JP2011009559A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2011009559A
JP2011009559A JP2009152707A JP2009152707A JP2011009559A JP 2011009559 A JP2011009559 A JP 2011009559A JP 2009152707 A JP2009152707 A JP 2009152707A JP 2009152707 A JP2009152707 A JP 2009152707A JP 2011009559 A JP2011009559 A JP 2011009559A
Authority
JP
Japan
Prior art keywords
light
led chip
substrate
emitting device
base substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009152707A
Other languages
Japanese (ja)
Inventor
Takumi Taura
巧 田浦
Yoshiki Hayazaki
嘉城 早崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009152707A priority Critical patent/JP2011009559A/en
Publication of JP2011009559A publication Critical patent/JP2011009559A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device capable of simplifying a structure although employing the structure where a light detection element for detecting light emitted from an LED chip is mounted on a mounting board, and improving detection accuracy of the light detection element.SOLUTION: A light reception part 4c comprising a p-type region of a light detection element 4 is formed along an inner surface of an opening window 31 of a board 30 for light distribution, arranged on one surface side of a base board (base board part) 20 where an LED chip 1 is mounted on the one surface side thereof. In the light detection element 4, at least a portion of: a first electrode 47c electrically connected to the light reception part 4c forms a reflective film 147c formed along the inner surface of the opening window 31 for transmitting a portion of light emitted from the LED chip 1 and entering therein and reflecting residual light; and a second electrode 47d electrically connected to an n-type region 4d in contact with the light reception part 4c has a reflecting function part 147d for reflecting the light having passed through the light reception part 4c to the light reception part 4c side.

Description

本発明は、LEDチップ(発光ダイオードチップ)を用いた発光装置に関するものである。   The present invention relates to a light emitting device using an LED chip (light emitting diode chip).

従来から、LEDチップと、LEDチップを駆動する駆動回路部と、LEDチップから放射される光を検出する光検出素子と、光検出素子の出力が予め設定された目標値に保たれるように駆動回路部からLEDチップへ流れる電流をフィードバック制御する制御回路部とを備えた照明装置が提案されている(例えば、特許文献1参照)。   Conventionally, an LED chip, a drive circuit unit that drives the LED chip, a light detection element that detects light emitted from the LED chip, and an output of the light detection element are maintained at a preset target value. There has been proposed a lighting device including a control circuit unit that feedback-controls a current flowing from a drive circuit unit to an LED chip (see, for example, Patent Document 1).

ここにおいて、上記特許文献1には、図7に示すように、発光色の異なる複数種のLEDチップ101a,101b,101cを実装基板102の一表面に形成した収納凹所102aの内底面に実装するとともに、実装基板102の上記一表面側に各LEDチップ101a,101b,101cを覆う形で各LEDチップ101a,101b,101cを封止する透明樹脂層103を設け、透明樹脂層103の側方に各LEDチップ101a,101b,101cから放射された光を検出するフォトダイオードからなる光検出素子104a,104b,104cが形成された光検出素子形成基板106を配置した発光装置が開示されている。   Here, in Patent Document 1, as shown in FIG. 7, a plurality of types of LED chips 101a, 101b, 101c having different emission colors are mounted on the inner bottom surface of a housing recess 102a formed on one surface of the mounting substrate 102. In addition, a transparent resin layer 103 for sealing the LED chips 101a, 101b, and 101c is provided on the one surface side of the mounting substrate 102 so as to cover the LED chips 101a, 101b, and 101c. Discloses a light emitting device in which a light detection element forming substrate 106 on which light detection elements 104a, 104b, and 104c formed of photodiodes that detect light emitted from the LED chips 101a, 101b, and 101c are formed is disposed.

図7に示した構成の発光装置では、透明樹脂層103が、各LEDチップ101a,101b,101cから放射された光の一部を光検出素子104a,104b,104c側へ導光する機能を有するように透明樹脂層103の厚さ寸法を設定してある。また、図7に示した構成の発光装置では、各LEDチップ101a,101b,101cそれぞれの発光色の波長域の光を選択的に透過させる3つの分光フィルタ105a,105b,105cを各光検出素子104a,104b,104cの受光面側に択一的に設けてあり、各LEDチップ101a,101b,101cそれぞれの発光色の波長域の光を3つの光検出素子104a,104b,104cで同時かつ各別に検出することができるようになっている。したがって、図7に示した構成の発光装置を備えた照明装置では、制御回路部によって駆動回路部から各LEDチップ101a,101b,101cへ流れる電流それぞれをフィードバック制御することにより、各発光色ごとのLEDチップ101a,101b,101cの光出力の経時変化の違いなどによらず所望の光色や色温度の混色光(例えば、LEDチップ101aの発光色が赤色、LEDチップ101bの発光色が緑色、LEDチップ101cの発光色が青色であれば、白色光)を得ることができる。   In the light emitting device having the configuration shown in FIG. 7, the transparent resin layer 103 has a function of guiding a part of the light emitted from the LED chips 101a, 101b, and 101c to the photodetecting elements 104a, 104b, and 104c. Thus, the thickness dimension of the transparent resin layer 103 is set. Further, in the light emitting device having the configuration shown in FIG. 7, the three spectral filters 105a, 105b, and 105c that selectively transmit light in the wavelength regions of the emission colors of the respective LED chips 101a, 101b, and 101c are provided to the respective light detection elements. 104a, 104b, and 104c are provided alternatively on the light receiving surface side, and light of each LED chip 101a, 101b, and 101c in the wavelength region of the emission color is simultaneously and three times detected by the three photodetectors 104a, 104b, and 104c. It can be detected separately. Therefore, in the illuminating device including the light emitting device having the configuration shown in FIG. 7, the control circuit unit feedback-controls each of the currents flowing from the drive circuit unit to the LED chips 101a, 101b, and 101c. Regardless of the change in the light output of the LED chips 101a, 101b, and 101c over time, the mixed color light of a desired light color and color temperature (for example, the light emission color of the LED chip 101a is red, the light emission color of the LED chip 101b is green, If the emission color of the LED chip 101c is blue, white light can be obtained.

また、上記特許文献1には、LEDチップ101aが発光する期間とLEDチップ101bが発光する期間とLEDチップ101cが発光する期間とが時系列的に現れるように、制御回路部によって駆動回路部を制御することにより、発光色の異なる複数種のLEDチップ101a,101b,101cの光出力を1つの光検出素子により各別に検出する技術も開示されている。   Further, in the above-mentioned Patent Document 1, the drive circuit unit is arranged by the control circuit unit so that the period in which the LED chip 101a emits light, the period in which the LED chip 101b emits light, and the period in which the LED chip 101c emits light appear in time series. A technique is also disclosed in which the light output of a plurality of types of LED chips 101a, 101b, and 101c having different emission colors is individually detected by a single light detection element by being controlled.

また、上記特許文献1には、図8に示すように、実装基板102の一表面に形成された各収納凹所102aの内底面に発光色が同じLEDチップ101を実装するとともに、実装基板102の上記一表面に光検出素子104を実装し、透明樹脂層103によって各LEDチップ101および光検出素子104を覆った構成の発光装置も提案されている。   Further, in Patent Document 1, as shown in FIG. 8, the LED chip 101 having the same emission color is mounted on the inner bottom surface of each housing recess 102 a formed on one surface of the mounting substrate 102, and the mounting substrate 102 is also mounted. There has also been proposed a light emitting device having a configuration in which the light detecting element 104 is mounted on the one surface and each LED chip 101 and the light detecting element 104 are covered with a transparent resin layer 103.

しかしながら、図8のように、一表面にLEDチップ101を収納する収納凹所102aが形成された実装基板102の上記一表面上に光検出素子104を実装し、透明樹脂層103によってLEDチップ101および光検出素子104を覆うようにした構成の発光装置では、実装基板102の上記一表面に光検出素子104を配置するためのスペースを別途に確保する必要があり、実装基板102の平面サイズが大きくなってしまい、プリント基板などの回路基板への実装面積が大きくなってしまう。   However, as shown in FIG. 8, the light detection element 104 is mounted on the one surface of the mounting substrate 102 in which the housing recess 102 a for housing the LED chip 101 is formed on one surface, and the LED chip 101 is formed by the transparent resin layer 103. In the light-emitting device configured to cover the light detection element 104, it is necessary to separately secure a space for arranging the light detection element 104 on the one surface of the mounting substrate 102. This increases the mounting area on a circuit board such as a printed circuit board.

また、図7や図8に示した構成の発光装置では、透明樹脂層103を伝搬してきた光を光検出素子104a,104b,104c,104により検出する構成なので、LEDチップ101a,101b,101c,101から放射される光の強度を高精度に検出するのが難しく、しかも、光検出素子104a,104b,104c,104の検出精度が外乱光の影響を受けやすい。   Further, in the light emitting device having the configuration shown in FIGS. 7 and 8, since the light that has propagated through the transparent resin layer 103 is detected by the light detection elements 104a, 104b, 104c, 104, the LED chips 101a, 101b, 101c, It is difficult to detect the intensity of light emitted from 101 with high accuracy, and the detection accuracy of the light detection elements 104a, 104b, 104c, and 104 is easily affected by disturbance light.

これら図7や図8に示した構成の発光装置に対して、LEDチップから放射される光を精度良く検出することが可能で且つ回路基板への実装面積の縮小化を図れる発光装置として、図9に示すように、LEDチップ1と、LEDチップ1を収納する収納凹所2a’が一表面に形成され当該収納凹所2a’の内底面にLEDチップ1が実装される実装基板2’と、実装基板2’の上記一表面側で収納凹所2a’を閉塞する形で配設された透光性部材8と、LEDチップ1を封止した透光性封止材(例えば、シリコーン樹脂など)からなる封止部9とを備え、LEDチップ1から放射される光を検出する光検出素子4’が、実装基板2’における収納凹所2a’の周部から内方へ突出する突出部2c’に形成されてなる発光装置が提案されている(例えば、特許文献2参照)。   As a light-emitting device capable of accurately detecting light emitted from the LED chip and reducing the mounting area on the circuit board, the light-emitting device having the configuration shown in FIGS. As shown in FIG. 9, the LED chip 1 and a mounting substrate 2 ′ in which a housing recess 2 a ′ for housing the LED chip 1 is formed on one surface and the LED chip 1 is mounted on the inner bottom surface of the housing recess 2 a ′ The translucent member 8 disposed so as to close the housing recess 2a ′ on the one surface side of the mounting substrate 2 ′ and the translucent sealing material (for example, silicone resin) that seals the LED chip 1 And a light-detecting element 4 ′ that detects light emitted from the LED chip 1 protrudes inwardly from the peripheral portion of the housing recess 2a ′ in the mounting substrate 2 ′. A light emitting device formed in the portion 2c ′ has been proposed. For example, see Patent Document 2).

ここにおいて、実装基板2’は、シリコン基板20aを用いて形成されLEDチップ1が実装されるベース基板20と、シリコン基板40aを用いて形成され光取出窓41が形成されるとともに光検出素子4’が形成された光検出素子形成基板40と、シリコン基板30aを用いて形成されてなり光取出窓41に連通する開口窓31が形成されベース基板20と光検出素子形成基板40との間に介在する配光用基板30とで構成されており、光検出素子4’の一対の電極47c’,47d’は、配光用基板30に形成された貫通孔配線34c,34dおよびベース基板20に形成された貫通孔配線24c,24dを介して外部接続用電極27c,27dと電気的に接続されている。なお、LEDチップ1は、ベース基板20に形成された図示しない貫通孔配線を介して図示しない外部接続用電極と電気的に接続されている。   Here, the mounting substrate 2 ′ is formed using the silicon substrate 20 a and the base substrate 20 on which the LED chip 1 is mounted, the silicon substrate 40 a is formed, the light extraction window 41 is formed, and the light detection element 4. A light detecting element forming substrate 40 having a 'and an opening window 31 formed using the silicon substrate 30a and communicating with the light extraction window 41 is formed between the base substrate 20 and the light detecting element forming substrate 40. The pair of electrodes 47 c ′ and 47 d ′ of the light detection element 4 ′ are formed on the through hole wirings 34 c and 34 d formed on the light distribution substrate 30 and the base substrate 20. The external connection electrodes 27c and 27d are electrically connected via the formed through-hole wirings 24c and 24d. The LED chip 1 is electrically connected to an external connection electrode (not shown) through a through-hole wiring (not shown) formed in the base substrate 20.

上述の図9に示した構成の発光装置では、実装基板2’においてLEDチップ1を収納する収納凹所2a’の周部から内方へ突出する突出部2c’に、LEDチップ1から放射される光を検出する光検出素子4’が形成されているので、実装基板2’の上記一表面側において収納凹所2b’の周囲に光検出素子4’を配置するためのスペースを別途に確保する必要がなく、光検出素子4’を実装基板2’に設けながらも平面サイズの小型化が可能になるという利点がある。なお、図9に示した構成の発光装置では、光検出素子形成基板40の基礎となるシリコン基板40aの導電形がn形であり、光検出素子4’においてLEDチップ1からの光を受光する受光部4c’がp形領域により構成されている。言い換えれば、光検出素子4’は、受光部4c’がp形領域により構成され、光検出素子形成基板40において受光部4c’に接する領域がn形領域となっている。   In the light emitting device having the configuration shown in FIG. 9 described above, the LED chip 1 radiates to the projecting portion 2c ′ projecting inward from the peripheral portion of the housing recess 2a ′ that houses the LED chip 1 in the mounting substrate 2 ′. Since a light detecting element 4 ′ for detecting light is formed, a space for arranging the light detecting element 4 ′ around the housing recess 2b ′ is secured on the one surface side of the mounting substrate 2 ′. Therefore, there is an advantage that the planar size can be reduced while the photodetecting element 4 ′ is provided on the mounting substrate 2 ′. In the light emitting device having the configuration shown in FIG. 9, the conductivity type of the silicon substrate 40a serving as the basis of the light detection element forming substrate 40 is n-type, and the light detection element 4 ′ receives light from the LED chip 1. The light receiving portion 4c ′ is constituted by a p-type region. In other words, in the light detection element 4 ′, the light receiving portion 4 c ′ is configured by a p-type region, and a region in contact with the light receiving portion 4 c ′ in the light detection element forming substrate 40 is an n-type region.

しかして、図9に示した構成の発光装置の使用例として、例えば、LEDチップ1として赤色LEDチップを採用した発光装置と、LEDチップ1として緑色LEDチップを採用した発光装置と、LEDチップ1として青色LEDチップを採用した発光装置とを同一の回路基板上に近接して配置して、当該回路基板に各発光装置のLEDチップ1を駆動する駆動回路部と、各光検出素子4の出力がそれぞれの目標値に保たれるように駆動回路部から各発光色のLEDチップ1に流れる電流をフィードバック制御する制御回路部などを設けておくことにより、各光検出素子4それぞれの出力に基づいて各発光色のLEDチップ1の光出力を各別に制御することができ、各発光色ごとのLEDチップ1の光出力の経時変化の違いなどによらず混色光(ここでは、白色光)の光色や色温度の精度を向上することができる。要するに、所望の混色光を安定して得ることができる。   Thus, as examples of use of the light emitting device having the configuration shown in FIG. 9, for example, a light emitting device employing a red LED chip as the LED chip 1, a light emitting device employing a green LED chip as the LED chip 1, and the LED chip 1 A light emitting device adopting a blue LED chip as the same is arranged close to the same circuit board, and a drive circuit unit for driving the LED chip 1 of each light emitting device on the circuit board and an output of each light detection element 4 Is provided on the basis of the output of each light detection element 4 by providing a control circuit portion for feedback control of the current flowing from the drive circuit portion to the LED chip 1 of each light emitting color so that the respective target values are maintained. Thus, the light output of the LED chip 1 of each emission color can be controlled separately, and the color mixing is performed regardless of the temporal change in the light output of the LED chip 1 for each emission color. (Here, white light) can improve the accuracy of the light color and color temperature. In short, desired mixed color light can be stably obtained.

なお、上記特許文献2には、図9に示した構成の発光装置において、透光性部材8に、LEDチップ1から放射される光(例えば、青色光)によって励起されてLEDチップ1よりも長波長の光(例えば、黄色光)を放射する蛍光体を含有させておくことにより、LEDチップ1からの光と蛍光体からの光との混色光(例えば、白色光)を得ることができることも記載されている。   In the above-mentioned Patent Document 2, in the light emitting device having the configuration shown in FIG. 9, the translucent member 8 is excited by the light emitted from the LED chip 1 (for example, blue light) and more than the LED chip 1. By containing a phosphor that emits light having a long wavelength (for example, yellow light), mixed light (for example, white light) of light from the LED chip 1 and light from the phosphor can be obtained. Is also described.

また、従来から、図10に示すように、半導体レーザチップからなる発光素子101と、当該発光素子101を収納する収納凹所2b”が一表面に形成され発光素子101が実装されるとともに発光素子101から放射された光を検出するフォトダイオードからなる光検出素子4”が形成された実装基板2”とを備えた発光装置が提案されている(特許文献3参照)。ここにおいて、図10に示した構成の発光装置では、実装基板2”が1枚のn形シリコン基板200を用いて形成され、収納凹所2b”が異方性エッチングにより形成されており、当該収納凹所2b”は、内底面から離れるにつれて開口面積が徐々に大きくなっている。   Conventionally, as shown in FIG. 10, a light emitting element 101 made of a semiconductor laser chip and a housing recess 2b ″ for housing the light emitting element 101 are formed on one surface so that the light emitting element 101 is mounted and the light emitting element. There has been proposed a light-emitting device including a mounting substrate 2 ″ on which a light-detecting element 4 ″ made of a photodiode that detects light emitted from 101 is formed (see Patent Document 3). In the light emitting device having the structure shown, the mounting substrate 2 ″ is formed using one n-type silicon substrate 200, the storage recess 2b ″ is formed by anisotropic etching, and the storage recess 2b ″ The opening area gradually increases as the distance from the inner bottom surface increases.

また、図10に示した構成の発光装置は、光検出素子4”におけるp形領域からなる受光部4c”がn形シリコン基板200の一表面と収納凹所2b”の内側面とに沿って形成されている。また、図10に示した構成の発光装置は、n形シリコン基板200の上記一表面と収納凹所2b”の内底面および内側面とに跨って絶縁膜223が形成されており、光検出素子4”の一方の電極47c”が絶縁膜223に形成されたコンタクトホールを通して受光部4c”に電気的に接続され、他方の電極47d”が絶縁膜223に形成されたコンタクトホールを通してn形シリコン基板200と電気的に接続されている。ここにおいて、図10に示した構成の発光装置は、上記他方の電極47d”が絶縁膜223において受光部4c”に対応する部位上に延長されている。ここで、上記他方の電極47d”は、発光素子101からの光の一部を反射し残りの光を透過させる所定膜厚(例えば、100nm〜400nm)のAu膜からなる金属膜により構成されている。なお、図10中の一点鎖線は発光素子101から放射された光の光路を示しており、破線は上記他方の電極47d”を透過して光検出素子4”の受光部4c”に吸収される光の光路を示している。   Further, in the light emitting device having the configuration shown in FIG. 10, the light receiving portion 4c ″ composed of the p-type region in the light detecting element 4 ″ is provided along one surface of the n-type silicon substrate 200 and the inner surface of the housing recess 2b ″. 10, the light emitting device having the configuration shown in FIG. 10 has an insulating film 223 formed across the one surface of the n-type silicon substrate 200 and the inner bottom surface and inner side surface of the housing recess 2b ″. The one electrode 47c ″ of the light detecting element 4 ″ is electrically connected to the light receiving portion 4c ″ through the contact hole formed in the insulating film 223, and the other electrode 47d ″ is formed in the contact hole formed in the insulating film 223. And is electrically connected to the n-type silicon substrate 200. Here, in the light emitting device having the configuration shown in FIG. 10, the other electrode 47d ″ is extended on a portion of the insulating film 223 corresponding to the light receiving portion 4c ″. Here, the other electrode 47d ″ is formed of a metal film made of an Au film having a predetermined thickness (for example, 100 nm to 400 nm) that reflects part of the light from the light emitting element 101 and transmits the remaining light. 10, the alternate long and short dash line indicates the optical path of the light emitted from the light emitting element 101, and the broken line passes through the other electrode 47d ″ and is absorbed by the light receiving portion 4c ″ of the light detecting element 4 ″. It shows the optical path of the emitted light.

特開2002−344031号公報JP 2002-344031 A 特開2007−294834号公報JP 2007-294834 A 特開平7−297480号公報JP-A-7-297480

ところで、図9に示した構成の発光装置では、実装基板2’を3枚のシリコン基板20a,30a,40aを用いて形成する必要があり、構造が複雑になってしまうとともにコストが高くなってしまう。   By the way, in the light emitting device having the configuration shown in FIG. 9, it is necessary to form the mounting substrate 2 ′ using the three silicon substrates 20a, 30a, and 40a, which complicates the structure and increases the cost. End up.

また、図10に示した構成の発光装置は、発光素子101から放射される光の一部を第2の電極47d”を通して光検出素子4”の受光部4c”に入射させているにもかかわらず第2の電極47d”を透過した光の一部が受光部4c”も透過してn形シリコン基板200で吸収されてしまうので、受光部4c”の受光量が低下し、光検出素子4”の検出精度が低くなってしまう。なお、図9に示した構成の発光装置においても、受光部4c’に入射した光の一部が受光部4c’を透過してシリコン基板40aに吸収されてしまうので、受光部4c’の受光量が低下し、光検出素子4’の検出精度が低くなってしまう。   In the light emitting device having the configuration shown in FIG. 10, a part of the light emitted from the light emitting element 101 is incident on the light receiving portion 4c ″ of the light detecting element 4 ″ through the second electrode 47d ″. First, part of the light transmitted through the second electrode 47d ″ is also transmitted through the light receiving portion 4c ″ and absorbed by the n-type silicon substrate 200, so that the amount of light received by the light receiving portion 4c ″ is reduced, and the light detecting element 4 In the light emitting device having the configuration shown in FIG. 9, a part of the light incident on the light receiving portion 4c ′ is transmitted through the light receiving portion 4c ′ and absorbed by the silicon substrate 40a. As a result, the amount of light received by the light receiving portion 4c ′ decreases, and the detection accuracy of the light detection element 4 ′ decreases.

本発明は上記事由に鑑みて為されたものであり、その目的は、LEDチップから放射される光を検出する光検出素子を実装基板に設けた構成を採用しながらも、構造の簡略化を図れ、且つ、光検出素子の検出精度の向上を図れる発光装置を提供することにある。   The present invention has been made in view of the above reasons, and its purpose is to simplify the structure while adopting a configuration in which a light detection element for detecting light emitted from an LED chip is provided on a mounting substrate. Another object of the present invention is to provide a light emitting device that can improve the detection accuracy of the light detection element.

請求項1の発明は、LEDチップと、半導体基板を用いて形成されLEDチップが実装されるとともにLEDチップから放射される光を検出する光検出素子が設けられた実装基板とを備え、実装基板は、LEDチップが一表面側に実装されるベース基板部と、ベース基板部の前記一表面から離れるにつれて開口面積が徐々に大きくなる開口窓が形成され当該開口窓の内側に配置されるLEDチップの光の配光を制御する配光用基板部とで構成され、光検出素子の第1導電形の受光部が配光用基板部の開口窓の内側面に沿って形成され、光検出素子の一対の電極のうち、受光部に電気的に接続される第1の電極の少なくとも一部が、開口窓の内側面に沿って形成されて、LEDチップから放射され入射した光の一部を透過させ残りの光を反射する反射膜を構成し、配光用基板部において受光部に接する第2導電形の領域に電気的に接続される第2の電極が、LEDチップから放射され受光部を透過した光を受光部側へ反射する反射機能部を有することを特徴とする。   The invention of claim 1 includes an LED chip, and a mounting board that is formed using a semiconductor substrate and on which the LED chip is mounted and a light detection element that detects light emitted from the LED chip is provided. The LED chip is arranged on the inside of the base substrate part on which the LED chip is mounted on one surface side, and an opening window whose opening area gradually increases as the distance from the one surface of the base substrate part increases A light distribution substrate portion for controlling the light distribution of the light, a light receiving portion of the first conductivity type of the light detection element is formed along the inner surface of the opening window of the light distribution substrate portion, and the light detection element Of the pair of electrodes, at least a part of the first electrode electrically connected to the light receiving portion is formed along the inner surface of the opening window, and a part of the incident light emitted from the LED chip is obtained. Transmit and reflect the remaining light The second electrode that constitutes the reflective film and is electrically connected to the second conductivity type region in contact with the light receiving portion in the light distribution substrate portion emits light emitted from the LED chip and transmitted through the light receiving portion. It is characterized by having a reflection function part that reflects toward the surface.

この発明によれば、半導体基板を用いて形成される実装基板が、LEDチップが一表面側に実装されるベース基板部と、ベース基板部の前記一表面から離れるにつれて開口面積が徐々に大きくなる開口窓が形成され当該開口窓の内側に配置されるLEDチップの光の配光を制御する配光用基板部とで構成され、光検出素子の第1導電形の受光部が配光用基板部の開口窓の内側面に沿って形成されているので、LEDチップから放射される光を検出する光検出素子を実装基板に設けた構成を採用しながらも、従来のように3枚のシリコン基板を用いて実装基板を形成する場合に比べて構造の簡略化を図れ、しかも、光検出素子の一対の電極のうち受光部に電気的に接続される第1の電極の少なくとも一部が、開口窓の内側面に沿って形成されて、LEDチップから放射され入射した光の一部を透過させ残りの光を反射する反射膜を構成していることにより、第1の電極と反射膜とを別々に設けるよりも構造を簡略化でき、さらに、配光用基板部において受光部に接する第2導電形の領域に電気的に接続される第2の電極が、LEDチップから放射され受光部を透過した光を受光部側へ反射する反射機能部を有するので、実装基板での吸収損失を低減できるとともに、光検出素子の検出精度の向上を図れる。   According to the present invention, the mounting substrate formed using the semiconductor substrate has a base substrate portion on which the LED chip is mounted on one surface side, and an opening area gradually increases as the distance from the one surface of the base substrate portion increases. And a light distribution substrate portion for controlling the light distribution of the LED chip disposed inside the opening window, and the light receiving portion of the first conductivity type of the light detection element is the light distribution substrate. Since it is formed along the inner surface of the opening window of the part, it uses three pieces of silicon as in the past while adopting a structure in which the light detection element for detecting the light emitted from the LED chip is provided on the mounting substrate Compared with the case where a mounting substrate is formed using a substrate, the structure can be simplified, and at least a part of the first electrode electrically connected to the light receiving portion of the pair of electrodes of the photodetecting element is Formed along the inner surface of the opening window By constructing a reflective film that transmits a part of incident light emitted from the LED chip and reflects the remaining light, the structure can be simplified rather than providing the first electrode and the reflective film separately, Further, the second electrode electrically connected to the second conductivity type region in contact with the light receiving portion in the light distribution substrate portion reflects the light emitted from the LED chip and transmitted through the light receiving portion toward the light receiving portion. Since the functional portion is included, absorption loss in the mounting substrate can be reduced, and detection accuracy of the light detection element can be improved.

請求項2の発明は、請求項1の発明において、前記第2の電極は、前記配光用基板部における前記ベース基板部側とは反対側の表面において前記開口窓の周部に形成された縦穴に当該縦穴を充実する形で埋め込まれた部位を有し、当該部位が、前記反射機能部を構成していることを特徴とする。   According to a second aspect of the invention, in the first aspect of the invention, the second electrode is formed on a peripheral portion of the opening window on a surface of the light distribution substrate portion opposite to the base substrate portion side. It has the site | part embedded in the vertical hole in the form which fills the said vertical hole, The said site | part comprises the said reflection function part, It is characterized by the above-mentioned.

この発明によれば、前記第2の電極の前記反射機能部が、前記配光用基板部における前記ベース基板部側とは反対側の表面において前記開口窓の周部に形成された縦穴に当該縦穴を充実する形で埋め込まれているので、前記反射機能部が前記配光用基板部における前記ベース基板部側とは反対側の表面に対して傾斜する形で形成されている場合に比べて、外乱光が前記反射機能部で反射されて前記受光部の受光面側とは反対側から前記受光部へ入射するのを抑制することができる。   According to this invention, the reflection function portion of the second electrode is in a vertical hole formed in the peripheral portion of the opening window on the surface of the light distribution substrate portion opposite to the base substrate portion side. Since the vertical hole is embedded in a form that enhances, compared to the case where the reflection function portion is formed to be inclined with respect to the surface of the light distribution substrate portion opposite to the base substrate portion side. Then, it is possible to prevent disturbance light from being reflected by the reflection function unit and entering the light receiving unit from the side opposite to the light receiving surface side of the light receiving unit.

請求項3の発明は、請求項1の発明において、前記第2の電極は、前記配光用基板部における前記ベース基板部側とは反対側の表面において前記開口窓の周部に形成された縦穴の内面に沿って延長され、当該延長された部位が、前記反射機能部を構成していることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, the second electrode is formed on a peripheral portion of the opening window on a surface of the light distribution substrate portion opposite to the base substrate portion side. It is extended along the inner surface of a vertical hole, The said extended site | part comprises the said reflection function part, It is characterized by the above-mentioned.

この発明によれば、外乱光が前記反射機能部で反射されて前記受光部の受光面側とは反対側から前記受光部へ入射するのを抑制することができる。また、この発明によれば、前記反射機能部を請求項2の発明に比べて容易に形成することが可能となる。   According to this invention, it is possible to suppress disturbance light from being reflected by the reflection function unit and entering the light receiving unit from the side opposite to the light receiving surface side of the light receiving unit. In addition, according to the present invention, it is possible to easily form the reflection function portion as compared with the invention of claim 2.

請求項4の発明は、請求項1ないし請求項3の発明において、前記受光部が、前記ベース基板部の厚み方向において前記LEDチップよりも前記ベース基板部から離れた位置にあり、前記第2の電極の前記反射機能部における前記ベース基板部側の先端が、前記受光部よりも前記ベース基板部に近い位置にあることを特徴とする。   According to a fourth aspect of the present invention, in the first to third aspects of the invention, the light receiving portion is located farther from the base substrate portion than the LED chip in the thickness direction of the base substrate portion. The tip of the reflective function part of the electrode on the base substrate part side is closer to the base substrate part than the light receiving part.

この発明によれば、前記第2の電極の前記反射機能部における前記ベース基板部側の先端が、前記受光部よりも前記ベース基板部に近い位置にあるので、前記受光部を透過した光を前記反射機能部において前記受光部側へ効率良く反射することができる。   According to this invention, since the tip on the base substrate portion side of the reflection function portion of the second electrode is located closer to the base substrate portion than the light receiving portion, the light transmitted through the light receiving portion is transmitted. The reflection function unit can efficiently reflect light toward the light receiving unit.

請求項5の発明は、請求項1ないし請求項4の発明において、前記LEDチップ側から前記開口窓の内側面を正面視したときに前記第2の電極の前記反射機能部の外周線が前記受光部の外周線よりも外側にあることを特徴とする。   According to a fifth aspect of the present invention, in the first to fourth aspects of the invention, when the inner surface of the opening window is viewed from the LED chip side, the outer peripheral line of the reflective function portion of the second electrode is It exists in the outer side rather than the outer peripheral line of a light-receiving part, It is characterized by the above-mentioned.

この発明によれば、前記LEDチップ側から前記開口窓の内側面を正面視したときに前記第2の電極の前記反射機能部の外周線が前記受光部の外周線よりも外側にあるので、前記受光部を透過した光を前記反射機能部において前記受光部側へ効率良く反射することができる。   According to this invention, when the inner surface of the opening window is viewed from the LED chip side in front, the outer peripheral line of the reflective function part of the second electrode is outside the outer peripheral line of the light receiving part. The light transmitted through the light receiving part can be efficiently reflected to the light receiving part side in the reflection function part.

請求項6の発明は、請求項1ないし請求項5の発明において、前記実装基板は、前記ベース基板部に、前記光検出素子の各電極それぞれに電気的に接続される貫通孔配線が形成されてなることを特徴とする。   According to a sixth aspect of the present invention, in the first to fifth aspects of the present invention, the mounting substrate includes a through-hole wiring that is electrically connected to each electrode of the photodetecting element on the base substrate portion. It is characterized by.

この発明によれば、前記光検出素子の出力を前記実装基板の他表面側から取り出すことができるので、実装面積の縮小化を図れる。   According to the present invention, since the output of the photodetecting element can be taken out from the other surface side of the mounting substrate, the mounting area can be reduced.

請求項7の発明は、請求項1ないし請求項6の発明において、前記実装基板は、前記配光用基板部に、前記光検出素子の各電極それぞれに電気的に接続される貫通孔配線が形成されてなり、前記配光用基板部に形成された貫通孔配線が、前記LEDチップから放射され前記受光部を透過した光を前記受光部側へ反射する機能を有することを特徴とする。   According to a seventh aspect of the present invention, in the first to sixth aspects of the invention, the mounting substrate includes a through-hole wiring electrically connected to the respective electrodes of the light detection element on the light distribution substrate portion. The through-hole wiring formed in the light distribution substrate portion has a function of reflecting light emitted from the LED chip and transmitted through the light receiving portion toward the light receiving portion.

この発明によれば、前記配光用基板部に形成された貫通孔配線が、前記LEDチップから放射され前記受光部を透過した光を前記受光部側へ反射することができるので、前記受光部の受光量を増加でき、前記光検出素子の検出精度の向上を図れる。   According to this invention, since the through-hole wiring formed in the light distribution substrate part can reflect the light emitted from the LED chip and transmitted through the light receiving part to the light receiving part side, the light receiving part The amount of received light can be increased, and the detection accuracy of the light detection element can be improved.

請求項8の発明は、請求項1ないし請求項5の発明において、前記実装基板は、1枚の半導体基板を用いて形成されてなることを特徴とする。   According to an eighth aspect of the present invention, in any one of the first to fifth aspects, the mounting substrate is formed using a single semiconductor substrate.

この発明によれば、前記実装基板の前記ベース基板部と前記配光用基板部とを別々の半導体基板を用いて形成してから接合する場合に比べて、低コスト化および製造プロセスの簡略化を図れる。   According to this invention, compared with the case where the base substrate portion and the light distribution substrate portion of the mounting substrate are formed using separate semiconductor substrates and then bonded, the cost is reduced and the manufacturing process is simplified. Can be planned.

請求項1の発明では、LEDチップから放射される光を検出する光検出素子を実装基板に設けた構成を採用しながらも、構造の簡略化を図れ、且つ、光検出素子の検出精度の向上を図れるという効果がある。   In the invention of claim 1, the structure can be simplified and the detection accuracy of the light detection element can be improved while adopting a configuration in which the light detection element for detecting light emitted from the LED chip is provided on the mounting substrate. There is an effect that can be planned.

実施形態1の発光装置を示す概略断面図である。1 is a schematic cross-sectional view showing a light emitting device of Embodiment 1. FIG. 同上の発光装置の他の構成例の要部正面図である。It is a principal part front view of the other structural example of a light-emitting device same as the above. 同上の発光装置の別の構成例に関し、(a)は概略断面図、(b)は製造方法の説明図である。(A) is schematic sectional drawing, (b) is explanatory drawing of a manufacturing method regarding another structural example of a light-emitting device same as the above. 実施形態2の発光装置を示す概略断面図である。6 is a schematic cross-sectional view showing a light emitting device of Embodiment 2. FIG. 実施形態3の発光装置を示す概略断面図である。6 is a schematic cross-sectional view showing a light emitting device according to Embodiment 3. FIG. 実施形態4の発光装置を示す概略断面図である。6 is a schematic cross-sectional view showing a light emitting device according to Embodiment 4. FIG. 従来例を示し、(a)は概略平面図、(b)は(a)のA−A’概略断面図である。A prior art example is shown, (a) is a schematic plan view, and (b) is a schematic cross-sectional view along A-A 'of (a). 他の従来例を示す概略断面図である。It is a schematic sectional drawing which shows another prior art example. 別の従来例を示す概略断面図である。It is a schematic sectional drawing which shows another prior art example. さらに別の従来例を示す概略断面図である。It is a schematic sectional drawing which shows another prior art example.

(実施形態1)
本実施形態の発光装置は、図1に示すように、LEDチップ1と、LEDチップ1が実装されるとともにLEDチップ1から放射される光を検出する光検出素子4が設けられた実装基板2とを備えている。
(Embodiment 1)
As shown in FIG. 1, the light emitting device according to the present embodiment includes an LED chip 1 and a mounting substrate 2 on which the LED chip 1 is mounted and a light detection element 4 that detects light emitted from the LED chip 1 is provided. And.

ここにおいて、実装基板2は、第1のシリコン基板(半導体基板)20aを用いて形成されLEDチップ1が一表面側に実装されるベース基板20と、第2のシリコン基板30aを用いて形成されベース基板20の上記一表面から離れるにつれて開口面積が徐々に大きくなる開口窓31を有し当該開口窓31の内側に配置されるLEDチップ1の光の配光を制御する配光用基板部30とで構成され、光検出素子4の受光部4cが配光用基板30の開口窓31の内側面に沿って形成されている。また、ベース基板20と配光用基板30とで囲まれた空間には、透光性材料(例えば、シリコーン樹脂など)からなりLEDチップ1および当該LEDチップ1に接続されたボンディングワイヤ(図示せず)を封止した封止部(図示せず)が形成されている。   Here, the mounting substrate 2 is formed using a first silicon substrate (semiconductor substrate) 20a, a base substrate 20 on which the LED chip 1 is mounted on one surface side, and a second silicon substrate 30a. A light distribution substrate portion 30 that has an opening window 31 whose opening area gradually increases as the distance from the one surface of the base substrate 20 increases, and controls the light distribution of the LED chip 1 disposed inside the opening window 31. The light receiving portion 4c of the light detecting element 4 is formed along the inner surface of the opening window 31 of the light distribution substrate 30. In addition, a space surrounded by the base substrate 20 and the light distribution substrate 30 is made of a light-transmitting material (for example, silicone resin) and the LED chip 1 and bonding wires (not shown) connected to the LED chip 1. A sealing portion (not shown) is formed.

なお、本実施形態では、ベース基板20と配光用基板30とを接合することで実装基板2が形成されており、ベース基板20がベース基板部を構成し、配光用基板30が配光用基板部を構成しているが、ベース基板部と配光用基板部とを1枚のシリコン基板からなる半導体基板を用いて形成してもよい。   In the present embodiment, the mounting substrate 2 is formed by bonding the base substrate 20 and the light distribution substrate 30, the base substrate 20 constitutes the base substrate portion, and the light distribution substrate 30 is the light distribution. However, the base substrate portion and the light distribution substrate portion may be formed using a semiconductor substrate made of a single silicon substrate.

ベース基板20および配光用基板30の外周形状は矩形状であり、配光用基板30はベース基板20と同じ外形寸法に形成されている。   The outer peripheral shapes of the base substrate 20 and the light distribution substrate 30 are rectangular, and the light distribution substrate 30 is formed to have the same outer dimensions as the base substrate 20.

上述の第1のシリコン基板20aおよび第2のシリコン基板30aとしては、それぞれ、導電形がn形で一表面が(100)面の単結晶シリコン基板を用いており、配光用基板30の開口窓31の内側面が、アルカリ系溶液(例えば、TMAH溶液、KOH溶液など)を用いた異方性エッチングにより形成された(111)面により構成されている。   As the first silicon substrate 20a and the second silicon substrate 30a described above, single crystal silicon substrates each having an n-type conductivity and a (100) surface are used, and the openings of the light distribution substrate 30 are used. The inner surface of the window 31 is constituted by a (111) surface formed by anisotropic etching using an alkaline solution (for example, TMAH solution, KOH solution, etc.).

また、本実施形態の発光装置では、LEDチップ1として、結晶成長用基板として導電性基板を用い厚み方向の両面に電極(図示せず)が形成された可視光LEDチップを用いており、光検出素子4をフォトダイオードにより構成している。なお、LEDチップ1の構造や発光色などは特に限定するものではなく、厚み方向の一面側に両電極が形成されたものでもよいし、紫外線LEDチップでもよい。   In the light emitting device of this embodiment, the LED chip 1 uses a visible light LED chip in which a conductive substrate is used as a crystal growth substrate and electrodes (not shown) are formed on both surfaces in the thickness direction. The detection element 4 is constituted by a photodiode. The structure and emission color of the LED chip 1 are not particularly limited, and both electrodes may be formed on one surface side in the thickness direction, or an ultraviolet LED chip may be used.

ベース基板20は、第1のシリコン基板20aの上記一表面側に、LEDチップ1の厚み方向の一面側(図1における上面側)の電極が電気的に接続される第1の導体パターン(図示せず)と前記厚み方向の他面側(図1における下面側)の電極が電気的に接続される第2の導体パターン25aが形成されている。ここにおいて、ベース基板20は、LEDチップ1に電気的に接続された上記第1の導体パターンおよび第2の導体パターン25aとシリコン基板20aの他表面側に形成された2つの第1の外部接続用電極(図示せず)とがそれぞれ第1の貫通孔配線(図示せず)を介して電気的に接続されている。また、ベース基板20は、シリコン基板20aの上記一表面側に、配光用基板30と接合するための接合用金属層29も形成されている。   The base substrate 20 has a first conductor pattern (FIG. 1) in which an electrode on one surface side (upper surface side in FIG. 1) in the thickness direction of the LED chip 1 is electrically connected to the one surface side of the first silicon substrate 20a. A second conductor pattern 25a is formed to electrically connect electrodes on the other surface side (the lower surface side in FIG. 1) in the thickness direction. Here, the base substrate 20 has the first and second conductor patterns 25a and 25a electrically connected to the LED chip 1 and two first external connections formed on the other surface side of the silicon substrate 20a. The electrodes (not shown) are electrically connected via first through-hole wirings (not shown). The base substrate 20 is also formed with a bonding metal layer 29 for bonding to the light distribution substrate 30 on the one surface side of the silicon substrate 20a.

また、ベース基板20は、LEDチップ1が電気的に接続される第2の導体パターン25aを、LEDチップ1がダイボンディングされる矩形状のダイパッド部25aaと、ダイパッド部25aaに連続一体に形成され上記第1の貫通孔配線との接続部位となる引き出し配線部(図示せず)とで構成してある。要するに、LEDチップ1は、第2の導体パターン25aのダイパッド部25aaにダイボンディングされており、ダイパッド部25aa側の電極がダイパッド部25aaに接合されて電気的に接続され、光取り出し面側の電極が上記ボンディングワイヤを介して上記第1の導体パターンと電気的に接続されている。なお、LEDチップ1は、ダイパッド部25aaにAuSnの共晶接合により接合されているが、LEDチップ1とダイパッド部25aaとの接合方法は共晶接合に限らず、例えばAgペーストでもよい。また、LEDチップ1として厚み方向の上記一面側に両電極が形成されたものを用いる場合には、LEDチップ1とダイパッド部25aaとを樹脂により接着してLEDチップ1の両電極と上記第1の導体パターンおよび第2の導体パターン25の上記引き出し配線部とをそれぞれボンディングワイヤで電気的に接続するようにしてもよいが、放熱性の観点から、LEDチップ1とダイパッド部25aaとは熱伝導率の高い材料により接合することが好ましい。また、LEDチップ1への電気的な入力を考慮すれば、導電性を有し、且つ、マイグレーションが発生する可能性の小さな材料を用いるのが好ましい。   Further, the base substrate 20 is formed by continuously and integrally forming a second conductor pattern 25a to which the LED chip 1 is electrically connected, a rectangular die pad portion 25aa to which the LED chip 1 is die-bonded, and a die pad portion 25aa. A lead-out wiring portion (not shown) serving as a connection portion with the first through-hole wiring is configured. In short, the LED chip 1 is die-bonded to the die pad portion 25aa of the second conductor pattern 25a, and the electrode on the die pad portion 25aa side is joined to and electrically connected to the die pad portion 25aa, and the electrode on the light extraction surface side. Is electrically connected to the first conductor pattern via the bonding wire. The LED chip 1 is bonded to the die pad portion 25aa by AuSn eutectic bonding. However, the bonding method between the LED chip 1 and the die pad portion 25aa is not limited to eutectic bonding, and for example, Ag paste may be used. When the LED chip 1 having both electrodes formed on the one surface side in the thickness direction is used, the LED chip 1 and the die pad portion 25aa are bonded to each other by a resin, and the both electrodes of the LED chip 1 and the first electrode are bonded. However, from the viewpoint of heat dissipation, the LED chip 1 and the die pad portion 25aa are thermally conductive. It is preferable to join with a material having a high rate. In consideration of electrical input to the LED chip 1, it is preferable to use a material that is conductive and has a low possibility of migration.

また、ベース基板20は、第1のシリコン基板20aの上記他表面側に、第1のシリコン基板20aよりも熱伝導率の高い金属材料からなる矩形状の放熱用パッド部28が形成されており、ダイパッド部25aaと放熱用パッド部28とが第1のシリコン基板20aよりも熱伝導率の高い金属材料(例えば、Cuなど)からなる複数(本実施形態では、9つ)の円柱状のサーマルビア26を介して熱的に結合されており、LEDチップ1で発生した熱が各サーマルビア26および放熱用パッド部28を介して放熱されるようになっている。   The base substrate 20 has a rectangular heat radiation pad portion 28 made of a metal material having a higher thermal conductivity than the first silicon substrate 20a on the other surface side of the first silicon substrate 20a. The die pad portion 25aa and the heat radiating pad portion 28 are made of a plurality (9 in this embodiment) of columnar thermal materials made of a metal material (for example, Cu) having a higher thermal conductivity than the first silicon substrate 20a. They are thermally coupled via the vias 26 so that the heat generated in the LED chip 1 is dissipated through the thermal vias 26 and the heat dissipation pad portions 28.

ところで、ベース基板20は、第1のシリコン基板20aに、上記第1の導体パターンおよび第2の導体パターン25aそれぞれに電気的に接続される2つ上記第1の貫通孔配線それぞれが内側に形成される2つの第1の貫通孔(図示せず)と、上述の9つのサーマルビア26それぞれが内側に形成される9つ第2の貫通孔22bとが厚み方向に貫設され、第1のシリコン基板20aの上記一表面および上記他表面と各第1の貫通孔、各第2の貫通孔22bの内面とに跨って熱酸化膜(シリコン酸化膜)からなる第1の絶縁膜23が形成されており、上記第1の導体パターン、第2の導体パターン25a、接合用金属層29、上記各第1の外部接続用電極、放熱用パッド部28、上記各第1の貫通孔の内側に形成された上記各貫通孔配線、および各第2の貫通孔22bの内側に形成された各サーマルビア26が、第1のシリコン基板20aと電気的に絶縁されている。   By the way, in the base substrate 20, two first through-hole wirings that are electrically connected to the first conductor pattern and the second conductor pattern 25a are formed on the first silicon substrate 20a, respectively. The two first through holes (not shown) to be formed and the nine second through holes 22b in which each of the nine thermal vias 26 described above is formed are provided in the thickness direction. A first insulating film 23 made of a thermal oxide film (silicon oxide film) is formed across the one surface and the other surface of the silicon substrate 20a and the inner surfaces of the first through holes and the second through holes 22b. The first conductor pattern, the second conductor pattern 25a, the bonding metal layer 29, the first external connection electrodes, the heat dissipating pad portion 28, and the first through-holes. Each through-hole wiring formed above, Beauty each thermal via 26 formed inside each second through-hole 22b is electrically insulated from the first silicon substrate 20a.

ここにおいて、上記第1の導体パターン、第2の導体パターン25a、接合用金属層29、上記各第1の外部接続用電極、放熱用パッド部28は、第1の絶縁膜23上に形成されたTi膜と当該Ti膜上に形成されたAu膜との積層膜により構成されている。ここで、ベース基板20は、第1のシリコン基板20aの上記一表面側の上記第1の導体パターン、第2の導体パターン25a、接合用金属層29が同時に形成され、第1のシリコン基板20aの上記他表面側の上記各第1の外部接続用電極、放熱用パッド部28が同時に形成されている。なお、本実施形態では、第1の絶縁膜23上のTi膜の膜厚を15〜50nm、Ti膜上のAu膜の膜厚を500nmに設定してあるが、これらの数値は一例であって特に限定するものではない。また、各Au膜の材料は、純金に限らず不純物を添加したものでもよい。また、各Au膜と第1の絶縁膜23との間に密着性改善用の密着層としてTi膜を介在させてあるが、密着層の材料はTiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。また、上記第1の貫通孔配線およびサーマルビア26の材料としては、Cuを採用しているが、Cuに限らず、例えば、Niなどを採用してもよい。   Here, the first conductor pattern, the second conductor pattern 25a, the bonding metal layer 29, the first external connection electrodes, and the heat dissipation pad portion 28 are formed on the first insulating film 23. In other words, it is composed of a laminated film of a Ti film and an Au film formed on the Ti film. Here, in the base substrate 20, the first conductor pattern, the second conductor pattern 25a, and the bonding metal layer 29 on the one surface side of the first silicon substrate 20a are simultaneously formed, and the first silicon substrate 20a is formed. The first external connection electrodes and the heat radiation pad portion 28 on the other surface side are simultaneously formed. In this embodiment, the thickness of the Ti film on the first insulating film 23 is set to 15 to 50 nm, and the thickness of the Au film on the Ti film is set to 500 nm. However, these numerical values are examples. There is no particular limitation. Further, the material of each Au film is not limited to pure gold, and may be one added with impurities. In addition, although a Ti film is interposed as an adhesion layer for improving adhesion between each Au film and the first insulating film 23, the material of the adhesion layer is not limited to Ti, for example, Cr, Nb, Zr TiN, TaN, etc. may be used. Further, as the material of the first through-hole wiring and the thermal via 26, Cu is adopted, but not limited to Cu, for example, Ni may be adopted.

配光用基板30は、第2のシリコン基板30aの一表面側に、ベース基板20の接合用金属層29と接合される接合用金属層36が形成されている。また、配光用基板30は、第2のシリコン基板30aの他表面側に、光検出素子4の各電極47c,47dが形成されている。   In the light distribution substrate 30, a bonding metal layer 36 to be bonded to the bonding metal layer 29 of the base substrate 20 is formed on one surface side of the second silicon substrate 30a. The light distribution substrate 30 has the electrodes 47c and 47d of the light detection element 4 formed on the other surface side of the second silicon substrate 30a.

また、配光用基板30は、第2のシリコン基板30aの上記一表面および上記他表面と開口窓31の内側面とに跨って熱酸化膜(シリコン酸化膜)からなる第2の絶縁膜33が形成されており、接合用金属層36が、第2のシリコン基板30aと電気的に絶縁されている。ここにおいて、接合用金属層36は、第2の絶縁膜33上に形成されたTi膜と当該Ti膜上に形成されたAu膜との積層膜により構成されている。なお、本実施形態では、第2の絶縁膜33上のTi膜の膜厚を15〜50nm、Ti膜上のAu膜の膜厚を500nmに設定してあるが、これらの数値は一例であって特に限定するものではない。ここにおいて、各Au膜の材料は、純金に限らず不純物を添加したものでもよい。また、各Au膜と第2の絶縁膜33との間に密着性改善用の密着層としてTi膜を介在させてあるが、密着層の材料はTiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。   The light distribution substrate 30 includes a second insulating film 33 made of a thermal oxide film (silicon oxide film) across the one surface and the other surface of the second silicon substrate 30 a and the inner surface of the opening window 31. The bonding metal layer 36 is electrically insulated from the second silicon substrate 30a. Here, the bonding metal layer 36 is composed of a laminated film of a Ti film formed on the second insulating film 33 and an Au film formed on the Ti film. In this embodiment, the thickness of the Ti film on the second insulating film 33 is set to 15 to 50 nm, and the thickness of the Au film on the Ti film is set to 500 nm. However, these numerical values are only examples. There is no particular limitation. Here, the material of each Au film is not limited to pure gold, and may be added with impurities. In addition, although a Ti film is interposed as an adhesion layer for improving adhesion between each Au film and the second insulating film 33, the material of the adhesion layer is not limited to Ti, for example, Cr, Nb, Zr TiN, TaN, etc. may be used.

ところで、配光用基板30は、上述のように、開口窓31が、ベース基板10から離れるにつれて開口面積が徐々に大きくなるテーパ状に形成され、LEDチップ1から放射される光の一部を検出するフォトダイオードからなる光検出素子4の受光部4cが、第2のシリコン基板30aの上記他表面側で開口窓31の内側面に沿って形成されている。ここで、配光用基板30の開口窓31は、第2のシリコン基板30aを上記他表面側から、アルカリ系溶液(例えば、TMAH溶液、KOH溶液など)を用いて異方性エッチングすることにより形成されている。なお、配光用基板30の開口窓31は、アルカリ系溶液を用いた異方性エッチングに限らず、例えば、SFガスとCガスとの混合ガスを用いたドライエッチングなどによっても形成することができる。 By the way, as described above, the light distribution substrate 30 is formed in a tapered shape in which the opening window 31 gradually increases as the distance from the base substrate 10 increases, and a part of the light emitted from the LED chip 1 is obtained. A light receiving portion 4c of the light detecting element 4 made of a photodiode to be detected is formed along the inner surface of the opening window 31 on the other surface side of the second silicon substrate 30a. Here, the opening window 31 of the light distribution substrate 30 is obtained by anisotropically etching the second silicon substrate 30a from the other surface side using an alkaline solution (eg, TMAH solution, KOH solution, etc.). Is formed. Note that the opening window 31 of the light distribution substrate 30 is not limited to anisotropic etching using an alkaline solution, but also, for example, by dry etching using a mixed gas of SF 6 gas and C 4 F 8 gas. Can be formed.

また、配光用基板30の基礎となる第2のシリコン基板30aとしては、導電形がn形で抵抗率が10Ωcm程度の単結晶シリコン基板を用いており、第2のシリコン基板30aの厚さ寸法は、LEDセンサ1の厚さ寸法よりも大きく設定してある。   In addition, as the second silicon substrate 30a that is the basis of the light distribution substrate 30, a single crystal silicon substrate having an n-type conductivity and a resistivity of about 10 Ωcm is used. The thickness of the second silicon substrate 30a The dimension is set larger than the thickness dimension of the LED sensor 1.

また、光検出素子4は、フォトダイオードの高濃度のp形領域を構成する受光部4cが、一対の電極47c,47dのうちの一方の電極47cと電気的に接続され、フォトダイオードのn形領域4dを構成する第2のシリコン基板30aが、他方の電極47dと電気的に接続されている。ここにおいて、受光部4cを構成するp形領域は、第2のシリコン基板30aにおける当該p形領域の形成予定領域に第2のシリコン基板30aの上記他表面側からp形不純物(例えば、ボロンなど)のイオン注入を行った後に、酸化炉内でドライブを行うことにより形成することができる。なお、第2のシリコン基板30aの抵抗率の値は一例であって特に限定するものではない。また、本実施形態では、p形を第1導電形とし、n形を第2導電形としているが、これらは逆でもよく、第2のシリコン基板30aの導電形をp形として受光部4cの導電形をn形としてもよい。   Further, in the light detection element 4, the light receiving portion 4c constituting the high-concentration p-type region of the photodiode is electrically connected to one electrode 47c of the pair of electrodes 47c and 47d, so that the n-type of the photodiode is formed. The second silicon substrate 30a constituting the region 4d is electrically connected to the other electrode 47d. Here, the p-type region constituting the light receiving portion 4c is a p-type impurity (for example, boron or the like) from the other surface side of the second silicon substrate 30a to a region where the p-type region is to be formed in the second silicon substrate 30a. ) Ion implantation, and then driving in an oxidation furnace. Note that the resistivity value of the second silicon substrate 30a is an example and is not particularly limited. In this embodiment, the p-type is the first conductivity type and the n-type is the second conductivity type. However, these may be reversed, and the conductivity type of the second silicon substrate 30a is p-type and The conductivity type may be n-type.

また、ベース基板20と配光用基板30とで囲まれた空間に形成する上記封止部の透光性材料は、シリコーン樹脂に限らず、例えば、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、ガラスなどを採用してもよい。   Moreover, the translucent material of the said sealing part formed in the space enclosed by the base substrate 20 and the light distribution board | substrate 30 is not restricted to a silicone resin, For example, an acrylic resin, an epoxy resin, a polycarbonate resin, glass etc. May be adopted.

本実施形態の発光装置の製造にあたっては、LEDチップ1を実装したベース基板20と光検出素子4が形成された配光用基板30とを低温での直接接合が可能な常温接合法などにより接合する接合工程を行った後、上記封止部を形成する封止部形成工程を行うようにすればよい。常温接合法では、接合前に互いの接合表面へアルゴンのプラズマ若しくはイオンビーム若しくは原子ビームを真空中で照射して各接合表面の清浄化・活性化を行ってから、接合表面同士を接触させ、常温下で直接接合する。ここで、上述の接合工程では、ベース基板20の接合用金属層29と配光用基板30の接合用金属層36とが接合される。   In manufacturing the light emitting device according to the present embodiment, the base substrate 20 on which the LED chip 1 is mounted and the light distribution substrate 30 on which the light detection element 4 is formed are bonded by a room temperature bonding method or the like that can be directly bonded at a low temperature. What is necessary is just to perform the sealing part formation process which forms the said sealing part, after performing the joining process to perform. In the room temperature bonding method, each bonding surface is irradiated with argon plasma or ion beam or atomic beam in vacuum before bonding to clean and activate each bonding surface, and then the bonding surfaces are brought into contact with each other. Join directly at room temperature. Here, in the above-described bonding step, the bonding metal layer 29 of the base substrate 20 and the bonding metal layer 36 of the light distribution substrate 30 are bonded.

また、本実施形態の発光装置の製造にあたっては、上述の接合工程において、低温での直接接合が可能な常温接合法を採用しているので、接合工程でLEDチップ1のジャンクション温度が最大ジャンクション温度を超えるのを防止することができ、LEDチップに熱ダメージが生じるのを防止することができる。また、接合後にベース基板20および配光用基板30にひずみが発生することを防止することができるので、ベース基板20のひずみに起因した応力がLEDチップ1に発生するのを防止することができる。なお、上述の接合工程で採用している常温接合法では、各接合表面の清浄化・活性化を行ってから、常温下で適宜の荷重を印加しいているが、常温下に限らず、例えば、光検出素子4およびLEDチップ1へ熱ダメージが生じない温度(光検出素子4およびLEDチップ1それぞれのジャンクション温度が最大ジャンクション温度を超えない温度)であれば、加熱条件下(例えば、80℃〜100℃程度に加熱した条件下)において適宜の荷重を印加するようにしてもよく、加熱条件下において適宜の荷重を印加して接合することで、接合信頼性をより一層高めることが可能となる。   Further, in the manufacture of the light emitting device of the present embodiment, the room temperature bonding method capable of direct bonding at a low temperature is employed in the above-described bonding process, so that the junction temperature of the LED chip 1 is the maximum junction temperature in the bonding process. Can be prevented, and thermal damage to the LED chip can be prevented. Moreover, since it can prevent that the distortion | strain generate | occur | produces in the base substrate 20 and the light distribution board | substrate 30 after joining, it can prevent that the stress resulting from the distortion | strain of the base substrate 20 generate | occur | produces in the LED chip 1. . In addition, in the room temperature bonding method adopted in the above-described bonding process, an appropriate load is applied at room temperature after cleaning and activation of each bonding surface, but not limited to room temperature, for example, If the temperature does not cause thermal damage to the light detection element 4 and the LED chip 1 (the junction temperature of each of the light detection element 4 and the LED chip 1 does not exceed the maximum junction temperature), the heating condition (for example, 80 ° C.) (Appropriate load may be applied under a condition of heating to about 100 ° C.), and by applying an appropriate load under the heating condition and joining, it is possible to further improve the joining reliability. Become.

ところで、本実施形態の発光装置の製造にあたっては、上述の各シリコン基板20a,30aとして、それぞれベース基板20、配光用基板30を多数形成可能なウェハ状のもの(シリコンウェハ)を用い、上述の接合工程、封止部形成工程などの各工程をウェハレベルで行うことでウェハレベルパッケージ構造体を形成してから、ダイシング工程により発光装置のサイズに分割されている。したがって、ベース基板20と配光用基板30とが同じ外形サイズとなり、小型のチップパッケージを実現できるとともに、製造が容易になる。なお、本実施形態の発光装置では、例えば、金属ベースプリント配線板からなる回路基板などに実装して用いる場合、LEDチップ1の両電極に電気的に接続された各第1の外部接続用電極および放熱用パッド28それぞれを、回路基板において対応付けられた導体パターンと半田などからなる接合部を介して接合し、光検出素子4の各電極47c,47dを、回路基板において対応付けられた導体パターンとボンディングワイヤを介して電気的に接続すればよい。また、ベース基板20に上記第1の貫通孔配線を形成せずに、LEDチップ1の両電極それぞれを、回路基板において対応付けられた導体パターンとボンディングワイヤを介して電気的に接続するようにしてもよい。   By the way, in manufacturing the light emitting device of the present embodiment, a wafer-like one (silicon wafer) capable of forming a large number of base substrates 20 and light distribution substrates 30 is used as the silicon substrates 20a and 30a. The wafer level package structure is formed by performing each process such as the bonding process and the sealing part forming process at the wafer level, and then divided into the size of the light emitting device by the dicing process. Therefore, the base substrate 20 and the light distribution substrate 30 have the same outer size, so that a small chip package can be realized and manufacturing is facilitated. In the light emitting device of this embodiment, for example, when mounted on a circuit board made of a metal base printed wiring board, each first external connection electrode electrically connected to both electrodes of the LED chip 1 is used. Each of the heat dissipation pads 28 is bonded to a conductor pattern associated with the circuit board via a joint made of solder or the like, and the electrodes 47c and 47d of the photodetecting element 4 are connected to the conductor corresponding to the circuit board. What is necessary is just to electrically connect a pattern and a bonding wire. Further, without forming the first through-hole wiring in the base substrate 20, both the electrodes of the LED chip 1 are electrically connected to the corresponding conductor pattern on the circuit board through bonding wires. May be.

ところで、本実施形態の発光装置では、光検出素子4の一対の電極47c,47dのうち、受光部4cに電気的に接続される第1の電極47cの一部が、開口窓31の内側面に沿って形成されて、LEDチップ1から放射され入射した光の一部を透過させ残りの光を反射する反射膜147cを構成し、配光用基板30において受光部4cに接するn形領域(第2導電形の領域)である第2のシリコン基板30aに電気的に接続される第2の電極47dが、LEDチップ1から放射され受光部4cを透過した光を受光部4c側へ反射する反射機能部147dを有している。ここにおいて、各電極47c,47dの材料としては、例えば、AgやAlなどを採用すればよいが、これに限らず、LEDチップ1の発光波長における反射率などを考慮して適宜採用すればよい。   By the way, in the light emitting device of the present embodiment, a part of the first electrode 47c electrically connected to the light receiving portion 4c among the pair of electrodes 47c and 47d of the light detection element 4 is the inner surface of the opening window 31. A reflection film 147c is formed that passes through a part of incident light emitted from the LED chip 1 and reflects the remaining light. The n-type region (in contact with the light receiving portion 4c in the light distribution substrate 30) The second electrode 47d electrically connected to the second silicon substrate 30a, which is the second conductivity type region, reflects the light emitted from the LED chip 1 and transmitted through the light receiving portion 4c to the light receiving portion 4c side. A reflection function part 147d is provided. Here, as the material of each electrode 47c, 47d, for example, Ag or Al may be employed, but is not limited thereto, and may be appropriately employed in consideration of the reflectance at the emission wavelength of the LED chip 1 and the like. .

ここで、受光部4cに電気的に接続される第1の電極47cは、LEDチップ1から放射され入射した光の一部を透過させ残りの光を反射する機能を有する必要があるのに対して、第2のシリコン基板30aに電気的に接続される第2の電極47dは、LEDチップ1から放射され透光部4cを透過した光を受光部4c側へ反射する機能を有していればよいから、第1の電極47cと第2の電極47dとは互いに異なる材料により形成してもよい。また、第1の電極47cについても、第2のシリコン基板30aの上記他表面側に形成されてパッドとして機能する部分と、反射膜147cとして機能する部分とを互いに異なる材料により形成してもよい。同様に、第2の電極47dについても、第2のシリコン基板30aの上記他表面側に形成されてパッドとして機能する部分と、反射機能部147dとして機能する部分とを互いに異なる材料により形成してもよい。また、反射膜147cの材料によっては当該反射膜147cの経年劣化を防止するために、反射膜147上にSiO膜からなる保護膜を形成してもよい。 Here, the first electrode 47c electrically connected to the light receiving portion 4c needs to have a function of transmitting a part of the incident light emitted from the LED chip 1 and reflecting the remaining light. The second electrode 47d electrically connected to the second silicon substrate 30a has a function of reflecting the light emitted from the LED chip 1 and transmitted through the light transmitting portion 4c to the light receiving portion 4c side. Therefore, the first electrode 47c and the second electrode 47d may be formed of different materials. Also for the first electrode 47c, a portion that is formed on the other surface side of the second silicon substrate 30a and functions as a pad and a portion that functions as a reflective film 147c may be formed of different materials. . Similarly, also for the second electrode 47d, a portion that is formed on the other surface side of the second silicon substrate 30a and functions as a pad and a portion that functions as the reflection function portion 147d are formed of different materials. Also good. Depending on the material of the reflective film 147c, a protective film made of a SiO 2 film may be formed on the reflective film 147 in order to prevent the reflective film 147c from aging.

以上説明した本実施形態の発光装置では、実装基板2が、LEDチップ1が一表面側に実装されるベース基板部であるベース基板20と、ベース基板20の上記一表面から離れるにつれて開口面積が徐々に大きくなる開口窓31が形成され当該開口窓31の内側に配置されるLEDチップ1の光の配光を制御する配光用基板部である配光用基板30とで構成され、光検出素子4の受光部4cが配光用基板30の開口窓31の内側面に沿って形成されているので、LEDチップ1から放射される光を検出する光検出素子4を実装基板2に設けた構成を採用しながらも、図9に示した従来のように3枚のシリコン基板20a,30a,40aを用いて実装基板を形成する場合に比べて構造の簡略化を図れ、しかも、光検出素子4の一対の電極47c,47dのうち受光部4cに電気的に接続される第1の電極47cの少なくとも一部が、開口窓31の内側面に沿って形成されて、LEDチップ1から放射され入射した光の一部を透過させ残りの光を反射する反射膜147cを構成していることにより、第1の電極47cと反射膜147cとを別々に設けるよりも構造を簡略化でき、さらに、配光用基板30において受光部4cに接するn形領域4dに電気的に接続される第2の電極47dが、LEDチップ1から放射され受光部4cを透過した光を受光部4c側へ反射する反射機能部147dを有するので、実装基板2での吸収損失を低減できるとともに、光検出素子4の受光量の増大による検出精度の向上を図れる。また、本実施形態の発光装置では、LEDチップ1から斜め方向(LEDチップ1の光軸とは交差する方向)へ放射された光の一部を開口窓31の内側面で反射させることなく受光部4cへ直接入射させることができるので、光検出素子4の受光量の増大による検出精度の向上を図れる。   In the light emitting device of the present embodiment described above, the mounting substrate 2 has a base substrate 20 that is a base substrate portion on which the LED chip 1 is mounted on one surface side, and an opening area increases as the distance from the one surface of the base substrate 20 increases. A light distribution substrate 30 that is a light distribution substrate portion that controls the light distribution of the light emitted from the LED chip 1 that is formed inside the opening window 31 is formed. Since the light receiving portion 4 c of the element 4 is formed along the inner surface of the opening window 31 of the light distribution substrate 30, the light detection element 4 that detects light emitted from the LED chip 1 is provided on the mounting substrate 2. While adopting the configuration, the structure can be simplified compared to the case where the mounting substrate is formed using the three silicon substrates 20a, 30a, and 40a as in the prior art shown in FIG. 4 pair of electrodes 47 , 47d, at least part of the first electrode 47c electrically connected to the light receiving part 4c is formed along the inner surface of the opening window 31, and part of the light emitted from the LED chip 1 and incident thereon By configuring the reflective film 147c to transmit the light and reflect the remaining light, the structure can be simplified as compared to the case where the first electrode 47c and the reflective film 147c are separately provided. The second electrode 47d electrically connected to the n-type region 4d in contact with the light receiving part 4c has a reflection function part 147d that reflects the light emitted from the LED chip 1 and transmitted through the light receiving part 4c to the light receiving part 4c side. Therefore, the absorption loss in the mounting substrate 2 can be reduced, and the detection accuracy can be improved by increasing the amount of light received by the light detection element 4. In the light emitting device of the present embodiment, a part of the light emitted from the LED chip 1 in an oblique direction (a direction intersecting the optical axis of the LED chip 1) is received without being reflected by the inner surface of the opening window 31. Since the light can be directly incident on the portion 4c, the detection accuracy can be improved by increasing the amount of light received by the light detection element 4.

また、本実施形態の発光装置では、配光用基板30の基礎となる半導体基板として第2のシリコン基板30aを用いているので、配光用基板30の開口窓31を、アルカリ系溶液を用いた異方性エッチングにより精度良く形成することができる。つまり、配光用基板30の開口窓31を、エッチング速度の結晶面方位依存性を利用した異方性エッチングにより形成することができる。   In the light emitting device of this embodiment, since the second silicon substrate 30a is used as the semiconductor substrate serving as the basis of the light distribution substrate 30, an alkaline solution is used as the opening window 31 of the light distribution substrate 30. It can be formed with high accuracy by the anisotropic etching. That is, the opening window 31 of the light distribution substrate 30 can be formed by anisotropic etching utilizing the crystal plane orientation dependence of the etching rate.

また、本実施形態の発光装置では、光検出素子4の受光部4cが、ベース基板20の厚み方向においてLEDチップ1よりもベース基板20から離れた位置にあり、光検出素子4の第2の電極47dの反射機能部147dにおけるベース基板20側の先端が、受光部4cよりもベース基板20に近い位置にあるので、受光部4cを透過した光を反射機能部147dにおいて受光部4c側へ効率良く反射することができる。   In the light emitting device of this embodiment, the light receiving portion 4 c of the light detection element 4 is located farther from the base substrate 20 than the LED chip 1 in the thickness direction of the base substrate 20, and the second light detection element 4 Since the tip on the base substrate 20 side of the reflection function portion 147d of the electrode 47d is located closer to the base substrate 20 than the light receiving portion 4c, the light transmitted through the light receiving portion 4c is efficiently transmitted to the light receiving portion 4c side in the reflection function portion 147d. It can reflect well.

とろこで、本実施形態の発光装置は、光検出素子4の受光部4cが配光用基板30の開口窓31の周方向の全周に亘って形成してあるが、必ずしも全周に亘って形成する必要はなく、図2に示すように、LEDチップ1側から開口窓31の内側面を正面視したときに光検出素子4の第2の電極47dの反射機能部147dの外周線が受光部4cの外周線よりも外側にあるようにすれば、受光部4cを透過した光を反射機能部147dにおいて受光部4c側へ効率良く反射することができる。   In the light emitting device of this embodiment, the light receiving portion 4c of the light detection element 4 is formed over the entire circumference of the opening window 31 of the light distribution substrate 30, but it does not necessarily extend over the entire circumference. As shown in FIG. 2, when the inner surface of the opening window 31 is viewed from the LED chip 1 side, the outer peripheral line of the reflection function portion 147d of the second electrode 47d of the light detection element 4 is formed. If it is outside the outer peripheral line of the light receiving part 4c, the light transmitted through the light receiving part 4c can be efficiently reflected by the reflection function part 147d toward the light receiving part 4c.

また、光検出素子4の第2の電極47dは、配光用基板30におけるベース基板20側とは反対側の表面において開口窓31の周部に形成された縦穴30bに当該縦穴30bを充実する形で埋め込まれた部位を有し、当該部位が、上述の反射機能部147dを構成している。ここにおいて、縦穴30bは、例えば、誘導結合プラズマ型のドライエッチング装置などを利用して第2のシリコン基板30aの厚み方向に沿って形成してあり、開口面積が深さ位置によらず一様となっている。また、反射機能部147dは、CVD法もしくはスパッタ法とめっき法とを組み合わせて形成してある。   In addition, the second electrode 47d of the light detection element 4 enhances the vertical hole 30b in the vertical hole 30b formed in the peripheral portion of the opening window 31 on the surface of the light distribution substrate 30 opposite to the base substrate 20 side. It has a part embedded in a shape, and the part constitutes the above-described reflection function part 147d. Here, the vertical holes 30b are formed along the thickness direction of the second silicon substrate 30a using, for example, an inductively coupled plasma type dry etching apparatus, and the opening area is uniform regardless of the depth position. It has become. The reflection function portion 147d is formed by a combination of a CVD method or a sputtering method and a plating method.

しかして、本実施形態の発光装置では、光検出素子4の第2の電極47dの反射機能部147dが、配光用基板30におけるベース基板20側とは反対側の表面において開口窓31の周部に形成された縦穴30bに当該縦穴30bを充実する形で埋め込まれているので、図3(a)に示すように反射機能部147dが配光用基板30におけるベース基板20側とは反対側の表面に対して傾斜する形で形成されている場合に比べて、外乱光が反射機能部147dで反射されて受光部4cの受光面側とは反対側から受光部4cへ入射するのを抑制することができる。なお、図3(a)に示す構成の発光装置における反射機能部147dは配光用基板30におけるベース基板20側とは反対側の表面に対して傾斜する傾斜穴30cに当該傾斜穴30cを充実する形で埋め込まれているが、このような傾斜穴30cは、例えば、図3(b)に示すように、第2のシリコン基板30aの上記他表面側に逆テーパ状の開孔部を有するマスク層50を形成し、その後、同図中に矢印で示す方向から異方性の高いドライエッチングを行うようにすればよい。   Thus, in the light emitting device of the present embodiment, the reflection function portion 147d of the second electrode 47d of the light detection element 4 is located on the surface of the light distribution substrate 30 opposite to the base substrate 20 side. Since the vertical hole 30b is embedded in the vertical hole 30b formed in the part, the reflection function part 147d is opposite to the base substrate 20 side in the light distribution substrate 30 as shown in FIG. As compared with the case where it is formed so as to be inclined with respect to the surface of the light, disturbance light is reflected by the reflection function portion 147d and is prevented from entering the light receiving portion 4c from the side opposite to the light receiving surface side of the light receiving portion 4c. can do. In addition, the reflection function part 147d in the light emitting device having the configuration shown in FIG. 3A is provided with the inclined hole 30c in the inclined hole 30c inclined with respect to the surface of the light distribution substrate 30 opposite to the base substrate 20 side. For example, as shown in FIG. 3B, the inclined hole 30c has a reverse tapered opening on the other surface side of the second silicon substrate 30a. After forming the mask layer 50, dry etching with high anisotropy may be performed from the direction indicated by the arrow in the figure.

また、本実施形態の発光装置は、実装基板2に光検出素子4が設けられているので、例えば、LEDチップ1として赤色LEDチップを採用した発光装置と、LEDチップ1として緑色LEDチップを採用した発光装置と、LEDチップ1として青色LEDチップを採用した発光装置とを同一の配線基板(回路基板)上に近接して配置して、当該配線基板に各発光装置のLEDチップ1を駆動する駆動回路部と、各光検出素子4の出力がそれぞれの目標値に保たれるように駆動回路部から各発光色のLEDチップ1に流れる電流をフィードバック制御する制御回路部などを設けておくことにより、各光検出素子4それぞれの出力に基づいて各発光色のLEDチップ1の光出力を各別に制御することができ、各発光色ごとのLEDチップ1の光出力の経時変化の違いなどによらず混色光(ここでは、白色光)の光色や色温度の精度を向上することができる。要するに、所望の混色光を安定して得ることができる。   In the light emitting device of the present embodiment, since the light detection element 4 is provided on the mounting substrate 2, for example, a light emitting device employing a red LED chip as the LED chip 1 and a green LED chip as the LED chip 1 are employed. The light emitting device and the light emitting device adopting the blue LED chip as the LED chip 1 are arranged close to each other on the same wiring board (circuit board), and the LED chip 1 of each light emitting apparatus is driven on the wiring board. Provide a drive circuit unit and a control circuit unit that feedback-controls the current flowing from the drive circuit unit to the LED chip 1 of each emission color so that the output of each photodetecting element 4 is maintained at the target value. Thus, the light output of the LED chip 1 of each emission color can be controlled separately based on the output of each light detection element 4, and the light of the LED chip 1 for each emission color Aging of the differences, such as the independent without mixed color light of the force (in this case, white light) can improve the accuracy of the light color and color temperature. In short, desired mixed color light can be stably obtained.

(実施形態2)
本実施形態の発光装置の基本構成は実施形態1と略同じであり、図4に示すように、光検出素子4の第2の電極47dが、配光用基板30におけるベース基板20側とは反対側の表面において開口窓31の周部に形成された縦穴30bの内面(内側面および内底面)に沿って延長され、当該延長された部位が、反射機能部147dを構成している点が相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment. As shown in FIG. 4, the second electrode 47 d of the light detection element 4 is different from the base substrate 20 side of the light distribution substrate 30. It is extended along the inner surface (inner side surface and inner bottom surface) of the vertical hole 30b formed in the peripheral part of the opening window 31 on the surface on the opposite side, and the extended part constitutes the reflection function part 147d. Is different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態では、実施形態1に比べて、縦穴30bと受光部4cとの並び方向(図4の左右方向)における縦穴30bの開口幅を広く設定してあり、反射機能部147dをCVD法もしくはスパッタ法により形成してある。   In the present embodiment, compared to the first embodiment, the opening width of the vertical holes 30b in the direction in which the vertical holes 30b and the light receiving portions 4c are arranged (the left-right direction in FIG. 4) is set wider. It is formed by sputtering.

しかして、本実施形態の発光装置では、実施形態1と同様、外乱光が反射機能部で反射されて前記受光部の受光面側とは反対側から前記受光部へ入射するのを抑制することができる。また、本実施形態の発光装置では、実施形態1に比べて、反射機能部147dを容易に形成することが可能となる。   Thus, in the light emitting device of the present embodiment, as in the first embodiment, disturbance light is reflected by the reflection function unit and is prevented from entering the light receiving unit from the side opposite to the light receiving surface side of the light receiving unit. Can do. Further, in the light emitting device according to the present embodiment, it is possible to easily form the reflection function portion 147d as compared with the first embodiment.

ところで、実施形態1,2では、実装基板2を2枚の半導体基板(シリコン基板20a,30a)を用いて形成してあるが、1枚の半導体基板を用いて実装基板2を形成するようにしてもよく、この場合には、実装基板2のベース基板部と配光用基板部とを別々の半導体基板を用いて形成してから接合する場合に比べて、低コスト化および製造プロセスの簡略化を図れる。   In the first and second embodiments, the mounting substrate 2 is formed using two semiconductor substrates (silicon substrates 20a and 30a). However, the mounting substrate 2 is formed using one semiconductor substrate. In this case, it is possible to reduce the cost and simplify the manufacturing process as compared with the case where the base substrate portion and the light distribution substrate portion of the mounting substrate 2 are formed using separate semiconductor substrates and then bonded. Can be realized.

(実施形態3)
本実施形態の発光装置の基本構成は実施形態1と略同じであり、図5に示すように、実装基板2のベース基板20に、光検出素子4の各電極47c,47dそれぞれに電気的に接続される第2の貫通孔配線24c,24dが形成されている点などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 3)
The basic configuration of the light emitting device according to the present embodiment is substantially the same as that of the first embodiment. As shown in FIG. 5, the base substrate 20 of the mounting substrate 2 is electrically connected to the electrodes 47 c and 47 d of the light detection element 4. The difference is that the second through-hole wirings 24c and 24d to be connected are formed. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

配光用基板30は、第2のシリコン基板30aの上記一表面側に、光検出素子4の各電極47c,47dそれぞれと電気的に接続された導体パターン35c,35dが形成されており、ベース基板20は、第1のシリコン基板20aの上記一表面側に第2の貫通孔配線24c,24dそれぞれに電気的に接続された第3の導体パターン25cおよび第4の導体パターン25dが形成され、第1のシリコン基板20aの上記他表面側に第2の貫通孔配線24c,24dそれぞれに電気的に接続された第2の外部接続用電極27c,27dが形成されている。なお、配光用基板30の導体パターン35c,35dは、接合用金属層36と同じ材料で、接合用金属層36と同時に形成されている。また、ベース基板20は、第2の貫通孔配線24c,24dが内側に形成される第3の貫通孔22a,22aが上記第1の貫通孔、第2の貫通孔22bと同時に形成され、第2の貫通孔配線24c,24dが上記第1の貫通孔配線およびサーマルビア26と同じ材料で、これらと同時に形成されている。また、ベース基板20は、第2の外部接続用電極27c,27dが上記第1の外部接続用電極および放熱パッド部28と同じ材料で、これらと同時に形成されている。また、ベース基板20は、第3の導体パターン25cおよび第4の導体パターン25dが接合用金属層29と同じ材料で、接合用金属層29と同時に形成してある。   The light distribution substrate 30 is formed with conductor patterns 35c and 35d electrically connected to the electrodes 47c and 47d of the light detection element 4 on the one surface side of the second silicon substrate 30a. In the substrate 20, a third conductor pattern 25c and a fourth conductor pattern 25d electrically connected to the second through-hole wirings 24c and 24d are formed on the one surface side of the first silicon substrate 20a, Second external connection electrodes 27c and 27d electrically connected to the second through-hole wirings 24c and 24d, respectively, are formed on the other surface side of the first silicon substrate 20a. The conductor patterns 35 c and 35 d of the light distribution substrate 30 are formed of the same material as the bonding metal layer 36 and are formed at the same time as the bonding metal layer 36. In the base substrate 20, the third through holes 22a and 22a in which the second through hole wirings 24c and 24d are formed are formed at the same time as the first through hole 22b and the second through hole 22b. Two through-hole wirings 24c and 24d are formed of the same material as the first through-hole wiring and the thermal via 26, and are formed at the same time. In the base substrate 20, the second external connection electrodes 27c and 27d are formed of the same material as the first external connection electrode and the heat dissipation pad portion 28, and are formed at the same time. In the base substrate 20, the third conductor pattern 25 c and the fourth conductor pattern 25 d are formed of the same material as the bonding metal layer 29 and are formed simultaneously with the bonding metal layer 29.

しかして、本実施形態の発光装置では、光検出素子4の出力を実装基板2の他表面側から取り出すことができるので、実装面積の縮小化を図れる。なお、実施形態2において本実施形態と同様の第2の貫通孔配線24c,24dを設けるようにしてもよい。また、ベース基板部たるベース基板20と配光用基板部たる配光用基板30とを1枚のシリコン基板からなる半導体基板を用いて形成してもよく、この場合には、第2の貫通孔配線24c,24dの形成位置をベース基板部において配光用基板部に重ならない領域に配置するようにすればよい。   Therefore, in the light emitting device of this embodiment, the output of the light detection element 4 can be taken out from the other surface side of the mounting substrate 2, so that the mounting area can be reduced. In the second embodiment, second through-hole wirings 24c and 24d similar to the present embodiment may be provided. Further, the base substrate 20 as the base substrate portion and the light distribution substrate 30 as the light distribution substrate portion may be formed using a semiconductor substrate made of one silicon substrate. In this case, the second through-hole is formed. The formation positions of the hole wirings 24c and 24d may be arranged in a region that does not overlap the light distribution substrate portion in the base substrate portion.

(実施形態4)
本実施形態の発光装置の基本構成は実施形態3と略同じであり、図6に示すように、配光用基板30に、光検出素子4の各電極47c,47dそれぞれに電気的に接続される第3の貫通孔配線34c,34dが形成されてなり、配光用基板30に形成された第3の貫通孔配線34c,34dが、LEDチップ1から放射され受光部4cを透過した光を受光部4c側へ反射する機能を有するように配置されている点などが相違する。なお、実施形態3と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 4)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the third embodiment, and is electrically connected to the electrodes 47c and 47d of the light detection element 4 to the light distribution substrate 30, as shown in FIG. Third through-hole wirings 34c and 34d are formed, and the third through-hole wirings 34c and 34d formed in the light distribution substrate 30 emit light emitted from the LED chip 1 and transmitted through the light receiving portion 4c. A difference is that the light receiving unit 4c is arranged so as to have a function of reflecting toward the light receiving unit 4c. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 3, and description is abbreviate | omitted.

本実施形態における配光用基板30では、実施形態3において説明した導体パターン35c,35dが、光検出素子4の各電極47c,47dに対して第3の貫通孔配線34c,34dを介して電気的に接続されている。なお、配光用基板30は、上述の第3の貫通孔配線34c,34dそれぞれが内側に形成される2つの貫通孔32が第2のシリコン基板30aの厚み方向に貫設されており、第2の絶縁膜33が、第2のシリコン基板30aの上記一表面および上記他表面と各貫通孔32の内面とに跨って形成されている。   In the light distribution substrate 30 in the present embodiment, the conductor patterns 35c and 35d described in the third embodiment are electrically connected to the electrodes 47c and 47d of the light detection element 4 via the third through-hole wirings 34c and 34d. Connected. The light distribution substrate 30 has two through holes 32 formed inside each of the above-described third through hole wirings 34c and 34d so as to penetrate in the thickness direction of the second silicon substrate 30a. Two insulating films 33 are formed across the one surface and the other surface of the second silicon substrate 30 a and the inner surfaces of the through holes 32.

実施形態の発光装置の製造にあたって、ベース基板20と配光用基板30との接合工程では、ベース基板20の接合用金属層29と配光用基板30の接合用金属層36とが接合されるとともに、ベース基板20の第3の導体パターン25cおよび第4の導体パターン25dと配光用基板30の導体パターン35c,35dとが接合され電気的に接続される。ここにおいて、本実施形態では、ベース基板20側の各導体パターン25c,25dと配光用基板30側の各導体パターン35c,35dとの接合部位を、第2の貫通孔配線24c,24dおよび第3の貫通孔配線34c,34dに重なる領域からずらしてあるので、各導体パターン25c,25dと各導体パターン35c,35dとの互いの接合面の平坦度を高めることができ、接合歩留まりを高めることができるとともに接合信頼性を高めることができる。   In the manufacture of the light emitting device of the embodiment, in the bonding step of the base substrate 20 and the light distribution substrate 30, the bonding metal layer 29 of the base substrate 20 and the bonding metal layer 36 of the light distribution substrate 30 are bonded. At the same time, the third conductor pattern 25c and the fourth conductor pattern 25d of the base substrate 20 and the conductor patterns 35c and 35d of the light distribution substrate 30 are joined and electrically connected. Here, in the present embodiment, the joint portions between the conductor patterns 25c and 25d on the base substrate 20 side and the conductor patterns 35c and 35d on the light distribution substrate 30 side are connected to the second through-hole wirings 24c and 24d and the first through holes 24c and 24d. 3 is shifted from the region overlapping the three through-hole wirings 34c and 34d, the flatness of the joint surfaces of the conductor patterns 25c and 25d and the conductor patterns 35c and 35d can be increased, and the junction yield can be increased. In addition, the bonding reliability can be improved.

以上説明した本実施形態の発光装置では、反射機能部147dだけでなく、配光用基板30に形成された第3の貫通孔配線34c,34dが、LEDチップ1から放射され受光部4cを透過した光を受光部4c側へ反射することができるので、受光部4cの受光量を増加でき、光検出素子4の検出精度の向上を図れる。また、ベース基板部たるベース基板20と配光用基板部たる配光用基板30とを1枚のシリコン基板からなる半導体基板を用いて形成してもよく、この場合には、当該半導体基板の厚み方向において第2の貫通孔配線24c,24dと第3の貫通孔配線34c,34dとを連続させた形で形成すればよい。   In the light emitting device of the present embodiment described above, not only the reflection function unit 147d but also the third through-hole wirings 34c and 34d formed in the light distribution substrate 30 are emitted from the LED chip 1 and transmitted through the light receiving unit 4c. The reflected light can be reflected toward the light receiving unit 4c, so that the amount of light received by the light receiving unit 4c can be increased, and the detection accuracy of the light detecting element 4 can be improved. In addition, the base substrate 20 that is the base substrate portion and the light distribution substrate 30 that is the light distribution substrate portion may be formed using a semiconductor substrate made of one silicon substrate. The second through-hole wirings 24c, 24d and the third through-hole wirings 34c, 34d may be formed in a continuous manner in the thickness direction.

なお、上述の各実施形態の発光装置において、LEDチップ1から放射される光によって励起されてLEDチップ1よりも長波長の光を放射する蛍光体(図示せず)を含有した透光性材料(例えば、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、ポリカーボネート樹脂、ガラス、有機成分と無機成分とがnmレベルもしくは分子レベルで混合、結合した有機・無機ハイブリッド材料など)により形成された色変換部材を設けるようにしてもよい。   In addition, in the light-emitting device of each above-mentioned embodiment, the translucent material containing the fluorescent substance (not shown) which is excited by the light radiated | emitted from LED chip 1 and radiates | emits the light of longer wavelength than LED chip 1 For example, a color conversion member formed by a silicone resin, acrylic resin, epoxy resin, polycarbonate resin, glass, an organic / inorganic hybrid material in which an organic component and an inorganic component are mixed and bonded at the nm level or molecular level, and the like is provided. You may do it.

1 LEDチップ
2 実装基板
4 光検出素子
4c 受光部
4d n形領域
20 ベース基板(ベース基板部)
20a 第1のシリコン基板(半導体基板)
24c,24d 第2の貫通孔配線
30 配光用基板(配光用基板部)
30a 第2のシリコン基板(半導体基板)
30b 縦穴
31 開口窓
34c,34d 第3の貫通孔配線
47c 第1の電極
47d 第2の電極
147c 反射膜
147d 反射機能部
DESCRIPTION OF SYMBOLS 1 LED chip 2 Mounting board 4 Photodetection element 4c Light-receiving part 4d N-type area | region 20 Base substrate (base substrate part)
20a First silicon substrate (semiconductor substrate)
24c, 24d Second through hole wiring 30 Light distribution substrate (light distribution substrate portion)
30a Second silicon substrate (semiconductor substrate)
30b Vertical hole 31 Opening window 34c, 34d Third through-hole wiring 47c First electrode 47d Second electrode 147c Reflective film 147d Reflective function part

Claims (8)

LEDチップと、半導体基板を用いて形成されLEDチップが実装されるとともにLEDチップから放射される光を検出する光検出素子が設けられた実装基板とを備え、実装基板は、LEDチップが一表面側に実装されるベース基板部と、ベース基板部の前記一表面から離れるにつれて開口面積が徐々に大きくなる開口窓が形成され当該開口窓の内側に配置されるLEDチップの光の配光を制御する配光用基板部とで構成され、光検出素子の第1導電形の受光部が配光用基板部の開口窓の内側面に沿って形成され、光検出素子の一対の電極のうち、受光部に電気的に接続される第1の電極の少なくとも一部が、開口窓の内側面に沿って形成されて、LEDチップから放射され入射した光の一部を透過させ残りの光を反射する反射膜を構成し、配光用基板部において受光部に接する第2導電形の領域に電気的に接続される第2の電極が、LEDチップから放射され受光部を透過した光を受光部側へ反射する反射機能部を有することを特徴とする発光装置。   An LED chip and a mounting substrate formed using a semiconductor substrate and mounted with a light detection element for detecting light emitted from the LED chip are mounted on the surface of the mounting substrate. The base substrate portion mounted on the side and an opening window whose opening area gradually increases as the distance from the one surface of the base substrate portion is formed, and the light distribution of the LED chip disposed inside the opening window is controlled And a light receiving portion of a first conductivity type of the light detection element is formed along an inner surface of the opening window of the light distribution substrate portion, and among the pair of electrodes of the light detection element, At least a portion of the first electrode electrically connected to the light receiving portion is formed along the inner surface of the opening window, and transmits a part of the incident light emitted from the LED chip and reflects the remaining light. Make up the reflective film, The second electrode electrically connected to the region of the second conductivity type in contact with the light receiving portion in the light substrate portion has a reflection function portion that reflects the light emitted from the LED chip and transmitted through the light receiving portion toward the light receiving portion. A light-emitting device comprising: 前記第2の電極は、前記配光用基板部における前記ベース基板部側とは反対側の表面において前記開口窓の周部に形成された縦穴に当該縦穴を充実する形で埋め込まれた部位を有し、当該部位が、前記反射機能部を構成していることを特徴とする請求項1記載の発光装置。   The second electrode includes a portion embedded in a vertical hole formed in a peripheral portion of the opening window on a surface of the light distribution substrate portion opposite to the base substrate portion so as to fill the vertical hole. The light-emitting device according to claim 1, wherein the portion constitutes the reflection function section. 前記第2の電極は、前記配光用基板部における前記ベース基板部側とは反対側の表面において前記開口窓の周部に形成された縦穴の内面に沿って延長され、当該延長された部位が、前記反射機能部を構成していることを特徴とする請求項1記載の発光装置。   The second electrode is extended along the inner surface of a vertical hole formed in the peripheral portion of the opening window on the surface of the light distribution substrate portion opposite to the base substrate portion side, and the extended portion The light emitting device according to claim 1, wherein the light emitting device constitutes the reflection function unit. 前記受光部が、前記ベース基板部の厚み方向において前記LEDチップよりも前記ベース基板部から離れた位置にあり、前記第2の電極の前記反射機能部における前記ベース基板部側の先端が、前記受光部よりも前記ベース基板部に近い位置にあることを特徴とする請求項1ないし請求項3のいずれか1項に記載の発光装置。   The light receiving portion is located at a position farther from the base substrate portion than the LED chip in the thickness direction of the base substrate portion, and the tip on the base substrate portion side of the reflective function portion of the second electrode is The light-emitting device according to claim 1, wherein the light-emitting device is located closer to the base substrate portion than the light receiving portion. 前記LEDチップ側から前記開口窓の内側面を正面視したときに前記第2の電極の前記反射機能部の外周線が前記受光部の外周線よりも外側にあることを特徴とする請求項1ないし請求項4のいずれか1項に記載の発光装置。   2. The outer peripheral line of the reflection function part of the second electrode is located outside the outer peripheral line of the light receiving part when the inner surface of the opening window is viewed from the LED chip side. The light-emitting device according to any one of claims 4 to 4. 前記実装基板は、前記ベース基板部に、前記光検出素子の各電極それぞれに電気的に接続される貫通孔配線が形成されてなることを特徴とする請求項1ないし請求項5のいずれか1項に記載の発光装置。   6. The mounting board according to claim 1, wherein a through-hole wiring electrically connected to each electrode of the photodetecting element is formed in the base substrate portion. The light emitting device according to item. 前記実装基板は、前記配光用基板部に、前記光検出素子の各電極それぞれに電気的に接続される貫通孔配線が形成されてなり、前記配光用基板部に形成された貫通孔配線が、前記LEDチップから放射され前記受光部を透過した光を前記受光部側へ反射する機能を有することを特徴とする請求項1ないし請求項6のいずれか1項に記載の発光装置。   The mounting substrate is formed with through-hole wirings electrically connected to the respective electrodes of the light detection element in the light distribution substrate portion, and the through-hole wirings formed in the light distribution substrate portion. The light-emitting device according to claim 1, wherein the light-emitting device has a function of reflecting light emitted from the LED chip and transmitted through the light-receiving unit to the light-receiving unit side. 前記実装基板は、1枚の半導体基板を用いて形成されてなることを特徴とする請求項1ないし請求項5のいずれか1項に記載の発光装置。   The light-emitting device according to claim 1, wherein the mounting substrate is formed using a single semiconductor substrate.
JP2009152707A 2009-06-26 2009-06-26 Light-emitting device Withdrawn JP2011009559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152707A JP2011009559A (en) 2009-06-26 2009-06-26 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152707A JP2011009559A (en) 2009-06-26 2009-06-26 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2011009559A true JP2011009559A (en) 2011-01-13

Family

ID=43565859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152707A Withdrawn JP2011009559A (en) 2009-06-26 2009-06-26 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2011009559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230914B1 (en) 2011-09-23 2013-02-07 한국과학기술원 Photo-detection element embedded light emitting diode package
JP2017005198A (en) * 2015-06-15 2017-01-05 三菱電機株式会社 Light emitting device, display unit and display device
JP2018078157A (en) * 2016-11-08 2018-05-17 日亜化学工業株式会社 Semiconductor device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230914B1 (en) 2011-09-23 2013-02-07 한국과학기술원 Photo-detection element embedded light emitting diode package
JP2017005198A (en) * 2015-06-15 2017-01-05 三菱電機株式会社 Light emitting device, display unit and display device
JP2018078157A (en) * 2016-11-08 2018-05-17 日亜化学工業株式会社 Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JP5192666B2 (en) Light emitting device
JP5665160B2 (en) Light emitting device and lighting apparatus
JP5243806B2 (en) Ultraviolet light emitting device
JP2008235792A (en) Semiconductor device and production method therefor
JP2009272576A (en) Semiconductor light-emitting device
JP5010203B2 (en) Light emitting device
JP5010366B2 (en) Light emitting device
JP5010198B2 (en) Light emitting device
JP5390938B2 (en) Light emitting device
JP2011009559A (en) Light-emitting device
JP4877239B2 (en) Method for manufacturing light emitting device
JP5102652B2 (en) Light emitting device
JP5351624B2 (en) LED module
JP5010199B2 (en) Light emitting device
JP2009010048A (en) Light-emitting device
JP4948777B2 (en) Optical communication module
JP2009177095A (en) Light-emitting device
JP5320169B2 (en) Light emitting device
JP5249856B2 (en) Light emitting device
JP2010278316A (en) Light emitting device
JP2009177099A (en) Light-emitting device
WO2013021518A1 (en) Light emitting device
JP5102605B2 (en) Light emitting device and manufacturing method thereof
JP2009158506A (en) Light-emitting device
JP5475954B2 (en) Light emitting device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120904