JP2011017089A - 歪時効硬化特性に優れた熱延鋼板およびその製造方法 - Google Patents

歪時効硬化特性に優れた熱延鋼板およびその製造方法 Download PDF

Info

Publication number
JP2011017089A
JP2011017089A JP2010225108A JP2010225108A JP2011017089A JP 2011017089 A JP2011017089 A JP 2011017089A JP 2010225108 A JP2010225108 A JP 2010225108A JP 2010225108 A JP2010225108 A JP 2010225108A JP 2011017089 A JP2011017089 A JP 2011017089A
Authority
JP
Japan
Prior art keywords
less
hot
steel sheet
temperature
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010225108A
Other languages
English (en)
Other versions
JP5392223B2 (ja
Inventor
Saiji Matsuoka
才二 松岡
Tetsuo Shimizu
哲雄 清水
Takashi Sakata
坂田  敬
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010225108A priority Critical patent/JP5392223B2/ja
Publication of JP2011017089A publication Critical patent/JP2011017089A/ja
Application granted granted Critical
Publication of JP5392223B2 publication Critical patent/JP5392223B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

【課題】 プレス成形性と、プレス成形後に比較的低い温度での熱処理によって引張強さが極めて大きく上昇する歪時効硬化特性に優れた高張力熱延鋼板およびその製造方法を提案する。
【解決手段】 C:0.15%以下、Si:2.0 %以下、Mn:3.0 %以下とし、P、S、Al、Nを調整したうえで、Cu:0.5 〜3.0 %、またはCr、Mo、Wのうちの1種または2種以上を合計で2.0 %以下を含む組成を有する鋼スラブに、FDTをAr3変態点以上とする熱間圧延を施し、圧延終了後、5℃/s以上の冷却速度でAr3 〜Ar1 変態点の温度域まで冷却し、該温度域で空冷または徐冷したのち、再び5℃/s以上で冷却して、550 ℃以下で巻き取り、フェライトと、面積率で2%以上のマルテンサイトを含む複合組織とする。これにより、プレス成形性に優れ、かつΔTS:80MPa 以上になる歪時効硬化特性に優れた鋼板となる。
【選択図】 図2

Description

本発明は、主として自動車用熱延鋼板に係り、とくに、曲げ加工性、伸びフランジ加工性、絞り加工性等のプレス成形性が良好で、しかもプレス成形後の熱処理により引張強さが顕著に増加する、極めて大きな歪時効硬化特性を有する熱延鋼板およびその製造方法に関する。本発明でいう極めて大きな歪時効硬化特性、すなわち「歪時効硬化特性に優れる」とは、ΔTS:80MPa 以上になる歪時効硬化特性を有することを意味する。本発明において、ΔTSとは、塑性歪量5%以上の予変形処理後、150 〜 350℃の範囲の温度で保持時間:30s以上の熱処理を施したときの、熱処理前後の引張強さ増加量{=(熱処理後の引張強さ)−(予変形処理前の引張強さ)}を意味する。
近年、地球環境の保全問題からの排出ガス規制に関連して、自動車の車体重量の軽減が極めて重要な課題となっている。最近、車体重量の軽減のために、自動車用鋼板を高強度化して鋼板板厚を低減することが検討されている。
鋼板を素材とする自動車の車体用部品の多くがプレス加工により成形されるため、使用される熱延鋼板には、優れたプレス成形性を有することが要求される。優れたプレス成形性を有する鋼板となるためには、まず低い降伏強さと高い延性を確保することが肝要となる。また、伸びフランジ成形が多用される場合もあり、高い穴拡げ率を有することも必要となる。しかし、一般に、鋼板を高強度化すると、降伏強さが上昇し形状凍結性が劣化するとともに、延性が低下し、穴拡げ率が低下して、プレス成形性が低下する傾向となる。このため、従来から、高い延性を有し、プレス成形性に優れた高強度熱延鋼板が要望されていた。
また最近では、衝突時に乗員を保護するため、自動車車体の安全性が重視され、そのために衝突時における安全性の目安となる耐衝撃特性の向上が要求されている。耐衝撃特性の向上には、完成車での強度が高いほど有利になる。したがって、自動車部品の成形時には、強度が低く、高い延性を有してプレス成形性に優れ、完成品となった時点には、強度が高くて耐衝撃特性に優れる熱延鋼板が最も強く望まれていた。
このような要望に対し、プレス成形性と高強度化とを両立させた鋼板が開発された。この鋼板は、プレス加工後に通常100 〜200 ℃の高温保持を含む塗装焼付処理を施すと降伏応力が上昇する塗装焼付硬化型鋼板である。この鋼板では、最終的に固溶状態で残存するC量(固溶C量)を適正範囲に制御し、プレス成形時には軟質で、形状凍結性、延性を確保し、プレス成形後に行われる塗装焼付処理時に、残存する固溶Cがプレス成形時に導入された転位に固着して、転位の移動を妨げ、降伏応力を上昇させる。しかしながら、この塗装焼付硬化型自動車用鋼板では、降伏応力は上昇させることができるものの、引張強さまでは上昇させることができなかった。
また、特許文献1には、C:0.08〜0.20%、Mn:1.5 〜3.5 %を含み残部Feおよび不可避的不純物からなる成分組成を有し、組織がフェライト量5%以下の均一なベイナイトもしくは一部マルテンサイトを含むベイナイトで構成された焼付硬化性高張力冷延薄鋼板が開示されている。特許文献1に記載された冷延鋼板は、連続焼鈍後の冷却過程で400 〜200 ℃の温度範囲を急冷し、その後を徐冷とすることにより、組織を従来のフェライト主体の組織からベイナイト主体の組織として、従来になかった高い焼付硬化量を得ようとするものである。
しかしながら、特許文献1に記載された鋼板では、塗装焼付け後に降伏強さが上昇し従来になかった高い焼付け硬化量が得られるものの、依然として引張強さまでは上昇させることができず、耐衝撃特性の向上が期待できないという問題があった。
プレス成形後に熱処理を施し、降伏応力のみならず引張強さをも上昇させようとする熱延鋼板が、いくつか提案されている。
例えば、特許文献2には、C:0.02〜0.13%、Si:2.0 %以下、Mn:0.6 〜2.5 %、sol.Al:0.10%以下、N:0.0080〜0.0250%を含む鋼を、1100℃以上に再加熱し、850 〜950 ℃で仕上圧延を終了する熱間圧延を施し、ついで15℃/s以上の冷却速度で150 ℃未満の温度まで冷却し巻取り、フェライトとマルテンサイトを主体とする複合組織とする、熱延鋼板の製造方法が提案されている。しかしながら、特許文献2に記載された技術で製造された鋼板では、歪時効硬化により降伏応力とともに引張強さが増加するものの、150 ℃未満という極めて低い巻取温度で巻き取るため、機械的特性の変動が大きいという問題があった。また、プレス成形−塗装焼付処理後の降伏応力の増加量のばらつきが大きく、さらに、穴拡げ率(λ)が低く、伸びフランジ加工性が低下しプレス成形性が不足するという問題もあった。
また、特許文献3には、熱延板をめっき原板とする溶融亜鉛めっき鋼板の製造方法が提案されている。この方法は、C:0.05%以下、Mn:0.05〜0.5 %、Al:0.1 %以下、Cu:0.8 〜2.0 %を含む鋼スラブを巻取温度:530 ℃以下の条件で熱間圧延を行い、続いて530 ℃以下の温度に加熱し鋼板表面を還元したのち、溶融亜鉛めっきを施すことにより、成形後の熱処理による著しい硬化が得られるとしている。しかしながら、この方法で製造された鋼板では、成形後熱処理により著しい硬化を得るためには、熱処理温度を500 ℃以上とする必要があり、熱処理温度が高く、実用上問題を残していた。
また、特許文献4には、熱延板あるいは冷延板をめっき原板とし、成形後の熱処理により強度上昇が期待できる合金化溶融亜鉛めっき鋼板の製造方法が提案されている。この方法は、C:0.01〜0.08%を含み、Si、Mn、P、S、Al、Nを適正量としたうえで、Cr、W、Moの1種または2種以上を合計で0.05〜3.0 %含有する鋼を熱間圧延したのち、あるいはさらに冷間圧延または、調質圧延し焼鈍したのち、溶融亜鉛めっきを行い、その後加熱合金化処理を施すというものである。この鋼板は、成形後、200 〜450 ℃の温度域で加熱することにより引張強さが上昇するとされる。しかしながら、得られた鋼板は、ミクロ組織が、フェライト単相、フェライト+パーライト、またはフェライト+べイナイト組織であるため、高い延性と低い降伏強さが得られず、プレス成形性が低下するという問題があった。
また、特許文献5には、C:0.03〜0.20%を含み、Si、Mn、P、S、Alを適正量としたうえで、Cu:0.2 〜2.0 %とB:0.0002〜0.002 %を含み、ミクロ組織が、フェライトを主相とし、マルテンサイトを第2相とする複合組織であり、フェライト相におけるCuの存在状態を2nm以下の固溶状態および/または析出状態とした、疲労特性に優れた加工用熱延鋼板が提案されている。特許文献5に記載された鋼板は、CuとBを複合添加し、しかもCuの存在状態を2nm 以下と極微細としてはじめて疲労限度比が著しく向上するというものである。しかも、そのためには、Ar変態点以上で熱間仕上圧延を終了し、冷却過程のAr〜Ar変態点までの温度域で1〜10s間空冷し、その後20℃/s以上の冷却速度で冷却し、350 ℃以下の温度で巻き取ることを必須としている。このように巻取温度を350 ℃以下という低温にすると、熱延鋼板の形状が大きく乱れやすく、工業的に安定して製造できないという問題があった。
特公平5-24979 号公報 特公平8-23048 号公報 特許第2802513 号公報 特開平10−310824号公報 特開平11-199975 号公報
本発明は、上記したように、極めて強い要求があるにもかかわらず、これらの特性を満足する鋼板を工業的に安定して製造する技術がこれまでになかったことに鑑み成されたものであり、上記した問題を有利に解決し、自動車用鋼板として好適な、優れたプレス成形性を有し、かつプレス成形後に、比較的低い温度での熱処理によって引張強さが極めて大きく上昇する歪時効硬化特性に優れた高張力熱延鋼板およびこの高張力熱延鋼板を安定して生産ができる製造方法を提案することを目的とする。
本発明者らは、上記した課題を達成するために、歪時効硬化特性におよぼす鋼板組織と合金元素の影響について鋭意研究を重ねた。その結果、C含有量を低炭素域とし、適正範囲内のCu、あるいはCuに代えてMo、Cr、Wのうちの1種または2種以上を含有して、さらに加えて、鋼板組織をフェライトとマルテンサイトの複合組織とすることにより、予歪量:5%以上とした予変形処理と150 ℃以上350 ℃以下の比較的低い温度の熱処理後に、降伏応力の増加に加え、引張強さも顕著に増加する高い歪時効硬化が得られることを見いだした。また、このような高い歪時効硬化特性に加えて、良好な延性、低い降伏強さ、高い穴拡げ率を有し、プレス成形性に優れた鋼板となることを見いだした。
まず、本発明者らが行った基礎的な実験結果について説明する。
質量%で、C:0.04%、Si:0.82%、Mn:1.6 %、P:0.01%、S:0.005 %、Al:0.04%、N:0.002 %を含有し、Cuを0.3 %、1.3 %と変化した組成を有するシートバーについて、1150℃に加熱−均熱後、仕上圧延終了温度が850 ℃となるように3パス圧延を行って板厚2.0mm としたのち、冷却条件と巻取り温度を変化して、組織をフェライト単相からフェライト+マルテンサイトの複合組織を有する熱延板とした。
これら熱延板について、引張試験を実施し引張特性を調査した。さらに、これら熱延板から採取した試験片に引張予歪量5%の予変形処理を施し、ついで50〜350 ℃×20min の熱処理を施したのち、引張試験を実施し引張特性を求め、歪時効硬化特性を評価した。
歪時効硬化特性は、熱処理前後の引張強さ増加量ΔTSで評価した。ΔTSは、熱処理を施した後の引張強さTSHTと、熱処理を施さない場合の引張強さTSとの差(=(熱処理後の引張強さTSHT)−(予変形処理前の引張強さTS))とした。なお、引張試験は、JIS 5号引張試験片を用いて実施した。
図1に、ΔTSと鋼板(熱延板)組織との関係におよぼすCu含有量の影響を示す。なお、ΔTSは、試験片に引張予歪量5%の予変形処理を施し、ついで250 ℃×20min の熱処理を施して求めた。図1から、Cu含有量が1.3 質量%の場合には、鋼板組織をフェライト+マルテンサイトの複合組織にすることにより、ΔTS:80MPa 以上になる高い歪時効硬化特性が得られることがわかる。Cu含有量が0.3 質量%の場合には、ΔTS:80MPa 未満であり、鋼板組織をフェライト+マルテンサイトの複合組織にしても高い歪時効硬化特性は得られない。
このように、Cu含有量を適正範囲内とし、フェライト+マルテンサイトの複合組織とすることにより、高い歪時効硬化特性を有する熱延鋼板を製造することが可能であることがわかる。
図2に、ΔTSと予変形処理後の熱処理温度の関係におよぼすCu含有量の影響を示す。なお、用いた熱延板は、熱間圧延終了後、20℃/sの冷却速度で 700℃まで冷却し、ついで5s間空冷した後、30℃/sの冷却速度で 450℃まで冷却し、その後、 450℃×1hのコイル巻取り相当処理を施したものである。このようにして得られた熱延板のミクロ組織は、主相としてのフェライトと、面積率で8%のマルテンサイトとの複合組織であった。ΔTSは、これら熱延板に、予変形処理を施した後、熱処理を行い求めた。
図2から、ΔTSは、熱処理温度が上昇するとともに増加するが、その増加量はCu含有量に大きく依存する。Cu含有量が1.3 質量%の場合には、熱処理温度が150 ℃以上でΔTS:80MPa 以上になる高い歪時効硬化特性が得られることがわかる。なお、Cu含有量が0.3 質量%の場合には、ΔTS:80MPa 未満であり、いずれの熱処理温度でも高い歪時効硬化特性は得られない。
また、Cu含有量が0.3 質量%と1.3 質量%の鋼板について、熱延後の冷却速度を種々変化させ、組織をフェライト+マルテンサイトからフェライト単相とし、降伏比YR(=(降伏強さYS/引張強さTS)×100 %)を50〜90%とした材料(熱延板)を作製した。これら材料(熱延板)について、穴拡げ試験を実施し穴拡げ率(λ)を求めた。穴拡げ試験は、10mmφのポンチで打ち抜いて供試片にポンチ穴を形成したのち、頂角60°の円錐ポンチを用い、ばりが外側になるようにして、板厚を貫通する割れが発生するまで穴拡げを行い、穴拡げ率λを求めた。穴拡げ率λは、λ(%)={(d−d )/d }×100 で求めた。なお、d :初期穴径、d:割れ発生時の内穴径である。
これらの結果を、穴拡げ率λと降伏比YRとの関係に整理し、穴拡げ率λと降伏比YRとの関係におよぼすCu含有量の影響として図3に示す。
図3から、Cu:0.3 質量%の鋼板では、フェライト(α)+マルテンサイトの複合組織となりYRが70%未満となると、YRの低下とともにλが低下しているが、Cu:1.3 質量%の鋼板では、フェライト(α)+マルテンサイトの複合組織となりYRが低くなっても高いλ値を維持していることがわかる。一方、Cu含有量が0.3 質量%の鋼板では、低いYRと高いλを同時には得ることができない。
このように、Cu含有量を適正範囲内とし、フェライト(α)+マルテンサイトの複合組織とすることにより、低降伏比と高穴拡げ率をともに満足する鋼板を製造することが可能であることがわかる。
本発明の熱延鋼板では、通常の熱処理前後の変形応力増加量測定時の予歪量である2%よりも多い歪量での予変形と、150 ℃以上350 ℃以下といった比較的低温域での熱処理により、鋼板中に極微細Cuが析出する。本発明者らの検討によれば、この極微細Cuの析出により、降伏応力の増加に加え、引張強さが顕著に増加する高い歪時効硬化特性が得られたと考えられる。このような比較的低温域での熱処理による極微細Cuの析出は、これまで報告されている極低炭素鋼あるいは低炭素鋼では全く認められなかった。比較的低温域での熱処理によって極微細Cuが析出することについては、現在まで、その理由は明確となっていないが、フェライト(α)+オーステナイト(γ)の2相域での保持中に、γ相にCuが多量に分配され、それが冷却後も引き継がれてマルテンサイト中にCuが過飽和に固溶した状態になり、5%以上の予歪の付加と低温熱処理により、極微細に析出したものと考えられる。
また、Cuを添加し、組織をフェライト+マルテンサイトの複合組織とした鋼板の穴拡げ率が高くなる詳細な機構については、現在までに明確とはなっていないが、Cu添加によりフェライトとマルテンサイトとの硬度差が小さくなったためではないかと考えられる。
上記した新規な知見に基づき、本発明者らは、さらに鋭意研究を重ねた結果、上記した現象はCuを含まない鋼板においても起こることを知見した。Cuに代えて、Mo、Cr、Wのうちの1種または2種以上を含有し、組織をフェライト+マルテンサイトの複合組織とすることにより、予歪を付加し低温での熱処理を施すと、マルテンサイト中に極微細な炭化物が歪誘起析出し引張強さが上昇することを見いだした。この低温加熱時の歪誘起微細析出は、Mo、Cr、Wのうちの1種または2種以上に加えてNb、V、Tiのうちの1種または2種以上を含有することによりさらに顕著となることも見いだした。
本発明は、上記した知見に基づき、さらに検討して完成されたものであり、本発明の要旨は下記のとおりである。
(1)質量%で、C:0.15%以下、Si:2.0 %以下、Mn:3.0 %以下、P:0.1 %以下、S:0.02%以下、Al:0.1 %以下、N:0.02%以下、Cu:0.5 〜3.0 %を含み、残部がFeおよび不可避的不純物からなる組成を有し、組織が、フェライト相を主相とし、面積率で2%以上のマルテンサイト相を含む第2相との複合組織を有することを特徴とする、プレス成形性に優れ、かつΔTS:80MPa 以上になる歪時効硬化特性に優れた熱延鋼板。
(2)(1)において、前記組成に加えさらに、質量%で、次A群〜C群
A群:Ni:2.0 %以下、
B群:Cr、Moのうちの1種または2種を合計で2.0 %以下、
C群:Nb、Ti、Vのうちの1種または2種以上を合計で0.2 %以下
のうちから選ばれた1群または2群以上を含有することを特徴とする、プレス成形性に優れ、かつΔTS:80MPa 以上になる歪時効硬化特性に優れた熱延鋼板。
(3)質量%で、C:0.15%以下、Si:2.0 %以下、Mn:3.0 %以下、P:0.1 %以下、S:0.02%以下、Al:0.1 %以下、N:0.02%以下を含み、さらに、Mo:0.05〜2.0 %、Cr:0.05〜2.0 %、W:0.05〜2.0 %のうちから選ばれた1種または2種以上を合計で2.0 %以下含有し、残部がFeおよび不可避的不純物からなる組成を有し、組織が、フェライト相を主相とし、面積率で2%以上のマルテンサイト相を含む第2相との複合組織を有することを特徴とする、プレス成形性に優れ、かつΔTS:80MPa 以上になる歪時効硬化特性に優れた熱延鋼板。
(4)(3)において、前記組成に加えさらに、質量%で、Nb、Ti、Vのうちの1種または2種以上を合計で2.0 %以下含有することを特徴とする、プレス成形性に優れ、かつΔTS:80MPa 以上になる歪時効硬化特性に優れた熱延鋼板。
(5)質量%で、C:0.15%以下、Si:2.0 %以下、Mn:3.0 %以下、P:0.1 %以下、S:0.02%以下、Al:0.1 %以下、N:0.02%以下を含み、さらに、Mo:0.05〜2.0 %、Cr:0.05〜2.0 %、W:0.05〜2.0 %のうちから選ばれた1種または2種以上を合計で2.0 %以下含有し、あるいはさらにNb、Ti、Vのうちの1種または2種以上を合計で2.0 %以下含有し、好ましくは残部Feおよび不可避的不純物からなる組成を有する鋼スラブに、熱間圧延を施し所定板厚の熱延板とするにあたり、前記熱間圧延を、仕上圧延終了温度FDTがAr変態点以上である熱間圧延とし、仕上圧延終了後、5℃/s以上の冷却速度で(Ar変態点)〜(Ar変態点)の温度域まで冷却し、該温度域で1〜20s間空冷または徐冷したのち、再び5℃/s以上の冷却速度で冷却して、550 ℃以下の温度で巻き取ることを特徴とする、プレス成形性に優れ、かつΔTS:80MPa 以上になる歪時効硬化特性に優れた熱延鋼板の製造法。
本発明によれば、優れたプレス成形性を維持しつつ、プレス成形後の熱処理により引張強さが顕著に上昇する熱延鋼板を、安定して製造することが可能となり、産業上格段の効果を奏する。本発明の熱延鋼板を自動車部品用に適用した場合、プレス成形が容易で、かつ完成後の部品特性を安定して高くでき、自動車車体の軽量化に十分に寄与できるという効果もある。
予変形−熱処理後のΔTSと鋼板(熱延板)組織の関係におよぼすCu含有量の影響を示すグラフである。 予変形−熱処理後のΔTSと熱処理温度の関係におよぼすCu含有量の影響を示すグラフである。 λとYRとの関係におよぼすCu含有量の影響を示すグラフである。
本発明の熱延鋼板は、引張強さTS:440MPa以上の高張力熱延鋼板であり、プレス成形性に優れ、かつプレス成形後の比較的低い温度での熱処理により引張強さが顕著に上昇し、ΔTS:80MPa 以上になる歪時効硬化特性に優れた鋼板である。
本発明でいう、「歪時効硬化特性に優れた」とは、上記したように、引張塑性歪量5%以上の予変形処理後、150 〜 350℃の範囲の温度で保持時間:30s以上の熱処理を施したとき、この熱処理前後の引張強さ増加量ΔTS{=(熱処理後の引張強さ)−(予変形処理前の引張強さ)}が80MPa 以上となることを意味する。なお、望ましくはΔTSは100 MPa 以上である。この熱処理により降伏応力も上昇し、ΔYS: 80 MPa 以上が得られることはいうまでもない。ΔYSは、熱処理前後の降伏強さの増加量を意味し、ΔYS={(熱処理後の降伏強さ)−(熱処理前の降伏強さ)}で定義される。
歪時効硬化特性を規定する場合、予歪(予変形)量は重要な因子である。本発明者らは、自動車用鋼板が適用される変形様式を想定して、予歪量がその後の歪時効硬化特性に及ぼす影響について調査した。その結果、極めて深い絞り加工以外はおおむね1軸相当歪(引張歪)量で整理できること、また、実部品においては、この1軸相当歪量がおおむね5%を上回っていること、また、部品強度が予歪5%の歪時効処理後に得られる強度と良く対応すること、が明らかになった。これらのことから、本発明では、歪時効処理の予歪(変形)を5%以上の引張塑性歪とした。
従来の塗装焼付処理条件は、170 ℃×20min が標準として採用されているが、本発明におけるように、極微細Cuの析出強化を利用する場合には、熱処理温度は150 ℃以上が必要となる。一方、350 ℃を超える条件では、その効果が飽和し、逆にやや軟化する傾向を示す。また、350 ℃を超える温度に加熱すると、熱歪やテンパーカラーの発生などが顕著となる。このようなことから、本発明では、歪時効硬化のための熱処理温度は150 〜350 ℃とした。なお、熱処理温度における保持時間は30s以上とする。熱処理の保持時間については、150 〜350 ℃ではおおむね30s程度以上保持すれば、ほぼ十分な歪時効硬化が達成される。よりおおきな安定した歪時効硬化を得たい場合には保持時間は60s以上とするのが望ましく、より好ましくは300 s以上である。
熱処理における加熱方法は、とくに限定されないが、通常の塗装焼付処理におけるように、炉による雰囲気加熱以外に、たとえば誘導加熱、無酸化炎、レーザー、プラズマなどによる加熱などがいずれも好適である。また、鋼板の温度を高めてプレスする、いわゆる温間プレスも、本発明においては極めて有効な方法である。
まず、本発明鋼板の組織について説明する。
本発明の熱延鋼板は、組織が、フェライト相と、面積率で全組織に対し2%以上のマルテンサイト相を含む第2相との複合組織を有する。
低い降伏強さYSと高い延性(El)を有し、優れたプレス成形性を有する鋼板とするために、本発明では鋼板の組織を、主相であるフェライト相と、マルテンサイトを含む第2相との複合組織とする必要がある。主相であるフェライトは、面積率で50%以上とするのが好ましい。フェライトが、50%未満では、高い延性を確保することが困難となりプレス成形性が低下する。また、さらに良好な延性が要求される場合にはフェライト相の面積率は80%以上とするのが好ましい。なお、複合組織の利点を利用するために、フェライト相は 98 %以下とするのが好ましい。
また、第2相として、本発明では、マルテンサイトを、面積率で全組織に対し2%以上含有する必要がある。マルテンサイトが2%未満では、低いYSと高いElを同時に満足させることができない。なお、第2相は、面積率で2%以上のマルテンサイト相単独としても、あるいは面積率で2%以上のマルテンサイト相と、副相としてそれ以外のパーライト相、ベイナイト相、残留オーステナイト相のいずれかとの混合としてよく、とくに限定されない。
上記した組織を有する熱延鋼板は、低降伏強さで高延性を有しプレス成形性に優れ、かつ歪時効硬化特性に優れた鋼板となる。
つぎに、本発明熱延鋼板の組成限定理由について説明する。なお、質量%は単に%と記す。
C:0.15%以下
Cは、鋼板の強度を増加し、さらにフェライトとマルテンサイトの複合組織の形成を促進する元素であり、本発明では複合組織を形成するために0.01%以上含有するのが好ましい。一方、0.15%を超える含有は、鋼中の炭化物の分率が増加し、延性、さらにはプレス成形性を低下させる。さらに、より重要な問題として、C含有量が0.15%を超えると、スポット溶接性、アーク溶接性等が顕著に低下する。このため、本発明では、Cは0.15%以下に限定した。なお、成形性の観点からは0.10%以下とするのが好ましい。
Si:2.0 %以下
Siは、鋼板の延性を顕著に低下させることなく、鋼板を高強度化させることができる有用な強化元素であるとともに、フェライト変態の促進および未変態オーステナイト中へのCの濃縮によるマルテンサイト形成の促進等に有効な元素である。しかし、Si含有量が2.0 %を超えると、プレス成形性の劣化を招くとともに、表面性状が悪化する。このため、Siは2.0 %以下に限定した。なお、マルテンサイト形成の観点から0.1 %以上含有するのが好ましい。
Mn:3.0 %以下
Mnは、鋼を強化する作用があり、さらにフェライト+マルテンサイトの複合組織の形成を促進する作用を有している。また、Sによる熱間割れを防止する有効な元素であり、含有するS量に応じて含有するのが好ましい。このような効果は、0.5 %以上の含有で顕著となる。一方、3.0 %を超える含有は、プレス成形性および溶接性が劣化する。このため、本発明ではMnは3.0 %以下に限定した。なお、より好ましくは1.0 %以上である。
P:0.10%以下
Pは、鋼を強化する作用があり、所望の強度に応じて必要量含有することができるが、過剰に含有するとプレス成形性が劣化する。このため、Pは0.10%以下に限定した。なお、より優れたプレス成形性が要求される場合には、0.08%以下とするのが好ましい。
S:0.02%以下
Sは、鋼板中では介在物として存在し、鋼板の延性、成形性、とくに伸びフランジ成形性の劣化をもたらす元素であり、できるだけ低減するのが好ましいが、0.02%以下に低減すると、さほど悪影響をおよぼさなくなるため、本発明ではSは0.02%を上限とした。なお、優れた伸びフランジ成形性を要求される場合には、Sは0.010 %以下とするのが好ましい。
Al:0.10%以下
Alは、鋼の脱酸元素として添加され、鋼の清浄度を向上させるのに有用な元素であるが、0.10%を超えて含有してもより一層の脱酸効果は得られず、逆にプレス成形性が劣化する。このため、Alは0.10%以下に限定した。なお、好ましくは0.01%以上である。また、本発明では、Al脱酸以外の脱酸方法による溶製方法を排除するものではなく、たとえばTi脱酸やSi脱酸を行ってもよく、これらの脱酸法による鋼板も本発明の範囲に含まれる。
N:0.02%以下
Nは、固溶強化や歪時効硬化で鋼板の強度を増加させる元素であるが、0.02%を超えて含有すると、鋼板中に窒化物が増加し、それにより鋼板の延性、さらにはプレス成形性が顕著に劣化する。このため、Nは0.02%以下に限定した。なお、よりプレス成形性の向上が要求される場合には0.01%以下とするのが好適である。
Cu:0.5 〜3.0 %
Cuは、鋼板の歪時効硬化(予変形−熱処理後の強度増加)を顕著に増加させる元素であり、本発明において最も重要な元素の一つである。Cu含有量が0.5 %未満では、たとえ予変形−熱処理条件を変化させても、ΔTS:80MPa 以上の引張強さの増加は得られない。このため、本発明では、Cuは0.5 %以上の含有を必要とする。一方、3.0 %を超える含有は、効果が飽和し、含有量に見合う効果が期待できず経済的に不利となるうえ、プレス成形性の劣化を招き、さらに鋼板の表面性状が悪化する。このため、Cuは0.5 〜3.0 %に限定した。なお、より大きいΔTSと優れたプレス成形性とを両立させるためには、Cuは1.0 〜2.5 %の範囲にするのが好ましい。
また、本発明では、上記したCuを含有する組成に加えてさらに、質量%で、次A群〜C群
A群:Ni:2.0 %以下
B群:Cr、Moのうちの1種または2種を合計で2.0 %以下
C群:Nb、Ti、Vのうちの1種または2種以上を合計で0.2 %以下
のうちの1群または2群以上を含有することが好ましい。
A群:Ni:2.0 %以下
A群:Niは、Cu添加時に鋼板表面に発生する表面欠陥の防止に有効な元素であり、必要に応じ含有できる。含有する場合には、その含有量は、Cu含有量に依存し、およそCu含有量の半分程度とするのが好ましい。なお、2.0 %を超えて含有しても、効果が飽和し含有量に見合う効果が期待できなく経済的に不利となるうえ、逆にプレス成形性が劣化する。このようなことから、Niは2.0 %以下に限定するのが好ましい。
B群:Cr、Moのうちの1種または2種を合計で2.0 %以下
B群:Cr、Moは、いずれもMnと同様に、フェライト+マルテンサイトの複合組織の形成を促進する作用を有しており、必要に応じ含有できる。Cr、Moのうちの1種または2種が合計で2.0 %超えて含有すると、プレス成形性が低下する。このため、B群:Cr、Moのうちの1種または2種を合計で2.0 %以下に限定するのが好ましい。
C群:Nb、Ti、Vのうちの1種または2種以上を合計で0.2 %以下
C群:Nb、Ti、Vは、いずれも炭化物形成元素であり、炭化物の微細分散により高強度化に有効に作用するため、必要に応じ選択して含有できる。しかし、Nb、Ti、Vのうちの1種または2種以上を合計で0.2 %超えて含有すると、プレス成形性が劣化する。このため、Nb、Ti、Vは合計で0.2 %に限定するのが好ましい。
また、本発明では、上記したCu、あるいはさらに上記したA群〜C群のうちの1群または2群以上の含有に代えて、Mo:0.05〜2.0 %、Cr:0.05〜2.0 %、W:0.05〜2.0 %のうちから選ばれた1種または2種以上を合計で2.0 %以下含有し、あるいはさらにNb、Ti、Vのうちの1種または2種以上を合計で2.0 %以下含有してもよい。
Mo:0.05〜2.0 %、Cr:0.05〜2.0 %、W:0.05〜2.0 %のうちから選ばれた1種または2種以上を合計で2.0 %以下
Mo、Cr、Wはいずれも、鋼板の歪時効硬化を顕著に増加させる元素で、本発明において最も重要な元素であり、選択して含有できる。これらMo、Cr、Wのうちの1種または2種以上を含有させ、さらにフェライトとマルテンサイトの複合組織とすることにより、予変形−熱処理時に微細炭化物が歪誘起微細析出し、ΔTS:80MPa 以上の引張強さの増加が得られる。これら元素の含有量がそれぞれ0.05%未満では、予変形−熱処理条件、鋼板組織を変化させても、ΔTS:80MPa 以上の引張強さの増加は得られない。一方、これら元素の含有量がそれぞれ2.0 %を超えて含有しても、上記した効果は飽和し含有量に見合う効果が期待できず経済的に不利となるうえ、プレス成形性の劣化を招く。このため、Mo、Cr、Wは、Mo:0.05〜2.0 %、Cr:0.05〜2.0 %、W:0.05〜2.0 %の範囲に限定する。なお、プレス成形性の観点から、複合して含有する場合にはMo、Cr、Wの含有量の合計は2.0 %以下に限定した。
Nb、Ti、Vのうちの1種または2種以上を合計で2.0 %以下
Nb、Ti、Vは、いずれも炭化物形成元素であり、必要に応じ選択して含有できる。これらNb、Ti、Vのうちの1種または2種以上を含有させ、さらにフェライトとマルテンサイトの複合組織とすることにより、予変形−熱処理時に微細炭化物が歪誘起微細析出し、ΔTS:80MPa 以上の引張強さの増加が得られる。しかし、Nb、Ti、Vのうちの1種または2種以上を合計で2.0 %超えて含有すると、プレス成形性が劣化する。このため、Nb、Ti、Vは、合計で2.0 %以下に限定するのが好ましい。
上記した元素以外に、Ca:0.1 %以下、REM :0.1 %以下のうちの1種または2種を含有してもよい。Ca、REM はいずれも介在物の形態制御を通して延性の向上に寄与する元素である。しかし、Ca:0.1 %、REM :0.1 %をそれぞれ超える含有は清浄度を低下させ、延性をかえって低下させる。
また、マルテンサイト形成の観点から、B:0.1 %以下、Zr:0.1 %以下のうちの1種または2種以上を含有してもよい。
上記した成分以外の残部はFeおよび不可避的不純物からなる。不可避的不純物としては、Sb:0.01%以下、Sn:0.1 %以下、Zn:0.01%以下、Co:0.1 %以下が許容できる。
上記した組成、組織を有する熱延鋼板は、低降伏強さで高延性を有しプレス成形性に優れ、かつ歪時効硬化特性に優れた鋼板である。
つぎに、本発明の熱延鋼板の製造方法について説明する。
本発明の熱延鋼板は、上記した範囲内の組成を有する鋼スラブを素材とし、該素材に熱間圧延を施し所定板厚の熱延板とする。
使用する鋼スラブは、成分のマクロ偏析を防止するために連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ連鋳法で製造してもよい。また、鋼スラブを製造したのち、いったん室温まで冷却し、その後再加熱する従来法に加え、冷却しないで、温片のままで加熱炉に挿入する、あるいはわずかの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。
上記した素材(鋼スラブ)の加熱温度SRTはとくに限定する必要はないが、900 ℃以上とするのが好ましい。
スラブ加熱温度:900 ℃以上
スラブ加熱温度は、Cuを含有する組成の場合にはCu起因の表面欠陥を防止するために低いほうが望ましい。しかし、加熱温度が900 ℃未満では、圧延荷重が増大し、熱間圧延時のトラブル発生の危険が増大する。なお、酸化重量の増加にともなうスケールロスの増大などから、スラブ加熱温度は1300℃以下とするのが望ましい。
なお、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する、いわゆるシートバーヒーターを活用することは、有効な方法であることはいうまでもない。
加熱されたスラブは、ついで熱間圧延を施されるが、熱間圧延は、仕上圧延終了温度FDTがAr3変態点以上である熱間圧延とするのが好ましい。
仕上圧延終了温度:Ar変態点以上
仕上圧延終了温度FDTをAr変態点以上とすることにより、均一な熱延母板組織を得ることができ、熱延後の冷却でフェライトとマルテンサイトとの複合組織が得られる。これにより、優れたプレス成形性が確保される。一方、仕上圧延終了温度がAr変態点未満では、熱延母板組織が不均一となるとともに、加工組織が残存しプレス成形性が劣化する。またさらに、仕上圧延終了温度がAr変態点未満では、熱間圧延時の圧延負荷が高くなり、熱間圧延時のトラブルが発生する危険性が増大する。このようなことから、熱間圧延のFDTはAr変態点以上とするのが好ましい。
仕上圧延終了後、ついで、5℃/s以上の冷却速度で(Ar変態点)〜(Ar変態点)の温度域まで冷却するのが好ましい。
このような熱間圧延後の冷却を行うことにより、その後の冷却処理でフェライト変態を促進することができる。冷却速度が5℃/s未満では、その後の冷却処理でフェライト変態が促進されず、プレス成形性が劣化する。
ついで、(Ar変態点)〜(Ar変態点)の温度域で1〜20s間空冷または徐冷するのが好ましい。(Ar変態点)〜(Ar変態点)の温度域で空冷または徐冷することにより、オーステナイトからフェライトへの変態が促進され、さらに未変態オーステナイト中にCが濃縮され、その後の冷却でマルテンサイトに変態して、フェライトとマルテンサイトとの複合組織が形成される。(Ar変態点)〜(Ar変態点)の温度域での空冷または徐冷が1s未満では、オーステナイトからフェライトへの変態量が少なく、したがって未変態オーステナイト中へのCの濃縮量も少なく、マルテンサイトの形成量が少なくなる。一方、20sを超えると、オーステナイトがパーライトに変態し、フェライトとマルテンサイトの複合組織が得られなくなる。
空冷または徐冷処理後、再び5℃/s以上の冷却速度で冷却して、550 ℃以下の巻取温度で巻き取る。
5℃/s以上の冷却速度で冷却することにより、未変態のオーステナイトがマルテンサイトに変態する。これにより、組織が、フェライト+マルテンサイトの複合組織となる。しかし、冷却速度が5℃/s未満あるいは巻取温度が 550℃より高いと、未変態のオーステナイトがパーライトまたはベイナイトに変態し、マルテンサイトが形成されないため、プレス成形性が低下する。なお、より好ましくは、冷却速度は10℃/s以上、さらに好ましくは熱延板形状の観点から100 ℃/s以下である。また、巻取温度は 500℃未満、より好ましくは熱延板の形状の観点から350 ℃以上である。巻取温度が350 ℃未満では、鋼板形状が顕著に乱れ、実際の使用にあたり不具合を生じる危険性が増大する。
なお、本発明における熱間圧延では、熱間圧延時の圧延荷重を低減するために仕上圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延の際の摩耗係数は0.25〜0.10の範囲とすることが好ましい。また、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることが好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。
熱間圧延後、形状矯正、表面粗度等の調整のために、10%以下の調質圧延を施してもよい。
なお、本発明の熱延鋼板は、加工用としてのみならず、表面処理用原板としても適用できる。表面処理としては、亜鉛めっき(合金系を含む)、すずめっき、ほうろう等がある。
また本発明の熱延鋼板には、焼鈍または亜鉛めっき後、特殊な処理を施して、化成処理性、溶接性、プレス成形性および耐食性等の改善を行ってもよい。
(実施例1)
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法で鋼スラブとした。これら鋼スラブを加熱し、表2に示す条件で熱間圧延して板厚 2.0mmの熱延鋼帯(熱延板)にし、さらに圧下率: 1.0%の調質圧延を施した。
得られた熱延鋼帯(熱延板)について、微視組織、引張特性、歪時効硬化特性、穴拡げ率を求めた。なお、プレス成形性は、伸びEl(延性)、降伏強さおよび穴拡げ率とから評価した。
(1)微視組織
得られた鋼帯から試験片を採取し、圧延方向に直交する断面(C断面)について、光学顕微鏡あるいは走査型電子顕微鏡を用いて微視組織を撮像し、画像解析装置を用いて主相であるフェライトの組織分率および第2相の種類と組織分率を求めた。
(2)引張特性
得られた鋼帯(熱延板)から、JIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を行い、降伏強さYS、引張強さTS、伸びEl、降伏比YRを求めた。
(3)歪時効硬化特性
得られた鋼帯(熱延板)からJIS 5号試験片を圧延方向に採取し、予変形(引張予歪)として5%の塑性変形を与えて、ついで250 ℃×20min の熱処理を施したのち、引張試験を実施し、熱処理後の引張特性(降伏応力YSHT、引張強さTSHT)を求め、ΔYS=YSHT−YS、ΔTS=TSHT−TSを算出した。なお、YSHT、TSHTは予変形−熱処理後の降伏応力、引張強さであり、YS、TSは鋼帯(熱延板)の降伏応力、引張強さである。
(4)穴拡げ率
得られた鋼帯(熱延板)から採取した試験片に、10mmφのポンチで打ち抜いて穴を形成したのち、頂角60°の円錐ポンチを用い、ばりが外側になるようにして、板厚を貫通する割れが発生するまで穴拡げを行い、穴拡げ率λを求めた。穴拡げ率λは、λ(%)={(d−d )/d }×100 で求めた。なお、d :初期穴径、d:割れ発生時の内穴径である。
これらの結果を表3に示す。
Figure 2011017089
Figure 2011017089
Figure 2011017089
本発明例は、いずれも、低い降伏強さYSと高い伸びElと、低い降伏比YRと、さらに大きな穴拡げ率λを示して、伸びフランジ成形性を含むプレス成形性に優れるとともに、大きなΔYSと極めて大きなΔTSを示し、歪時効硬化特性に優れた熱延鋼板となっている。これに対し、本発明の範囲を外れる比較例では、降伏強さYSが高いか、伸びElが低いか、あるいは穴拡げ率λが小さいか、ΔTSが小さく、プレス成形性、歪時効硬化特性が低下した熱延鋼板となっている。
(実施例2)
表4に示す組成の溶鋼を転炉で溶製し、連続鋳造法で鋼スラブとした。これら鋼スラブを加熱し、表5に示す条件で熱間圧延して板厚 2.0mmの熱延鋼帯(熱延板)にし、さらに圧下率: 1.0%の調質圧延を施した。
得られた熱延鋼帯(熱延板)について、実施例1と同様に、微視組織、引張特性、歪時効硬化特性、穴拡げ率を求めた。
これらの結果を表6に示す。
Figure 2011017089
Figure 2011017089
Figure 2011017089
本発明例は、いずれも、低い降伏強さYSと高い伸びElと、低い降伏比YRと、さらに大きな穴拡げ率λを示して、伸びフランジ成形性を含むプレス成形性に優れるとともに、極めて大きなΔYSと極めて大きなΔTSを示し、歪時効硬化特性に優れた熱延鋼板となっている。これに対し、本発明の範囲を外れる比較例では、降伏強さYSが高いか、伸びElが低いか、あるいは穴拡げ率λが小さいか、ΔTSが小さく、プレス成形性、歪時効硬化特性が低下した熱延鋼板となっている。

Claims (5)

  1. 質量%で、
    C:0.15%以下、 Si:2.0 %以下、
    Mn:3.0 %以下、 P:0.1 %以下、
    S:0.02%以下、 Al:0.1 %以下、
    N:0.02%以下、 Cu:0.5 〜3.0 %
    を含み、残部がFeおよび不可避的不純物からなる組成を有し、組織が、フェライト相を主相とし、面積率で2%以上のマルテンサイト相を含む第2相との複合組織を有することを特徴とするプレス成形性に優れ、かつΔTS:80MPa 以上になる歪時効硬化特性に優れた熱延鋼板。
  2. 前記組成に加えさらに、質量%で、下記A群〜C群のうちから選ばれた1群または2群以上を含有することを特徴とする請求項1に記載の熱延鋼板。

    A群:Ni:2.0 %以下、
    B群:Cr、Moのうちの1種または2種を合計で2.0 %以下、
    C群:Nb、Ti、Vのうちの1種または2種以上を合計で0.2 %以下
  3. 質量%で、
    C:0.15%以下、 Si:2.0 %以下、
    Mn:3.0 %以下、 P:0.1 %以下、
    S:0.02%以下、 Al:0.1 %以下、
    N:0.02%以下
    を含み、さらに、Mo:0.05〜2.0 %、Cr:0.05〜2.0 %、W:0.05〜2.0 %のうちから選ばれた1種または2種以上を合計で2.0 %以下含有し、残部がFeおよび不可避的不純物からなる組成を有し、組織が、フェライト相を主相とし、面積率で2%以上のマルテンサイト相を含む第2相との複合組織を有することを特徴とするプレス成形性に優れ、かつΔTS:80MPa 以上になる歪時効硬化特性に優れた熱延鋼板。
  4. 前記組成に加えさらに、質量%で、Nb、Ti、Vのうちの1種または2種以上を合計で2.0 %以下含有することを特徴とする請求項3に記載の熱延鋼板。
  5. 質量%で、
    C:0.15%以下、 Si:2.0 %以下、
    Mn:3.0 %以下、 P:0.1 %以下、
    S:0.02%以下、 Al:0.1 %以下、
    N:0.02%以下
    を含み、さらに、Mo:0.05〜2.0 %、Cr:0.05〜2.0 %、W:0.05〜2.0 %のうちから選ばれた1種または2種以上を合計で2.0 %以下含有する組成を有する鋼スラブに、熱間圧延を施し所定板厚の熱延板とするにあたり、前記熱間圧延を、仕上圧延終了温度FDTがAr変態点以上である熱間圧延とし、仕上圧延終了後、5℃/s以上の冷却速度で(Ar変態点)〜(Ar変態点)の温度域まで冷却し、該温度域で1〜20s間空冷または徐冷したのち、再び5℃/s以上の冷却速度で冷却して、550 ℃以下の温度で巻き取ることを特徴とする、プレス成形性に優れ、かつΔTS:80MPa 以上になる歪時効硬化特性に優れた熱延鋼板の製造法。
JP2010225108A 2000-04-17 2010-10-04 歪時効硬化特性に優れた熱延鋼板およびその製造方法 Expired - Fee Related JP5392223B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010225108A JP5392223B2 (ja) 2000-04-17 2010-10-04 歪時効硬化特性に優れた熱延鋼板およびその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000114933 2000-04-17
JP2000114933 2000-04-17
JP2010225108A JP5392223B2 (ja) 2000-04-17 2010-10-04 歪時効硬化特性に優れた熱延鋼板およびその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000299640A Division JP4670135B2 (ja) 2000-04-07 2000-09-29 歪時効硬化特性に優れた熱延鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP2011017089A true JP2011017089A (ja) 2011-01-27
JP5392223B2 JP5392223B2 (ja) 2014-01-22

Family

ID=43595062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010225108A Expired - Fee Related JP5392223B2 (ja) 2000-04-17 2010-10-04 歪時効硬化特性に優れた熱延鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP5392223B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274051A (ja) * 1985-09-26 1987-04-04 Kawasaki Steel Corp 焼付け硬化性高張力冷延薄鋼板およびその製造方法
JPH0372034A (ja) * 1989-08-11 1991-03-27 Nippon Steel Corp プレス成形性に優れ、成形後の熱処理による著しい硬化性と高耐食性を有する鋼板の製造方法及びその鋼板を用いた鋼構造部材の製造方法
JPH0474824A (ja) * 1990-07-18 1992-03-10 Sumitomo Metal Ind Ltd 焼付硬化性と加工性に優れた熱延鋼板の製造方法
JPH10310824A (ja) * 1997-05-07 1998-11-24 Nippon Steel Corp 成形後強度上昇熱処理性能を有する合金化溶融亜鉛めっき鋼板の製造方法
JPH11199975A (ja) * 1998-01-20 1999-07-27 Nippon Steel Corp 疲労特性に優れた加工用熱延鋼板およびその製造方法
JPH11343535A (ja) * 1998-05-29 1999-12-14 Kawasaki Steel Corp 塗装焼付硬化型高張力鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274051A (ja) * 1985-09-26 1987-04-04 Kawasaki Steel Corp 焼付け硬化性高張力冷延薄鋼板およびその製造方法
JPH0372034A (ja) * 1989-08-11 1991-03-27 Nippon Steel Corp プレス成形性に優れ、成形後の熱処理による著しい硬化性と高耐食性を有する鋼板の製造方法及びその鋼板を用いた鋼構造部材の製造方法
JPH0474824A (ja) * 1990-07-18 1992-03-10 Sumitomo Metal Ind Ltd 焼付硬化性と加工性に優れた熱延鋼板の製造方法
JPH10310824A (ja) * 1997-05-07 1998-11-24 Nippon Steel Corp 成形後強度上昇熱処理性能を有する合金化溶融亜鉛めっき鋼板の製造方法
JPH11199975A (ja) * 1998-01-20 1999-07-27 Nippon Steel Corp 疲労特性に優れた加工用熱延鋼板およびその製造方法
JPH11343535A (ja) * 1998-05-29 1999-12-14 Kawasaki Steel Corp 塗装焼付硬化型高張力鋼板およびその製造方法

Also Published As

Publication number Publication date
JP5392223B2 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
KR100664433B1 (ko) 변형 시효 경화 특성이 우수한 열연 강판, 냉연 강판 및용융 아연 도금 강판, 그리고 이들의 제조 방법
CA2762935C (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
KR100720875B1 (ko) 프레스 성형성과 변형 시효경화 특성이 우수한 고연성강판 및 그 제조방법
JP5151246B2 (ja) 深絞り性と強度−延性バランスに優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP5493986B2 (ja) 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法
JP4730056B2 (ja) 伸びフランジ成形性に優れた高強度冷延鋼板の製造方法
JP5082451B2 (ja) 深絞り性と延性に優れた高強度冷延鋼板の製造方法、およびその冷延鋼板を用いた高強度溶融亜鉛めっき鋼板の製造方法
KR20070061859A (ko) 신장과 구멍 확장성이 우수한 고강도 박강판 및 그 제조방법
JP4608822B2 (ja) プレス成形性と歪時効硬化特性に優れた高延性溶融亜鉛めっき鋼板およびその製造方法
JP5256690B2 (ja) 加工性および耐衝撃特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP3587126B2 (ja) 延性に優れる高張力溶融亜鉛めっき鋼板およびその製造方法
JP2001226741A (ja) 伸びフランジ加工性に優れた高強度冷延鋼板およびその製造方法
JP5256689B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP3539546B2 (ja) 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法
JP4788291B2 (ja) 伸びフランジ成形性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP3870868B2 (ja) 伸びフランジ性、強度−延性バランスおよび歪時効硬化特性に優れた複合組織型高張力冷延鋼板およびその製造方法
JP4367205B2 (ja) 鋼板の歪時効処理方法および高強度構造部材の製造方法
JP5310920B2 (ja) 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
JP4670135B2 (ja) 歪時効硬化特性に優れた熱延鋼板の製造方法
JP4826694B2 (ja) 薄鋼板の耐疲労特性改善方法
JP4010131B2 (ja) 深絞り性に優れた複合組織型高張力冷延鋼板およびその製造方法
JP4010132B2 (ja) 深絞り性に優れた複合組織型高張力溶融亜鉛めっき鋼板およびその製造方法
JP3925064B2 (ja) プレス成形性と歪時効硬化特性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP2005206920A (ja) 伸びフランジ性に優れた複合組織型低降伏比高張力溶融亜鉛めっき熱延鋼板及びその製造方法
JP4599768B2 (ja) プレス成形性と歪時効硬化特性に優れた高延性冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130605

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees