JP2011022262A - 画像投射装置 - Google Patents

画像投射装置 Download PDF

Info

Publication number
JP2011022262A
JP2011022262A JP2009165689A JP2009165689A JP2011022262A JP 2011022262 A JP2011022262 A JP 2011022262A JP 2009165689 A JP2009165689 A JP 2009165689A JP 2009165689 A JP2009165689 A JP 2009165689A JP 2011022262 A JP2011022262 A JP 2011022262A
Authority
JP
Japan
Prior art keywords
light
lens
emitted
valve
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009165689A
Other languages
English (en)
Other versions
JP5446530B2 (ja
Inventor
Koji Nakagawa
孝司 中川
Hisashi Oka
尚志 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2009165689A priority Critical patent/JP5446530B2/ja
Publication of JP2011022262A publication Critical patent/JP2011022262A/ja
Application granted granted Critical
Publication of JP5446530B2 publication Critical patent/JP5446530B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】小型の光学系であって、光源から射出する光がライトバルブを均一に照明すると共に、光の利用効率が高い画像投射装置を提供する
【解決手段】反射型ライトバルブ5は、投射レンズ8の中心軸9Aに対して下方にオフセットされて配置される。コリメートレンズ3B,3G,3R、ワイヤグリッド偏光板6及びフィールドレンズ7は、中心軸9Aに配置される。光源2は、中心軸9Aに対して上方にオフセットされて配置される。
【選択図】図1

Description

本発明は、画像投射装置に関するものである。
近年、プロジェクタの名で知られる画像投射装置の市場において、小型、低価格で手軽に画像投射装置の需要も高まりつつある。
この小型の画像投射装置としては、軽量で使い勝手が良く、高輝度なものが望まれる。このような需要に応じるべく、特許文献1には、透過型ライトバルブを用い投射レンズに光を斜めに通過させ、装置を小型化する技術が開示されている。
特開2006−113469号公報
画像投射装置には、画像を生成する透過型ライトバルブに光を透過させる際に光変調するもの(透過型画像投射装置)と、反射型ライトバルブに光を反射させる際に光変調するもの(反射型画像投射装置)とがある。
透過型画像投射装置を小型化する構成の一例が特許文献1に記載されている。特許文献1には、概ね次のような構成が記載されている。投射レンズに対して下方にオフセットして透過型ライトバルブを配置し、透過型ライトバルブから射出した光がフィールドレンズを透過することにより投射レンズを斜めに透過するよう構成(以下、斜め投射光学系と称す)することにより、透過型画像投射装置とスクリーンとの距離を従来の構成より短くすることができる。
ここで、特許文献1の構成を反射型画像投射装置に応用した場合、投射レンズに対して下方にオフセットして配置された反射型ライトバルブにおいて入射した光を光変調すると共に反射光として射出し、反射型ライトバルブから射出された反射光はフィールドレンズを透過することにより投射レンズを斜めに透過して、上方に配置されたスクリーンに画像として投射される。一方、一般的な反射型画像投射装置の場合、光源から射出した照明光の光路は、反射型ライトバルブと同一平面上にあるが、斜め投射光学系を有する反射型画像投射装置の場合、フィールドレンズの中心軸と反射型ライトバルブとがオフセットして配置される。そのため、特許文献1の構成の斜め投射光学系を有する反射型画像投射装置の場合、光源と反射型ライトバルブとの間の距離(光路長)が反射型ライトバルブの画素領域の位置によって異なる。結果として、反射型ライトバルブの画素領域に入射する照明光は、画素領域の位置によって照明光の光量が異なり、輝度むらが発生する。それにより、スクリーンに投射される反射光の明るさにも輝度ムラが大きくなるという課題がある。
そこで本発明は、光学系を小型化すると共に、光源から出る光がライトバルブを均一に照明するようにし、光の利用効率を高くすることができる画像投射装置を提供することを目的とする。
そこで、本発明は、上記した課題を解決するために、下記の(1)〜(4)の構成を有する画像投射装置を提供する。
(1)光源2と、所定の曲率を有し光源2から射出した光を屈折する第1のレンズと、入射する光のうち、第1の直線偏光を透過し、第1の直線偏光と直交する第2の直線偏光を反射する偏光照明手段6と、所定の曲率を有し偏光照明手段6から射出した前記第1の直線偏光を屈折する第2のレンズ7と、第2のレンズ7を射出した第1の直線偏光を外部からの映像信号に基づいて光変調し、反射光として射出する反射型ライトバルブ5と、入射した光を拡大投影する投射レンズ8と、を備え、第1のレンズ,偏光照明手段6,第2のレンズ7,及び投射レンズ8の中心軸は同一平面上にあり、反射型ライトバルブ5の画素領域の中心及び光源2から射出する光の光路は平面上にないよう配置されていることを特徴とする画像投射装置。
(2)反射型ライトバルブ5の画素領域の中心と光源2から射出する光の光路とは、平面を挟んだ異なる位置に配置されていることを特徴とする(1)記載の画像投射装置。
(3)光源2から射出する光の光路は、平面と平行であることを特徴とする(1)または(2)記載の画像投射装置。
(4)光源2は、複数の発光ダイオード21B、21G、21Rを有し、複数の発光ダイオード21B、21G、21Rから射出した光を合成する色合成手段4を備えることを特徴とする(1)乃至(3)のいずれかに記載の画像投射装置。
本発明によれば、光学系を小型化すると共に、光源から出る光をライトバルブに均一に照明し、光の利用効率を高くすることができる。
本発明の第1の実施の形態に係る画像投射装置の平面図である。 図1のAA線の矢印の方向に見た側面図である。 図1のBB線の矢印の方向に見た側面図である。 図3における反射型ライトバルブ5の近傍を拡大して示す図である。 本発明の第2の実施の形態に係る画像投射装置の側面図である。 図5における反射型ライトバルブ5の近傍を拡大して示す図である。
以下、本発明の実施の形態について図面を参照して説明する。
[第1の実施の形態]
本発明の第1の実施の形態に係る画像投射装置について説明する。
本発明の実施の形態の画像投射装置1Aは、光源2と、光源2から射出した光をそれぞれ平行光にして射出する第1のレンズであるコリメートレンズ3R,3G,3Bと、コリメートレンズ3R,3G,3Bを射出したそれぞれの光を合成し、光の強度分布を均一化する色合成手段4と、画素領域に入射した光を外部から供給される駆動信号に基づいて光変調し、反射する反射型液晶表示素子等の光変調手段である反射型ライトバルブ5と、色合成手段4を射出した光を第1の方向の直線偏光にすると共に、反射型ライトバルブ5から反射した光のうち第1の方向の直線偏光と直交する第2の方向の直線偏光を所定の方向に反射する偏光照明手段6と、偏光照明手段6からの直線偏光を反射型ライトバルブ5の画素領域のサイズに合わせるよう照射する第2のレンズであるフィールドレンズ7と、偏光照明手段6から射出した光を図示しないスクリーンに拡大投射する投射手段である投射レンズ8とを含む。
光源2は、赤色(R)光,緑色(G)光,及び青色(B)光をそれぞれ発光する3つの発光ダイオード(LED)21R,21G,21Bと、各色のLED21R,21G,21Bから射出した各色光のそれぞれの光路上に設けられたライトパイプ22R,22G,22Bとを有している。
色合成手段4は、R光用コリメートレンズ3R及びG光用コリメートレンズ3Gから射出したR光とG光とを合成しRG光として射出する第1のダイクロイックミラー32と、第1のダイクロイックミラー32から射出したRG光の光路上に設けられた1対のフレネルレンズ33,34とを有している。
更に、色合成手段4は、B光用コリメートレンズ3Bから射出したB光の光路を90度折り曲げるミラー35と、90度折り曲げられたB光の光路上に設けられた1対のフレネルレンズ36,37と、RG光とB光とを合成し白色光として射出する第2のダイクロイックミラー38とを有している。
偏光照明手段6は、第2のダイクロイックミラー38を射出した白色光の偏光方向を所定の1方向(例えばP偏光)直線偏光にするため、ガラス等の透明基板上に所定幅の金属線を所定間隔で形成したワイヤグリッド偏光板6を用いることができる。
次に、画像投射装置1Aにおける、光源2を射出した光の経路について説明する。
各色のLED21R,21G,21Bを射出した各色光は、ライトパイプ22R,22G,22Bの内部で複数回反射して、光の強度分布が均一化され射出する。
各色光用のライトパイプ22R,22G,22Bを射出した各色光は、コリメータレンズ3R,3G,3Bを透過することにより光束が拡大する。
ここで、R光用LED21Rから射出したR光の光路とG光用LED21Gから射出したG光の光路とは、互いに直交しており、その交点に配置された第1のダイクロイックミラー32によって合成され、RG光として射出される。
第1のダイクロイックミラー32から射出したRG光は、1対のフレネルレンズ33,34に入射し、1対のフレネルレンズ33,34で屈折され、射出する。
一方、B光用コリメータレンズ3Bを射出した光は、B光の光路に対して45度傾斜して設けられたミラー35によって光軸を90度折り曲げられる。
ミラー35によって光軸が90度折り曲げられたB光は、1対のフレネルレンズ36,37に入射し、1対のフレネルレンズ36,37で屈折され、射出する。
フレネルレンズ33,34を射出したRG光及びフレネルレンズ36,37を射出したB光は、光軸が互いに直交しており、その交点に配置された第2のダイクロイックミラー38によって合成され、白色光として射出する。
第2のダイクロイックミラー38から射出した白色光は、白色光の光軸に対して45度傾斜して設けられたワイヤグリッド偏光板6に入射する。ワイヤグリッド偏光板6では、入射した白色光の所定の方向の直線偏光(P偏光またはS偏光、以降の説明はP偏光の場合として行う)のみが透過することができる。ここでは、入射した白色光のうちP偏光のみが射出する。
ワイヤグリッド偏光板6を射出したP偏光は、フィールドレンズ7に入射し、フィールドレンズ7を透過することにより平行光とされP偏光の照明光として反射型ライトバルブ5に入射する。
反射型ライトバルブ5に入射したP偏光の照明光は、外部から供給される駆動信号に基づいて光変調されS偏光を含む反射光として反射される。
S偏光を含む反射光は、再びフィールドレンズ7に入射し透過することにより光束が拡大する。
フィールドレンズ7を射出した反射光は、反射光の光軸に対して45度傾斜して設けられたワイヤグリッド偏光板6に再び入射する。ワイヤグリッド偏光板6に入射した反射光は、ワイヤグリッド偏光板6の偏光特性によりS偏光のみが光軸を90度折り曲げられ投影光として投射レンズ8方向に射出する。
ワイヤグリッド偏光板6を射出した投影光は投射レンズ8に入射し、図示しないスクリーンに対して拡大投影され駆動信号に基づいた画像が表示される。
ここで、LED21R,21G,21Bからからフィールドレンズ7までの光路を照明光学系とも言うことができる。また、反射型ライトバルブ5から射出した反射光の光路であるフィールドレンズ7から投射レンズ8までの光路を投射光学系と言うことができる。
次に、斜め投射光学系について図2を用いて説明する。図2は、図1における投射光学系の部分(図1におけるAA線の矢印の方向)の側面図であり、説明に必要な構成要素のみを示す。
図2に示すように、斜め投射光学系は、フィールドレンズ7、ワイヤグリッド偏光板6及び投射レンズ8の中心軸9Aが一致するよう設けられている。また、投射レンズ8の射出側(図中、右側)には、中心軸9Aと直交するようにスクリーン10(図1では図示せず)が設けられている。
更に、反射型ライトバルブ5は、画素領域における中心位置が中心軸9Aから所定の距離α離れた位置(図中、下側)となるよう、中心軸9Aと直交するよう設けられている。
この構成により、反射型ライトバルブ5から射出した反射光が、フィールドレンズ7で屈折され斜め投射される。すなわち、反射型ライトバルブ5で光変調され反射された反射光は、その光束の光路がフィールドレンズ7の中心からα離れた位置(図中、レンズ中心の下側)に入射し、フィールドレンズ7の曲率の影響を受け中心軸9Aと所定の角度βを有して射出する。所定の角度βでフィールドレンズ7から射出した反射光は、ワイヤグリッド偏光板6に入射する。ワイヤグリッド偏光板6では入射した反射光のうちS偏光成分が反射し、投影光として射出する。ワイヤグリッド偏光板6を射出した投影光は、投射レンズ8に入射する。投射レンズ8に入射した投影光の光路は、投射レンズ8の中で投射レンズ8の中心軸9Aと交差して、投射レンズ8の中心軸9Aから離れた位置(図中、上側)から射出する。結果として、投射レンズ8から射出された投影光は、中心軸9Aとスクリーン10とが交差する位置より図2上で上側を中心とした位置に投影され、スクリーン10上に画像が表示される。
次に、斜め投射光学系において投影画像の輝度分布を抑えるための照明系について図3を用いて説明する。図3は、図1における照明光学系の部分(図1におけるBB線の矢印の方向)の側面図であり、説明に必要な構成要素のみを示す。図3では、G光の光路のみについて説明するが、R光及びB光についても同様である。
図3に示す照明光学系は、図1と同様の構成を持ち、その側面方向における各光学部品の配置を適宜設定したものである。
図3に示すように、斜め投射光学系用の照明系は、G光用コリメータレンズ3G、第1のダイクロイックミラー32、フレネルレンズ33,34、第2のダイクロイックミラー38、ワイヤグリッド偏光板6及びフィールドレンズ7の中心軸9Bが一致するよう設けられている。ここで、図2におけるワイヤグリッド偏光板6及びフィールドレンズ7は図3と共通であるため、図2における中心軸9Aと図3における中心軸9Bは、一致している。
図2で示したように、反射型ライトバルブ5は、画素領域における中心位置がワイヤグリッド偏光板6及びフィールドレンズ7の中心軸9Bと所定の距離α離れた位置(図中、下側)となるよう、中心軸9Bと直交するよう設けられている。
一方、緑色用LED21Gは、発光中心位置が中心軸9Bから所定の距離γ離れた位置となるよう設けられ、その方向は中心軸9Bから反射型ライトバルブ5とは逆方向(図3における上側)となっている。
G光用LED21Gを射出したG色光の光軸は、図3における上側に距離γ離れた位置に中心軸9Bと平行となされている。そのため、G光用LED21Gを射出したG色光は、G光用コリメータレンズ3Gの中心軸9Bから距離γ離れた位置(図3における上側)に入射する。
G光用コリメータレンズ3Gに入射したG光は、G光用コリメータレンズ3Gによって屈折される。G光用コリメータレンズ3Gで屈折されることによってG色光の光軸は図3における右下方向に光路が折り曲げられる。光路が折り曲げられたG色光は、第1のダイクロイックミラー32付近で中心軸9Bと交差し、フレネルレンズ33,34及び第2のダイクロイックミラー38を透過する。
第2のダイクロイックミラー38を透過したG光は、ワイヤグリッド偏光板6でP偏光のみが選択的に透過される。ワイヤグリッド偏光板6を透過したG色光のP偏光の光軸は、フィールドレンズ7の中心軸9Bから離れた位置(図3における下側)に入射し、フィールドレンズ7によって屈折される。フィールドレンズ7によって屈折されることによってG色光の光軸は中心軸9Bと再び平行になり、中心軸9Bに対して画素領域の中心が距離α離れて(図3における下側)して配置された反射型ライトバルブ5に入射する。
次に、図1を用いて画像投射装置1Aの動作を説明する。
赤色用LED21Rから射出したR光は、ライトトンネル22R,コリメートレンズ3Rを経由して、第1のダイクロイックミラー32に入射する。また、緑色用LED21Gから射出したG光はライトトンネル22G,コリメートレンズ3Gを経由して、第1のダイクロイックミラー32に入射する。第1のダイクロイックミラー32は、赤色帯域の光を反射し緑色帯域の光を透過する特性を有し、R光とG光を合成してRG光にする。RG光は、フレネルレンズ33,34を透過して、第2のダイクロイックミラー38に入射する。
青色用LED21Bから発生したB光はライトトンネル22B,コリメートレンズ3Bを経由して、反射ミラー34で反射される。B光は、フレネルレンズ36,37を透過し、第2のダイクロイックミラー38に入射する。第2のダイクロイックミラー38は、青色帯域光の光を反射し赤色帯域及び緑色帯域の光を透過する特性を有し、RG光とB光を合成して白色光として射出する。第2のダイクロイックミラー38から射出した白色光は、ワイヤグリッド偏光板6に入射する。
ワイヤグリッド偏光板6は、入射した光のうちP偏光を透過しS偏光を反射する特性を有し、入射した白色光のP偏光成分の光をフィールドレンズ7に向けて射出する。
フィールドレンズ7に入射したP偏光成分の光は、フィールドレンズ7によってその光束を反射型ライトバルブ5の画素領域に合わせるよう整えられ反射型ライトバルブ5に向けて射出する。
ここで、図3に示すように、緑色用LED21Gは、コリメートレンズ3G,第1のダイクロイックミラー32,フレネルレンズ33,34,第2のダイクロイックミラー38,ワイヤグリッド偏光板6,及びフィールドレンズ7の中心軸9Bから図3における上側に距離γ離れた位置にオフセットして配置されている。赤色用LED21R,21Bも緑色用LED21Gと同様に中心軸9Bから図3における上側に距離γ離れた位置に配置されている。
緑色用LED21Gから射出したG光は、コリメートレンズ3Gの中心軸から距離γ離れた位置に入射し、コリメートレンズ3Gで屈折され、図3における右下方向に向け斜めに射出する。コリメートレンズ3Gを射出したG光は、第1のダイクロイックミラー32でR光と合成されRG光となり、フレネルレンズ33,34を経由して第2のダイクロイックミラー38でB光と合成され白色光となる。白色光は、ワイヤグリッド偏光板6を経由してP偏光となり、フィールドレンズ7の中心軸9Bから図3における下側に離れた位置に入射する。
フィールドレンズ7に入射したP偏光の白色光は、フィールドレンズ7で屈折され、フィールドレンズ7おける中心軸9Bから距離α離れた位置(図3における下側)から、中心軸9Bに平行な状態で射出する。フィールドレンズ7から射出したP偏光の白色光は、中心軸9Bから距離α離れた位置に画素領域の中心が位置するようオフセットして配置された反射型ライトバルブ5に入射する。
次に、反射型ライトバルブ5に入射した白色光の光路について、図1で説明する。
反射型ライトバルブ5に入射したP偏光の白色光は、外部から供給された映像信号に基づき反射型ライトバルブ5で光変調され反射して反射光として射出する。反射光は、再びフィールドレンズ7を経由してワイヤグリッド偏光板6に入射し、ワイヤグリッド偏光板6では光変調成分であるS偏光が反射し投影光として射出される。ワイヤグリッド偏光板6から射出した投射光は、投射レンズ8に入射し、スクリーン10上に画像として拡大投影される。
ここで、図2に示すように、反射型ライトバルブ5は、フィールドレンズ7,ワイヤグリッド偏光板6及び投射レンズ8の中心軸9A(図3における中心軸9Bに一致する)から図2における上側に距離α離れた位置に画素領域の中心が位置するようオフセットして配置されている。反射型ライトバルブ5から射出した反射光は、フィールドレンズ7の中心軸から距離α離れた位置に入射し、フィールドレンズ7で屈折され、図2における右上方向に向け斜めに射出する。フィールドレンズ7を射出した反射光は、その光変調成分がワイヤグリッド偏光板6で反射され、投射レンズ8を経由してスクリーン10おける中心軸9Aから図2における上側に離れた位置を中心に投影される。
ここで、図4にフィールドレンズ7及び反射型ライトバルブ5周辺の拡大図を示す。図4に示すように、フィールドレンズ7に入射するP偏光の白色光は、フィールドレンズ7の反射型ライトバルブ5側に近い平面に対して斜め方向(フィールドレンズ7の平坦面における法線に対してθ1の角度で)から入射する。斜め方向から入射したP偏光の白色光は、フィールドレンズ7で屈折して、斜め方向から反射型ライトバルブ5に対して入射する。
以上のように、第1の実施の形態に係る画像投射装置1Aによれば、反射型ライトバルブ5を投射レンズ8の中心軸9Aから例えば図2における下方にオフセットして配置し、光源2を例えば図3における上方にオフセットして配置することで、画像投射装置1Aとスクリーンとの距離を短縮することができる。また、光源2から射出する光が反射型ライトバルブ5を均一に照明するようにし、光源2からの光の利用効率を高くすることができ、輝度むらの少ない画像をスクリーン10に投射することができる。
[第2の実施の形態]
次に、本発明の第2の実施の形態に係る画像投射装置について説明する。
第2の実施の形態に係る画像投射装置1Bは、図1に示すように第1の実施の形態に係る画像投射装置1Aの構成要素と同一の構成要素を有し、これらの構成要素には同一の符号を付与し、重複説明を省略する。以下、第2の実施の形態について、第1の実施の形態との差異を中心に説明する。
図5は、図1における照明光学系の部分(図1におけるBB線の矢印の方向)の側面図であり、説明に必要な構成要素のみを示す。図5では、G光の光路のみについて説明するが、R光及びB光についても同様である。
図5に示すように、斜め投射光学系用の照明系は、G光用コリメータレンズ3G、第1のダイクロイックミラー32、フレネルレンズ33,34、第2のダイクロイックミラー38、ワイヤグリッド偏光板6及びフィールドレンズ7の中心軸9Bが一致するよう設けられている。ここで、図2におけるワイヤグリッド偏光板6及びフィールドレンズ7は図5と共通であるため、図2における中心軸9Aと図4における中心軸9Bは、一致している。
緑色用LED21G及びライトトンネル22Gは、中心軸9Bに対して傾いて配置される。例えば、G光の射出方向が図4における斜め右上方となるよう緑色用LED21G及びライトトンネル22Gが配置されている。
このように配置した場合、緑色用LED21Gから射出したG光は、その光路が中心軸9Bに対して右上方に傾いている。そのため、G光は、コリメートレンズ3Gの入射面に対して斜めの角度であって、中心軸から離れた位置に入射し、コリメートレンズ3Gで屈折され、図5における右下方向に向け斜めに射出する。コリメートレンズ3Gを射出したG光は、第1の実施の形態と類似の光路を辿り、P偏光の白色光としてフィールドレンズ7の中心軸9Bから図5における下側に離れた位置に入射する。以下、第1の実施例と同様にP偏光の白色光は、反射型ライトバルブ5に入射し、反射型ライトバルブ5で光変調され反射光として射出し、図2の経路を辿り投影光としてスクリーンに投影光として投影される。
ここで、図6にフィールドレンズ7及び反射型ライトバルブ5周辺の拡大図を示す。図6に示すように、フィールドレンズ7に入射するP偏光の白色光は、フィールドレンズ7の反射型ライトバルブ5側に近い平面に対して斜め方向(フィールドレンズ7の平坦面における法線に対してθ2の角度で)から入射する。この際、第2の実施の形態におけるフィールドレンズ7に対するP偏光の白色光の入射角θ2は、第1の実施の形態におけるフィールドレンズ7に対するP偏光の白色光の入射角θ1に対して大きな角度となるよう設定されている。斜め方向から入射したP偏光の白色光は、フィールドレンズ7で屈折して、反射型ライトバルブ5に対して入射する。フィールドレンズ7に対するP偏光の白色光の入射角θ2を所定の角度となるように光源2,色合成手段4,及び偏光照明手段6の位置、或はコリメータレンズ3R,3G,3B及びフィールドレンズ7の曲率を設定することで、反射型ライトバルブ5に入射するP偏光の白色光の光路を反射型ライトバルブ5に対して垂直とすることができる。
以上のように、第2の実施の形態に係る画像投射装置1Bによれば、反射型ライトバルブ5を投射レンズ8の中心軸9Aから例えば図2における下方にオフセットして配置し、光源2を例えば図5における上方にオフセットすると共に、中心軸9Bから傾けて配置することで、画像投射装置1Bとスクリーンとの距離を短縮することができる。また、光源2から射出する光が反射型ライトバルブ5を均一に照明するようにし、光源2からの光の利用効率を一段と高くすることができ、輝度むらのより少ない画像をスクリーン10に投射することができる。
なお、上記各実施の形態では、反射型ライトバルブ5を中心軸9Aに対して例えば下方にオフセットして配置し、光源2を例えば上方にオフセットして配置したが、反射型ライトバルブ5を上方にオフセットして配置し、光源2を下方にオフセットして配置してもよい。
また、ワイヤグリッド偏光板6としてワイヤグリッド偏光板を用いた場合について説明したが、偏光ビームスプリッタを用いることもできる。
また、反射型ライトバルブ5は、反射型液晶表示素子を用いた場合について説明したが、多数の微小鏡面(マイクロミラー)を平面に配列した表示素子、所謂デジタル・ミラー・デバイスであってもよい。
1…画像投射装置
2…光源
3B、3G、3R…コリメートレンズ
4…色合成手段
5…反射型ライトバルブ
6…偏光照明手段
7…フィールドレンズ
8…投射レンズ
21B、21G、21R…発光ダイオード
22B、22G、22R…ライトトンネル
32…第1のダイクロイックミラー
33、34…フレネルレンズ
35…ミラー
36、37…フレネルレンズ
38…第2のダイクロイックミラー

Claims (4)

  1. 光源と、
    所定の曲率を有し前記光源から射出した光を屈折する第1のレンズと、
    入射する光のうち、第1の直線偏光を透過し、前記第1の直線偏光と直交する第2の直線偏光を反射する偏光照明手段と、
    所定の曲率を有し前記偏光照明手段から射出した前記第1の直線偏光を屈折する第2のレンズと、
    前記第2のレンズを射出した前記第1の直線偏光を外部からの映像信号に基づいて光変調し、反射光として射出する反射型ライトバルブと、
    入射した光を拡大投影する投射レンズと、
    を備え、
    前記第1のレンズ,前記偏光照明手段,前記第2のレンズ,及び前記投射レンズの中心軸は同一平面上にあり、前記反射型ライトバルブの画素領域の中心及び前記光源から射出する光の光路は前記平面上にないよう配置されていることを特徴とする画像投射装置。
  2. 前記反射型ライトバルブの画素領域の中心と前記光源から射出する光の光路とは、前記平面を挟んだ異なる位置に配置されていることを特徴とする請求項1記載の画像投射装置。
  3. 前記光源から射出する光の光路は、前記平面と平行であることを特徴とする請求項1または請求項2記載の画像投射装置。
  4. 前記光源は、複数の発光ダイオードを有し、
    前記複数の発光ダイオードから射出した光を合成する色合成手段を備えることを特徴とする請求項1乃至請求項3のいずれか1項に記載の画像投射装置。
JP2009165689A 2009-07-14 2009-07-14 画像投射装置 Active JP5446530B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009165689A JP5446530B2 (ja) 2009-07-14 2009-07-14 画像投射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009165689A JP5446530B2 (ja) 2009-07-14 2009-07-14 画像投射装置

Publications (2)

Publication Number Publication Date
JP2011022262A true JP2011022262A (ja) 2011-02-03
JP5446530B2 JP5446530B2 (ja) 2014-03-19

Family

ID=43632415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009165689A Active JP5446530B2 (ja) 2009-07-14 2009-07-14 画像投射装置

Country Status (1)

Country Link
JP (1) JP5446530B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613128A (zh) * 2016-12-16 2018-10-02 扬明光学股份有限公司 用以迎宾灯的灯具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075419A (ja) * 1993-02-18 1995-01-10 A G Technol Kk 投射型カラー液晶光学装置
JP2002090874A (ja) * 2000-09-13 2002-03-27 Sony Corp 光学装置およびそれを用いた投射型表示装置
JP2007011248A (ja) * 2005-05-31 2007-01-18 Victor Co Of Japan Ltd 投射型表示装置
JP2007335183A (ja) * 2006-06-14 2007-12-27 Seiko Epson Corp 照明装置及びプロジェクタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075419A (ja) * 1993-02-18 1995-01-10 A G Technol Kk 投射型カラー液晶光学装置
JP2002090874A (ja) * 2000-09-13 2002-03-27 Sony Corp 光学装置およびそれを用いた投射型表示装置
JP2007011248A (ja) * 2005-05-31 2007-01-18 Victor Co Of Japan Ltd 投射型表示装置
JP2007335183A (ja) * 2006-06-14 2007-12-27 Seiko Epson Corp 照明装置及びプロジェクタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108613128A (zh) * 2016-12-16 2018-10-02 扬明光学股份有限公司 用以迎宾灯的灯具
CN108613128B (zh) * 2016-12-16 2024-01-23 扬明光学股份有限公司 用以迎宾灯的灯具

Also Published As

Publication number Publication date
JP5446530B2 (ja) 2014-03-19

Similar Documents

Publication Publication Date Title
JP4614789B2 (ja) 光学部材及び照明装置及び投写型映像表示装置
US6944375B2 (en) Optical element and illuminator and projection display device
US7597459B2 (en) Converging element and illuminating device
JP4514440B2 (ja) 投写型映像表示装置
US9016865B2 (en) Illumination device and projection type display device using the same
US20060232750A1 (en) Optical member and illuminating device
US11300866B2 (en) Light source apparatus and projector
JP5957937B2 (ja) 照明装置およびプロジェクター
US7872216B2 (en) Projector having two image formation units for projecting a light beam
JP4183663B2 (ja) 照明装置及び投写型映像表示装置
US6987618B2 (en) Polarization converting device, illumination optical system and projector
WO2011021304A1 (ja) 照明装置とそれを用いた投射型表示装置
JP3944648B2 (ja) 照明装置及びプロジェクタ
US11474424B2 (en) Light source device and projector
JP5446530B2 (ja) 画像投射装置
JP4382503B2 (ja) 投写型表示装置の光源装置と投写型表示装置
JP4893780B2 (ja) 照明装置及びこれを備えたプロジェクタ
WO2019181404A1 (ja) 画像表示装置
US11333962B2 (en) Light source apparatus and projector
JP4273789B2 (ja) 照明装置及び投射装置
JP2019138940A (ja) 光源装置、照明装置及びプロジェクター
JP4487484B2 (ja) 照明装置及びこれを備えたプロジェクタ
JP4407766B2 (ja) 照明装置及び投射装置
JP2008203467A (ja) 光学素子、照明装置及び投写型映像表示装置
JP2006267714A (ja) 照明装置及び投写型映像表示装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5446530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150