JP5339146B2 - Epoxy resin composition, cured product thereof, circuit board, build-up material, and semiconductor sealing material - Google Patents

Epoxy resin composition, cured product thereof, circuit board, build-up material, and semiconductor sealing material Download PDF

Info

Publication number
JP5339146B2
JP5339146B2 JP2009164594A JP2009164594A JP5339146B2 JP 5339146 B2 JP5339146 B2 JP 5339146B2 JP 2009164594 A JP2009164594 A JP 2009164594A JP 2009164594 A JP2009164594 A JP 2009164594A JP 5339146 B2 JP5339146 B2 JP 5339146B2
Authority
JP
Japan
Prior art keywords
epoxy resin
group
resin composition
aromatic hydrocarbon
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009164594A
Other languages
Japanese (ja)
Other versions
JP2011021050A (en
Inventor
芳行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2009164594A priority Critical patent/JP5339146B2/en
Publication of JP2011021050A publication Critical patent/JP2011021050A/en
Application granted granted Critical
Publication of JP5339146B2 publication Critical patent/JP5339146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: an epoxy resin composition having flame-retardance of UL 94V-0 rating, moisture-resistant reliability and heat-resistant reliability; its cured product; a circuit board using the composition; a build-up material; a semiconductor sealing material; and a new epoxy resin giving those characteristics. <P>SOLUTION: This epoxy resin composition includes an epoxy resin, as a base resin, having a molecular structure obtained by reacting an epoxy resin (a1) with an active hydrogen atom-containing aromatic phosphine compound (a2). In the composition, the epoxy resin (a1) has each structural site of: a glycidyloxy group-containing aromatic hydrocarbon group (E); an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X); and a divalent hydrocarbon group (Y) selected from among a methylene group, alkylidene group and aromatic hydrocarbon structure-containing methylene group. In addition, the epoxy resin (a1) has a structure in which the (E) and the (X) is bonded through the (Y) in its molecular structure. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は得られる硬化物は、難燃性と耐熱信頼性に優れ、回路基板(積層板、プリント配線板、ビルドアップ基材、フレキシブル配線板)、半導体封止材、レジストインキ材料、アンダーフィルなどの液状封止材、導電性ペーストなどの接着剤、液晶シール材、フレキシブル基板用カバーレイ、複合材料(炭素繊維強化プラスチック)、光学材料、塗料、注型用途等に好適に用いる事が出来るエポキシ樹脂組成物、及び新規エポキシ樹脂に関する。 The cured product obtained in the present invention is excellent in flame retardancy and heat resistance reliability, circuit board (laminated board, printed wiring board, build-up substrate, flexible wiring board), semiconductor sealing material, resist ink material, underfill It can be suitably used for liquid sealing materials such as adhesives, adhesives such as conductive paste, liquid crystal sealing materials, flexible substrate coverlays, composite materials (carbon fiber reinforced plastics), optical materials, paints, casting applications, etc. The present invention relates to an epoxy resin composition and a novel epoxy resin.

エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、電気絶縁性、高耐熱性、耐湿性、寸法安定性等の諸物性に優れる点から半導体封止材やプリント回路基板、ビルドアップ基板、レジストインキ等の電子部品、導電ペースト等の導電性接着剤やその他接着剤、アンダーフィルなどの液状封止材、液晶シール材、フレキシブル基板用カバーレイ、複合材料用マトリックス、塗料、フォトレジスト材料、顕色材料等で広く用いられている。これらの中でも半導体やプリント配線基板などのエレクトロニクス材料分野においては、封止材や基板材料等として用いられており、これらの分野における技術革新に伴って高性能化への要求が高まっている。 Epoxy resin compositions containing an epoxy resin and its curing agent as essential components are excellent in various properties such as electrical insulation, high heat resistance, moisture resistance, and dimensional stability. Substrates, electronic components such as resist ink, conductive adhesives such as conductive paste and other adhesives, liquid sealing materials such as underfill, liquid crystal sealing materials, flexible substrate coverlays, matrix for composite materials, paints, photoresists Widely used in materials and color developing materials. Among these, in the field of electronic materials such as semiconductors and printed wiring boards, they are used as sealing materials and substrate materials, and the demand for higher performance is increasing with technological innovation in these fields.

例えば火災や発火を防止し、安全性を保つという観点から、電気・電子機器に使用される半導体封止材や、回路基板(積層板、プリント配線板、ビルドアップ基材、フレキシブル配線板)といった電子電気分野用には難燃性が要求される。この難燃性を確保するために一般には、ハロゲン元素を含む難燃剤、特に臭素系難燃剤が用いられてきた。しかし、最近の地球環境の保全・悪化防止の観点から、毒性の強いダイオキシン類、ベンゾフラン等を発生させる恐れのあるハロゲン元素を含有せず難燃化する技術が必須となっている。   For example, from the viewpoint of preventing fire and fire and maintaining safety, such as semiconductor sealing materials used in electrical and electronic equipment, circuit boards (laminates, printed wiring boards, build-up substrates, flexible wiring boards) Flame resistance is required for electronic and electrical fields. In order to ensure this flame retardancy, generally, a flame retardant containing a halogen element, particularly a brominated flame retardant has been used. However, from the viewpoint of the recent conservation and prevention of deterioration of the global environment, a technology for making flame retardant without containing halogen elements that may generate highly toxic dioxins, benzofuran, etc. is essential.

前述の電子電気材料用にはとしては、エポキシ樹脂が多く使用されているが、エポキシ樹脂は一般的に燃えやすいため、UL94V−0クラスの難燃性を実現することは難しく、トリフェニルフォスフェートやクレジルジフェニルフォスフェート等のリン酸エステル類を難燃剤として用いられてきた。   Epoxy resins are often used for the above-mentioned electronic and electrical materials. However, since epoxy resins are generally flammable, it is difficult to achieve UL94V-0 class flame retardancy. And phosphate esters such as cresyl diphenyl phosphate have been used as flame retardants.

しかしながら、これらのリン酸エステル類をエポキシ樹脂等に添加した場合、これらの化合物の可塑性によって、樹脂のガラス転移点が大幅に低下するという欠点が生じていた。また、該リン酸エステル類はエポキシ樹脂の骨格と共有結合を生じておらず、リン化合物同士の相互作用が、リン化合物と樹脂骨格との相互作用よりも大きいため、これらのリン酸エステルを樹脂に添加しプリプレグを作製した場合、一定時間経過後、リン酸エステル類が容易に結晶化し、プリプレグ表面に析出するため使用できなくなるという問題をも有していた。更に、リン化合物は加水分解しやすいため、多量に配合する場合、プリント配線板製造工程内で使用される薬液に溶解し易く(主にアルカリ溶液)、また、耐湿耐熱性の低下を招くものが多いという問題もあった。   However, when these phosphoric acid esters are added to an epoxy resin or the like, there has been a drawback that the glass transition point of the resin is significantly lowered due to the plasticity of these compounds. In addition, since the phosphate esters do not form a covalent bond with the skeleton of the epoxy resin, and the interaction between the phosphorus compounds is larger than the interaction between the phosphorus compound and the resin skeleton, these phosphate esters are used as resins. When a prepreg was prepared by adding to the prepreg, the phosphoric acid esters easily crystallized after a certain period of time and deposited on the surface of the prepreg, so that there was a problem that they could not be used. Furthermore, since phosphorus compounds are easily hydrolyzed, when compounded in a large amount, they easily dissolve in chemicals used in the printed wiring board manufacturing process (mainly alkaline solutions), and those that cause a decrease in moisture resistance and heat resistance. There was also a problem that there were many.

そこで、従来よりノボラック型エポキシ樹脂と9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシドを反応させたリン含有エポキシ樹脂をエポキシ樹脂組成物の主剤として用いる技術が知られている(下記特許文献1参照)。   Therefore, a technique using a phosphorus-containing epoxy resin obtained by reacting a novolac-type epoxy resin and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide as a main component of an epoxy resin composition has been known. (See Patent Document 1 below).

しかしながらこのリン含有エポキシ樹脂は、UL94V−0クラスの難燃性を示すものの耐湿信頼性及び耐熱信頼性の改良効果は十分ではなく、特に最近の鉛フリー半田には適用できるものではなかった。   However, although this phosphorus-containing epoxy resin exhibits UL94V-0 class flame retardancy, the improvement effect of moisture resistance reliability and heat resistance reliability is not sufficient, and it has not been particularly applicable to recent lead-free solder.

特許第3613724号公報Japanese Patent No. 3613724

従って、本発明が解決しようとする課題は、UL94V−0クラスの難燃性と耐湿信頼性及び耐熱信頼性を兼備したエポキシ樹脂組成物、硬化物、該組成物を用いた回路基板、ビルドアップ材料、及び半導体封止材料、並びにこれらの性能を与える新規エポキシ樹脂を提供することにある。   Therefore, the problem to be solved by the present invention is that an epoxy resin composition, cured product, circuit board using the composition, and build-up having UL94V-0 class flame retardancy, moisture resistance reliability and heat resistance reliability. It is an object of the present invention to provide a material, a semiconductor sealing material, and a novel epoxy resin that provides these performances.

本発明者らは前記課題を解決するため鋭意検討した結果、アルコキシ基含有縮合多環構造を有する特定構造のエポキシ樹脂に活性水素原子含有芳香族系ホスフィン化合物を反応させて得られるエポキシ樹脂を主剤として用いることにより、難燃性と耐湿信頼性と耐熱信頼性とを兼備した硬化物が得られることを見出し、本発明を完成するに至った。   As a result of intensive investigations to solve the above problems, the inventors of the present invention are based on an epoxy resin obtained by reacting an epoxy resin having a specific structure having an alkoxy group-containing condensed polycyclic structure with an active hydrogen atom-containing aromatic phosphine compound. As a result, it was found that a cured product having flame retardancy, moisture resistance reliability and heat resistance reliability was obtained, and the present invention was completed.

即ち、本発明は、エポキシ樹脂(A)と硬化剤(B)を必須成分とするエポキシ樹脂組成物であって、
前記エポキシ樹脂(A)が、
グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、
前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)を介して結合した構造を分子構造内に有するエポキシ樹脂(a1)と、
活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させて得られる分子構造を有するエポキシ樹脂であることを特徴とするエポキシ樹脂組成物に関する。
That is, the present invention is an epoxy resin composition comprising an epoxy resin (A) and a curing agent (B) as essential components,
The epoxy resin (A) is
Glycidyloxy group-containing aromatic hydrocarbon group (E),
An alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X), and
Each structural site of a divalent hydrocarbon group (Y) selected from a methylene group, an alkylidene group, and an aromatic hydrocarbon structure-containing methylene group, and
The glycidyloxy group-containing aromatic hydrocarbon group (E) and the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X) are selected from the methylene group, the alkylidene group, and the aromatic hydrocarbon structure-containing methylene group. An epoxy resin (a1) having a structure bonded through a divalent hydrocarbon group (Y) in the molecular structure;
The present invention relates to an epoxy resin composition characterized by being an epoxy resin having a molecular structure obtained by reacting an active hydrogen atom-containing aromatic phosphine compound (a2).

本発明は、更に、前記エポキシ樹脂組成物を硬化させてなる硬化物に関する。   The present invention further relates to a cured product obtained by curing the epoxy resin composition.

本発明は、更に、前記エポキシ樹脂組成物を用いることを特徴とする回路基板に関する。   The present invention further relates to a circuit board characterized by using the epoxy resin composition.

本発明は、更に、前記エポキシ樹脂組成物を用いることを特徴とするビルドアップ材料に関する。   The present invention further relates to a build-up material characterized by using the epoxy resin composition.

本発明は、更に、前記エポキシ樹脂組成を用いることを特徴とする半導体封止材料に関する。   The present invention further relates to a semiconductor sealing material using the epoxy resin composition.

本発明は、更に、グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、
前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)を介して結合した構造を分子構造内に有するエポキシ樹脂(a1)と
活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させて得られる分子構造を有することを特徴とするエポキシ樹脂に関する。
The present invention further includes a glycidyloxy group-containing aromatic hydrocarbon group (E),
An alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X), and
Each structural site of a divalent hydrocarbon group (Y) selected from a methylene group, an alkylidene group, and an aromatic hydrocarbon structure-containing methylene group, and
The glycidyloxy group-containing aromatic hydrocarbon group (E) and the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X) are selected from the methylene group, the alkylidene group, and the aromatic hydrocarbon structure-containing methylene group. Structure obtained by reacting an epoxy resin (a1) having a structure bonded through a divalent hydrocarbon group (Y) in the molecular structure with an active hydrogen atom-containing aromatic phosphine compound (a2) It is related with the epoxy resin characterized by having.

本発明によれば、UL94V−0クラスの難燃性と耐湿信頼性及び耐熱信頼性を兼備したエポキシ樹脂組成物、硬化物、該組成物を用いた回路基板、ビルドアップ材料、及び半導体封止材料、並びにこれらの性能を与える新規エポキシ樹脂を提供できる。   According to the present invention, an epoxy resin composition that combines UL94V-0 class flame retardancy, moisture resistance reliability, and heat resistance reliability, a cured product, a circuit board using the composition, a build-up material, and a semiconductor encapsulation Materials and new epoxy resins that provide these performances can be provided.

図1は実施例1で得られたエポキシ樹脂(A−1)のGPCチャート図である。FIG. 1 is a GPC chart of the epoxy resin (A-1) obtained in Example 1.

以下、本発明を詳細に説明する。
本発明で用いるエポキシ樹脂は、前記した通り、
前記エポキシ樹脂(A)が、
グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、
前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)を介して結合した構造を分子構造内に有するエポキシ樹脂(a1)と
活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させて得られる分子構造を有するものである。
Hereinafter, the present invention will be described in detail.
The epoxy resin used in the present invention is as described above.
The epoxy resin (A) is
Glycidyloxy group-containing aromatic hydrocarbon group (E),
An alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X), and
Each structural site of a divalent hydrocarbon group (Y) selected from a methylene group, an alkylidene group, and an aromatic hydrocarbon structure-containing methylene group, and
The glycidyloxy group-containing aromatic hydrocarbon group (E) and the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X) are selected from the methylene group, the alkylidene group, and the aromatic hydrocarbon structure-containing methylene group. Structure obtained by reacting an epoxy resin (a1) having a structure bonded through a divalent hydrocarbon group (Y) in the molecular structure with an active hydrogen atom-containing aromatic phosphine compound (a2) It is what has.

ここで、用いるエポキシ樹脂(a1)は、具体的には、グリシジルオキシ基含有芳香族炭化水素基(E)、アルコキシ基含有縮合多環式芳香族炭化水素基(X)、およびメチレン基等(Y)の各構造単位をそれぞれ、「E」、「X」、「Y」で表した場合、下記構造部位A1   Here, the epoxy resin (a1) to be used is specifically a glycidyloxy group-containing aromatic hydrocarbon group (E), an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X), a methylene group or the like ( When each structural unit of Y) is represented by “E”, “X”, “Y”, the following structural site A1

Figure 0005339146
であらわされる構造部位を必須として分子構造内に含むものであるが、更に具体的には、下記構造式A2及びA3で表される構造、
Figure 0005339146
The structure represented by the formula is essentially included in the molecular structure, more specifically, structures represented by the following structural formulas A2 and A3,

Figure 0005339146
Figure 0005339146

下記構造式A4又はA5

Figure 0005339146

で表される構造を繰り返し単位とするノボラック構造の分子末端に、下記構造式A6 Structural formula A4 or A5
Figure 0005339146

At the molecular end of the novolak structure having the structure represented by

Figure 0005339146
で表される構造を有する構造、その他下記構造式A7〜A8
Figure 0005339146
Other structures having the structure represented by the following structural formulas A7 to A8

Figure 0005339146

で表される構造を繰り返し単位とする交互共重合体構造が挙げられる。
Figure 0005339146

The alternating copolymer structure which makes the structure represented by repeating unit a repeating unit is mentioned.

本発明においては、前記エポキシ樹脂(A)は、上記のように各種の構造をとり得るが、その分子末端に前記構造式A6で表される構造を有することにより、エポキシ樹脂硬化物の誘電正接を著しく低減できることができる。よって、特に前記構造式A3の構造を有するエポキシ樹脂、或いは、前記A4又はA7を繰り返し単位とし、かつ、その分子末端に前記構造式A6で表される構造を有するエポキシ樹脂が好ましく、特に本発明の効果が顕著に現れる点から、前記構造式A3の構造を有するエポキシ樹脂、或いは、前記A4を繰り返し単位とし、かつ、その分子末端に前記構造式A6で表される構造を有するエポキシ樹脂が好ましい。   In the present invention, the epoxy resin (A) can have various structures as described above. By having the structure represented by the structural formula A6 at the molecular end, the dielectric loss tangent of the cured epoxy resin is obtained. Can be significantly reduced. Accordingly, an epoxy resin having the structure of the structural formula A3 or an epoxy resin having the structure represented by the structural formula A6 at the molecular end thereof and having the repeating unit of A4 or A7 is particularly preferable. From the standpoint of the effect of the above, an epoxy resin having the structure of the structural formula A3 or an epoxy resin having the structure represented by the structural formula A6 at the molecular end of the A4 as a repeating unit is preferable. .

ここで、グリシジルオキシ基含有芳香族炭化水素基(E)は、具体的には、以下のE1〜E16の構造式で表されるグリシジルオキシベンゼン類、グリシジルオキシナフタレン類、及びこれらの芳香核上の置換基としてアルキル基を有する化合物が難燃性に優れるという点で好ましい。   Here, the glycidyloxy group-containing aromatic hydrocarbon group (E) specifically includes glycidyloxybenzenes, glycidyloxynaphthalenes, and aromatic nuclei represented by the following structural formulas E1 to E16. A compound having an alkyl group as a substituent is preferable in that it has excellent flame retardancy.

Figure 0005339146
Figure 0005339146

ここで、前記各構造は、前記構造式A2のように該構造が分子末端に位置する場合には、1価の芳香族炭化水素基となる。また、上掲した構造のうちナフタレン骨格上に他の構造部位との結合位置を二つ以上有するものは、それらの結合位置は同一核上であってもよいし、或いは、それぞれ異核上にあってもよい。   Here, each structure becomes a monovalent aromatic hydrocarbon group when the structure is located at the molecular end as in the structural formula A2. In addition, among the structures listed above, those having two or more bonding positions with other structural sites on the naphthalene skeleton may be on the same nucleus or on different nuclei. There may be.

次に、エポキシ樹脂(A)構造中に含まれる前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)は、縮合多環式芳香核上の置換基としてアルコキシ基を有する1価の芳香族炭化水素基であり、具体的には下記構造式X1〜X11で表されるアルコシキナフタレン構造、又は、下記構造式X12で表されるアルコキシアントラセン構造が挙げられる。   Next, the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X) contained in the epoxy resin (A) structure is a monovalent aromatic having an alkoxy group as a substituent on the condensed polycyclic aromatic nucleus. A hydrocarbon group, specifically, an alkoxynaphthalene structure represented by the following structural formulas X1 to X11 or an alkoxyanthracene structure represented by the following structural formula X12.

Figure 0005339146
Figure 0005339146

ここで前記各構造は、該構造が分子末端に位置する場合には、1価の芳香族炭化水素基となる。また、上掲した構造のうちナフタレン骨格上に他の構造部位との結合位置を二つ以上有するものは、それらの結合位置は同一核上であってもよいし、或いは、それぞれ異核上にあってもよい。   Here, each structure becomes a monovalent aromatic hydrocarbon group when the structure is located at the molecular end. In addition, among the structures listed above, those having two or more bonding positions with other structural sites on the naphthalene skeleton may be on the same nucleus or on different nuclei. There may be.

以上詳述した前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)のうち、とりわけ、エポキシ樹脂硬化物の難燃性が良好なものとなる点からアルコキシナフタレン型の構造を有するものが好ましく、近年、電子部品分野において要求の高いハロゲンフリーの材料の設計が可能となる点から、前記構造式X1〜X10に代表される、メトキシ基又はエトキシ基を置換基として有するナフタレン構造、およびそれらに更にメチル基を置換基として有する構造から形成される芳香族炭化水素基であることが好ましい。   Among the alkoxy group-containing condensed polycyclic aromatic hydrocarbon groups (X) described in detail above, those having an alkoxynaphthalene type structure from the viewpoint that the flame retardancy of the cured epoxy resin is particularly good. Preferably, a naphthalene structure having a methoxy group or an ethoxy group as a substituent, represented by the structural formulas X1 to X10, and the like, in view of the fact that in recent years it is possible to design a halogen-free material that is highly required in the field of electronic components Furthermore, it is preferably an aromatic hydrocarbon group formed from a structure having a methyl group as a substituent.

次に、前記したメチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位は、メチレン基の他、アルキリデン基としては、エチリデン基、1,1−プロピリデン基、2,2−プロピリデン基、ジメチレン基、プロパン−1,1,3,3−テトライル基、n−ブタン−1,1,4,4−テトライル基、n−ペンタン−1,1,5,5−テトライル基が挙げられる。また、芳香族炭化水素構造含有メチレン基は、下記Y1〜Y4の構造のものが挙げられる。   Next, each structural site of the divalent hydrocarbon group (Y) selected from the above-mentioned methylene group, alkylidene group, and aromatic hydrocarbon structure-containing methylene group includes methylene group and alkylidene group as ethylidene group. Group, 1,1-propylidene group, 2,2-propylidene group, dimethylene group, propane-1,1,3,3-tetrayl group, n-butane-1,1,4,4-tetrayl group, n-pentane A -1,1,5,5-tetrayl group is mentioned. In addition, examples of the aromatic hydrocarbon structure-containing methylene group include the following Y1 to Y4 structures.

Figure 0005339146

これらの中でも誘電効果に優れる点、更に有機溶剤へ溶解させた際の粘度が低い点から、とりわけメチレン基であることが好ましい。
従って、エポキシ樹脂(A)は、特に下記構造式(1)
Figure 0005339146

Among these, a methylene group is particularly preferable because of its excellent dielectric effect and its low viscosity when dissolved in an organic solvent.
Accordingly, the epoxy resin (A) particularly has the following structural formula (1)

Figure 0005339146

(式中、Eはグリシジルオキシ基含有芳香族炭化水素基を、Xはアルコキシ基含有縮合多環式芳香族炭化水素基、X’はアルコキシ基含有縮合多環式芳香族炭化水素基又はグリシジルオキシ基含有芳香族炭化水素基を表し、nは繰り返し単位で1〜100の整数である。)で表される構造を有するものがとりわけ好ましい。
ここで、X’のアルコキシ基含有縮合多環式芳香族炭化水素基又はグリシジルオキシ基含有芳香族炭化水素基とは、X’が任意にアルコキシ基含有縮合多環式芳香族炭化水素基(X)又はグリシジルオキシ基含有芳香族炭化水素基(E)であることを示すものである。
Figure 0005339146

(In the formula, E represents a glycidyloxy group-containing aromatic hydrocarbon group, X represents an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group, and X ′ represents an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group or glycidyloxy. A group-containing aromatic hydrocarbon group is preferred, and n is a repeating unit and is preferably an integer of 1 to 100).
Here, the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group or the glycidyloxy group-containing aromatic hydrocarbon group represented by X ′ is an X ′ is optionally an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X Or a glycidyloxy group-containing aromatic hydrocarbon group (E).

また、エポキシ樹脂(a1)は、特に前記構造式(1)で表される構造を有するものである場合、該樹脂中には、通常、下記構造式(1’)   In addition, when the epoxy resin (a1) has a structure represented by the structural formula (1), the resin usually contains the following structural formula (1 ′).

Figure 0005339146

(式中、Eはグリシジルオキシ基含有芳香族炭化水素基(E)を表す。)
で表される化合物が含まれることになるが、その含有率はエポキシ樹脂(a1)中、5質量%以下となる割合、特に1.0〜3.5質量%なる範囲であることが難燃性の点から好ましい。
Figure 0005339146

(In the formula, E represents a glycidyloxy group-containing aromatic hydrocarbon group (E).)
In the epoxy resin (a1), the content ratio is 5% by mass or less, particularly 1.0 to 3.5% by mass flame retardant. From the viewpoint of sex.

本発明では、このようにエポキシ樹脂(a1)の主たる成分として下記構造式   In the present invention, as the main component of the epoxy resin (a1), the following structural formula

Figure 0005339146
(式中、Eはグリシジルオキシ基含有芳香族炭化水素基を表す。)
で表される構造単位を繰り返し単位とする主骨格の末端にXはアルコキシ基含有縮合多環式芳香族炭化水素基を導入すること該エポキシ樹脂(A)の硬化物の難燃性を飛躍的に改善できる。
Figure 0005339146
(In the formula, E represents a glycidyloxy group-containing aromatic hydrocarbon group.)
Introducing an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group to the terminal of the main skeleton having the structural unit represented by the formula as a repeating unit, the flame retardancy of the cured product of the epoxy resin (A) is dramatically improved Can be improved.

また、前記構造式(1)中のnの値は、GPC測定から導出される繰り返し単位数である。ここでGPC測定の条件は、具体的には以下の通りである。   The value of n in the structural formula (1) is the number of repeating units derived from GPC measurement. Here, the conditions for the GPC measurement are specifically as follows.

また、前記エポキシ樹脂(a1)は、エポキシ当量が小さい場合には組成物の硬化性が良好なものとなり、エポキシ当量が大きい場合には硬化物の難燃性が良好となる。よって、これらのバランスが良好なものとなる点から、そのエポキシ当量は200〜600g/eq.の範囲、特に250〜550g/eq.の範囲であることが好ましい。   The epoxy resin (a1) has good curability of the composition when the epoxy equivalent is small, and the flame retardancy of the cured product is good when the epoxy equivalent is large. Accordingly, the epoxy equivalent is 200 to 600 g / eq. In the range of 250 to 550 g / eq. It is preferable that it is the range of these.

更に、前記エポキシ樹脂(a1)は、グリシジルオキシ基含有芳香族炭化水素基(E)と、前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)との存在比が、モル比で前者/後者=30/70〜98/2なる範囲であるであることが難燃性の点から好ましい。   Furthermore, in the epoxy resin (a1), the abundance ratio of the glycidyloxy group-containing aromatic hydrocarbon group (E) and the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X) is the former in terms of molar ratio. / The latter is preferably in the range of 30/70 to 98/2 from the viewpoint of flame retardancy.

以上詳述した前記エポキシ樹脂(a1)は、フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するフェノール樹脂(ph1)とエピハロヒドリンを反応させることにより得ることができる。   The epoxy resin (a1) described in detail above includes a phenolic hydroxyl group-containing aromatic hydrocarbon group (P), an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X), a methylene group, an alkylidene group, and Each of the divalent hydrocarbon groups (Y) selected from the aromatic hydrocarbon structure-containing methylene group, and the phenolic hydroxyl group-containing aromatic hydrocarbon group (P) and the alkoxy group A structure in which the contained condensed polycyclic aromatic hydrocarbon group (B) is bonded via a divalent hydrocarbon group (X) selected from the methylene group, alkylidene group, and aromatic hydrocarbon structure-containing methylene group Can be obtained by reacting a phenolic resin (ph1) having a quinone in the molecular structure with epihalohydrin.

また、前記フェノール樹脂(ph1)は、ヒドロキシ基含有芳香族化合物(p)とアルコキシ基含有芳香族化合物(x)と、カルボニル基含有化合物(y)とを、反応させることによって製造することができる。   Moreover, the said phenol resin (ph1) can be manufactured by making a hydroxyl group containing aromatic compound (p), an alkoxy group containing aromatic compound (x), and a carbonyl group containing compound (y) react. .

上記製造方法に用いられるヒドロキシ基含有芳香族化合物(p)は、具体的には、フェノール、レゾルシノール、ヒドロキノンなどの無置換フェノール類、クレゾール、フェニルフェノール、エチルフェノール、n−プロピルフェノール、iso−プロピルフェノール、t−ブチルフェノールなどの一置換フェノール類、キシレノール、メチルプロピルフェノール、メチルブチルフェノール、メチルヘキシルフェノール、ジプロピルフェノール、ジブチルフェノールなどの二置換フェノール類、メシトール、2,3,5−トリメチルフェノール、2,3,6−トリメチルフェノール等の三置換フェノール類、1−ナフトール、2−ナフトール、メチルナフトールなどのナフトール類が挙げられる。前記フェノール樹脂(ph1)を製造する際、上記化合物は単独で使用してもよいし、2種類以上を併用してもよい。   Specific examples of the hydroxy group-containing aromatic compound (p) used in the above production method include unsubstituted phenols such as phenol, resorcinol and hydroquinone, cresol, phenylphenol, ethylphenol, n-propylphenol and iso-propyl. Monosubstituted phenols such as phenol and t-butylphenol, disubstituted phenols such as xylenol, methylpropylphenol, methylbutylphenol, methylhexylphenol, dipropylphenol and dibutylphenol, mesitol, 2,3,5-trimethylphenol, 2 , 3,6-trimethylphenol and the like, and naphthols such as 1-naphthol, 2-naphthol and methylnaphthol. When manufacturing the said phenol resin (ph1), the said compound may be used independently and may use 2 or more types together.

これらのなかでも、硬化物の難燃性に優れることから1−ナフトール、2−ナフトール、クレゾール、フェノールが特に好ましい。   Among these, 1-naphthol, 2-naphthol, cresol, and phenol are particularly preferable because the cured product has excellent flame retardancy.

次に、アルコキシ基含有芳香族化合物(x)は、具体的には、1−メトキシナフタレン、2−メトキシナフタレン、1−メチル−2−メトキシナフタレン、1−メトキシ−2−メチルナフタレン、1,3,5−トリメチル−2−メトキシナフタレン、2,6−ジメトキシナフタレン、2,7−ジメトキシナフタレン、1−エトキシナフタレン、
1,4−ジメトキシナフタレン、1−t−ブトキシナフタレン、1−メトキシアントラセン、等が挙げられる。
Next, the alkoxy group-containing aromatic compound (x) specifically includes 1-methoxynaphthalene, 2-methoxynaphthalene, 1-methyl-2-methoxynaphthalene, 1-methoxy-2-methylnaphthalene, 1,3. , 5-trimethyl-2-methoxynaphthalene, 2,6-dimethoxynaphthalene, 2,7-dimethoxynaphthalene, 1-ethoxynaphthalene,
1,4-dimethoxynaphthalene, 1-t-butoxynaphthalene, 1-methoxyanthracene, and the like can be given.

これらの中でも難燃性と誘電特性の点から1−メトキシナフタレン、2−メトキシナフタレン、及び2,7−ジメトキシナフタレンが好ましい。   Among these, 1-methoxynaphthalene, 2-methoxynaphthalene, and 2,7-dimethoxynaphthalene are preferable from the viewpoint of flame retardancy and dielectric properties.

次に、カルボニル基含有化合物(y)は、具体的には、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族系アルデヒド、グリオキザール等のジアルデヒド、ベンズアルデヒド、4−メチルベンズアルデヒド、3,4−ジメチルベンズアルデヒド、4−ビフェニルアルデヒド、ナフチルアルデヒド等の芳香族系アルデヒド、ベンゾフェノン、フルオレノン、インダノン等のケトン化合物が挙げられる。   Next, the carbonyl group-containing compound (y) is specifically an aliphatic aldehyde such as formaldehyde, acetaldehyde or propionaldehyde, a dialdehyde such as glyoxal, benzaldehyde, 4-methylbenzaldehyde, 3,4-dimethylbenzaldehyde, Examples thereof include aromatic aldehydes such as 4-biphenylaldehyde and naphthylaldehyde, and ketone compounds such as benzophenone, fluorenone and indanone.

これらのなかでも得られる硬化物が難燃性にすぐれる点からホルムアルデヒド、ベンズアルデヒド、4−ビフェニルアルデヒド、ナフチルアルデヒドが好ましく、得られる樹脂が低粘度である点からホルムアルデヒドが好ましい。   Among these, formaldehyde, benzaldehyde, 4-biphenylaldehyde, and naphthylaldehyde are preferable from the viewpoint that the obtained cured product has excellent flame retardancy, and formaldehyde is preferable from the viewpoint that the obtained resin has low viscosity.

上記したヒドロキシ基含有芳香族化合物(p)とアルコキシ基含有縮合多環式芳香族化合物(x)と、カルボニル基含有化合物(y)とを反応させる方法は、以下の方法1)〜3)が挙げられる。   The following methods 1) to 3) are the methods for reacting the hydroxy group-containing aromatic compound (p), the alkoxy group-containing condensed polycyclic aromatic compound (x) and the carbonyl group-containing compound (y). Can be mentioned.

方法1):ヒドロキシ基含有芳香族系化合物(p)とアルコキシ基含有縮合多環式芳香族化合物(x)とカルボニル基含有化合物(y)とを実質的に同時に仕込み、適当な重合触媒の存在下で加熱撹拌して反応を行う方法。
方法2):アルコキシ基含有縮合多環式芳香族化合物(x)1モルに対して、0.05〜30モル、好ましくは2〜30モルのカルボニル基含有化合物(y)を反応させた後に、ヒドロキシ基含有芳香族系化合物(p)を仕込んで反応させる方法。
方法3):ヒドロキシ基含有芳香族系化合物(p)とアルコキシ基含有縮合多環式芳香族化合物(x)とを予め混合しておき、ここにカルボニル基含有化合物(y)を連続的乃至断続的に系内に加えることによって、反応を行う方法。
Method 1): A hydroxy group-containing aromatic compound (p), an alkoxy group-containing condensed polycyclic aromatic compound (x), and a carbonyl group-containing compound (y) are charged substantially simultaneously, and an appropriate polymerization catalyst is present. A method in which the reaction is carried out with stirring under heating.
Method 2): After reacting 0.05 to 30 mol, preferably 2 to 30 mol, of the carbonyl group-containing compound (y) with respect to 1 mol of the alkoxy group-containing condensed polycyclic aromatic compound (x), A method in which a hydroxy group-containing aromatic compound (p) is charged and reacted.
Method 3): Hydroxy group-containing aromatic compound (p) and alkoxy group-containing condensed polycyclic aromatic compound (x) are mixed in advance, and carbonyl group-containing compound (y) is continuously or intermittently added thereto. A method in which a reaction is carried out by adding it to the system.

上記方法1)において「実質的に同時」とは、加熱によって反応が加速されるまでの間に全ての原料を仕込むことを意味するものである。   In the above method 1), “substantially simultaneously” means that all raw materials are charged until the reaction is accelerated by heating.

この様にして得られたフェノール樹脂(ph1)にエピハロヒドリンを反応させて目的のエポキシ樹脂(a1)を得ることができる。具体的には、前記フェノール樹脂(ph1)中のフェノール性水酸基1モルに対し、エピハロヒドリン2〜10モルを添加し、更に、フェノール性水酸基1モルに対し0.9〜2.0モルの塩基性触媒を一括添加または徐々に添加しながら20〜120℃の温度で0.5〜10時間反応させる方法が挙げられる。この塩基性触媒は固形でもその水溶液を使用してもよく、水溶液を使用する場合は、連続的に添加すると共に反応混合物中から減圧下、または常圧下、連続的に水及びエピハロヒドリン類を留出せしめ、更に分液して水は除去しエピハロヒドリン類は反応混合物中に連続的に戻す方法が好ましい。   The desired epoxy resin (a1) can be obtained by reacting the phenol resin (ph1) thus obtained with epihalohydrin. Specifically, 2 to 10 mol of epihalohydrin is added to 1 mol of phenolic hydroxyl group in the phenol resin (ph1), and further 0.9 to 2.0 mol of basicity to 1 mol of phenolic hydroxyl group. The method of making it react at the temperature of 20-120 degreeC for 0.5 to 10 hours, adding a catalyst collectively or gradually is mentioned. The basic catalyst may be solid or an aqueous solution thereof. When an aqueous solution is used, it is continuously added and water and epihalohydrins are continuously distilled from the reaction mixture under reduced pressure or normal pressure. It is preferable that the solution is further separated to remove water and the epihalohydrin is continuously returned to the reaction mixture.

なお、工業生産を行う際、エポキシ樹脂生産の初バッチでは仕込みに用いるエピハロヒドリン類の全てが新しいものであるが、次バッチ以降は、粗反応生成物から回収されたエピハロヒドリン類と、反応で消費される分で消失する分に相当する新しいエピハロヒドリン類とを併用することが好ましい。この時、使用するエピハロヒドリンは特に限定されないが、例えばエピクロルヒドリン、エピブロモヒドリン、β−メチルエピクロルヒドリン等が挙げられる。なかでも工業的入手が容易なことからエピクロルヒドリンが好ましい。   In the first batch of epoxy resin production, all of the epihalohydrins used for preparation are new in industrial production, but the subsequent batches are consumed by the reaction with epihalohydrins recovered from the crude reaction product. It is preferable to use in combination with new epihalohydrins corresponding to the amount disappeared. At this time, the epihalohydrin used is not particularly limited, and examples thereof include epichlorohydrin, epibromohydrin, β-methylepichlorohydrin, and the like. Of these, epichlorohydrin is preferred because it is easily available industrially.

また、前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられる。特にエポキシ樹脂合成反応の触媒活性に優れる点からアルカリ金属水酸化物が好ましく、例えば水酸化ナトリウム、水酸化カリウム等が挙げられる。使用に際しては、これらの塩基性触媒を10〜55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用しても構わない。また、有機溶媒を併用することにより、エポキシ樹脂の合成における反応速度を高めることができる。このような有機溶媒としては特に限定されないが、例えば、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、1−プロピルアルコール、イソプロピルアルコール、1−ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、テトラヒドロフラン、1、4−ジオキサン、1、3−ジオキサン、ジエトキシエタン等のエーテル類、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調整するために適宜二種以上を併用してもよい。   Specific examples of the basic catalyst include alkaline earth metal hydroxides, alkali metal carbonates, and alkali metal hydroxides. In particular, alkali metal hydroxides are preferable from the viewpoint of excellent catalytic activity of the epoxy resin synthesis reaction, and examples thereof include sodium hydroxide and potassium hydroxide. In use, these basic catalysts may be used in the form of an aqueous solution of about 10 to 55% by mass, or in the form of a solid. Moreover, the reaction rate in the synthesis | combination of an epoxy resin can be raised by using an organic solvent together. Examples of such organic solvents include, but are not limited to, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol, 1-butanol, secondary butanol, and tertiary butanol, methyl Examples include cellosolves such as cellosolve and ethyl cellosolve, ethers such as tetrahydrofuran, 1,4-dioxane, 1,3-dioxane and diethoxyethane, and aprotic polar solvents such as acetonitrile, dimethyl sulfoxide and dimethylformamide. These organic solvents may be used alone or in combination of two or more as appropriate in order to adjust the polarity.

前述のエポキシ化反応の反応物を水洗後、加熱減圧下、蒸留によって未反応のエピハロヒドリンや併用する有機溶媒を留去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、得られたエポキシ樹脂を再びトルエン、メチルイソブチルケトン、メチルエチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、用いるエポキシ樹脂に対して0.1〜3.0質量%の範囲が好ましい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより高純度のエポキシ樹脂(a1)を得ることができる。   After the reaction product of the epoxidation reaction is washed with water, unreacted epihalohydrin and the organic solvent to be used in combination are distilled off by distillation under heating and reduced pressure. Further, in order to obtain an epoxy resin with less hydrolyzable halogen, the obtained epoxy resin is again dissolved in an organic solvent such as toluene, methyl isobutyl ketone, methyl ethyl ketone, and alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. Further reaction can be carried out by adding an aqueous solution of the product. At this time, a phase transfer catalyst such as a quaternary ammonium salt or crown ether may be present for the purpose of improving the reaction rate. When the phase transfer catalyst is used, the amount used is preferably in the range of 0.1 to 3.0% by mass relative to the epoxy resin used. After completion of the reaction, the produced salt is removed by filtration, washing with water, etc., and a solvent such as toluene and methyl isobutyl ketone is distilled off under heating and reduced pressure to obtain a high purity epoxy resin (a1).

次に、前記エポキシ樹脂(a1)と反応させる活性水素原子含有芳香族系ホスフィン化合物(a2)は、具体的には、下記構造式a2−1   Next, the active hydrogen atom-containing aromatic phosphine compound (a2) to be reacted with the epoxy resin (a1) specifically has the following structural formula a2-1.

Figure 0005339146
(式中、R1、R2はそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基を表す。)又は、下記構造式a2−2
Figure 0005339146
(Wherein R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) or the following structural formula a2-2

Figure 0005339146

(式中、R、Rはそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基を表す。)
で表される分子構造を有するものが挙げられる。
Figure 0005339146

(In formula, R < 3 >, R < 4 > represents a hydrogen atom or a C1-C6 alkyl group each independently.)
The thing which has the molecular structure represented by these is mentioned.

上記構造式a2−1中のR1、R2は、それぞれ独立的に水素原子、又はメチル基、エチル基、プロピル基、i−ブチル基、t−ブチル基、ペンチル基、n−ヘキシル基、若しくはシクロヘキシル基等の炭素原子数1〜6のアルキル基であるが、これらのなかでも特に難燃性に優れる点からR1及びR2が何れも水素原子であることが好ましい。
一方、上記構造式a2−2中のR、Rは、それぞれ独立的に水素原子、又はメチル基、エチル基、プロピル基、i−ブチル基、t−ブチル基、ペンチル基、n−ヘキシル基、若しくはシクロヘキシル基等の炭素原子数1〜6のアルキル基であるが、これらのなかでも特に難燃性に優れる点からR1及びR2が何れも水素原子であることが好ましい。
R 1 and R 2 in the structural formula a2-1 are each independently a hydrogen atom, or a methyl group, ethyl group, propyl group, i-butyl group, t-butyl group, pentyl group, n-hexyl group, Or it is C1-C6 alkyl groups, such as a cyclohexyl group, but it is preferable that both R < 1 > and R < 2 > are hydrogen atoms from the point which is especially excellent in a flame retardance.
On the other hand, R 3 and R 4 in the structural formula a2-2 are each independently a hydrogen atom, or a methyl group, an ethyl group, a propyl group, an i-butyl group, a t-butyl group, a pentyl group, and an n-hexyl group. Group, or an alkyl group having 1 to 6 carbon atoms such as a cyclohexyl group. Among these, R 1 and R 2 are preferably hydrogen atoms because they are particularly excellent in flame retardancy.

また、上記構造式a2−1で表される化合物、及び上記構造式a2−2で表される化合物の中でも特にエポキシ樹脂との反応性及び難燃性に優れる点から構造式a2−1で表される化合物が好ましい。 Of the compounds represented by the structural formula a2-1 and the compounds represented by the structural formula a2-2, the structural formula a2-1 is particularly preferable because of excellent reactivity with an epoxy resin and flame retardancy. Are preferred.

ここで、エポキシ樹脂(a1)と、活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させる方法としては、例えば、エポキシ樹脂(a1)を溶融させ、そこへ活性水素原子含有芳香族系ホスフィン化合物(a2)を一括又は分割で添加して反応させることができる。反応温度は100℃〜200℃の範囲、なかでも120℃〜180℃の範囲であることが好ましく、反応は攪拌下に行うことが好ましい。この際、反応速度を考慮して必要に応じて触媒を使用する。触媒としては、具体的にはベンジルジメチルアミン等の第3級アミン類、テトラメチルアンモニウムクロライド等の第4級アンモニウム塩類、トリフェニルホスフィン、トリス(2,6−ジメトキシフェニル)ホスフィン等のホスフィン類、エチルトリフェニルホスホニウムブロマイド等のホスホニウム塩類、2メチルイミダゾール、2―エチル−4−メチルイミダゾール等のイミダゾール類等が挙げられる。   Here, as a method of reacting the epoxy resin (a1) and the active hydrogen atom-containing aromatic phosphine compound (a2), for example, the epoxy resin (a1) is melted, and the active hydrogen atom-containing aromatic system is added thereto. The phosphine compound (a2) can be added or reacted in a batch or divided. The reaction temperature is preferably in the range of 100 ° C. to 200 ° C., particularly in the range of 120 ° C. to 180 ° C., and the reaction is preferably performed with stirring. At this time, a catalyst is used as necessary in consideration of the reaction rate. Specific examples of the catalyst include tertiary amines such as benzyldimethylamine, quaternary ammonium salts such as tetramethylammonium chloride, phosphines such as triphenylphosphine and tris (2,6-dimethoxyphenyl) phosphine, Examples include phosphonium salts such as ethyltriphenylphosphonium bromide, and imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole.

反応終点を確認する方法としては、エポキシ当量の追跡により理論エポキシ当量の95%以上の値になったことで確認する方法、液体クロマトグラフィ−等で代表される機器分析により一般式で表されるホスフィン化合物を追跡しその残存が実質なくなったことを確認する方法などがあるが、これらに限定されるものではない。   As a method for confirming the end point of the reaction, a method for confirming that the value is 95% or more of the theoretical epoxy equivalent by tracing the epoxy equivalent, a phosphine represented by a general formula by instrumental analysis represented by liquid chromatography, etc. Although there is a method of tracking a compound and confirming that the residual substance has substantially disappeared, it is not limited thereto.

かかる前記エポキシ樹脂(A)は、そのエポキシ当量が250〜700g/eq.の範囲のものが、硬化物の難燃性と耐湿信頼性、耐熱信頼性が一層良好となる点から好ましい。
前記エポキシ樹脂(A)はリン化合物を反応させる前のエポキシ樹脂自体の難燃性が高いため、エポキシ樹脂(A)中のリン原子含有率は、必要以上に高くする必要はなく、また、リン原子含有量が多くなるほど耐湿信頼性が低下する傾向がある為、0.1質量%〜5.0質量%の範囲、なかでも0.3質量%〜3.0質量%、特に0.1質量%〜1.5質量%の範囲であることが好ましい。
The epoxy resin (A) has an epoxy equivalent of 250 to 700 g / eq. Those in the above range are preferable from the viewpoint of further improving the flame retardancy, moisture resistance reliability and heat resistance reliability of the cured product.
Since the epoxy resin (A) has high flame retardancy of the epoxy resin itself before reacting with the phosphorus compound, the phosphorus atom content in the epoxy resin (A) does not need to be increased more than necessary. Since the moisture resistance reliability tends to decrease as the atomic content increases, the range is from 0.1% by mass to 5.0% by mass, especially from 0.3% by mass to 3.0% by mass, and particularly from 0.1% by mass. It is preferable that it is the range of% -1.5 mass%.

本発明のエポキシ樹脂組成物において、本発明の製造方法で得られる前記エポキシ樹脂は単独で、又は本発明の効果を損なわない範囲で他のエポキシ樹脂と併用して用いることができる。併用する場合には、エポキシ樹脂全体に占める本発明のエポキシ樹脂の割合は30質量%以上が好ましく、特に40質量%以上が好ましい。   In the epoxy resin composition of the present invention, the epoxy resin obtained by the production method of the present invention can be used alone or in combination with other epoxy resins as long as the effects of the present invention are not impaired. When used in combination, the proportion of the epoxy resin of the present invention in the entire epoxy resin is preferably 30% by mass or more, particularly preferably 40% by mass or more.

本発明のエポキシ樹脂と併用されうる他のエポキシ樹脂としては、種々のエポキシ樹脂を用いることができるが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等が挙げられる。これらのなかでもフェノールアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂や、ナフタレン骨格を含有するナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂や、結晶性のビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂や、キサンテン型エポキシ樹脂が、難燃性や誘電特性に優れる硬化物が得られる点から特に好ましい。   As other epoxy resins that can be used in combination with the epoxy resin of the present invention, various epoxy resins can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, tetramethylbiphenyl type Epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type Epoxy resin, naphthol novolac type epoxy resin, naphthol aralkyl type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensate Type epoxy resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin type epoxy resin, a biphenyl novolak type epoxy resins. Among these, phenol aralkyl type epoxy resins, biphenyl novolak type epoxy resins, naphthol novolak type epoxy resins containing a naphthalene skeleton, naphthol aralkyl type epoxy resins, naphthol-phenol co-condensed novolac type epoxy resins, naphthol-cresol co-condensed novolacs. Type epoxy resins, crystalline biphenyl type epoxy resins, tetramethylbiphenyl type epoxy resins, and xanthene type epoxy resins are particularly preferable because a cured product having excellent flame retardancy and dielectric properties can be obtained.

本発明のエポキシ樹脂組成物に用いる硬化剤としては、公知の各種エポキシ樹脂用硬化剤、例えばアミン系化合物、アミド系化合物、酸無水物系化合物、フェノ−ル系化合物などの硬化剤が使用できる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(通称、ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。 As the curing agent used in the epoxy resin composition of the present invention, known curing agents for various epoxy resins, for example, curing agents such as amine compounds, amide compounds, acid anhydride compounds and phenol compounds can be used. . Specifically, examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, and guanidine derivative. Examples of the amide compound include dicyandiamide. And polyamide resins synthesized from dimer of linolenic acid and ethylenediamine. Examples of acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, and tetrahydrophthalic anhydride. Acid, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, etc., and phenolic compounds include phenol novolac resin, cresol novolac resin Aromatic hydrocarbon formaldehyde resin modified phenolic resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (commonly known as zylock resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, naphthol novolac resin, naphthol-phenol Co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nucleus is linked by bismethylene group), biphenyl-modified naphthol resin (polyvalent naphthol in which phenol nucleus is linked by bismethylene group) Compound), and polyphenol compounds such as aminotriazine-modified phenolic resins (polyphenol compounds in which phenol nuclei are linked with melamine, benzoguanamine, etc.) Can be mentioned.

これらの中でも、難燃性と耐熱性に優れる硬化物が得られることから、ジシアンジアミド、アミノトリアジン変性フェノール樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂が好ましい。   Among these, dicyandiamide, aminotriazine-modified phenol resin, phenol novolac resin, and cresol novolac resin are preferable because a cured product having excellent flame retardancy and heat resistance can be obtained.

本発明のエポキシ樹脂組成物におけるエポキシ樹脂と硬化剤との配合量としては、特に制限されるものではないが、得られる硬化物の特性が良好である点から、エポキシ樹脂を含むエポキシ樹脂中のエポキシ基の合計1当量に対して、窒素原子を含有する硬化剤は硬化剤中の活性基がは0.3〜1.3当量、そのほかの硬化剤は硬化剤中の活性基が0.7〜1.5当量になる量が好ましい。   The blending amount of the epoxy resin and the curing agent in the epoxy resin composition of the present invention is not particularly limited, but from the point that the properties of the resulting cured product are good, in the epoxy resin containing the epoxy resin For a total of 1 equivalent of epoxy groups, the curing agent containing a nitrogen atom has an active group in the curing agent of 0.3 to 1.3 equivalent, and other curing agents have an active group in the curing agent of 0.7 to 0.7 equivalent. An amount of ~ 1.5 equivalents is preferred.

また必要に応じて本発明のエポキシ樹脂組成物に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。   Moreover, a hardening accelerator can also be suitably used together with the epoxy resin composition of this invention as needed. Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts. In particular, when used as a semiconductor encapsulating material, it is excellent in curability, heat resistance, electrical characteristics, moisture resistance reliability, etc., so that triphenylphosphine is used for phosphorus compounds and 1,8-diazabicyclo is used for tertiary amines. -[5.4.0] -undecene (DBU) is preferred.

以上詳述した本発明のエポキシ樹脂組成物は、エポキシ樹脂又はその硬化剤について、その分子構造の選択によっては、当該樹脂自体が優れた難燃性付与効果を有するものである為、従来用いられている難燃剤を配合しなくても、硬化物の難燃性が良好である。しかしながら、より高度な難燃性を発揮させるために、例えば回路基板の分野においては、スルーホール加工性、耐湿信頼性を低下させない範囲で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤(C)を配合してもよい。   The epoxy resin composition of the present invention described in detail above is used conventionally because the resin itself has an excellent flame retardancy-imparting effect depending on the selection of the molecular structure of the epoxy resin or its curing agent. Even if the flame retardant which is added is not blended, the flame retardancy of the cured product is good. However, in order to exert a higher degree of flame retardancy, for example, in the field of circuit boards, a non-halogen flame retardant containing substantially no halogen atom (as long as the through-hole processability and moisture resistance reliability are not lowered) C) may be blended.

かかる非ハロゲン系難燃剤(C)を配合したエポキシ樹脂組成物は、実質的にハロゲン原子を含有しないものであるが、例えばエポキシ樹脂に含まれるエピハロヒドリン由来の5000ppm以下程度の微量の不純物によるハロゲン原子は含まれていても良い。 The epoxy resin composition containing such a non-halogen flame retardant (C) is substantially free of halogen atoms. For example, halogen atoms due to trace amounts of impurities of about 5000 ppm or less derived from epihalohydrin contained in the epoxy resin. May be included.

前記非ハロゲン系難燃剤(C)としては、例えば、
リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
Examples of the non-halogen flame retardant (C) include:
Phosphorus flame retardants, nitrogen flame retardants, silicone flame retardants, inorganic flame retardants, organometallic salt flame retardants, etc., are not limited in any way, and even if used alone A plurality of flame retardants of the same system may be used, and different types of flame retardants may be used in combination.

前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。   As the phosphorus flame retardant, either inorganic or organic can be used. Examples of the inorganic compounds include red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, ammonium phosphates such as ammonium polyphosphate, and inorganic nitrogen-containing phosphorus compounds such as phosphate amide. .

また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。   The red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like. Examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, water A method of coating with an inorganic compound such as titanium oxide, bismuth oxide, bismuth hydroxide, bismuth nitrate or a mixture thereof; (ii) an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide; and A method of coating with a mixture of a thermosetting resin such as a phenol resin, (iii) thermosetting of a phenol resin or the like on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide For example, a method of double coating with a resin may be used.

前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサー10−ホスファフェナントレン=10−オキシド、10−(2,5−ジヒドロオキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10−(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。   Examples of the organic phosphorus compound include, for example, general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, organic nitrogen-containing phosphorus compounds, and 9,10- Dihydro-9-oxa 10-phosphaphenanthrene = 10-oxide, 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide, 10- (2,7- Examples thereof include cyclic organophosphorus compounds such as dihydrooxynaphthyl) -10H-9-oxa-10-phosphaphenanthrene = 10-oxide, and derivatives obtained by reacting them with compounds such as epoxy resins and phenol resins.

それらの配合量としては、リン系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。   The blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. For example, epoxy resin, curing agent, non-halogen In 100 parts by mass of the epoxy resin composition containing all of the flame retardant and other fillers and additives, when using red phosphorus as a non-halogen flame retardant, in the range of 0.1 to 2.0 parts by mass It is preferable to mix, and when using an organophosphorus compound, it is also preferable to mix in the range of 0.1 to 10.0 parts by mass, particularly in the range of 0.5 to 6.0 parts by mass. Is preferred.

また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。   In addition, when using the phosphorous flame retardant, the phosphorous flame retardant may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.

前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。   Examples of the nitrogen-based flame retardant include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazines, and the like, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.

前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。   Examples of the triazine compound include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, (i) guanylmelamine sulfate, melem sulfate, sulfate (Iii) co-condensates of phenols such as phenol, cresol, xylenol, butylphenol and nonylphenol with melamines such as melamine, benzoguanamine, acetoguanamine and formguanamine and formaldehyde, (iii) (Ii) a mixture of a co-condensate of (ii) and a phenolic resin such as a phenol formaldehyde condensate, (iv) those obtained by further modifying (ii) and (iii) with paulownia oil, isomerized linseed oil, etc. It is.

前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。   Specific examples of the cyanuric acid compound include cyanuric acid and cyanuric acid melamine.

前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。   The amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to mix in the range of 0.05 to 10 parts by mass, especially in the range of 0.05 to 10 parts by mass, in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives. It is preferable to mix in the range of 5 parts by mass.

また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。   Moreover, when using the said nitrogen-type flame retardant, you may use together a metal hydroxide, a molybdenum compound, etc.

前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。   The silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.

前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。   The amount of the silicone flame retardant is appropriately selected according to the type of the silicone flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to mix in the range of 0.05 to 20 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives. Moreover, when using the said silicone type flame retardant, you may use a molybdenum compound, an alumina, etc. together.

前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。   Examples of the inorganic flame retardant include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.

前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。   Specific examples of the metal hydroxide include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.

前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。   Specific examples of the metal oxide include, for example, zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, and cobalt oxide. Bismuth oxide, chromium oxide, nickel oxide, copper oxide, tungsten oxide and the like.

前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。   Specific examples of the metal carbonate compound include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.

前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。   Specific examples of the metal powder include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.

前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。   Specific examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.

前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。 Specific examples of the low-melting-point glass include, for example, Ceeley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, P 2 O 5 —B 2 O 3 —PbO—MgO, P—Sn—O—F, PbO—V 2 O 5 —TeO 2 , Al 2 O 3 —H 2 O, lead borosilicate, etc. The glassy compound can be mentioned.

前記無機系難燃剤の配合量としては、無機系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜100質量部の範囲で配合することが好ましく、特に0.5〜15質量部の範囲で配合することが好ましい。   The blending amount of the inorganic flame retardant is appropriately selected according to the type of the inorganic flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. For example, epoxy resin, cured It is preferable to mix in the range of 0.05 to 100 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the agent, non-halogen flame retardant and other fillers and additives, and particularly 0.5 to 100 parts by mass. It is preferable to mix in the range of 15 parts by mass.

前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。   Examples of the organic metal salt flame retardant include ferrocene, acetylacetonate metal complex, organic metal carbonyl compound, organic cobalt salt compound, organic sulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound or an ionic bond or Examples thereof include a coordinated compound.

前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.005〜10質量部の範囲で配合することが好ましい。   The amount of the organometallic salt-based flame retardant is appropriately selected depending on the type of the organometallic salt-based flame retardant, the other components of the epoxy resin composition, and the desired degree of flame retardancy. It is preferable to mix in the range of 0.005 to 10 parts by mass in 100 parts by mass of the epoxy resin composition containing all of the epoxy resin, the curing agent, the non-halogen flame retardant, and other fillers and additives.

本発明のエポキシ樹脂組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、例えば、半導体封止材料用途では、エポキシ樹脂組成物の全体量に対して65質量%以上となる範囲であることが特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。   An inorganic filler can be blended in the epoxy resin composition of the present invention as necessary. Examples of the inorganic filler include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. When particularly increasing the blending amount of the inorganic filler, it is preferable to use fused silica. The fused silica can be used in either a crushed shape or a spherical shape. However, in order to increase the blending amount of the fused silica and suppress an increase in the melt viscosity of the molding material, it is preferable to mainly use a spherical shape. In order to further increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica. The filling rate is preferably higher in consideration of flame retardancy. For example, in the case of semiconductor sealing material use, it is particularly preferably in a range of 65% by mass or more with respect to the total amount of the epoxy resin composition. Moreover, when using for uses, such as an electrically conductive paste, electroconductive fillers, such as silver powder and copper powder, can be used.

本発明のエポキシ樹脂組成物には、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。   Various compounding agents, such as a silane coupling agent, a mold release agent, a pigment, an emulsifier, can be added to the epoxy resin composition of this invention as needed.

本発明のエポキシ樹脂組成物は、上記した各成分を均一に混合することにより得られる。本発明のエポキシ樹脂、硬化剤、更に必要により硬化促進剤の配合された本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。   The epoxy resin composition of the present invention can be obtained by uniformly mixing the above-described components. The epoxy resin composition of the present invention, in which the epoxy resin of the present invention, a curing agent and, if necessary, a curing accelerator are blended, can be easily made into a cured product by a method similar to a conventionally known method. Examples of the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films.

本発明のエポキシ樹脂組成物が用いられる用途としては、半導体封止材料、積層板や電子回路基板等に用いられる樹脂組成物、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、絶縁塗料等のコーティング材料等が挙げられ、これらの中でも、半導体封止材料に好適に用いることができる。   Applications of the epoxy resin composition of the present invention include semiconductor sealing materials, resin compositions used for laminates and electronic circuit boards, resin casting materials, adhesives, interlayer insulation materials for build-up substrates, insulation Examples thereof include coating materials such as paints, and among these, they can be suitably used for semiconductor sealing materials.

本発明のエポキシ樹脂組成物をプリント回路基板用組成物に加工するには、例えばプリプレグ用樹脂組成物とすることができる。該エポキシ樹脂組成物の粘度によっては無溶媒で用いることもできるが、有機溶剤を用いてワニス化することでプリプレグ用樹脂組成物とすることが好ましい。前記有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤を用いることが好ましく、単独でも2種以上の混合溶剤としても使用することができる。得られた該ワニスを、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などの各種補強基材に含浸し、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得ることができる。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。また該エポキシ樹脂組成物を用いて銅張り積層板を製造する場合は、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、銅張り積層板を得ることができる。   In order to process the epoxy resin composition of the present invention into a printed circuit board composition, for example, a resin composition for a prepreg can be used. Although it can be used without a solvent depending on the viscosity of the epoxy resin composition, it is preferable to obtain a resin composition for prepreg by varnishing using an organic solvent. As the organic solvent, it is preferable to use a polar solvent having a boiling point of 160 ° C. or lower such as methyl ethyl ketone, acetone, dimethylformamide, etc., and it can be used alone or as a mixed solvent of two or more kinds. The obtained varnish is impregnated into various reinforcing substrates such as paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth, and the heating temperature according to the solvent type used, preferably 50 By heating at ˜170 ° C., a prepreg that is a cured product can be obtained. The mass ratio of the resin composition and the reinforcing substrate used at this time is not particularly limited, but it is usually preferable that the resin content in the prepreg is 20 to 60% by mass. Moreover, when manufacturing a copper clad laminated board using this epoxy resin composition, the prepreg obtained as mentioned above is laminated | stacked by a conventional method, copper foil is laminated | stacked suitably, and it is under pressure of 1-10 MPa. A copper-clad laminate can be obtained by thermocompression bonding at 170 to 250 ° C. for 10 minutes to 3 hours.

半導体封止材用に調製されたエポキシ樹脂組成物を作製するためには、エポキシ樹脂と硬化剤、充填剤等の配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合して溶融混合型のエポキシ樹脂組成物を得ればよい。その際、充填剤としては、通常シリカが用いられるが、その充填率はエポキシ樹脂組成物100質量部当たり、充填剤を30〜95質量%の範囲が用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上が特に好ましく、それらの効果を格段に上げるためには、80質量部以上が一層その効果を高めることができる。半導体パッケージ成形としては、該組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間に加熱することにより成形物である半導体装置を得る方法がある。   In order to produce an epoxy resin composition prepared for a semiconductor encapsulant, an epoxy resin, a curing agent, a compounding agent such as a filler, and the like, if necessary, an extruder, a kneader, a roll, etc. It is sufficient to obtain a melt-mixed type epoxy resin composition by mixing well until it is uniform. At that time, silica is usually used as the filler, and the filling ratio is preferably in the range of 30 to 95% by mass per 100 parts by mass of the epoxy resin composition. In order to improve moisture resistance and solder crack resistance, and to reduce the linear expansion coefficient, it is particularly preferably 70 parts by mass or more, and in order to significantly increase these effects, 80 parts by mass or more further enhances the effect. be able to. For semiconductor package molding, the composition is molded by casting, using a transfer molding machine, an injection molding machine or the like, and further heated at 50 to 200 ° C. for 2 to 10 hours to form a semiconductor device which is a molded product. There is a way to get it.

本発明のエポキシ樹脂組成物をレジストインキとして使用する場合には、例えば該エポキシ樹脂組成物の硬化剤としてカチオン重合触媒を用い、更に、顔料、タルク、及びフィラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。   When using the epoxy resin composition of the present invention as a resist ink, for example, using a cationic polymerization catalyst as a curing agent of the epoxy resin composition, and further adding a pigment, talc, and filler, Then, after apply | coating on a printed circuit board by a screen printing system, the method of setting it as a resist ink hardened | cured material is mentioned.

本発明のエポキシ樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該エポキシ樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。本発明の硬化性樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては例えば、ゴム、フィラーなどを適宜配合した当該硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。   When the epoxy resin composition of the present invention is used as a conductive paste, for example, a method of dispersing fine conductive particles in the epoxy resin composition to form a composition for an anisotropic conductive film, which is liquid at room temperature Examples of the method include a paste resin composition for circuit connection and an anisotropic conductive adhesive. As a method for obtaining an interlayer insulating material for a build-up substrate from the curable resin composition of the present invention, for example, the curable resin composition appropriately blended with rubber, filler, etc., spray coating method on a wiring board on which a circuit is formed, After applying using a curtain coating method or the like, it is cured. Then, after drilling a predetermined through-hole part etc. as needed, it treats with a roughening agent, forms the unevenness | corrugation by washing the surface with hot water, and metal-treats, such as copper. As the plating method, electroless plating or electrolytic plating treatment is preferable, and examples of the roughening agent include an oxidizing agent, an alkali, and an organic solvent. Such operations are sequentially repeated as desired, and a build-up base can be obtained by alternately building up and forming the resin insulating layer and the conductor layer having a predetermined circuit pattern. However, the through-hole portion is formed after the outermost resin insulating layer is formed. In addition, a resin-coated copper foil obtained by semi-curing the resin composition on the copper foil is thermocompression-bonded at 170 to 250 ° C. on a circuit board on which a circuit is formed, thereby forming a roughened surface and plating treatment. It is also possible to produce a build-up substrate by omitting the process.

本発明の硬化性樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明の硬化性樹脂組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。   The method for producing an adhesive film for buildup from the curable resin composition of the present invention is, for example, a multilayer printed wiring board in which the curable resin composition of the present invention is applied on a support film to form a resin composition layer. And an adhesive film for use.

本発明の硬化性樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。   When the curable resin composition of the present invention is used for a build-up adhesive film, the adhesive film is softened under the temperature condition of the laminate in the vacuum laminating method (usually 70 ° C. to 140 ° C.), and simultaneously with the lamination of the circuit board, It is important to show fluidity (resin flow) that allows resin filling in via holes or through holes present in a circuit board, and it is preferable to blend the above-described components so as to exhibit such characteristics.

ここで、多層プリント配線板のスルホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。   Here, the diameter of the through hole of the multilayer printed wiring board is usually 0.1 to 0.5 mm, and the depth is usually 0.1 to 1.2 mm. It is usually preferable to allow resin filling in this range. When laminating both surfaces of the circuit board, it is desirable to fill about 1/2 of the through hole.

上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明の硬化性樹脂組成物を調製した後、支持フィルムの表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて硬化性樹脂組成物の層(α)を形成させることにより製造することができる。   Specifically, the method for producing the adhesive film described above is, after preparing the varnish-like curable resin composition of the present invention, coating the varnish-like composition on the surface of the support film, further heating, Or it can manufacture by drying an organic solvent by hot air spraying etc. and forming the layer ((alpha)) of a curable resin composition.

形成される層(α)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。   The thickness of the formed layer (α) is usually not less than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 μm, the thickness of the resin composition layer is preferably 10 to 100 μm.

なお、前記層(α)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。   In addition, the said layer ((alpha)) may be protected with the protective film mentioned later. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.

前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。   The above-mentioned support film and protective film are made of polyolefin such as polyethylene, polypropylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester such as polyethylene naphthalate, polycarbonate, polyimide, and further. Examples thereof include metal foil such as pattern paper, copper foil, and aluminum foil. In addition, the support film and the protective film may be subjected to a release treatment in addition to the mud treatment and the corona treatment.

支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。   Although the thickness of a support film is not specifically limited, Usually, it is 10-150 micrometers, Preferably it is used in 25-50 micrometers. Moreover, it is preferable that the thickness of a protective film shall be 1-40 micrometers.

上記した支持フィルムは、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルムを剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。   The above support film is peeled off after being laminated on a circuit board or after forming an insulating layer by heat curing. If the support film is peeled after the adhesive film is heat-cured, adhesion of dust and the like in the curing process can be prevented. In the case of peeling after curing, the support film is usually subjected to a release treatment in advance.

次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(α)が保護フィルムで保護されている場合はこれらを剥離した後、層(α)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。   Next, the method for producing a multilayer printed wiring board using the adhesive film obtained as described above is, for example, when the layer (α) is protected with a protective film, Lamination is performed on one or both sides of the circuit board by, for example, vacuum laminating so that α) is in direct contact with the circuit board. The laminating method may be a batch method or a continuous method using a roll. Further, the adhesive film and the circuit board may be heated (preheated) as necessary before lamination.

ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm2(9.8×10〜107.9×10N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。 Lamination conditions are preferably a pressure bonding temperature (laminating temperature) of 70 to 140 ° C., a pressure bonding pressure of preferably 1 to 11 kgf / cm 2 (9.8 × 10 4 to 107.9 × 10 4 N / m 2), and air pressure. Lamination is preferably performed under a reduced pressure of 20 mmHg (26.7 hPa) or less.

本発明の硬化物を得る方法としては、一般的な硬化性樹脂組成物の硬化方法に準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、上記方法によって得られた組成物を、室温〜250℃程度の温度範囲で加熱すればよい。   The method for obtaining the cured product of the present invention may be based on a general curing method for a curable resin composition, but for example, the heating temperature condition may be appropriately selected depending on the kind of curing agent to be combined and the use. However, what is necessary is just to heat the composition obtained by the said method in the temperature range of about room temperature-250 degreeC.

従って、該フェノール樹脂を用いることによって、フェノール樹脂の溶剤溶解性が飛躍的に向上し、さらに硬化物とした際、耐熱性と低熱膨張率が発現でき、最先端のプリント配線板材料に適用できる。また、該フェノール樹脂は、本発明の製造方法にて容易に効率よく製造する事が出来、目的とする前述の性能のレベルに応じた分子設計が可能となる。   Therefore, the use of the phenolic resin dramatically improves the solvent solubility of the phenolic resin, and when it is cured, it can exhibit heat resistance and a low coefficient of thermal expansion and can be applied to the latest printed wiring board materials. . In addition, the phenol resin can be easily and efficiently produced by the production method of the present invention, and a molecular design corresponding to the target level of performance described above becomes possible.

本発明の硬化物を得る方法としては、一般的なエポキシ樹脂組成物の硬化方法に準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、上記方法によって得られた組成物を、室温〜250℃程度の温度範囲で加熱すればよい。成形方法などもエポキシ樹脂組成物の一般的な方法が用いられ、特に本発明のエポキシ樹脂組成物に特有の条件は不要である。 The method for obtaining the cured product of the present invention may be based on a general method for curing an epoxy resin composition. For example, the heating temperature condition may be appropriately selected depending on the type and use of the curing agent to be combined. What is necessary is just to heat the composition obtained by the said method in the temperature range of about room temperature-250 degreeC. As the molding method and the like, a general method of the epoxy resin composition is used, and a condition specific to the epoxy resin composition of the present invention is not particularly required.

次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り重量基準である。150℃における溶融粘度(ICI粘度)は、ASTM D4287に準拠して実施した。また、GPCは下記の条件にて測定した。
[GPCの測定条件]
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折径)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
Next, the present invention will be specifically described with reference to Examples and Comparative Examples. In the following, “parts” and “%” are based on weight unless otherwise specified. The melt viscosity (ICI viscosity) at 150 ° C. was carried out according to ASTM D4287. GPC was measured under the following conditions.
[GPC measurement conditions]
Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation
Column: Guard column “H XL -L” manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ "TSK-GEL G2000HXL" manufactured by Tosoh Corporation
+ Tosoh Corporation “TSK-GEL G3000HXL”
+ Tosoh Corporation “TSK-GEL G4000HXL”
Detector: RI (Differential refraction diameter)
Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Developing solvent Tetrahydrofuran
Flow rate: 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used in accordance with the measurement manual of “GPC-8020 Model II version 4.10”.
(Polystyrene used)
“A-500” manufactured by Tosoh Corporation
"A-1000" manufactured by Tosoh Corporation
"A-2500" manufactured by Tosoh Corporation
"A-5000" manufactured by Tosoh Corporation
“F-1” manufactured by Tosoh Corporation
"F-2" manufactured by Tosoh Corporation
“F-4” manufactured by Tosoh Corporation
“F-10” manufactured by Tosoh Corporation
“F-20” manufactured by Tosoh Corporation
“F-40” manufactured by Tosoh Corporation
“F-80” manufactured by Tosoh Corporation
“F-128” manufactured by Tosoh Corporation
Sample: A 1.0 mass% tetrahydrofuran solution filtered in terms of resin solids and filtered through a microfilter (50 μl).

合成例1〔エポキシ樹脂(a−1)の合成〕
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、o−クレゾール432.4g(4.00モル)と2−メトキシナフタレン158.2g(1.00モル)と41質量%ホルムアルデヒド水溶液179.3g(2.45モル)を仕込み、シュウ酸9.0gを加えて、100℃まで昇温し100℃で3時間反応させた。ついで、水を分留管で捕集しながら41%ホルムアルデヒド水溶液73.2g(1.00モル)を1時間かけて滴下した。滴下終了後、150℃まで1時間で昇温し、更に150℃で2時間反応させた。反応終了後、更にメチルイソブチルケトン1500gを加え、分液ロートに移し水洗した。次いで洗浄水が中性を示すまで水洗後、有機層から未反応のo−クレゾールと2−メトキシナフタレン、及びメチルイソブチルケトンを加熱減圧下に除去し、フェノール樹脂を得た。得られたフェノール樹脂の水酸基当量は164g/eq.であった。
更に、温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、得られたフェノール樹脂(A−1)を164g(水酸基1当量)、エピクロルヒドリン463g(5.0モル)、n−ブタノール139g、テトラエチルベンジルアンモニウムクロライド2gを仕込み溶解させた。65℃に昇温した後、共沸する圧力まで減圧して、49%水酸化ナトリウム水溶液90g(1.1モル)を5時間かけて滴下した。その後、同条件で0.5時間撹拌を続けた。この間、共沸によって留出してきた留出分をディーンスタークトラップで分離し、水層を除去し、油層を反応系内に戻しながら、反応を行った。その後、未反応のエピクロルヒドリンを減圧蒸留によって留去させた。それで得られた粗エポキシ樹脂にメチルイソブチルケトン590gとn−ブタノール177gとを加え溶解した。更にこの溶液に10%水酸化ナトリウム水溶液10gを添加して80℃で2時間反応させた後に洗浄液のPHが中性となるまで水150gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して、エポキシ樹脂(a−1)を得た。得られたエポキシ樹脂のエポキシ当量は250g/eq.であった。
Synthesis Example 1 [Synthesis of Epoxy Resin (a-1)]
To a flask equipped with a thermometer, a condenser tube, a fractionating tube, a nitrogen gas inlet tube, and a stirrer, 432.4 g (4.00 mol) of o-cresol and 158.2 g (1.00 mol) of 2-methoxynaphthalene 179.3 g (2.45 mol) of a 41 mass% formaldehyde aqueous solution was added, 9.0 g of oxalic acid was added, the temperature was raised to 100 ° C., and the reaction was carried out at 100 ° C. for 3 hours. Subsequently, 73.2 g (1.00 mol) of a 41% aqueous formaldehyde solution was added dropwise over 1 hour while collecting water with a fractionating tube. After completion of the dropwise addition, the temperature was raised to 150 ° C. over 1 hour, and further reacted at 150 ° C. for 2 hours. After completion of the reaction, 1500 g of methyl isobutyl ketone was further added, transferred to a separatory funnel and washed with water. Subsequently, after washing with water until the washing water showed neutrality, unreacted o-cresol, 2-methoxynaphthalene, and methyl isobutyl ketone were removed from the organic layer under heating and reduced pressure to obtain a phenol resin. The obtained phenol resin has a hydroxyl group equivalent of 164 g / eq. Met.
Further, while purging a flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer with nitrogen gas purge, 164 g (1 equivalent of hydroxyl group) of the obtained phenol resin (A-1) and 463 g of epichlorohydrin (5.0 mol) ), 139 g of n-butanol and 2 g of tetraethylbenzylammonium chloride were charged and dissolved. After raising the temperature to 65 ° C., the pressure was reduced to an azeotropic pressure, and 90 g (1.1 mol) of a 49% aqueous sodium hydroxide solution was added dropwise over 5 hours. Thereafter, stirring was continued for 0.5 hours under the same conditions. During this time, the distillate distilled by azeotropic distillation was separated with a Dean-Stark trap, the water layer was removed, and the reaction was carried out while returning the oil layer to the reaction system. Thereafter, unreacted epichlorohydrin was distilled off under reduced pressure. 590 g of methyl isobutyl ketone and 177 g of n-butanol were added to the crude epoxy resin thus obtained and dissolved. Further, 10 g of a 10% aqueous sodium hydroxide solution was added to this solution and reacted at 80 ° C. for 2 hours, and then washing with water 150 g was repeated three times until the pH of the washing solution became neutral. Next, the system was dehydrated by azeotropic distillation, and after microfiltration, the solvent was distilled off under reduced pressure to obtain an epoxy resin (a-1). The epoxy equivalent of the obtained epoxy resin is 250 g / eq. Met.

合成例2〔エポキシ樹脂(a−2)の合成〕
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、o−クレゾール432.4g(4.00モル)と2−メトキシナフタレン158.2g(1.00モル)と41%ホルムアルデヒド水溶液292.7g(4.00モル)を仕込み、シュウ酸9.0gを加えて、100℃まで昇温し100℃で3時間反応させた。ついで、水を分留管で捕集しながら41質量%ホルムアルデヒド水溶液73.2g(1.00モル)を1時間かけて滴下した。滴下終了後、150℃まで1時間で昇温し、更に150℃で2時間反応させた。反応終了後、更にメチルイソブチルケトン1500gを加え、分液ロートに移し水洗した。次いで洗浄水が中性を示すまで水洗後、有機層から未反応のo−クレゾールと2−メトキシナフタレン、及びメチルイソブチルケトンを加熱減圧下に除去し、フェノール樹脂を得た。得られたフェノール樹脂の水酸基当量は170g/eq.であった。
更に、温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、得られたフェノール樹脂170g(水酸基1当量)を用いた以外は合成例1と同様にしてエポキシ樹脂(a−2)を得た。得られたエポキシ樹脂のエポキシ当量は274g/eq.であった。
Synthesis Example 2 [Synthesis of Epoxy Resin (a-2)]
To a flask equipped with a thermometer, a condenser tube, a fractionating tube, a nitrogen gas inlet tube, and a stirrer, 432.4 g (4.00 mol) of o-cresol and 158.2 g (1.00 mol) of 2-methoxynaphthalene 292.7 g (4.00 mol) of a 41% formaldehyde aqueous solution was added, 9.0 g of oxalic acid was added, the temperature was raised to 100 ° C., and the mixture was reacted at 100 ° C. for 3 hours. Subsequently, 73.2 g (1.00 mol) of a 41 mass% formaldehyde aqueous solution was dropped over 1 hour while collecting water with a fractionating tube. After completion of the dropwise addition, the temperature was raised to 150 ° C. over 1 hour, and further reacted at 150 ° C. for 2 hours. After completion of the reaction, 1500 g of methyl isobutyl ketone was further added, transferred to a separatory funnel and washed with water. Subsequently, after washing with water until the washing water showed neutrality, unreacted o-cresol, 2-methoxynaphthalene, and methyl isobutyl ketone were removed from the organic layer under heating and reduced pressure to obtain a phenol resin. The obtained phenol resin has a hydroxyl group equivalent of 170 g / eq. Met.
Further, an epoxy resin was prepared in the same manner as in Synthesis Example 1 except that 170 g (1 equivalent of hydroxyl group) of the obtained phenol resin was used while purging nitrogen gas to a flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer. (A-2) was obtained. The epoxy equivalent of the obtained epoxy resin is 274 g / eq. Met.

合成例3 〔エポキシ樹脂(a−3)の合成〕
温度計、冷却管、分留管、撹拌器を取り付けたフラスコに、フェノール141.2g(1.5と2−メトキシナフタレン79.1g(0.50モル)と92質量%パラホルムアルデヒド32.6g(ホルムアルデヒド単位1.00モル)を仕込み、シュウ酸5.0gを加えて、100℃まで1時間で昇温した。昇温後100℃で2時間反応させた。反応終了後、更にメチルイソブチルケトン700gを加え、分液ロートに移し水洗した。次いで洗浄水が中性を示すまで水洗後、有機層から未反応のフェノールと2−メトキシナフタレン、及びメチルイソブチルケトンを加熱減圧下に除去し、フェノール樹脂を得た。これの水酸基当量は200g/eq.であった。
更に温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、得られたフェノール樹脂200g(水酸基1当量)に変更した以外は合成例1と同様にしてエポキシ樹脂(a−3)を得た。得られたエポキシ樹脂のエポキシ当量は290g/eq.であった。
Synthesis Example 3 [Synthesis of Epoxy Resin (a-3)]
In a flask equipped with a thermometer, condenser, fractionator, and stirrer, 141.2 g of phenol (1.5 and 79.1 g (0.50 mol) of 2-methoxynaphthalene and 32.6 g of 92% by mass paraformaldehyde ( Formaldehyde unit (1.00 mol) was added, 5.0 g of oxalic acid was added, and the temperature was raised to 100 ° C. over 1 hour, followed by reaction for 2 hours at 100 ° C. After the reaction, 700 g of methyl isobutyl ketone was further added. After washing with water until the washing water shows neutrality, unreacted phenol, 2-methoxynaphthalene, and methyl isobutyl ketone are removed from the organic layer under heating and reduced pressure. The hydroxyl equivalent was 200 g / eq.
In addition, an epoxy resin (synthetic example 1) was used except that a flask equipped with a thermometer, a dropping funnel, a condenser tube, and a stirrer was replaced with 200 g of the obtained phenol resin (1 equivalent of hydroxyl group) while purging with nitrogen gas. a-3) was obtained. The epoxy equivalent of the obtained epoxy resin is 290 g / eq. Met.

実施例1(エポキシ樹脂(A−1)の製造方法)
合成例1で得られたエポキシ樹脂(a−1)179.5g、合成例2で得られたエポキシ樹脂(a−2)76.9g、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド30.2gを仕込んだ。仕込み後、90℃に昇温し、トリフェニルホスフィン0.020部添加して150℃にて7時間反応させて、リン原子含有量1.5重量%でエポキシ当量が334g/eq、軟化点84℃、溶融粘度(ICI粘度、150℃)5.4dPa・sである目的樹脂を得た。以下、これをエポキシ樹脂(A−1)と略記する。得られたエポキシ樹樹脂のGPCチャートを図1に示す。
Example 1 (Production Method of Epoxy Resin (A-1))
179.5 g of epoxy resin (a-1) obtained in Synthesis Example 1, 76.9 g of epoxy resin (a-2) obtained in Synthesis Example 2, 9,10-dihydro-9-oxa-10-phospha 30.2 g of phenanthrene-10-oxide was charged. After the preparation, the temperature was raised to 90 ° C., 0.020 part of triphenylphosphine was added, and the mixture was reacted at 150 ° C. for 7 hours. A target resin having a melt viscosity (ICI viscosity, 150 ° C.) of 5.4 dPa · s was obtained. Hereinafter, this is abbreviated as an epoxy resin (A-1). A GPC chart of the obtained epoxy resin is shown in FIG.

実施例2(エポキシ樹脂(A−2)の製造方法)
実施例1において、用いるエポキシ樹脂を、合成例1で得られたエポキシ樹脂(a−1)を250g、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド65gを仕込んだ以外は同様にして、リン原子含有量3.0重量%でエポキシ当量が452g/eqである目的樹脂を得た。以下、これをエポキシ樹脂(A−2)と略記する。
Example 2 (Method for producing epoxy resin (A-2))
In Example 1, 250 g of the epoxy resin (a-1) obtained in Synthesis Example 1 and 65 g of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide were charged as the epoxy resin used. In the same manner, a target resin having a phosphorus atom content of 3.0% by weight and an epoxy equivalent of 452 g / eq was obtained. Hereinafter, this is abbreviated as an epoxy resin (A-2).

実施例3(エポキシ樹脂(A−3)の製造方法)
実施例1において、用いるエポキシ樹脂を、合成例1で得られたエポキシ樹脂(a−1)を250g、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド14gを仕込んだ以外は同様にして、リン原子含有量0.7重量%でエポキシ当量が282g/eqである目的樹脂を得た。以下、これをエポキシ樹脂(A−3)と略記する。
Example 3 (Method for producing epoxy resin (A-3))
In Example 1, 250 g of the epoxy resin (a-1) obtained in Synthesis Example 1 and 14 g of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide were charged as the epoxy resin used. In the same manner, a target resin having a phosphorus atom content of 0.7% by weight and an epoxy equivalent of 282 g / eq was obtained. Hereinafter, this is abbreviated as an epoxy resin (A-3).

実施例4(エポキシ樹脂(A−4)の製造方法)
実施例1において、用いるエポキシ樹脂を、合成例3で得られたエポキシ樹脂(a−3)290gと9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド40gを仕込んだ以外は同様にして、リン原子含有量1.7重量%でエポキシ当量が405g/eqである目的樹脂を得た。以下、これをエポキシ樹脂(A−4)と略記する。
Example 4 (Method for producing epoxy resin (A-4))
In Example 1, 290 g of the epoxy resin (a-3) obtained in Synthesis Example 3 and 40 g of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide were used as the epoxy resin to be used. Similarly, a target resin having a phosphorus atom content of 1.7% by weight and an epoxy equivalent of 405 g / eq was obtained. Hereinafter, this is abbreviated as an epoxy resin (A-4).

比較合成例1
攪拌装置、温度計、冷却管、窒素ガス導入装置を備えた4つ口のガラス製セパラブルフラスコに、エポキシ当量204g/eqのオルソクレゾールノボラック型エポキシ樹脂 843g、ビスフェノールA 16.0gを仕込み、窒素ガスを導入しながら攪拌を行い、加熱を行って溶解した。触媒としてトリフェニルホスフィン0.02gを添加して150℃で3時間反応した後、前記HCA 141.0gを添加して更に反応を行った。リン含有量2.0重量%でエポキシ当量が299g/eqである目的樹脂を得た。以下、これをエポキシ樹脂(A−5)と略記する。
Comparative Synthesis Example 1
A four-necked glass separable flask equipped with a stirrer, thermometer, condenser, and nitrogen gas introducing device was charged with 843 g of orthocresol novolac epoxy resin having an epoxy equivalent of 204 g / eq and 16.0 g of bisphenol A, and nitrogen. The mixture was stirred while introducing gas, and heated to dissolve. After adding 0.02 g of triphenylphosphine as a catalyst and reacting at 150 ° C. for 3 hours, 141.0 g of the above-mentioned HCA was added for further reaction. A target resin having a phosphorus content of 2.0% by weight and an epoxy equivalent of 299 g / eq was obtained. Hereinafter, this is abbreviated as an epoxy resin (A-5).

実施例5〜10と比較例1
第1表に示した配合で、エポキシ樹脂組成物(ワニス)を調整し、下記の如き条件で硬化させて両面銅張り積層板を作製し、各種の試験を行った。尚、表中、「TD−2090」はフェノールノボラック樹脂(DIC株式会社製「PHENOLITE 2090−60M」水酸基当量104g/eq.)、「LA−7054」はアミノトリアジンノボラック樹脂(DIC株式会社製「PHENOLITE 7054」、水酸基当量 125g/eq.)を示し、それぞれの表に記載された値は固形分の質量を表す。
表中の水酸化アルミニウムとしては、住友化学製、商品名:CL−303を用いた。
Examples 5 to 10 and Comparative Example 1
With the formulation shown in Table 1, an epoxy resin composition (varnish) was prepared and cured under the following conditions to produce a double-sided copper-clad laminate, and various tests were performed. In the table, “TD-2090” is a phenol novolac resin (“PHENOLITE 2090-60M” hydroxyl equivalent 104 g / eq. Manufactured by DIC Corporation), and “LA-7054” is an aminotriazine novolak resin (“PHENOLITE manufactured by DIC Corporation”). 7054 ", a hydroxyl equivalent weight of 125 g / eq.), And the values described in each table represent the mass of the solid content.
As aluminum hydroxide in the table, Sumitomo Chemical product name: CL-303 was used.

[ワニスの調整]
ワニスは、予めエポキシ樹脂をメチルエチルケトンに溶解し、次いで予めメチルエチルケトンに溶解させておいた硬化剤(ジシアンジアミドの場合はN,N’−ジメチルホルムアミドに溶解)と硬化促進剤(2−エチル−4−メチルイミダゾール)を加え、溶解(又は分散)させ、最終的に組成物の不揮発分が58質量%なる混合溶液を調整した。硬化促進剤量はプリプレグのゲルタイムが170℃で120秒になる割合にした。
[積層板作製条件]
基材:100μm;日東紡績株式会社製ガラスクロス「#2116」
プライ数:6
プリプレグ化条件:160℃/2分
銅箔::18μm;日鉱金属株式会社製 JTC箔
硬化条件:200℃、40kg/cmで1.5時間
成型後板厚:0.8mm
[Adjustment of varnish]
The varnish is prepared by dissolving an epoxy resin in methyl ethyl ketone, and then a curing agent (dissolved in N, N′-dimethylformamide in the case of dicyandiamide) and a curing accelerator (2-ethyl-4-methyl). Imidazole) was added and dissolved (or dispersed) to finally prepare a mixed solution in which the nonvolatile content of the composition was 58% by mass. The amount of curing accelerator was such that the gel time of the prepreg was 120 seconds at 170 ° C.
[Laminate production conditions]
Base material: 100 μm; glass cloth “# 2116” manufactured by Nitto Boseki Co., Ltd.
Number of plies: 6
Pre-pregation conditions: 160 ° C / 2 weight copper foil: 18 µm; Nikko Metal Co., Ltd. JTC foil curing conditions: 200 ° C, 40 kg / cm 2 after 1.5 hours molding Plate thickness: 0.8 mm

[物性試験条件]
得られた各々の積層板について、耐湿耐半田性、半田フロート、オーブン耐熱性、ピール強度、誘電率、誘電正接、難燃性の各物性を試験した。
耐湿耐半田性:
PCT(プレッシャークッカー試験)にて121℃/湿度100%で処理した後、
260℃のハンダ浴に30秒浸漬させてその状態を観察した。
判定基準:○変化なし、△ミーズリングあり、×ふくれ発生
半田フロート
288℃に加熱した半田浴に積層板を放置し、表面に膨れが発生するまでの時間を調べた。(最長60分まで評価)
オーブン耐熱性:
288℃の乾燥機に2時間放置し、積層板表面の膨れの有無を確認した。
ピール強度:
JIS−K6481に準拠。
誘電率、誘電正接:
JIS−C−6481に準拠した方法により、アジレント・テクノロジー株式会社製インピーダンス・マテリアル・アナライザ「HP4291B」により、絶乾後、23℃、湿度50%の室内に24時間保管した後の硬化物の周波数100MHzにおける誘電率と誘電正接を測定した。
燃焼試験: UL−94垂直試験に準拠。
ガラス転移温度:エッチング処理を施し銅箔除去した後、DMA法にて測定(昇温スピード3℃/min)
[Physical property test conditions]
Each of the obtained laminates was tested for physical properties such as moisture and solder resistance, solder float, oven heat resistance, peel strength, dielectric constant, dielectric loss tangent, and flame retardancy.
Moisture and solder resistance:
After processing at 121 ° C / 100% humidity with PCT (pressure cooker test),
It was immersed in a solder bath at 260 ° C. for 30 seconds and the state was observed.
Criteria: ○ No change, ΔMeasling, x blister generation solder float The laminate was left in a solder bath heated to 288 ° C., and the time until swelling occurred on the surface was examined. (Evaluation up to 60 minutes)
Oven heat resistance:
The plate was left in a dryer at 288 ° C. for 2 hours, and the presence or absence of swelling on the surface of the laminate was confirmed.
Peel strength:
Conforms to JIS-K6481.
Dielectric constant, dielectric loss tangent:
The frequency of the cured product after being stored in a room at 23 ° C. and 50% humidity for 24 hours after being completely dried by an impedance material analyzer “HP4291B” manufactured by Agilent Technologies, using a method according to JIS-C-6481. The dielectric constant and dielectric loss tangent at 100 MHz were measured.
Combustion test: Conforms to UL-94 vertical test.
Glass transition temperature: measured by DMA method after removing copper foil by etching (temperature rising speed 3 ° C / min)

Figure 0005339146
Figure 0005339146

Claims (12)

エポキシ樹脂(A)と硬化剤(B)を必須成分とするエポキシ樹脂組成物であって、
前記エポキシ樹脂(A)が、
グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、
前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)を介して結合した構造を分子構造内に有するエポキシ樹脂(a1)と、
活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させて得られる分子構造を有するエポキシ樹脂であることを特徴とするエポキシ樹脂組成物。
An epoxy resin composition comprising an epoxy resin (A) and a curing agent (B) as essential components,
The epoxy resin (A) is
Glycidyloxy group-containing aromatic hydrocarbon group (E),
An alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X), and
Each structural site of a divalent hydrocarbon group (Y) selected from a methylene group, an alkylidene group, and an aromatic hydrocarbon structure-containing methylene group, and
The glycidyloxy group-containing aromatic hydrocarbon group (E) and the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X) are selected from the methylene group, the alkylidene group, and the aromatic hydrocarbon structure-containing methylene group. An epoxy resin (a1) having a structure bonded through a divalent hydrocarbon group (Y) in the molecular structure;
An epoxy resin composition comprising an epoxy resin having a molecular structure obtained by reacting an active hydrogen atom-containing aromatic phosphine compound (a2).
前記活性水素原子含有芳香族系ホスフィン化合物(a2)が、下記構造式a2−1
Figure 0005339146
(式中、R1、R2はそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基を表す。)又は、下記構造式a2−2
Figure 0005339146

(式中、R、Rはそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基を表す。)
で表される化合物である請求項1記載のエポキシ樹脂組成物。
The active hydrogen atom-containing aromatic phosphine compound (a2) is represented by the following structural formula a2-1.
Figure 0005339146
(Wherein R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) or the following structural formula a2-2
Figure 0005339146

(In formula, R < 3 >, R < 4 > represents a hydrogen atom or a C1-C6 alkyl group each independently.)
The epoxy resin composition according to claim 1, which is a compound represented by the formula:
エポキシ樹脂(A)に占めるリン原子含有量が0.1〜5.0重量%である請求項1記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the phosphorus atom content in the epoxy resin (A) is 0.1 to 5.0% by weight. エポキシ樹脂(A)のエポキシ当量が250〜700g/eqである請求項1記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein an epoxy equivalent of the epoxy resin (A) is 250 to 700 g / eq. 前記エポキシ樹脂(A)及び硬化剤(B)に加え、更に無機充填剤(C)を含有することを特徴とする請求項1記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, further comprising an inorganic filler (C) in addition to the epoxy resin (A) and the curing agent (B). 硬化剤(B)が、ジシアンジアミド、ノボラック樹脂、窒素原子含有フェノール化合物からなる群から選択されるものである請求項1記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the curing agent (B) is selected from the group consisting of dicyandiamide, a novolac resin, and a nitrogen atom-containing phenol compound. 請求項1〜6の何れか1つに記載のエポキシ樹脂組成物を硬化させてなる硬化物。 Hardened | cured material formed by hardening | curing the epoxy resin composition as described in any one of Claims 1-6. 請求項1〜6の何れか1つに記載のエポキシ樹脂組成物を用いることを特徴とする回路基板。 A circuit board using the epoxy resin composition according to any one of claims 1 to 6. 請求項1〜6の何れか1つにエポキシ樹脂組成物を用いることを特徴とするビルドアップ材料 An epoxy resin composition is used in any one of claims 1 to 6, and a build-up material 請求項1〜6の何れか1つに記載のエポキシ樹脂組成を用いることを特徴とする半導体封止材料。 A semiconductor sealing material using the epoxy resin composition according to any one of claims 1 to 6. グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(X)、並びに、
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)の各構造部位を有しており、かつ、
前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(X)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(Y)を介して結合した構造を分子構造内に有するエポキシ樹脂(a1)と
活性水素原子含有芳香族系ホスフィン化合物(a2)とを反応させて得られる分子構造を有することを特徴とするエポキシ樹脂。
Glycidyloxy group-containing aromatic hydrocarbon group (E),
An alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X), and
Each structural site of a divalent hydrocarbon group (Y) selected from a methylene group, an alkylidene group, and an aromatic hydrocarbon structure-containing methylene group, and
The glycidyloxy group-containing aromatic hydrocarbon group (E) and the alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (X) are selected from the methylene group, the alkylidene group, and the aromatic hydrocarbon structure-containing methylene group. Structure obtained by reacting an epoxy resin (a1) having a structure bonded through a divalent hydrocarbon group (Y) in the molecular structure with an active hydrogen atom-containing aromatic phosphine compound (a2) The epoxy resin characterized by having.
前記から活性水素原子含有芳香族系ホスフィン化合物(a2)が、下記構造式a2−1
Figure 0005339146
(式中、R1、R2はそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基を表す。)又は、下記構造式a2−2
Figure 0005339146

(式中、R、Rはそれぞれ独立に水素原子又は炭素原子数1〜6のアルキル基を表す。)
で表される化合物である請求項11記載のエポキシ樹脂。
From the above, the active hydrogen atom-containing aromatic phosphine compound (a2) is represented by the following structural formula a2-1.
Figure 0005339146
(Wherein R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) or the following structural formula a2-2
Figure 0005339146

(In formula, R < 3 >, R < 4 > represents a hydrogen atom or a C1-C6 alkyl group each independently.)
The epoxy resin of Claim 11 which is a compound represented by these.
JP2009164594A 2009-07-13 2009-07-13 Epoxy resin composition, cured product thereof, circuit board, build-up material, and semiconductor sealing material Active JP5339146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164594A JP5339146B2 (en) 2009-07-13 2009-07-13 Epoxy resin composition, cured product thereof, circuit board, build-up material, and semiconductor sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164594A JP5339146B2 (en) 2009-07-13 2009-07-13 Epoxy resin composition, cured product thereof, circuit board, build-up material, and semiconductor sealing material

Publications (2)

Publication Number Publication Date
JP2011021050A JP2011021050A (en) 2011-02-03
JP5339146B2 true JP5339146B2 (en) 2013-11-13

Family

ID=43631402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164594A Active JP5339146B2 (en) 2009-07-13 2009-07-13 Epoxy resin composition, cured product thereof, circuit board, build-up material, and semiconductor sealing material

Country Status (1)

Country Link
JP (1) JP5339146B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087824B2 (en) * 2011-09-27 2017-03-01 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same
JP2017141314A (en) * 2016-02-08 2017-08-17 三菱瓦斯化学株式会社 Prepreg
KR20180063731A (en) * 2016-12-02 2018-06-12 삼성전기주식회사 Thermo-curable resin composition for controlling board warpage and cured product thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613724B2 (en) * 1997-09-09 2005-01-26 東都化成株式会社 Phosphorus-containing epoxy resin composition
JP3611435B2 (en) * 1997-10-22 2005-01-19 住友ベークライト株式会社 Flame retardant resin composition, prepreg and laminate using the same
JP4605855B2 (en) * 2000-04-28 2011-01-05 株式会社Adeka Epoxy resin composition
JP2005179598A (en) * 2003-12-22 2005-07-07 Chin Yee Chemical Industries Co Ltd Flame-retardant epoxy resin and flame-retardant epoxy resin composition
JP4941804B2 (en) * 2005-03-02 2012-05-30 Dic株式会社 Epoxy resin composition, cured product thereof, semiconductor sealing material, novel phenol resin, and novel epoxy resin
JP4822053B2 (en) * 2006-03-01 2011-11-24 日立化成工業株式会社 Epoxy resin composition for sealing and electronic component device
JP5024604B2 (en) * 2007-03-20 2012-09-12 Dic株式会社 Epoxy resin composition, cured product thereof, novel epoxy resin and production method thereof
JP5012290B2 (en) * 2007-07-31 2012-08-29 Dic株式会社 Epoxy resin composition, cured product thereof, varnish for printed circuit board, novel epoxy resin and production method thereof
JP2009263550A (en) * 2008-04-28 2009-11-12 Sumitomo Bakelite Co Ltd Resin composition, prepreg, and laminate
JPWO2009145224A1 (en) * 2008-05-27 2011-10-13 パナソニック電工株式会社 Epoxy resin composition for printed wiring board, solder resist composition, resin film, resin sheet, prepreg, metal foil with resin, coverlay, flexible printed wiring board

Also Published As

Publication number Publication date
JP2011021050A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP4591801B2 (en) Curable resin composition, cured product thereof, printed wiring board, epoxy resin, and production method thereof
JP4953039B2 (en) Phosphorus atom-containing oligomer, production method thereof, curable resin composition, cured product thereof, and printed wiring board
JP5071602B2 (en) Epoxy compound, curable composition, and cured product thereof
JP5463859B2 (en) Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, prepreg, and circuit board
JP5146793B2 (en) Phosphorus atom-containing oligomer composition, curable resin composition, cured product thereof, and printed wiring board
JP2013035921A (en) New phosphorus atom-containing epoxy resin, method for producing the same, curable resin composition, cured product of the same, resin composition for printed wiring board, printed wiring board, and resin composition for semiconductor sealing material
JP5640588B2 (en) Method for producing phosphorus atom-containing epoxy resin, curable resin composition, cured product thereof, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, semiconductor sealing material resin composition, and build Resin composition for interlayer insulation material for up-substrate
JP5689230B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, semiconductor device, and epoxy resin
JP5614519B1 (en) Modified phenolic resin, method for producing modified phenolic resin, modified epoxy resin, method for producing modified epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP5954571B2 (en) Curable composition, cured product, and printed wiring board
JP5339146B2 (en) Epoxy resin composition, cured product thereof, circuit board, build-up material, and semiconductor sealing material
JP5515878B2 (en) Curable resin composition, cured product thereof, and printed wiring board
JP5516008B2 (en) Novel epoxy resin, curable resin composition, cured product thereof, and printed wiring board
JP5732774B2 (en) Epoxy resin composition, curable resin composition, cured product thereof, and printed wiring board
WO2014050419A1 (en) Epoxy resin, curable resin composition, cured product thereof, and printed circuit board
JP5532307B2 (en) Method for producing phosphorus atom-containing polyfunctional phenol, phosphorus atom-containing polyfunctional phenol, curable resin composition, cured product thereof, printed wiring board resin composition, printed wiring board, flexible wiring board resin composition, semiconductor encapsulation A resin composition for a material and a resin composition for an interlayer insulating material for a build-up substrate.
JP2014058632A (en) Epoxy resin, curable resin composition, cured product thereof, and printed circuit board
JP2014005338A (en) Curable composition, cured product, and printed wiring board
JP5987261B2 (en) Curable resin composition, cured product, and printed wiring board
JP5590405B2 (en) Novel phosphorus atom-containing epoxy resin, production method thereof, curable resin composition, cured product thereof, resin composition for printed wiring board, printed wiring board, resin composition for flexible wiring board, resin composition for semiconductor sealing material, And resin composition for interlayer insulation material for build-up substrate
JP2013023560A (en) Epoxy resin composition, cured product thereof, and printed wiring board
JP5035604B2 (en) Epoxy resin composition, cured product thereof, and novel epoxy resin
JP5987262B2 (en) Curable resin composition, cured product, and printed wiring board
JP2014024978A (en) Curable composition, cured product and printed wiring board
JP2014062187A (en) Epoxy resin, curable resin composition, cured product thereof and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5339146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250