α)/(β)]が、1/0.1~1/10の範囲であることが好ましく、1/0.1~1/1の範囲であることがより好ましい。 Since the reaction ratio between the dihydroxyarene compound (α) and the aralkylating agent (β) is an epoxy resin having excellent fluidity, the molar ratio [(α) / (β)] of the two is 1/0. It is preferably in the range of 1 to 1/10, and more preferably in the range of 1 / 0.1 to 1/1.
 前記酸触媒は、例えば、リン酸、硫酸、塩酸などの無機酸、シュウ酸、ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、フルオロメタンスルホン酸等の有機酸、塩化アルミニウム、塩化亜鉛、塩化第2錫、塩化第2鉄、ジエチル硫酸などのフリーデルクラフツ触媒が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The acid catalyst includes, for example, inorganic acids such as phosphoric acid, sulfuric acid and hydrochloric acid, organic acids such as oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid and fluoromethanesulfonic acid, aluminum chloride, zinc chloride and chloride. Examples thereof include Friedelcraft catalysts such as ditin, ferric chloride and diethylsulfuric acid. These may be used alone or in combination of two or more.
 前記酸触媒として無機酸や有機酸を用いる場合には、前記ジヒドロキシアレーン化合物(α)100質量部に対し0.01~3質量部の範囲で用いることが好ましい。前記酸触媒としてフリーデルクラフツ触媒を用いる場合には、前記ジヒドロキシアレーン化合物(α)1モルに対し、0.5~2モルの範囲で用いることが好ましい。 When an inorganic acid or an organic acid is used as the acid catalyst, it is preferably used in the range of 0.01 to 3 parts by mass with respect to 100 parts by mass of the dihydroxyarene compound (α). When a Friedel-Crafts catalyst is used as the acid catalyst, it is preferably used in the range of 0.5 to 2 mol with respect to 1 mol of the dihydroxyarene compound (α).
 前記溶媒は、例えば、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、セロソルブ、ブチルカルビトール、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド、トルエン、キシレン、クロロベンゼン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上の混合溶媒としても良い。これら溶媒を使う場合には、前記フェノール性水酸基含有樹脂(P2)の反応原料の総質量に対し、20~300質量%の範囲で用いることが好ましい。 The solvent is, for example, acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, diethylene glycol dimethyl ether, diethylene glycol. Diethyl ether, diethylene glycol dipropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, cellosolve, butylcarbitol, dimethyl Examples thereof include formamide, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, toluene, xylene, chlorobenzene and the like. Each of these may be used alone or as a mixed solvent of two or more kinds. When these solvents are used, it is preferable to use them in the range of 20 to 300% by mass with respect to the total mass of the reaction raw materials of the phenolic hydroxyl group-containing resin (P2).
 前記ジヒドロキシアレーン化合物(α)と前記アラルキル化剤(β)との反応は、60~180℃程度の温度条件下で行うことが出来、反応時間は、おおよそ1~24時間程度である。反応中に生じた水等を適宜留去することにより、より効率的に反応を進めることができる。反応終了後は、アルカリ金属水酸化物等のアルカリ化合物を用いて反応系中を中和する、或いは水推薦するなどした後、乾燥させるなどして、前記フェノール性水酸基含有樹脂(P2)を得ることが出来る。 The reaction between the dihydroxyarene compound (α) and the aralkylating agent (β) can be carried out under temperature conditions of about 60 to 180 ° C., and the reaction time is about 1 to 24 hours. The reaction can be promoted more efficiently by appropriately distilling off water or the like generated during the reaction. After completion of the reaction, the inside of the reaction system is neutralized with an alkaline compound such as an alkali metal hydroxide, or water is recommended and then dried to obtain the phenolic hydroxyl group-containing resin (P2). Can be done.
 前記フェノール性水酸基含有樹脂(P2)の水酸基当量は、硬化物における耐熱性及び靱性に優れる効果が一層顕著となることから、100~400g/当量の範囲であることが好ましく、110~300g/当量の範囲であることが好ましい。また、その軟化点は60~140℃の範囲であることが好ましい。 The hydroxyl group equivalent of the phenolic hydroxyl group-containing resin (P2) is preferably in the range of 100 to 400 g / equivalent, and 110 to 300 g / equivalent, because the effect of excellent heat resistance and toughness in the cured product becomes more remarkable. It is preferably in the range of. The softening point is preferably in the range of 60 to 140 ° C.
 前記フェノール性水酸基含有樹脂(P2)の一例として、例えば、ジヒドロキシアレーン化合物(α)として、2,7-ジヒドロキシナフタレンを、前記アラルキル化剤(β)として、ベンジルアルコールを用いた場合、前記フェノール性水酸基含有樹脂(P2)が含有する各成分の具体的な構造は、例えば、下記構造式(2-1)~(2-18)のいずれかで表されるものなどが挙げられる。 As an example of the phenolic hydroxyl group-containing resin (P2), for example, when 2,7-dihydroxynaphthalene is used as the dihydroxyarene compound (α) and benzyl alcohol is used as the aralkylating agent (β), the phenolic property is used. Specific examples of the specific structure of each component contained in the hydroxyl group-containing resin (P2) include those represented by any of the following structural formulas (2-1) to (2-18).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 前記フェノール性水酸基含有樹脂(P2)は、硬化物における耐熱性及び靱性に優れる効果が一層顕著となることから、前記構造式(2-6)~(2-8)や(2-10)、(2-11)で表されるような、1分子中にナフタレン環構造を3つ有する化合物(A)を含有することが好ましい。 Since the phenolic hydroxyl group-containing resin (P2) has a more remarkable effect on the cured product in terms of heat resistance and toughness, the structural formulas (2-6) to (2-8) and (2-10), It is preferable to contain the compound (A) having three naphthalene ring structures in one molecule as represented by (2-11).
 また、前記フェノール性水酸基含有樹脂(P2)中の前記化合物(A)の含有量は、ゲル浸透クロマトグラフィー(GPC)のチャート図の面積比から算出される値で5~50%であることが好ましく、10~45%であることがより好ましい。なお、ゲル浸透クロマトグラフィー(GPC)は、後述する実施例に記載の測定条件で測定したものである。 Further, the content of the compound (A) in the phenolic hydroxyl group-containing resin (P2) is 5 to 50% as a value calculated from the area ratio of the chart diagram of gel permeation chromatography (GPC). It is preferably 10 to 45%, more preferably 10 to 45%. In addition, gel permeation chromatography (GPC) was measured under the measurement conditions described in Examples described later.
 本発明のエポキシ樹脂は、前記ビフェノール化合物(P1)のグリシジルエーテル化物(E1)、及び、前記フェノール性水酸基含有樹脂(P2)のグリシジルエーテル化物(E2)を含有するものであれば、その製法は特に限定されず、どのように製造されたものでもよい。 If the epoxy resin of the present invention contains the glycidyl etherified product (E1) of the biphenol compound (P1) and the glycidyl etherified product (E2) of the phenolic hydroxyl group-containing resin (P2), the production method thereof may be as follows. It is not particularly limited, and may be manufactured in any way.
 本発明のエポキシ樹脂の製造方法としては、例えば、(1)前記ビフェノール化合物(P1)をエピハロヒドリンと反応させてグリシジルエーテル化したグリシジルエーテル化物(E1)を合成し、別途、前記フェノール性水酸基含有樹脂(P2)をエピハロヒドリンと反応させてグリシジルエーテル化したグリシジルエーテル化物(E2)を合成し、これらを混合(含有)したものを本発明のエポキシ樹脂とすることができる。 As a method for producing an epoxy resin of the present invention, for example, (1) a glycidyl etherified product (E1) obtained by reacting the biphenol compound (P1) with epihalohydrin to form a glycidyl etherified product is synthesized, and the phenolic hydroxyl group-containing resin is separately prepared. The epoxy resin of the present invention can be obtained by reacting (P2) with epihalohydrin to synthesize a glycidyl etherified product (E2) that has been glycidyl etherified, and mixing (containing) these.
 また、(2)前記ビフェノール化合物(P1)と、前記フェノール性水酸基含有樹脂(P2)との混合物に、エピハロヒドリンを加え、前記ビフェノール化合物(P1)と前記フェノール性水酸基含有樹脂(P2)のそれぞれとエピハロヒドリンを反応させることにより、前記グリシジルエーテル化物(E1)と前記グリシジルエーテル化物(E2)とを含有するグリシジルエーテル化物(E3)を合成し、これを含有したものを本発明のエポキシ樹脂とすることができる。 Further, (2) epihalohydrin is added to a mixture of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2), and the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) are combined with each other. By reacting with epihalohydrin, a glycidyl ether compound (E3) containing the glycidyl ether compound (E1) and the glycidyl ether compound (E2) is synthesized, and the one containing the glycidyl ether compound (E3) is used as the epoxy resin of the present invention. Can be done.
 特に、上記(2)の製造方法は、簡便性、及び、作業性に優れるため、好ましい。 In particular, the manufacturing method of (2) above is preferable because it is excellent in convenience and workability.
 前記(1)のエポキシ樹脂の製造方法において、前記ビフェノール化合物(P1)とエピハロヒドリンとの反応、及び、前記フェノール性水酸基含有樹脂(P2)とエピハロヒドリンとの反応は、例えば、塩基性触媒の存在下、通常20~150℃、好ましくは、30~80℃の範囲で0.5~10時間反応させる方法などが挙げられる。 In the method for producing an epoxy resin according to (1), the reaction between the biphenol compound (P1) and epihalohydrin and the reaction between the phenolic hydroxyl group-containing resin (P2) and epihalohydrin are carried out, for example, in the presence of a basic catalyst. Examples thereof include a method of reacting at 20 to 150 ° C., preferably 30 to 80 ° C. for 0.5 to 10 hours.
 前記エピハロヒドリンとしては、エピクロルヒドリン、エピブロモヒドリン、β-メチルエピクロルヒドリン等が挙げられる。エピハロヒドリンの添加量は、前記ビフェノール化合物(P1)、または、前記フェノール性水酸基含有樹脂(P2)が有する水酸基の合計1モルに対して、過剰に用いられるが、通常、1.5~30モルであり、好ましくは、2~15モルの範囲である。 Examples of the epichlorohydrin include epichlorohydrin, epibromohydrin, β-methylepichlorohydrin and the like. The amount of epihalohydrin added is excessively used with respect to a total of 1 mol of the hydroxyl groups of the biphenol compound (P1) or the phenolic hydroxyl group-containing resin (P2), but is usually 1.5 to 30 mol. Yes, preferably in the range of 2 to 15 mol.
 前記塩基性触媒としては、例えば、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、及び、アルカリ金属水酸化物等が挙げられる。中でも、触媒活性に優れる点からアルカリ金属水酸化物が好ましく、具体的には、水酸化ナトリウムや水酸化カリウム等がより好ましい。また、これら塩基性触媒は、固形の状態で使用してもよいし、水溶液の状態で使用してもよい。前記塩基性触媒の添加量は、前記ビフェノール化合物(P1)、または、前記フェノール性水酸基含有樹脂(P2)が有する水酸基の合計1モルに対して、0.9~2モルの範囲であることが好ましい。 Examples of the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides. Of these, alkali metal hydroxides are preferable from the viewpoint of excellent catalytic activity, and specifically, sodium hydroxide, potassium hydroxide and the like are more preferable. Further, these basic catalysts may be used in a solid state or in an aqueous solution state. The amount of the basic catalyst added may be in the range of 0.9 to 2 mol with respect to a total of 1 mol of the hydroxyl groups of the biphenol compound (P1) or the phenolic hydroxyl group-containing resin (P2). preferable.
 前記ビフェノール化合物(P1)、及び、前記フェノール性水酸基含有樹脂(P2)と、エピハロヒドリンとの反応は、有機溶媒中で行ってもよい。用いる有機溶媒としては、例えば、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコール、1-ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、テトラヒドロフラン、1、4-ジオキサン、1、3-ジオキサン、ジエトキシエタン等のエーテル類、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調製するために、適宜、2種以上を併用してもよい。 The reaction between the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) and epihalohydrin may be carried out in an organic solvent. Examples of the organic solvent used include ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol and tertiary butanol, methyl cellosolve and ethyl cellosolve. Examples thereof include cellosolves, ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane, and aprotonic polar solvents such as acetonitrile, dimethylsulfoxide and dimethylformamide. Each of these organic solvents may be used alone, or two or more thereof may be used in combination as appropriate for adjusting the polarity.
 前記エピハロヒドリンとの反応終了後は、過剰のエピハロヒドリンを留去することにより、粗生成物を得ることができる。必要に応じて、得られた粗生成物を再度有機溶剤に溶解させ、塩基性触媒を加えて再度反応させることにより、加水分解性ハロゲンを低減させてもよい。反応で生じた塩は濾過や水洗等により除去することができる。また、有機溶媒を用いた場合には、留去して樹脂固形分のみを取り出してもよいし、そのまま溶液として用いてもよい。 After the reaction with the epihalohydrin is completed, a crude product can be obtained by distilling off the excess epihalohydrin. If necessary, the hydrolyzable halogen may be reduced by dissolving the obtained crude product in an organic solvent again, adding a basic catalyst and reacting again. The salt generated in the reaction can be removed by filtration, washing with water, or the like. When an organic solvent is used, it may be distilled off to take out only the resin solid content, or it may be used as it is as a solution.
 前記(1)のエポキシ樹脂の製造方法において、前記グリシジルエーテル化物(E1)と前記グリシジルエーテル化物(E2)との質量比は特に限定されないが、流動性に優れ、かつ、硬化物における高い靭性特性や低吸湿性に優れるエポキシ樹脂となることから、両者の合計質量に対する前記グリシジルエーテル化物(E1)の割合が、0.5質量%以上であることが好ましく、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、15質量%以上であることが特に好ましい。また、その上限値は、40質量%以下であることが好ましく、30質量%以下であることがより好ましい。 In the method for producing an epoxy resin according to (1), the mass ratio of the glycidyl etherified product (E1) to the glycidyl etherified product (E2) is not particularly limited, but the fluidity is excellent and the toughness property of the cured product is high. The ratio of the glycidyl etherified product (E1) to the total mass of both is preferably 0.5% by mass or more, and preferably 1% by mass or more, because the epoxy resin has excellent low moisture absorption. It is more preferably 5% by mass or more, and particularly preferably 15% by mass or more. The upper limit thereof is preferably 40% by mass or less, more preferably 30% by mass or less.
 前記(2)のエポキシ樹脂の製造方法において、前記ビフェノール化合物(P1)、と前記フェノール性水酸基含有樹脂(P2)との混合物中の両者の質量比は、流動性に優れ、かつ、硬化物における高い靭性特性や低吸湿性に優れるエポキシ樹脂となることから、両者の合計質量に対する前記ビフェノール化合物(P1)の割合が、0.5質量%以上であることが好ましく、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、15質量%以上であることが特に好ましい。また、その上限値は、40質量%以下であることが好ましく、30質量%以下であることがより好ましい。 In the method for producing an epoxy resin according to (2), the mass ratio of both in the mixture of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) is excellent in fluidity and in the cured product. Since the epoxy resin has high toughness and low moisture absorption, the ratio of the biphenol compound (P1) to the total mass of both is preferably 0.5% by mass or more, preferably 1% by mass or more. Is preferable, 5% by mass or more is more preferable, and 15% by mass or more is particularly preferable. The upper limit thereof is preferably 40% by mass or less, more preferably 30% by mass or less.
 前記ビフェノール化合物(P1)と前記フェノール性水酸基含有樹脂(P2)との混合物とエピハロヒドリンとの反応は、前記(1)のエポキシ樹脂の製造方法と同様の方法にて行うことができる。前記エピハロヒドリンの添加量は、前記ビフェノール化合物(P1)及び前記フェノール性水酸基含有樹脂(P2)が有する水酸基の合計1モルに対し、過剰に用いられるが、通常、1.5~30モル、好ましくは、2~15モルの範囲である。また、前記(1)のエポキシ樹脂の製造方法と同様、塩基性触媒を使用することができ、前記塩基性触媒の添加量は、前記ビフェノール化合物(P1)及び前記フェノール性水酸基含有樹脂(P2)が有する水酸基の合計1モルに対して、0.9~2モルの範囲であることが好ましい。 The reaction of the mixture of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) with epihalohydrin can be carried out by the same method as the method for producing the epoxy resin of (1). The amount of the epihalohydrin added is excessively used with respect to a total of 1 mol of the hydroxyl groups of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2), but is usually 1.5 to 30 mol, preferably 1.5 to 30 mol. It ranges from 2 to 15 mol. Further, as in the method for producing the epoxy resin of (1), a basic catalyst can be used, and the amount of the basic catalyst added is the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2). It is preferably in the range of 0.9 to 2 mol with respect to 1 mol of the total hydroxyl group contained in.
 本発明のエポキシ樹脂のエポキシ当量は、140~400g/当量であることが好ましく、140~350g/当量であることがより好ましい。ここでのエポキシ当量の測定は、JIS K 7236に基づいて測定されるものである。 The epoxy equivalent of the epoxy resin of the present invention is preferably 140 to 400 g / equivalent, more preferably 140 to 350 g / equivalent. The measurement of the epoxy equivalent here is based on JIS K7236.
 本発明のエポキシ樹脂は、ICI粘度計で測定した150℃における溶融粘度が、0.01~5dPa・sであることが好ましく、0.01~2dPa・sであることがより好ましく、0.01~1dPa・sであることが更に好ましい。前記エポキシ樹脂の溶融粘度が前記範囲内であると、低粘度で流動性に優れるため、得られる硬化物の成形性が優れることから好ましい。ここでの溶融粘度は、ASTM D4287に準拠し、ICI粘度計にて測定されるものである。 The epoxy resin of the present invention preferably has a melt viscosity at 150 ° C. measured by an ICI viscometer of 0.01 to 5 dPa · s, more preferably 0.01 to 2 dPa · s, and 0.01. It is more preferably ~ 1 dPa · s. When the melt viscosity of the epoxy resin is within the above range, the viscosity is low and the fluidity is excellent, and the moldability of the obtained cured product is excellent, which is preferable. The melt viscosity here is based on ASTM D4287 and is measured by an ICI viscometer.
 本発明のエポキシ樹脂は、低粘度で流動性に優れるものとなることから、数平均分子量(Mn)が200~1500の範囲であることが好まし200~800の範囲であることがより好ましい。また、重量平均分子量(Mw)は250~2000の範囲であることが好ましく、250~800の範囲であることがより好ましい。また、分散度(Mw/Mn)としては、1~3の範囲であることが好ましい。本発明において、エポキシ樹脂の分子量や分散度は、ゲル浸透クロマトグラフィー(GPC)を用いて、後述する実施例に記載の測定条件で測定したものである。 Since the epoxy resin of the present invention has a low viscosity and excellent fluidity, the number average molecular weight (Mn) is preferably in the range of 200 to 1500, more preferably in the range of 200 to 800. The weight average molecular weight (Mw) is preferably in the range of 250 to 2000, more preferably in the range of 250 to 800. The dispersity (Mw / Mn) is preferably in the range of 1 to 3. In the present invention, the molecular weight and the degree of dispersion of the epoxy resin are measured by gel permeation chromatography (GPC) under the measurement conditions described in Examples described later.
 本発明のエポキシ樹脂の具体例として、以下の構造式で表されるエポキシ樹脂が挙げられる。 Specific examples of the epoxy resin of the present invention include epoxy resins represented by the following structural formulas.
Figure JPOXMLDOC01-appb-C000011
[上記式中、nは0~10の整数である。]
Figure JPOXMLDOC01-appb-C000011
[In the above formula, n is an integer of 0 to 10. ]
<硬化性組成物>
 本発明は、前記エポキシ樹脂、及び、エポキシ樹脂用硬化剤を含有する硬化性組成物に関する。前記硬化性組成物が、前記エポキシ樹脂を含有することで、得られる硬化物は、耐熱性や靱性に優れるものとなり、好ましい。
<Curable composition>
The present invention relates to a curable composition containing the epoxy resin and a curing agent for an epoxy resin. When the curable composition contains the epoxy resin, the obtained cured product has excellent heat resistance and toughness, which is preferable.
 本発明の硬化性組成物は、前記エポキシ樹脂のエポキシ基と架橋反応が可能なエポキシ樹脂用硬化剤を、特に制限なく使用できる。前記硬化剤としては、フェノール硬化剤、アミン硬化剤、酸無水物硬化剤、活性エステル樹脂、シアネートエステル樹脂等が挙げられる。前記硬化剤は、単独で用いても、2種以上を組み合わせて用いてもよい。 In the curable composition of the present invention, an epoxy resin curing agent capable of cross-linking reaction with the epoxy group of the epoxy resin can be used without particular limitation. Examples of the curing agent include a phenol curing agent, an amine curing agent, an acid anhydride curing agent, an active ester resin, and a cyanate ester resin. The curing agent may be used alone or in combination of two or more.
 前記フェノール硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリフェニロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール性水酸基含有化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール性水酸基含有化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール性水酸基含有化合物)等の多価フェノール性水酸基含有化合物が挙げられる。中でも、成形性の観点から、フェノールノボラック樹などがより好ましい。なお、前記フェノール性水酸基を含有する化合物は、単独で用いても、2種以上を組み合わせて用いてもよい。 Examples of the phenol curing agent include phenol novolac resin, cresol novolak resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadienephenol-added resin, phenol aralkyl resin (Zyroc resin), naphthol aralkyl resin, and triphenylol. Methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyvalent phenolic hydroxyl group-containing compound in which phenol nuclei are linked by bismethylene groups). ), Biphenyl-modified naphthol resin (polyvalent naphthol compound in which phenol nuclei are linked by bismethylene groups), aminotriazine-modified phenol resin (polyvalent phenolic hydroxyl group-containing compound in which phenol nuclei are linked by melamine, benzoguanamine, etc.) and alkoxy groups. Examples thereof include polyvalent phenolic hydroxyl group-containing compounds such as a contained aromatic ring-modified novolak resin (a polyvalent phenolic hydroxyl group-containing compound in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde). Among them, phenol novolac trees and the like are more preferable from the viewpoint of moldability. The compound containing the phenolic hydroxyl group may be used alone or in combination of two or more.
 前記アミン硬化剤としては、ジエチレントリアミン(DTA)、トリエチレンテトラミン(TTA)、テトラエチレンペンタミン(TEPA)、ジプロプレンジアミン(DPDA)、ジエチルアミノプロピルアミン(DEAPA)、N-アミノエチルピペラジン、メンセンジアミン(MDA)、イソフオロンジアミン(IPDA)、1,3-ビスアミノメチルシクロヘキサン(1,3-BAC)、ピペリジン、N,N,-ジメチルピペラジン、トリエチレンジアミン等の脂肪族アミン;m-キシレンジアミン(XDA)、メタンフェニレンジアミン(MPDA)、ジアミノジフェニルメタン(DDM)、ジアミノジフェニルスルホン(DDS)、ベンジルメチルアミン、2-(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジメチルアミノメチル)フェノール等の芳香族アミン等が挙げられる。 Examples of the amine curing agent include diethylenetriamine (DTA), triethylenetetramine (TTA), tetraethylenepentamine (TEPA), diproprendamine (DPDA), diethylaminopropylamine (DEAPA), N-aminoethylpiperazine and mensendiamine. (MDA), Isophorondiamine (IPDA), 1,3-bisaminomethylcyclohexane (1,3-BAC), piperidine, N, N, -dimethylpiperazine, triethylenediamine and other aliphatic amines; m-xylenediamine ( XDA), methanephenylenediamine (MPDA), diaminodiphenylmethane (DDM), diaminodiphenylsulfone (DDS), benzylmethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (dimethylaminomethyl) phenol, etc. Aromatic amines and the like can be mentioned.
 前記酸無水物硬化剤としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水コハク酸、メチルシクロヘキセンジカルボン酸無水物等が挙げられる。 Examples of the acid anhydride curing agent include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic acid anhydride, ethylene glycol bistrimeritate, glycerol tristrimeritate, maleic anhydride, and tetrahydrophthalic anhydride. Methyltetrahydrochloride phthalic acid, endomethylenetetrahydrochloride phthalic acid, methylendomethylenetetrahydrochloride phthalic acid, methylbutenyltetrahydrochloride phthalic acid, dodecenyl succinic anhydride, hexahydrochloride phthalic acid, methylhexahydrohydride phthalic acid, succinic anhydride, Methylcyclohexene dicarboxylic acid anhydride and the like can be mentioned.
 前記エポキシ樹脂の使用量に対する前記硬化剤の使用量としては、例えば、官能基当量比(例えば、フェノール硬化剤の水酸基当量/エポキシ樹脂のエポキシ当量)として、特に制限されるものではないが、得られる硬化物の機械的物性等が良好である点から、前記エポキシ樹脂及び必要に応じて併用されるその他のエポキシ樹脂とのエポキシ基の合計1当量に対して、硬化剤中の活性基が0.5~1.5当量になる量が好ましく、0.8~1.2当量であることがより好ましい。 The amount of the curing agent used with respect to the amount of the epoxy resin used is not particularly limited as, for example, the functional group equivalent ratio (for example, the hydroxyl group equivalent of the phenol curing agent / the epoxy equivalent of the epoxy resin). Since the mechanical properties of the cured product to be obtained are good, the number of active groups in the curing agent is 0 with respect to a total of 1 equivalent of the epoxy group with the epoxy resin and other epoxy resins used in combination as needed. The amount is preferably 5.5 to 1.5 equivalents, more preferably 0.8 to 1.2 equivalents.
 なお、前記硬化性組成物には、前記エポキシ樹脂、及び、前記硬化剤以外に、本発明の効果を損なわない範囲において、他の樹脂を併用することができる。例えば、前記エポキシ樹脂以外のエポキシ樹脂、マレイミド樹脂、ビスマレイミド樹脂、ポリマレイミド樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、トリアジン含有クレゾールノボラック樹脂、スチレン-無水マレイン酸樹脂、ジアリルビスフェノールやトリアリルイソシアヌレート等のアリル基含有樹脂、ポリリン酸エステル、リン酸エステル-カーボネート共重合体等が挙げられる。これらの他の樹脂は、単独で用いても、2種以上を組み合わせて用いてもよい。 In addition to the epoxy resin and the curing agent, other resins can be used in combination with the curable composition as long as the effects of the present invention are not impaired. For example, epoxy resins other than the epoxy resin, maleimide resin, bismaleimide resin, polymaleimide resin, polyphenylene ether resin, polyimide resin, benzoxazine resin, triazine-containing cresol novolak resin, styrene-maleic anhydride resin, diallyl bisphenol and triallyl. Examples thereof include an allyl group-containing resin such as isocyanurate, a polyphosphate ester, and a phosphate ester-carbonate copolymer. These other resins may be used alone or in combination of two or more.
<溶媒>
 本発明の硬化性組成物は、無溶剤で調製しても構わないし、溶媒を含んでいてもよい。前記溶媒は、硬化性組成物の粘度を調整する機能等を有する。
<Solvent>
The curable composition of the present invention may be prepared without a solvent, or may contain a solvent. The solvent has a function of adjusting the viscosity of the curable composition and the like.
 前記溶媒の具体例としては、特に制限されないが、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等のエステル系溶剤;セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン、エチルベンゼン、メシチレン、1,2,3-トリメチルベンゼン、1,2,4-トリメチルベンゼン等の芳香族炭化水素、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶剤等が挙げられる。これらの溶媒は単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the solvent are not particularly limited, but are ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ether solvents such as diethyl ether and tetrahydrofuran; ethyl acetate, butyl acetate, cellosolve acetate and propylene glycol monomethyl. Ester solvents such as ether acetate and carbitol acetate; carbitols such as cellosolve and butyl carbitol, toluene, xylene, ethylbenzene, mecitylene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene and the like. Examples thereof include amide-based solvents such as aromatic hydrocarbons, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. These solvents may be used alone or in combination of two or more.
 前記溶媒の使用量としては、硬化性組成物の全質量に対して、10~90質量%であることが好ましく、20~80質量%であることがより好ましい。溶媒の使用量が10質量%以上であると、ハンドリング性に優れることから好ましい。一方、溶媒の使用量が90質量%以下であると、経済性の観点から好ましい。 The amount of the solvent used is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the curable composition. When the amount of the solvent used is 10% by mass or more, it is preferable because the handling property is excellent. On the other hand, when the amount of the solvent used is 90% by mass or less, it is preferable from the viewpoint of economy.
<添加剤>
 本発明の硬化性組成物は、必要に応じて、硬化促進剤、難燃剤、無機充填剤、シランカップリング剤、離型剤、顔料、着色剤、乳化剤等の種々の添加剤を配合することができる。
<Additives>
The curable composition of the present invention contains various additives such as a curing accelerator, a flame retardant, an inorganic filler, a silane coupling agent, a mold release agent, a pigment, a colorant, and an emulsifier, if necessary. Can be done.
<硬化促進剤>
 前記硬化促進剤としては、特に制限されないが、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、尿素系硬化促進剤等が挙げられる。なお、前記硬化促進剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
<Curing accelerator>
The curing accelerator is not particularly limited, and examples thereof include a phosphorus-based curing accelerator, an amine-based curing accelerator, an imidazole-based curing accelerator, a guanidine-based curing accelerator, and a urea-based curing accelerator. The curing accelerator may be used alone or in combination of two or more.
 前記リン系硬化促進剤としては、トリフェニルホスフィン、トリブチルホスフィン、トリパラトリルホスフィン、ジフェニルシクロヘキシルホスフィン、トリシクロヘキシルホスフィン等の有機ホスフィン化合物;トリメチルホスファイト、トリエチルホスファイト等の有機ホスファイト化合物;エチルトリフェニルホスホニウムブロミド、ベンジルトリフェニルホスホニウムクロリド、ブチルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ-p-トリルボレート、トリフェニルホスフィントリフェニルボラン、テトラフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムジシアナミド、ブチルフェニルホスホニウムジシアナミド、テトラブチルホスホニウムデカン酸塩等のホスホニウム塩等が挙げられる。 Examples of the phosphorus-based curing accelerator include organic phosphine compounds such as triphenylphosphine, tributylphosphine, triparatrilphosphine, diphenylcyclohexylphosphine and tricyclohexylphosphine; organic phosphite compounds such as trimethylphosphine and triethylphosphine; ethyltriphenyl. Phosphonium bromide, benzyltriphenylphosphonium chloride, butylphosphonium tetraphenylborate, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-trilborate, triphenylphosphine triphenylboran, tetraphenylphosphonium thiocyanate, tetraphenylphosphonium disianamide, Examples thereof include phosphonium salts such as butylphenylphosphonium dicyanamide and tetrabutylphosphonium decanoate.
 前記アミン系硬化促進剤としては、トリエチルアミン、トリブチルアミン、N,N-ジメチル-4-アミノピリジン(4-ジメチルアミノピリジン、DMAP)、2,4,6-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5.4.0]-ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]-ノネン-5(DBN)等が挙げられる。 Examples of the amine-based curing accelerator include triethylamine, tributylamine, N, N-dimethyl-4-aminopyridine (4-dimethylaminopyridine, DMAP), 2,4,6-tris (dimethylaminomethyl) phenol, 1, Examples thereof include 8-diazabicyclo [5.4.0] -undecene-7 (DBU) and 1,5-diazabicyclo [4.3.0] -Nonen-5 (DBN).
 前記イミダゾール系硬化促進剤としては、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン等が挙げられる。 Examples of the imidazole-based curing accelerator include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and 2-phenyl. -4-Methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl -4-Methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2-phenylimidazole isocyanuric acid adduct , 2-Phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5 hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl-2 -Methyl-3-benzylimidazolium chloride, 2-methylimidazoline and the like can be mentioned.
 前記グアニジン系硬化促進剤としては、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-ブチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド等が挙げられる。 Examples of the guanidine-based curing accelerator include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1, 5,7-Triazabicyclo [4.4.0] deca-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] deca-5-ene, 1-methylbiguanide , 1-ethylbiguanide, 1-butylbiguanide, 1-cyclohexylbiguanide, 1-allylbiguanide, 1-phenylbiguanide and the like.
 前記尿素系硬化促進剤としては、3-フェニル-1,1-ジメチル尿素、3-(4-メチルフェニル)-1,1-ジメチル尿素、クロロフェニル尿素、3-(4-クロロフェニル)-1,1-ジメチル尿素、3-(3,4-ジクロルフェニル)-1,1-ジメチル尿素等が挙げられる。 Examples of the urea-based curing accelerator include 3-phenyl-1,1-dimethylurea, 3- (4-methylphenyl) -1,1-dimethylurea, chlorophenylurea, and 3- (4-chlorophenyl) -1,1. -Dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea and the like can be mentioned.
 前記硬化促進剤のうち、特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルホスフィン、第3級アミンでは1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)を用いることが好ましい。 Among the curing accelerators, triphenylphosphine and tertiary amines are used as phosphorus compounds because they are excellent in curability, heat resistance, electrical properties, moisture resistance reliability, etc., especially when used as a semiconductor encapsulating material. It is preferable to use 1,8-diazabicyclo- [5.4.0] -undecene (DBU).
 前記硬化促進剤の使用量は、所望の硬化性を得るために適宜調整できるが、前記エポキシ樹脂と硬化剤の混合物の合計量100質量部に対して、0.01~10質量部であることが好ましく、0.1~5質量部であることがより好ましい。前記硬化促進剤の使用量が前記範囲内にあると、硬化性、及び、絶縁信頼性に優れ、好ましい。 The amount of the curing accelerator used can be appropriately adjusted in order to obtain the desired curability, but it is 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the mixture of the epoxy resin and the curing agent. Is preferable, and 0.1 to 5 parts by mass is more preferable. When the amount of the curing accelerator used is within the above range, the curing property and the insulation reliability are excellent, which is preferable.
<難燃剤>
 前記難燃剤としては、特に制限されないが、無機リン系難燃剤、有機リン系難燃剤、ハロゲン系難燃剤等が挙げられる。なお、難燃剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
<Flame retardant>
The flame retardant is not particularly limited, and examples thereof include an inorganic phosphorus flame retardant, an organic phosphorus flame retardant, and a halogen flame retardant. The flame retardant may be used alone or in combination of two or more.
 前記無機リン系難燃剤としては、特に制限されないが、赤リン;リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム;リン酸アミド等が挙げられる。 The inorganic phosphorus-based flame retardant is not particularly limited, and examples thereof include red phosphorus; ammonium phosphate such as monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate; and phosphoric acid amide.
 前記有機リン系難燃剤としては、特に制限されないが、メチルアシッドホスフェート、エチルアシッドホスフェート、イソプロピルアシッドホスフェート、ジブチルホスフェート、モノブチルホスフェート、ブトキシエチルアシッドホスフェート、2-エチルヘキシルアシッドホスフェート、ビス(2-エチルヘキシル)ホスフェート、モノイソデシルアシッドホスフェート、ラウリルアシッドホスフェート、トリデシルアシッドホスフェート、ステアリルアシッドホスフェート、イソステアリルアシッドホスフェート、オレイルアシッドホスフェート、ブチルピロホスフェート、テトラコシルアシッドホスフェート、エチレングリコールアシッドホスフェート、(2-ヒドロキシエチル)メタクリレートアシッドホスフェート等のリン酸エステル;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、ジフェニルホスフィンオキシド等ジフェニルホスフィン;10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(1,4-ジオキシナフタレン)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、ジフェニルホスフィニルヒドロキノン、ジフェニルホスフェニル-1,4-ジオキシナフタリン、1,4-シクロオクチレンホスフィニル-1,4-フェニルジオール、1,5-シクロオクチレンホスフィニル-1,4-フェニルジオール等のリン含有フェノール;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,5-ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキシド等の環状リン化合物;前記リン酸エステル、前記ジフェニルホスフィン、前記リン含有フェノールと、エポキシ樹脂やアルデヒド化合物、フェノール化合物と反応させて得られる化合物等が挙げられる。 The organic phosphorus-based flame retardant is not particularly limited, but is limited to methyl acid phosphate, ethyl acid phosphate, isopropyl acid phosphate, dibutyl phosphate, monobutyl phosphate, butoxyethyl acid phosphate, 2-ethylhexyl acid phosphate, and bis (2-ethylhexyl). Phosphate, Monoisodecyl Acid Phosphate, Lauryl Acid Phosphate, Tridecyl Acid Phosphate, Stearyl Acid Phosphate, Isostearyl Acid Phosphate, Oleyl Acid Phosphate, Butyl Pyrophosphate, Tetracosyl Acid Phosphate, Ethylene Glycol Acid Phosphate, (2-Hydroxyethyl) ) Phosphate esters such as methacrylate acid phosphate; 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphine oxide and the like diphenylphosphine; 10- (2,5-dihydroxyphenyl) -10H- 9-Oxa-10-phosphaphenanthrene-10-oxide, 10- (1,4-dioxynaphthalene) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, diphenylphosphinylhydroquinone, diphenylphos Phosphorus-containing phenols such as phenyl-1,4-dioxynaphthalin, 1,4-cyclooctylenephosphinyl-1,4-phenyldiol, 1,5-cyclooctylenephosphinyl-1,4-phenyldiol 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, 10 -Cyclic phosphorus compounds such as (2,7-dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide; the phosphoric acid ester, the diphenylphosphine, the phosphorus-containing phenol, and epoxy resins. Examples thereof include an aldehyde compound and a compound obtained by reacting with a phenol compound.
 前記ハロゲン系難燃剤としては、特に制限されないが、臭素化ポリスチレン、ビス(ペンタブロモフェニル)エタン、テトラブロモビスフェノールAビス(ジブロモプロピルエーテル)、1,2、-ビス(テトラブロモフタルイミド)、2,4,6-トリス(2,4,6-トリブロモフェノキシ)-1,3,5-トリアジン、テトラブロモフタル酸等が挙げられる。 The halogen-based flame retardant is not particularly limited, but is limited to brominated polystyrene, bis (pentabromophenyl) ethane, tetrabromobisphenol A bis (dibromopropyl ether), 1,2, -bis (tetrabromophthalimide), 2, Examples thereof include 4,6-tris (2,4,6-tribromophenoxy) -1,3,5-triazine and tetrabromophthalic acid.
 前記難燃剤の使用量は、前記エポキシ樹脂100質量部に対して、0.1~20質量部であることが好ましい。 The amount of the flame retardant used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the epoxy resin.
<無機充填剤>
 前記無機充填剤としては、特に制限されないが、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、リン酸タングステン酸ジルコニウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、カーボンブラック等が挙げられる。これらのうち、シリカを用いることが好ましい。この際、シリカとしては、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が用いられうる。中でも、無機質充填剤をより多く配合することが可能となることから、前記溶融シリカが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、且つ、硬化性組成物の溶融粘度の上昇を抑制するためには、球状のものを主に用いることが好ましい。更に、球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。なお、前記無機充填剤は、単独で用いても、2種以上を組み合わせて用いてもよい。
<Inorganic filler>
The inorganic filler is not particularly limited, but is silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, and nitrided. Boron, aluminum hydroxide, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, zirconium oxide, barium titanate, barium zirconate, barium zirconate , Calcium zirconate, zirconium phosphate, zirconium tungstate phosphate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, carbon black and the like. Of these, it is preferable to use silica. At this time, as the silica, amorphous silica, fused silica, crystalline silica, synthetic silica, hollow silica and the like can be used. Above all, the molten silica is preferable because it is possible to add a larger amount of the inorganic filler. The fused silica can be used in either a crushed form or a spherical shape, but in order to increase the blending amount of the fused silica and suppress the increase in the melt viscosity of the curable composition, a spherical one is mainly used. Is preferable. Further, in order to increase the blending amount of spherical silica, it is preferable to appropriately adjust the particle size distribution of spherical silica. The inorganic filler may be used alone or in combination of two or more.
 また、前記無機充填剤は、必要に応じて表面処理されていてもよい。この際、使用されうる表面処理剤としては、特に制限されないが、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物、チタネート系カップリング剤等が使用されうる。表面処理剤の具体例としては、3-グリシドキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、ヘキサメチルジシラザン等が挙げられる。 Further, the inorganic filler may be surface-treated if necessary. At this time, the surface treatment agent that can be used is not particularly limited, but is an aminosilane-based coupling agent, an epoxysilane-based coupling agent, a mercaptosilane-based coupling agent, a silane-based coupling agent, an organosilazane compound, and a titanate-based cup. Ring agents and the like can be used. Specific examples of the surface treatment agent include 3-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, and hexamethyldi. Silazan and the like can be mentioned.
 前記無機充填剤の使用量は、前記エポキシ樹脂と前記硬化剤の混合物の合計量100質量部に対して、0.5~95質量部であることが好ましい。前記無機充填剤の使用量が前記範囲内にあると、難燃性、及び、絶縁信頼性に優れ、好ましい。 The amount of the inorganic filler used is preferably 0.5 to 95 parts by mass with respect to 100 parts by mass of the total amount of the mixture of the epoxy resin and the curing agent. When the amount of the inorganic filler used is within the above range, flame retardancy and insulation reliability are excellent, which is preferable.
 また、本発明の特性を損なわない範囲であれば、前記無機充填剤に加えて、有機充填剤を配合することができる。前記有機充填剤としては、例えば、ポリアミド粒子等が挙げられる。 Further, an organic filler can be blended in addition to the inorganic filler as long as the characteristics of the present invention are not impaired. Examples of the organic filler include polyamide particles and the like.
<硬化物>
 本発明は、前記硬化性組成物の硬化物に関する。前記エポキシ樹脂を用いることで、前記エポキシ樹脂を含有する前記硬化性組成物から得られる硬化物は、高耐熱及び高靱性を発揮でき、好ましい態様となる。
<Curing product>
The present invention relates to a cured product of the curable composition. By using the epoxy resin, the cured product obtained from the curable composition containing the epoxy resin can exhibit high heat resistance and high toughness, which is a preferable embodiment.
 前記硬化性組成物を硬化反応させた硬化物を得る方法としては、例えば、加熱硬化する際の加熱温度は、特に制限されないが、通常、100~300℃であり、加熱時間としては、1~24時間である。 As a method for obtaining a cured product obtained by subjecting the curable composition to a curing reaction, for example, the heating temperature at the time of heat curing is not particularly limited, but is usually 100 to 300 ° C., and the heating time is 1 to 1 to 1. 24 hours.
 本発明の硬化物は、ガラス転移温度(Tg)が、160℃以上であることが好ましい。前記ガラス転移温度(Tg)の測定方法は、本願実施例における評価方法と同様である。 The cured product of the present invention preferably has a glass transition temperature (Tg) of 160 ° C. or higher. The method for measuring the glass transition temperature (Tg) is the same as the evaluation method in the examples of the present application.
 また、本発明の硬化物は、シャルピー衝撃強度が6.5J/cm以上であることが好ましく、7.3J/cm以上であることがより好ましく、7.8J/cm以上であることが特に好ましい。シャルピー衝撃強度の測定方法は、本願実施例における評価方法と同様である。 Further, the cured product of the present invention preferably has a Charpy impact strength of 6.5 J / cm 2 or more, more preferably 7.3 J / cm 2 or more, and 7.8 J / cm 2 or more. Is particularly preferable. The method for measuring the Charpy impact strength is the same as the evaluation method in the examples of the present application.
<半導体封止材料>
 本発明は、前記硬化性組成物を含有する半導体封止材料に関する。前記硬化性組成物を用いて得られる半導体封止材料は、前記エポキシ樹脂を使用するため、低粘度で流動性に優れ、更に硬化物における耐熱性及び靱性が改善されているため、製造工程における加工性や成形性に優れ、好ましい態様となる。
<Semiconductor encapsulation material>
The present invention relates to a semiconductor encapsulating material containing the curable composition. Since the semiconductor encapsulation material obtained by using the curable composition uses the epoxy resin, it has a low viscosity and excellent fluidity, and further, the heat resistance and toughness of the cured product are improved, so that in the manufacturing process. It is excellent in processability and moldability, and is a preferable embodiment.
 前記半導体封止材料に用いられる前記硬化性組成物には、無機充填剤を含有することができる。なお、前記無機充填剤の充填率としては、前記硬化性組成物100質量部に対して、例えば、無機充填剤を0.5~95質量部の範囲で用いることができる。 The curable composition used for the semiconductor encapsulant material can contain an inorganic filler. As the filling rate of the inorganic filler, for example, the inorganic filler can be used in the range of 0.5 to 95 parts by mass with respect to 100 parts by mass of the curable composition.
 前記半導体封止材料を得る方法としては、前記硬化性組成物に、更に任意成分である添加剤とを必要に応じて、押出機、ニ-ダ、ロ-ル等を用いて均一になるまで充分に溶融混合する方法などが挙げられる。 As a method for obtaining the semiconductor encapsulating material, the curable composition is further added with an additive as an optional component, if necessary, using an extruder, a feeder, a roll, or the like until the composition becomes uniform. Examples thereof include a method of sufficiently melting and mixing.
<半導体装置>
 本発明は、前記半導体封止材料の硬化物を含む半導体装置に関する。前記硬化性組成物を用いて得られる半導体封止材料を用いて得られる半導体装置は、前記エポキシ樹脂を使用するため、低粘度で流動性に優れ、更に、硬化物における耐熱性と靱性とが改善されているため、製造工程における加工性や成形に優れ、好ましい態様となる。
<Semiconductor device>
The present invention relates to a semiconductor device containing a cured product of the semiconductor encapsulating material. Since the semiconductor device obtained by using the semiconductor encapsulating material obtained by using the curable composition uses the epoxy resin, it has low viscosity and excellent fluidity, and further, heat resistance and toughness in the cured product are obtained. Since it has been improved, it is excellent in processability and molding in the manufacturing process, which is a preferable embodiment.
 前記半導体装置を得る方法としては、前記半導体封止材料を注型、または、トランスファー成形機、射出成形機などを用いて成形し、さらに室温(20℃)~250℃の温度範囲で、加熱硬化する方法が挙げられる。 As a method for obtaining the semiconductor device, the semiconductor encapsulant material is cast or molded using a transfer molding machine, an injection molding machine, or the like, and further heat-cured in a temperature range of room temperature (20 ° C.) to 250 ° C. There is a way to do it.
<プリプレグ>
 本発明は、補強基材、及び、前記補強基材に含浸した前記硬化性組成物の半硬化物を有するプリプレグに関する。上記硬化性組成物からプリプレグを得る方法としては、後述する有機溶媒を配合して、ワニス化した硬化性組成物を、補強基材(紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布など)に含浸したのち、用いた溶媒種に応じた加熱温度、好ましくは50~170℃で加熱することによって、得る方法が挙げられる。この時用いる硬化性組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。
<Prepreg>
The present invention relates to a prepreg having a reinforcing base material and a semi-cured product of the curable composition impregnated in the reinforcing base material. As a method for obtaining a prepreg from the curable composition, a curable composition varnished by blending an organic solvent described later is used as a reinforcing base material (paper, glass cloth, glass non-woven fabric, aramid paper, aramid cloth, glass). A method of obtaining the material by impregnating it with a mat, a glass roving cloth, etc.) and then heating it at a heating temperature according to the solvent type used, preferably 50 to 170 ° C. can be mentioned. The mass ratio of the curable composition and the reinforcing base material used at this time is not particularly limited, but it is usually preferable to prepare the resin content in the prepreg to be 20 to 60% by mass.
 ここで用いる有機溶媒としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、下記のようにプリプレグからプリント回路基板をさらに製造する場合には、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶媒を用いることが好ましく、また、不揮発分が40~80質量%となる割合で用いることが好ましい。 Examples of the organic solvent used here include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like. It can be appropriately selected depending on the application, but for example, when further producing a printed circuit board from prepylene as described below, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower, such as methyl ethyl ketone, acetone, or dimethylformamide. , It is preferable to use the non-volatile content at a ratio of 40 to 80% by mass.
<回路基板>
 本発明は、前記プリプレグ、及び、銅箔の積層体である回路基板に関する。上記硬化性組成物からプリント回路基板を得る方法としては、上記プリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~300℃で10分~3時間、加熱圧着させる方法が挙げられる。
<Circuit board>
The present invention relates to the circuit board which is a laminated body of the prepreg and a copper foil. As a method for obtaining a printed circuit board from the curable composition, the prepregs are laminated by a conventional method, copper foils are appropriately laminated, and the pressure is 170 to 300 ° C. for 10 minutes to 3 hours under a pressure of 1 to 10 MPa. An example is a method of heat-bonding.
<ビルドアップフィルム>
 本発明は、前記硬化性組成物を含有するビルドアップフィルムに関する。本発明のビルドアップフィルムを製造する方法としては、上記硬化性組成物を、支持フィルム上に塗布し、硬化性組成物層を形成させて多層プリント配線板用の接着フィルムとすることにより製造する方法が挙げられる。
<Build-up film>
The present invention relates to a build-up film containing the curable composition. As a method for producing the build-up film of the present invention, the curable composition is applied onto a support film to form a curable composition layer to form an adhesive film for a multilayer printed wiring board. The method can be mentioned.
 硬化性組成物からビルドアップフィルムを製造する場合、該フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70~140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール、あるいは、スルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。 When a build-up film is produced from a curable composition, the film is softened under the temperature conditions of laminating (usually 70 to 140 ° C.) in the vacuum laminating method, and at the same time as laminating the circuit board, via holes existing in the circuit board. Alternatively, it is important to show fluidity (resin flow) capable of filling the through hole with the resin, and it is preferable to blend each of the above components so as to exhibit such characteristics.
 ここで、多層プリント配線板のスルーホールの直径は、通常0.1~0.5mm、深さは通常0.1~1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。 Here, the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm, and it is usually preferable to enable resin filling in this range. .. When laminating both sides of the circuit board, it is desirable to fill about 1/2 of the through hole.
 上記した接着フィルムを製造する方法は、具体的には、ワニス状の上記硬化性組成物を調製した後、支持フィルム(Y)の表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶媒を乾燥させて硬化性組成物からなる組成物層(X)を形成させることにより製造することができる。 Specifically, in the method for producing the adhesive film described above, after preparing the varnish-like curable composition, the varnish-like composition is applied to the surface of the support film (Y), and further heated. Alternatively, it can be produced by drying an organic solvent by blowing hot air or the like to form a composition layer (X) made of a curable composition.
 形成される組成物層(X)の厚さは、通常、導体層の厚さ以上とすることが好ましい。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層の厚さは10~100μmの厚みを有するのが好ましい。 The thickness of the composition layer (X) to be formed is usually preferably equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm.
 なお、本発明における組成物層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。 The composition layer (X) in the present invention may be protected by a protective film described later. By protecting with a protective film, it is possible to prevent dust and the like from adhering to the surface of the resin composition layer and scratches.
 上記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。 The above-mentioned support film and protective film include polyolefins such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter, may be abbreviated as "PET"), polyesters such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples include metal foils such as patterns, copper foils, and aluminum foils. The support film and the protective film may be subjected to a mold release treatment in addition to the mud treatment and the corona treatment.
 支持フィルムの厚さは特に限定されないが、通常10~150μmであり、好ましくは25~50μmの範囲で用いられる。また保護フィルムの厚さは1~40μmとするのが好ましい。 The thickness of the support film is not particularly limited, but is usually 10 to 150 μm, and is preferably used in the range of 25 to 50 μm. The thickness of the protective film is preferably 1 to 40 μm.
 上記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。 The above-mentioned support film (Y) is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film (Y) is peeled off after the adhesive film is heat-cured, it is possible to prevent dust and the like from adhering in the curing step. When peeling after curing, the support film is usually subjected to a mold release treatment in advance.
<その他の用途>
 本発明の硬化性組成物により得られる硬化物は、硬化物における耐熱性や靱性などに優れることから、半導体封止材料、半導体装置、プリプレグ、回路基板、及び、ビルドアップフィルム等の用途だけでなく、ビルドアップ基板、接着剤、レジスト材料、繊維強化樹脂のマトリクス樹脂など、各種用途にも好適に使用可能であり、用途においては、これらに限定されるものではない。
<Other uses>
Since the cured product obtained by the curable composition of the present invention is excellent in heat resistance and toughness in the cured product, it can be used only for applications such as semiconductor encapsulation materials, semiconductor devices, prepregs, circuit boards, and build-up films. However, it can be suitably used for various applications such as build-up substrates, adhesives, resist materials, and matrix resins of fiber-reinforced resins, and the applications are not limited to these.
 以下に実施例を用いて、本発明を更に詳細に説明するが、本発明は、これらの範囲に限定されるものではない。なお、物性・特性の測定・評価は、以下の通り実施し、評価結果を下記表1、及び、表2に示した。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these scopes. The measurement and evaluation of physical properties and characteristics were carried out as follows, and the evaluation results are shown in Tables 1 and 2 below.
<軟化点>
 JIS K7234(環球法)に準拠して、軟化点(℃)を測定した。
<Softening point>
The softening point (° C.) was measured according to JIS K7234 (ring ball method).
<エポキシ当量の測定>
 JIS K 7236に基づいて測定した。
<Measurement of epoxy equivalent>
Measured based on JIS K 7236.
<150℃における溶融粘度測定法>
 ASTM D4287に準拠し、ICI粘度計にて測定した。
<Measurement method of melt viscosity at 150 ° C>
It was measured with an ICI viscometer according to ASTM D4287.
<ゲル浸透クロマトグラフィー(GPC)の測定>
 以下に示す条件により、GPC測定を行い、得られたGPCチャートを評価して、得られたエポキシ樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、及び、分散度(Mw/Mn)を算出した。
 測定装置:東ソー株式会社製「HLC-8320 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器:RI(示差屈折計)
 データ処理:東ソー株式会社製「GPCワークステーション EcoSEC-WorkStation」
 測定条件:カラム温度  40℃
      展開溶媒   テトラヒドロフラン
      流速     1.0ml/分
 標準  :前記「GPCワークステーション EcoSEC―WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
<Measurement of gel permeation chromatography (GPC)>
GPC measurement was performed under the conditions shown below, and the obtained GPC chart was evaluated to obtain the number average molecular weight (Mn), weight average molecular weight (Mw), and dispersity (Mw / Mn) of the obtained epoxy resin. Was calculated.
Measuring device: "HLC-8320 GPC" manufactured by Tosoh Corporation,
Column: Guard column "HXL-L" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G3000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G4000HXL" manufactured by Tosoh Corporation
Detector: RI (Differential Refractometer)
Data processing: "GPC Workstation EcoSEC-WorkStation" manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene with a known molecular weight was used in accordance with the measurement manual of the above-mentioned "GPC workstation EcoSEC-WorkStation".
(Polystyrene used)
"A-500" manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
"F-1" manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
"F-4" manufactured by Tosoh Corporation
"F-10" manufactured by Tosoh Corporation
"F-20" manufactured by Tosoh Corporation
"F-40" manufactured by Tosoh Corporation
"F-80" manufactured by Tosoh Corporation
"F-128" manufactured by Tosoh Corporation
Sample: A solution of 1.0% by mass in tetrahydrofuran in terms of resin solid content filtered through a microfilter (50 μl).
(合成例1:フェノール性水酸基含有樹脂(P2-1)の合成)
 温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、2,7-ジヒドロキシナフタレン160g(1.0モル)、ベンジルアルコール27.0g(0.25モル)を仕込み、室温条件下、窒素を吹き込みながら撹拌した。次いで、p-トルエンスルホン酸・一水和物2.7gを添加した。その後、油浴中で発熱に注意しながら150℃まで加熱し、分留管を用いて生成する水を抜き出した後、更に5時間反応させた。反応終了後、メチルイソブチルケトン1000gを加え、反応生成物を溶解させた後、分液ロートに移した。洗浄水が中性を示すまで水洗した後、加熱減圧条件下で有機層から溶媒を除去し、目的のフェノール性水酸基含有樹脂(P2-1)240gを得た。得られたフェノール性水酸基含有樹脂(P2-1)の軟化点は97℃、水酸基当量は146g/当量であった。また、フェノール性水酸基含有樹脂(P2-1)の、1分子中にナフタレン環構造を3つ有する化合物(A)の含有量は33%であった。フェノール性水酸基含有樹脂(P2-1)のGPCチャートを図1に示した。なお、前記化合物(A)の含有量は、GPCチャートの面積比より算出した。
(Synthesis Example 1: Synthesis of phenolic hydroxyl group-containing resin (P2-1))
A flask equipped with a thermometer, a cooling tube, a fractional distillation tube, a nitrogen gas introduction tube, and a stirrer is charged with 160 g (1.0 mol) of 2,7-dihydroxynaphthalene and 27.0 g (0.25 mol) of benzyl alcohol. , Stirred while blowing nitrogen under room temperature conditions. Then, 2.7 g of p-toluenesulfonic acid / monohydrate was added. Then, the mixture was heated to 150 ° C. in an oil bath while paying attention to heat generation, and the water produced was extracted using a fractional distillation tube, and then the reaction was carried out for another 5 hours. After completion of the reaction, 1000 g of methyl isobutyl ketone was added to dissolve the reaction product, and then the reaction product was transferred to a separating funnel. After washing with water until the washing water became neutral, the solvent was removed from the organic layer under heating and reduced pressure conditions to obtain 240 g of the desired phenolic hydroxyl group-containing resin (P2-1). The obtained phenolic hydroxyl group-containing resin (P2-1) had a softening point of 97 ° C. and a hydroxyl group equivalent of 146 g / equivalent. Further, the content of the compound (A) having three naphthalene ring structures in one molecule of the phenolic hydroxyl group-containing resin (P2-1) was 33%. The GPC chart of the phenolic hydroxyl group-containing resin (P2-1) is shown in FIG. The content of the compound (A) was calculated from the area ratio of the GPC chart.
 なお、上記で得られたフェノール性水酸基含有樹脂(P2-1)中に含まれる化合物(A)は、以下の構造式で表されるものであった。 The compound (A) contained in the phenolic hydroxyl group-containing resin (P2-1) obtained above was represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(実施例1:エポキシ樹脂(1)の合成)
 温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、合成例1で得られたフェノール性水酸基含有樹脂(P2-1)180.0g、4,4’-ビフェノール60.0g、エピクロルヒドリン1157g、n-ブタノール347g、水58gを仕込み溶解させた。60℃に昇温した後、20質量%水酸化ナトリウム水溶液480gを5時間かけて滴下した。その後、同条件で0.5時間撹拌を続けた。その後、未反応のエピクロルヒドリンを減圧蒸留によって留去させ、粗生成物を得た。得られた粗生成物にメチルイソブチルケトン600gを加えて溶解させた。この溶液に5質量%水酸化ナトリウム水溶液33gを添加し、80℃で2時間反応させた。反応混合物に水180gを加え、水洗した。洗浄液のpHが中性となるまで、水洗を3回繰り返した。次いで、系内を共沸させて脱水し、精密濾過を経た後、溶媒を減圧下で留去し、エポキシ樹脂(1)を得た。得られたエポキシ樹脂(1)のエポキシ当量は197g/当量、150℃における溶融粘度は0.2dPa・s、数平均分子量(Mn)は314、重量平均分子量(Mw)は372、分散度(Mw/Mn)は1.2であった。エポキシ樹脂(1)のGPCチャートを図2に示した。
(Example 1: Synthesis of epoxy resin (1))
180.0 g of the phenolic hydroxyl group-containing resin (P2-1) obtained in Synthesis Example 1 while performing nitrogen gas purging on a flask equipped with a thermometer, a dropping funnel, a cooling tube, and a stirrer, 4,4'-biphenol. 60.0 g, epichlorhydrin 1157 g, n-butanol 347 g, and water 58 g were charged and dissolved. After raising the temperature to 60 ° C., 480 g of a 20 mass% sodium hydroxide aqueous solution was added dropwise over 5 hours. Then, stirring was continued for 0.5 hours under the same conditions. Then, unreacted epichlorohydrin was distilled off by vacuum distillation to obtain a crude product. 600 g of methyl isobutyl ketone was added to the obtained crude product and dissolved. 33 g of a 5 mass% sodium hydroxide aqueous solution was added to this solution, and the mixture was reacted at 80 ° C. for 2 hours. 180 g of water was added to the reaction mixture, and the mixture was washed with water. Washing with water was repeated 3 times until the pH of the washing liquid became neutral. Then, the inside of the system was azeotropically boiled to dehydrate, and after undergoing microfiltration, the solvent was distilled off under reduced pressure to obtain an epoxy resin (1). The obtained epoxy resin (1) has an epoxy equivalent of 197 g / equivalent, a melt viscosity at 150 ° C. of 0.2 dPa · s, a number average molecular weight (Mn) of 314, a weight average molecular weight (Mw) of 372, and a degree of dispersion (Mw). / Mn) was 1.2. The GPC chart of the epoxy resin (1) is shown in FIG.
 上記で得られたエポキシ樹脂(1)は、以下の構造式で表されるエポキシ樹脂を含有するものであった。 The epoxy resin (1) obtained above contained an epoxy resin represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000013
[上記式中、nは、0~10の整数である。]
Figure JPOXMLDOC01-appb-C000013
[In the above formula, n is an integer of 0 to 10. ]
(実施例2:エポキシ樹脂(2)の合成)
 実施例1において、フェノール性水酸基含有樹脂(P2-1)192.0g、4,4’-ビフェノール48.0gへと変更する以外は実施例1と同様に反応を行い、エポキシ樹脂(2)を得た。得られたエポキシ樹脂(2)のエポキシ当量は203g/当量、150℃における溶融粘度は0.3dPa・s、数平均分子量(Mn)は319、重量平均分子量(Mw)は381、分散度(Mw/Mn)は1.2であった。GPCチャートを図3に示した。
(Example 2: Synthesis of epoxy resin (2))
In Example 1, the reaction was carried out in the same manner as in Example 1 except that the phenolic hydroxyl group-containing resin (P2-1) was changed to 192.0 g and 4,4'-biphenol 48.0 g, and the epoxy resin (2) was used. Obtained. The obtained epoxy resin (2) has an epoxy equivalent of 203 g / equivalent, a melt viscosity at 150 ° C. of 0.3 dPa · s, a number average molecular weight (Mn) of 319, a weight average molecular weight (Mw) of 381, and a degree of dispersion (Mw). / Mn) was 1.2. The GPC chart is shown in FIG.
 上記で得られたエポキシ樹脂(2)は、以下の構造式で表されるエポキシ樹脂を含有するものであった。 The epoxy resin (2) obtained above contained an epoxy resin represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000014
[上記式中、nは、0~10の整数である。]
Figure JPOXMLDOC01-appb-C000014
[In the above formula, n is an integer of 0 to 10. ]
(実施例3:エポキシ樹脂(3)の合成)
 実施例1において、フェノール性水酸基含有樹脂(P2-1)232.8g、4,4’-ビフェノール7.2gへと変更する以外は実施例1と同様に反応を行い、エポキシ樹脂(3)を得た。得られたエポキシ樹脂(3)のエポキシ当量は213g/当量、150℃における溶融粘度は0.4dPa・s、数平均分子量(Mn)は336、重量平均分子量(Mw)は412、分散度(Mw/Mn)は1.2であった。GPCチャートを図4に示した。
(Example 3: Synthesis of epoxy resin (3))
In Example 1, the reaction was carried out in the same manner as in Example 1 except that the phenolic hydroxyl group-containing resin (P2-1) was changed to 232.8 g and 4,4'-biphenol 7.2 g, and the epoxy resin (3) was used. Obtained. The obtained epoxy resin (3) has an epoxy equivalent of 213 g / equivalent, a melt viscosity at 150 ° C. of 0.4 dPa · s, a number average molecular weight (Mn) of 336, a weight average molecular weight (Mw) of 412, and a degree of dispersion (Mw). / Mn) was 1.2. The GPC chart is shown in FIG.
 上記で得られたエポキシ樹脂(3)は、以下の構造式で表されるエポキシ樹脂を含有するものであった。 The epoxy resin (3) obtained above contained an epoxy resin represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000015
[上記式中、nは、0~10の整数である。]
Figure JPOXMLDOC01-appb-C000015
[In the above formula, n is an integer of 0 to 10. ]
(比較合成例1:フェノール性水酸基含有樹脂(1’)の合成)
 温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、o-クレゾール432.4g(4.0モル)、2-メトキシナフタレン158.2g(1.0モル)、41質量%ホルムアルデヒド水溶液179.3g(2.45モル)を仕込み、シュウ酸9.0gを加えて、100℃まで昇温し100℃で3時間反応させた。ついで、水を分留管で捕集しながら、41質量%ホルムアルデヒド水溶液73.2g(1.0モル)を1時間かけて滴下した。滴下終了後、1時間かけて150℃まで昇温し、同温度で2時間反応させた。反応終了後、メチルイソブチルケトン1500gを加え、分液ロートに移した。洗浄水が中性を示すまで水洗した後、加熱減圧条件下で、有機層から未反応のo-クレゾールと2-メトキシナフタレン、及びメチルイソブチルケトンを除去し、フェノール性水酸基含有樹脂(1’)を得た。得られたフェノール性水酸基含有樹脂(1’)の軟化点は76℃、水酸基当量は164g/当量であった。
(Comparative Synthesis Example 1: Synthesis of Phenolic Hydroxyl Group-Containing Resin (1'))
432.4 g (4.0 mol) of o-cresol, 158.2 g (1.0 mol) of 2-methoxynaphthalene, in a flask equipped with a thermometer, a cooling tube, a fractional distillation tube, a nitrogen gas introduction tube, and a stirrer. 179.3 g (2.45 mol) of a 41 mass% formaldehyde aqueous solution was charged, 9.0 g of oxalic acid was added, the temperature was raised to 100 ° C., and the reaction was carried out at 100 ° C. for 3 hours. Then, while collecting water with a fractional distillation tube, 73.2 g (1.0 mol) of a 41 mass% formaldehyde aqueous solution was added dropwise over 1 hour. After completion of the dropping, the temperature was raised to 150 ° C. over 1 hour, and the reaction was carried out at the same temperature for 2 hours. After completion of the reaction, 1500 g of methyl isobutyl ketone was added and transferred to a separating funnel. After washing with water until the washing water becomes neutral, unreacted o-cresol, 2-methoxynaphthalene, and methyl isobutyl ketone are removed from the organic layer under heating and reduced pressure conditions, and the phenolic hydroxyl group-containing resin (1') is removed. Got The obtained phenolic hydroxyl group-containing resin (1') had a softening point of 76 ° C. and a hydroxyl group equivalent of 164 g / equivalent.
(比較例1:エポキシ樹脂(1’)の合成)
 温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、比較合成例1で得たフェノール性水酸基含有樹脂(1’)137.1g(水酸基0.84当量)、4,4’-ビフェノール15.3g(水酸基当量0.16当量)、エピクロルヒドリン463g(5.0モル)、n-ブタノール139g、テトラエチルベンジルアンモニウムクロライド2gを仕込み溶解させた。70℃に昇温した後、20質量%水酸化ナトリウム水溶液220g(1.1モル)を5時間かけて滴下した。その後、同条件で0.5時間撹拌を続けた。未反応のエピクロルヒドリンを減圧蒸留によって留去し、粗生成物を得た。得られた粗生成物にメチルイソブチルケトン1000gとn-ブタノール350gとを加え溶解させた。この溶液に10質量%水酸化ナトリウム水溶液10gを添加して80℃で2時間反応させた後、洗浄液のPHが中性となるまで水150gで水洗を3回繰り返した。系内を共沸させて脱水し、精密濾過を経た後に、溶媒を減圧条件下で留去してエポキシ樹脂(1’)176gを得た。得られたエポキシ樹脂(1’)のエポキシ当量は230g/当量、150℃における溶融粘度は0.3dPa・s、数平均分子量(Mn)は426、重量平均分子量(Mw)は666、分散度(Mw/Mn)は1.6であった。
(Comparative Example 1: Synthesis of Epoxy Resin (1'))
137.1 g (0.84 equivalent of hydroxyl group) of the phenolic hydroxyl group-containing resin (1') obtained in Comparative Synthesis Example 1 while performing nitrogen gas purging on a flask equipped with a thermometer, a dropping funnel, a cooling tube, and a stirrer. 14.3'-biphenol 15.3 g (hydroxyl equivalent 0.16 equivalent), epichlorohydrin 463 g (5.0 mol), n-butanol 139 g, and tetraethylbenzylammonium chloride 2 g were charged and dissolved. After raising the temperature to 70 ° C., 220 g (1.1 mol) of a 20 mass% sodium hydroxide aqueous solution was added dropwise over 5 hours. Then, stirring was continued for 0.5 hours under the same conditions. Unreacted epichlorohydrin was distilled off by vacuum distillation to obtain a crude product. To the obtained crude product, 1000 g of methyl isobutyl ketone and 350 g of n-butanol were added and dissolved. After adding 10 g of a 10 mass% sodium hydroxide aqueous solution to this solution and reacting at 80 ° C. for 2 hours, washing with 150 g of water was repeated 3 times until the pH of the washing liquid became neutral. The inside of the system was azeotropically boiled to dehydrate, and after undergoing microfiltration, the solvent was distilled off under reduced pressure conditions to obtain 176 g of epoxy resin (1'). The obtained epoxy resin (1') has an epoxy equivalent of 230 g / equivalent, a melt viscosity at 150 ° C. of 0.3 dPa · s, a number average molecular weight (Mn) of 426, a weight average molecular weight (Mw) of 666, and a degree of dispersion (Mw). Mw / Mn) was 1.6.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
(実施例4~6、及び、比較例2:エポキシ樹脂組成物の調製)
 各成分を表2に示す組成で配合し、溶融混練を行い、各エポキシ樹脂組成物を得た。表2中の各成分の詳細は、以下の通りである。
 硬化剤:フェノールノボラック型フェノール樹脂(DIC株式会社製「TD-2131」、水酸基当量104g/当量)
 硬化促進剤:トリフェニルホスフィン(北興化学工業株式会社製「TPP」)
(Examples 4 to 6 and Comparative Example 2: Preparation of epoxy resin composition)
Each component was blended in the composition shown in Table 2 and melt-kneaded to obtain each epoxy resin composition. The details of each component in Table 2 are as follows.
Curing agent: Phenolic novolak type phenol resin ("TD-2131" manufactured by DIC Corporation, hydroxyl group equivalent 104 g / equivalent)
Curing accelerator: Triphenylphosphine ("TPP" manufactured by Hokuko Chemical Industry Co., Ltd.)
<耐熱性評価>
 上記各エポキシ樹脂組成物を、硬化物の厚さが2.4mmになるように常圧プレス中で150℃、10分間の条件で硬化させた後、アフターキュアを175℃、5時間することで評価用硬化物を得た。
 この硬化物をダイヤモンドカッターで5mm×54mmの大きさに切り出し、これを耐熱性評価の試験片とした。耐熱性評価は、粘弾性測定装置(レオメトリック社製「固体粘弾性測定装置RSAII」、レクタンギュラーテンション法:周波数1Hz、昇温速度3℃/分)を用い、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度(Tg)(℃)とし、耐熱性を評価した。
<Heat resistance evaluation>
Each of the above epoxy resin compositions was cured in a normal pressure press at 150 ° C. for 10 minutes so that the thickness of the cured product was 2.4 mm, and then aftercure was performed at 175 ° C. for 5 hours. A cured product for evaluation was obtained.
This cured product was cut into a size of 5 mm × 54 mm with a diamond cutter, and this was used as a test piece for heat resistance evaluation. The heat resistance is evaluated using a viscoelasticity measuring device (Reometric's "solid viscoelasticity measuring device RSAII", rectangular tension method: frequency 1 Hz, temperature rise rate 3 ° C./min), and the change in elasticity is maximized (tanδ). The temperature (with the largest rate of change) was defined as the glass transition temperature (Tg) (° C.), and the heat resistance was evaluated.
<靭性評価>
 各エポキシ樹脂組成物を用いて、JIS K 6911に準拠し、175℃×120秒間、成型圧6.9MPaの条件で、トランスファー成型し、更にポストキュアとして、175℃で5時間の処理を行い、シャルピー衝撃強度試験用の試験片を作成した。得られた試験片をPendulum Impact Tester Zwick 5102を用いて、シャルピー衝撃強度(J/cm)を測定し、靭性を評価した。
<Toughness evaluation>
Using each epoxy resin composition, transfer molding was performed at 175 ° C. for 120 seconds at a molding pressure of 6.9 MPa in accordance with JIS K 6911, and further, as post-cure, treatment at 175 ° C. for 5 hours was performed. A test piece for Charpy impact strength test was prepared. The obtained test piece was measured for Charpy impact strength (J / cm 2 ) using a Pendulum Impact Tester Zwick 5102, and the toughness was evaluated.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 上記表1、及び、表2の評価結果より、全ての実施例において得られたエポキシ樹脂は、低粘度で高流動性に優れ、良好な成形性に寄与でき、前記エポキシ樹脂を含有するエポキシ樹脂組成物(硬化性組成物)を用いて得られた硬化物は、ガラス転移温度が高く、高耐熱性であり、シャルピー衝撃試験においても高い値を示し、高靭性であることが確認でき、高耐熱性と高靭性の両立を図ることが確認できた。 From the evaluation results in Tables 1 and 2 above, the epoxy resins obtained in all the examples have low viscosity, excellent high fluidity, can contribute to good moldability, and are epoxy resins containing the epoxy resin. The cured product obtained by using the composition (curable composition) has a high glass transition temperature, high heat resistance, shows a high value even in a Charpy impact test, and can be confirmed to have high toughness. It was confirmed that both heat resistance and high toughness were achieved.
 一方、上記表1、及び、表2の評価結果より、比較例1では、所望のフェノール性水酸基含有樹脂を使用せずにエポキシ樹脂(1’)を合成し、これを使用したエポキシ樹脂組成物(硬化性組成物)を用いた比較例2では、実施例と比較して、耐熱性、及び、靭性に劣る結果となった。
 
On the other hand, from the evaluation results of Tables 1 and 2 above, in Comparative Example 1, an epoxy resin (1') was synthesized without using a desired phenolic hydroxyl group-containing resin, and an epoxy resin composition using this was synthesized. In Comparative Example 2 using (curable composition), the results were inferior in heat resistance and toughness as compared with Examples.

Claims (13)

  1.  ビフェノール化合物(P1)のグリシジルエーテル化物(E1)、及び、ジヒドロキシアレーン化合物(α)と下記一般式(1-1)又は(1-2)で表されるアラルキル化剤(β)とを反応原料とするフェノール性水酸基含有樹脂(P2)のグリシジルエーテル化物(E2)を含有するエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001
    [上記一般式(1-1)及び(1-2)中、Xは、ハロゲン原子、水酸基、アルコキシ基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、炭素原子数1~4のアルキル基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、メチル基を表す。Arは、フェニル基、ナフチル基、これらの芳香核上にハロゲン原子、脂肪族炭化水素基、アルコキシ基を1つないし複数有する構造部位のいずれかを表す。]
    The reaction raw material is a glycidyl etherified product (E1) of a biphenol compound (P1) and a dihydroxyarene compound (α) and an aralkylating agent (β) represented by the following general formula (1-1) or (1-2). An epoxy resin containing a glycidyl etherified compound (E2) of a phenolic hydroxyl group-containing resin (P2).
    Figure JPOXMLDOC01-appb-C000001
    [In the above general formulas (1-1) and (1-2), X represents any of a halogen atom, a hydroxyl group, and an alkoxy group. R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 independently represents a hydrogen atom or a methyl group. Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei. ]
  2.  ビフェノール化合物(P1)、及び、ジヒドロキシアレーン化合物(α)と下記一般式(1-1)又は(1-2)で表されるアラルキル化剤(β)とを反応原料とするフェノール性水酸基含有樹脂(P2)の混合物のグリシジルエーテル化物(E3)を含有するエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000002
    [上記一般式(1-1)及び(1-2)中、Xは、ハロゲン原子、水酸基、アルコキシ基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、炭素原子数1~4のアルキル基のいずれかを表す。Rは、それぞれ独立して、水素原子、又は、メチル基を表す。Arは、フェニル基、ナフチル基、これらの芳香核上にハロゲン原子、脂肪族炭化水素基、アルコキシ基を1つないし複数有する構造部位のいずれかを表す。]
    A phenolic hydroxyl group-containing resin using a biphenol compound (P1) and a dihydroxyarene compound (α) as a reaction raw material with an aralkylating agent (β) represented by the following general formula (1-1) or (1-2). An epoxy resin containing the glycidyl etherified compound (E3) of the mixture of (P2).
    Figure JPOXMLDOC01-appb-C000002
    [In the above general formulas (1-1) and (1-2), X represents any of a halogen atom, a hydroxyl group, and an alkoxy group. R 1 independently represents either a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 2 independently represents a hydrogen atom or a methyl group. Ar 1 represents any of a phenyl group, a naphthyl group, and a structural moiety having one or more halogen atoms, aliphatic hydrocarbon groups, and alkoxy groups on these aromatic nuclei. ]
  3.  前記ビフェノール化合物(P1)と前記フェノール性水酸基含有樹脂(P2)との合計質量に対する前記ビフェノール化合物(P1)の割合が、0.5質量%以上、40質量%以下である請求項2に記載のエポキシ樹脂。 The second aspect of claim 2, wherein the ratio of the biphenol compound (P1) to the total mass of the biphenol compound (P1) and the phenolic hydroxyl group-containing resin (P2) is 0.5% by mass or more and 40% by mass or less. Epoxy resin.
  4.  前記フェノール性水酸基含有樹脂(P2)が、1分子中にナフタレン環構造を3つ有する化合物(A)を含有する請求項1~3のいずれか1項に記載のエポキシ樹脂。 The epoxy resin according to any one of claims 1 to 3, wherein the phenolic hydroxyl group-containing resin (P2) contains a compound (A) having three naphthalene ring structures in one molecule.
  5.  前記フェノール性水酸基含有樹脂(P2)中の前記化合物(A)の含有量が、ゲル浸透クロマトグラフィー(GPC)のチャート図の面積比から算出される値で5~50%である請求項4に記載のエポキシ樹脂。 According to claim 4, the content of the compound (A) in the phenolic hydroxyl group-containing resin (P2) is 5 to 50% as a value calculated from the area ratio of the chart diagram of gel permeation chromatography (GPC). The epoxy resin described.
  6.  ICI粘度計で測定した150℃における溶融粘度が、0.01~5dPa・sである請求項1~5のいずれか1項に記載のエポキシ樹脂。 The epoxy resin according to any one of claims 1 to 5, wherein the melt viscosity at 150 ° C. measured by an ICI viscometer is 0.01 to 5 dPa · s.
  7.  請求項1~6のいずれか1項に記載のエポキシ樹脂、及び、エポキシ樹脂用硬化剤を含有する硬化性組成物。 A curable composition containing the epoxy resin according to any one of claims 1 to 6 and a curing agent for an epoxy resin.
  8.  請求項7に記載の硬化性組成物の硬化物。 A cured product of the curable composition according to claim 7.
  9.  請求項7に記載の硬化性組成物を含有する半導体封止材料。 A semiconductor encapsulating material containing the curable composition according to claim 7.
  10.  請求項9に記載の半導体封止材料の硬化物を含む半導体装置。 A semiconductor device containing a cured product of the semiconductor encapsulating material according to claim 9.
  11.  補強基材、及び、前記補強基材に含浸した請求項7に記載の硬化性組成物の半硬化物を有するプリプレグ。 A prepreg having a reinforcing base material and a semi-cured product of the curable composition according to claim 7, which is impregnated with the reinforcing base material.
  12.  請求項11に記載のプリプレグ、及び、銅箔の積層体である回路基板。 The circuit board which is a laminated body of the prepreg and the copper foil according to claim 11.
  13.  請求項7に記載の硬化性組成物を含有するビルドアップフィルム。 A build-up film containing the curable composition according to claim 7.
PCT/JP2021/043092 2020-12-03 2021-11-25 Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board and buildup film WO2022118723A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022566870A JP7290205B2 (en) 2020-12-03 2021-11-25 Epoxy resins, curable compositions, cured products, semiconductor sealing materials, semiconductor devices, prepregs, circuit boards, and build-up films
CN202180081331.0A CN116583943A (en) 2020-12-03 2021-11-25 Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board, and laminated film
KR1020237011018A KR20230059829A (en) 2020-12-03 2021-11-25 Epoxy resins, curable compositions, cured products, semiconductor encapsulation materials, semiconductor devices, prepregs, circuit boards, and build-up films

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020200933 2020-12-03
JP2020-200933 2020-12-03

Publications (1)

Publication Number Publication Date
WO2022118723A1 true WO2022118723A1 (en) 2022-06-09

Family

ID=81855009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043092 WO2022118723A1 (en) 2020-12-03 2021-11-25 Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board and buildup film

Country Status (5)

Country Link
JP (1) JP7290205B2 (en)
KR (1) KR20230059829A (en)
CN (1) CN116583943A (en)
TW (1) TW202231701A (en)
WO (1) WO2022118723A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212225B2 (en) * 1981-09-02 1990-03-19 Mitsubishi Petrochemical Co
JPH1160681A (en) * 1997-08-14 1999-03-02 Jsr Corp Biphenol epoxy resin and its composition
JP2000044775A (en) * 1998-07-28 2000-02-15 Yuka Shell Epoxy Kk Epoxy resin composition for semiconductor sealing
JP2007039551A (en) * 2005-08-03 2007-02-15 Dainippon Ink & Chem Inc Epoxy resin, epoxy resin composition, cured product, semiconductor device, and method for producing the epoxy resin
JP2011026385A (en) * 2009-07-22 2011-02-10 Dic Corp Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device and epoxy resin
JP2014037487A (en) * 2012-08-16 2014-02-27 Dic Corp Curable resin composition, cured product, and printed wiring board
WO2015037584A1 (en) * 2013-09-10 2015-03-19 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
JP2018138681A (en) * 2016-04-04 2018-09-06 Dic株式会社 Method for producing epoxy resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212225B2 (en) * 1981-09-02 1990-03-19 Mitsubishi Petrochemical Co
JPH1160681A (en) * 1997-08-14 1999-03-02 Jsr Corp Biphenol epoxy resin and its composition
JP2000044775A (en) * 1998-07-28 2000-02-15 Yuka Shell Epoxy Kk Epoxy resin composition for semiconductor sealing
JP2007039551A (en) * 2005-08-03 2007-02-15 Dainippon Ink & Chem Inc Epoxy resin, epoxy resin composition, cured product, semiconductor device, and method for producing the epoxy resin
JP2011026385A (en) * 2009-07-22 2011-02-10 Dic Corp Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device and epoxy resin
JP2014037487A (en) * 2012-08-16 2014-02-27 Dic Corp Curable resin composition, cured product, and printed wiring board
WO2015037584A1 (en) * 2013-09-10 2015-03-19 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
JP2018138681A (en) * 2016-04-04 2018-09-06 Dic株式会社 Method for producing epoxy resin composition

Also Published As

Publication number Publication date
TW202231701A (en) 2022-08-16
JP7290205B2 (en) 2023-06-13
CN116583943A (en) 2023-08-11
KR20230059829A (en) 2023-05-03
JPWO2022118723A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
JP4285491B2 (en) Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, and semiconductor sealing material
JP4259536B2 (en) Method for producing phenol resin and method for producing epoxy resin
KR102628710B1 (en) Activated ester resin and compositions and cured products using the same
US9546262B1 (en) Phosphorous containing compounds and process for synthesis
KR101143131B1 (en) Epoxy compound, preparation method thereof, and use thereof
JP6221289B2 (en) Epoxy resin, method for producing epoxy resin, epoxy resin composition, cured product thereof, and heat radiation resin material
JP7103499B1 (en) Phenolic resin, epoxy resin, curable resin composition, cured product, fiber reinforced composite material, and fiber reinforced resin molded product
WO2022118723A1 (en) Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board and buildup film
JP2022173168A (en) Phenolic resin, epoxy resin, curable resin composition, cured article, fiber-reinforced composite material, and fiber-reinforced resin molded article
JP5679248B1 (en) Epoxy compound, epoxy resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP7059633B2 (en) Epoxy resin, manufacturing method, epoxy resin composition and its cured product
JP5850228B2 (en) Curable resin composition, cured product thereof, cyanate ester resin, semiconductor sealing material, prepreg, circuit board, and build-up film
JP6809206B2 (en) Epoxy resin, curable resin composition and its cured product
WO2022118722A1 (en) Epoxy resin, curable composition, cured product, semiconductor sealing material, semiconductor device, prepreg, circuit board, and build-up film
JP2023074974A (en) Epoxy resin
JP2023074978A (en) Epoxy resin composition and manufacturing method thereof, curable composition, cured material, semiconductor sealing material, semiconductor device, prepreg, circuit board, as well as, build-up film
JP2023007254A (en) Epoxy resin and curable composition containing epoxy resin
JP2023074976A (en) polyhydric hydroxy resin
JP6750427B2 (en) Polyfunctional epoxy resin, production method thereof, curable resin composition and cured product thereof
JP7024227B2 (en) Epoxy resin manufacturing method, epoxy resin, epoxy resin composition and cured product thereof
JP2022157594A (en) Epoxy resin, epoxy resin composition, cured product, semiconductor sealing material, and semiconductor device
JP2023074975A (en) Semiconductor sealing resin composition, semiconductor sealing material and semiconductor device
JP2022157464A (en) Epoxy resin composition, cured product, semiconductor sealing material, and semiconductor device
JP2022066986A (en) Phenol resin, epoxy resin, curable resin composition, cured object, fiber reinforced composite material and fiber reinforced resin molded product
JP2021130743A (en) Curable resin composition and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566870

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237011018

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180081331.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900477

Country of ref document: EP

Kind code of ref document: A1