JP2011005957A - 車両のエンジン始動制御装置 - Google Patents

車両のエンジン始動制御装置 Download PDF

Info

Publication number
JP2011005957A
JP2011005957A JP2009151500A JP2009151500A JP2011005957A JP 2011005957 A JP2011005957 A JP 2011005957A JP 2009151500 A JP2009151500 A JP 2009151500A JP 2009151500 A JP2009151500 A JP 2009151500A JP 2011005957 A JP2011005957 A JP 2011005957A
Authority
JP
Japan
Prior art keywords
engine
clutch
speed
torque
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009151500A
Other languages
English (en)
Other versions
JP5040965B2 (ja
Inventor
Koji Murakami
香治 村上
Michihiro Tabata
満弘 田畑
Hiroshi Sato
宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009151500A priority Critical patent/JP5040965B2/ja
Priority to PCT/IB2010/001519 priority patent/WO2010150081A2/en
Publication of JP2011005957A publication Critical patent/JP2011005957A/ja
Application granted granted Critical
Publication of JP5040965B2 publication Critical patent/JP5040965B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0241Clutch slip, i.e. difference between input and output speeds
    • B60W2510/025Slip change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

【課題】エンジン始動制御時におけるクラッチの振動を抑制すること。
【解決手段】エンジン10と、エンジン10のエンジン出力軸11に連結されたエンジン側回転軸63aと駆動輪WL,WR側の駆動輪側回転軸62cとの間の伝達トルク容量を変化させることが可能な第2クラッチ62と、駆動輪側回転軸62cに対して直接又は間接的に電気的なエネルギを動力として出力する電動機(モータ/ジェネレータ20)と、を備え、第2クラッチ62の係合制御に伴い伝達されたモータ/ジェネレータ20のモータトルクでエンジン10を始動させる場合、モータトルクによって上昇し始めたエンジン10のエンジン回転数が駆動輪側回転軸62cの回転数よりも高くなるときに第2クラッチ62の伝達トルク容量を減少させること。
【選択図】図1

Description

本発明は、エンジンとモータとの間でトルク伝達を可能にするクラッチが配設された車両のエンジン始動制御装置に関する。
従来、エンジンとモータとの間にクラッチを介在させている車両が知られている。例えば、下記の特許文献1及び2には、この種の車両の1つであるハイブリッド車両におけるエンジン始動制御装置であって、モータトルクとクラッチの伝達トルク容量(締結容量)を共に上昇させ、これによりエンジン回転数の上昇を図ってエンジンを始動させるものが記載されている。例えば、特許文献1に開示されているエンジン始動装置は、走行中にモータでエンジンを始動させる際のトルク抜け感を抑制すべく、クラッチの伝達トルク容量を第1速度で上昇させ、その後、その伝達トルク容量を第1速度よりも低い第2速度で上昇させる。一方、特許文献2に開示されているエンジン始動装置は、エンジンの初爆トルク伝達による駆動力変動を抑制すべく、エンジン始動の際に、目標エンジン回転数をクラッチのモータ側回転数以下となるように設定し、実エンジン回転数を目標エンジン回転数に追従させる。尚、クラッチの伝達トルク容量とは、クラッチが一方から他方へと伝え得るトルク容量のことである。例えば、クラッチにおいては、一方から入力されるトルクが伝達トルク容量よりも小さければその入力トルクを他方に伝えることができるが、一方から入力されるトルクが伝達トルク容量より大きくなっても伝達トルク容量分しか他方にトルク伝達できない。
特開2008−1349号公報 特開2006−298078号公報
この種の車両においては、モータトルクによるエンジンの始動時に、そのエンジンのエンジン回転数(換言するならばクラッチのエンジン側の回転数)がクラッチの駆動輪側回転軸の回転数(モータ側の回転数)を超えていく。そして、クラッチにおいては、エンジン回転数が駆動輪側回転軸の回転数よりも高くなるときに、クラッチ伝達トルクの向きが逆転して振動を発生させる。特に、その振動は、クラッチ伝達トルクが大きいほど大きくなる。
そこで、本発明は、かかる従来例の有する不都合を改善し、エンジン始動制御時におけるクラッチの振動を抑制することのできる車両のエンジン始動制御装置を提供することを、その目的とする。
上記目的を達成する為、請求項1記載の発明では、エンジンと、このエンジンのエンジン出力軸に連結されたエンジン側回転軸と駆動輪側の駆動輪側回転軸との間の伝達トルク容量を変化させることが可能なクラッチと、前記駆動輪側回転軸に対して直接又は間接的に電気的なエネルギを動力として出力する電動機と、を備えた車両のエンジン始動制御装置において、前記クラッチの係合制御に伴い伝達された前記電動機の出力トルクで前記エンジンを始動させる場合、前記電動機の出力トルクによって上昇し始めた前記エンジンのエンジン回転数が前記駆動輪側回転軸の回転数よりも高くなるときに前記クラッチの伝達トルク容量を減少させている。
また、上記目的を達成する為、請求項2記載の発明では、エンジンと、このエンジンのエンジン出力軸に連結されたエンジン側回転軸と駆動輪側の駆動輪側回転軸との間の伝達トルク容量を変化させることが可能なクラッチと、前記駆動輪側回転軸に対して直接又は間接的に電気的なエネルギを動力として出力する電動機と、を備えた車両のエンジン始動制御装置において、前記クラッチの係合制御に伴い伝達された前記電動機の出力トルクで前記エンジンを始動させる場合、前記電動機の出力トルクによって上昇し始めた前記エンジンのエンジン回転数が遅くとも前記駆動輪側回転軸の回転数と同一回転数になるまでに前記クラッチの伝達トルク容量を減少させている。
ここで、そのクラッチの伝達トルク容量は、請求項3記載の発明の如く、前記エンジン回転数が前記駆動輪側回転軸の回転数を上回ったときのトルク変動を抑える大きさまで減少させることが望ましい。
また、このクラッチの伝達トルク容量は、請求項4記載の発明の如く、伝達トルク容量の減少の前に、この伝達トルク容量の減少に伴うクラッチ伝達トルクの減少分を少なくとも補うよう増加させることが望ましい。
本発明に係る車両のエンジン始動制御装置は、エンジン回転数(クラッチのエンジン側回転軸の回転数)がクラッチの駆動輪側回転軸の回転数よりも高くなるときにクラッチの伝達トルク容量を減少させる。換言するならば、このエンジン始動制御装置は、そのエンジン回転数が遅くとも駆動輪側回転軸の回転数と同一回転数になるまでにクラッチの伝達トルク容量を減少させる。これが為、エンジン回転数が駆動輪側回転軸の回転数と同じ回転数まで上昇した時のクラッチ伝達トルクを減らすことができるので、クラッチ伝達トルクの向きが逆転した際の落差が小さくなる。従って、このエンジン始動制御装置は、エンジン回転数と駆動輪側回転軸の回転数とが同一回転数になる前後のクラッチにおける振動を抑えることができる。
図1は、本発明に係るエンジン始動制御装置が適用される車両の概略構成について説明する図である。 図2は、デュアルクラッチ機構の具体的構成を示す図である。 図3は、エンジン始動制御時の制御動作について説明するフローチャートである。 図4は、エンジン始動制御時におけるクラッチの伝達トルク容量の変化を従来例と比較したタイムチャートである。 図5は、エンジン始動制御時におけるクラッチ伝達トルク、モータトルク、駆動輪側回転数及びエンジン回転数を従来例と比較したタイムチャートである。 図6は、エンジン始動制御時におけるクラッチの伝達トルク容量の変化を他の従来例と比較したタイムチャートである。 図7は、エンジン始動制御時におけるクラッチ伝達トルク、モータトルク、駆動輪側回転数及びエンジン回転数を他の従来例と比較したタイムチャートである。 図8は、デュアルクラッチ機構の他の具体的構成を示す図である。
以下に、本発明に係る車両のエンジン始動制御装置の実施例を図面に基づいて詳細に説明する。尚、この実施例によりこの発明が限定されるものではない。
本発明に係る車両のエンジン始動制御装置の実施例を図1から図8に基づいて説明する。
図1には、本実施例のエンジン始動制御装置が制御対象とする車両の一例を示している。ここでは、その車両として、熱等のエネルギを機械的なエネルギに変換して動力として出力する原動機と電気的なエネルギを機械的なエネルギに変換して動力として出力する電動機とを動力源に用い、その動力源の動力が自動変速機を介して駆動輪側に伝えられるハイブリッド車両を例に挙げて説明する。図1の符号1は、本実施例のハイブリッド車両を示している。また、自動変速機としては、動力源からの動力を途切れることなく駆動力として駆動輪に伝達させる所謂デュアルクラッチ式変速機を例に挙げる。そのデュアルクラッチ式変速機は、大別すると、奇数の変速段(以下、「奇数段」という。)で構成された第1変速機構と、偶数の変速段(以下、「偶数段」という。)で構成された第2変速機構と、動力源と第1変速機構との間に介在して動力源からの動力を第1変速機構に伝達させ又は当該動力の伝達を遮断させる第1クラッチと、動力源と第2変速機構との間に介在して動力源からの動力を第2変速機構に伝達させ又は当該動力の伝達を遮断させる第2クラッチと、によって構成されている。
最初に、本実施例のハイブリッド車両1の構成について図1を用いて説明する。
このハイブリッド車両1には、原動機としてのエンジン10と、電動機としてのモータ/ジェネレータ20と、そのエンジン10やモータ/ジェネレータ20の動力(エンジントルクやモータトルク)を駆動力として左右夫々の駆動輪WL,WRに伝える動力伝達装置(後述する複数の変速段からなるデュアルクラッチ式変速機30や最終減速装置70)と、が設けられている。
また、このハイブリッド車両1には、そのエンジン10,モータ/ジェネレータ20及びデュアルクラッチ式変速機30の動作を制御する電子制御装置100が設けられている。その電子制御装置100は、図示しないCPU(中央演算処理装置),所定の制御プログラム等を予め記憶しているROM(Read Only Memory),そのCPUの演算結果を一時記憶するRAM(Random Access Memory),予め用意された情報等を記憶するバックアップRAM等で構成されている。
そのエンジン10としては、燃焼室内で燃料を燃焼させ、これにより発生した熱エネルギを機械的エネルギに変換する熱機関たる内燃機関、機関外部の熱源で機関内部の気体に対して加熱と冷却を繰り返し、その気体を膨張及び収縮させることによって熱エネルギを機械的エネルギに変換する熱機関たる外燃機関等が考えられる。ここでは、前者の内燃機関であって、ガソリンを燃料とし、図示しないピストンの往復運動によってエンジン出力軸(クランクシャフト)11から機械的な動力を出力する往復ピストン機関について例示する。
このエンジン10には図示しない燃料噴射装置及び点火装置が設けられており、これら燃料噴射装置及び点火装置は、その動作が電子制御装置100のエンジン制御手段によって制御される。そのエンジン制御手段は、燃料噴射装置の燃料噴射量や燃料噴射時期等を制御すると共に、点火装置の点火時期を制御して、エンジン出力軸11から出力される機械的な動力(つまりエンジントルク)の大きさを調整する。また、このエンジン10には、エンジン出力軸11の回転角度(クランク角)の検出を行うクランク角センサ12が用意されている。そのクランク角センサ12は、検出信号を電子制御装置100に送信し、電子制御装置100は、その検出信号に基づいてエンジン回転数NEの演算を行う。
モータ/ジェネレータ20は、供給された電力を機械的な動力(つまりモータトルク)に変換して出力するモータとしての機能と、入力された機械的な動力を電力に変換して回収するジェネレータとしての機能と、を兼ね備えている。このモータ/ジェネレータ20は、例えば永久磁石型交流同期電動機として構成されており、インバータ27から三相の交流電力が供給されて回転磁界を形成するステータ21と、その回転磁界に引き付けられて回転する回転子としてのロータ22と、を有している。このモータ/ジェネレータ20においては、ロータ22の回転角位置を検出する図示しない回転センサ(レゾルバ)が設けられており、その回転センサが検出信号を電子制御装置100に送信する。
本実施例においては、モータ/ジェネレータ20のモータトルクを後述する第2変速機構50に入力させる一方、第2変速機構50からの機械的な動力に係るトルクをモータ/ジェネレータ20に入力させるように構成する。従って、その第2変速機構50の入力軸51は、モータ/ジェネレータ20のロータ22に連結させて、このモータ/ジェネレータ20の回転軸として機能させる。これが為、このモータ/ジェネレータ20は、モータとして作動させることによって、ロータ22から出力されたモータトルクを第2変速機構50に伝え、ジェネレータとして作動させることによって、第2変速機構50の入力軸51からの出力トルクがロータ22に伝達される。
ここで、二次電池28からの直流電力は、インバータ27で交流電力に変換してモータ/ジェネレータ20に供給することができる。その交流電力が供給されたモータ/ジェネレータ20は、モータとして作動して、ロータ22からモータトルクを出力する。一方、このモータ/ジェネレータ20をジェネレータとして作動させた際には、このモータ/ジェネレータ20からの交流電力をインバータ27で直流電力に変換して二次電池28に回収する(つまり電力の回生を行う)又は電力の回生を行いつつ駆動輪WL,WRに制動力を加える(つまり回生制動を行う)ことができる。その際、このモータ/ジェネレータ20は、第2変速機構50の入力軸51から出力された機械的な動力(出力トルク)がロータ22に入力されると、かかる入力トルクを交流電力に変換する。そのインバータ27の動作は、電子制御装置100のモータ/ジェネレータ制御手段によって制御される。
このハイブリッド車両1には、その二次電池28の充電状態(SOC:state of charge)を検出する電池監視ユニット29が設けられている。その電池監視ユニット29は、検出した二次電池28の充電状態に係る信号(換言するならば、充電状態量(SOC量)に関する信号)をモータ/ジェネレータECU102に送信する。そのモータ/ジェネレータECU102は、その信号に基づいて二次電池28の充電状態の判定を行い、その二次電池28の充電の要否を判定する。
動力伝達装置は、前述したようにエンジン10やモータ/ジェネレータ20の動力(エンジントルクやモータトルク)を駆動力として左右夫々の駆動輪WL,WRに伝えるものであって、その動力に係る出力トルクをデュアルクラッチ式変速機30及び最終減速装置70で変速及び減速して大きさを変化させ、左右夫々の駆動輪WL,WRに連結された駆動軸(ドライブシャフト)DL,DRに出力するものである。
ここで例示するデュアルクラッチ式変速機30は、前進5段、後退1段の変速段を有するものであって、前進用の変速段として第1速ギヤ段41,第2速ギヤ段52,第3速ギヤ段43,第4速ギヤ段54及び第5速ギヤ段45を備え、且つ、後退用の変速段として後退ギヤ段49を備えている。前進用の変速段は、変速比が第1速ギヤ段41,第2速ギヤ段52,第3速ギヤ段43,第4速ギヤ段54,第5速ギヤ段45の順に小さくなるよう構成している。
このデュアルクラッチ式変速機30には、複数種類の変速段からなる第1変速段群を有する第1変速機構40と、これらとは異なる複数種類の変速段からなる第2変速段群を有する第2変速機構50と、第1クラッチ61又は第2クラッチ62の内の何れか1つを用いてエンジン出力軸11からのエンジントルクを第1変速機構40又は第2変速機構50の内の何れか1つに伝達するデュアルクラッチ機構60と、が設けられている。
先ず、第1変速機構40について詳述する。この第1変速機構40は、各々の変速段に応じた複数の歯車対を備える平行軸歯車装置として構成されたものであり、第1変速段群として奇数段の第1速ギヤ段41,第3速ギヤ段43及び第5速ギヤ段45と、後退ギヤ段49と、を備えている。この第1変速機構40は、入力軸42に入力された入力トルクを第1変速段群(第1速ギヤ段41,第3速ギヤ段43、第5速ギヤ段45又は後退ギヤ段49)の内の何れか1つの変速段を用いて変速し、それをデュアルクラッチ式変速機30の出力軸31に向けて出力する。
この第1変速機構40の入力軸42には、その一端側にデュアルクラッチ機構60の第1クラッチ61が連結されている。従って、その入力軸42には、第1クラッチ61を介してエンジン10からのエンジントルクを入力することができる。つまり、この第1変速機構40の入力軸42への入力トルクとしては、第1クラッチ61を介したエンジン10のエンジントルクが該当する。
第1速ギヤ段41は、互いに噛み合い状態にある第1速メインギヤ41aと第1速カウンタギヤ41cの歯車対で構成する。その第1速メインギヤ41aは、第1変速機構40の入力軸42と一体になって回転できるよう当該入力軸42に取り付ける。一方、第1速カウンタギヤ41cは、第1変速機構40の出力軸44に対して相対回転できるよう当該出力軸44に取り付ける。その入力軸42と出力軸44は、所定の間隔を空けて平行に配置されている。
ここで、第1変速機構40には、相対回転し得る第1速カウンタギヤ41cと出力軸44とが一体になって回転できるよう必要に応じてこれらを係合させる第1速カップリング機構41dを備えている。その第1速カップリング機構41dは、第1速カウンタギヤ41cと出力軸44とが一体回転するように係合させる係合状態と、その第1速カウンタギヤ41cと出力軸44とが相対回転するように解放(非係合)させる解放状態(非係合状態)と、の切り替えができるように構成されている。例えば、この第1速カップリング機構41dには、図示しないが、その係合状態を作り出すシフト係合スリーブと、その解放状態を作り出すシフト解放スリーブと、これらシフト係合スリーブ又はシフト解放スリーブを動かして係合状態又は解放状態の切り替えを行うアクチュエータ(スリーブ操作モータ)と、が設けられている。そのアクチュエータは、その動作が電子制御装置100の変速制御手段に制御される。その変速制御手段は、第1速ギヤ段41が選択されたならば、第1速カップリング機構41dを係合状態となるように作動させて第1速ギヤ段41での変速動作が実行できるようにし、それ以外の変速段が選択されたならば、第1速ギヤ段41での変速動作を回避すべく第1速カップリング機構41dを解放状態(非係合状態)となるように作動させる。
デュアルクラッチ式変速機30において第1速ギヤ段41が選択された場合、電子制御装置100の変速制御手段は、第1速カウンタギヤ41cと出力軸44とが係合状態となるように第1速カップリング機構41dを作動させる。これにより、このデュアルクラッチ式変速機30においては、第1変速機構40の入力軸42における回転トルク(入力トルク)が第1速メインギヤ41aと第1速カウンタギヤ41cを介して出力軸44に伝わる。つまり、この場合には、入力軸42の回転トルクを第1速ギヤ段41で変速して変化させた回転トルク(出力トルク)が出力軸44に伝達される。
第3速ギヤ段43は、互いに噛み合い状態にある第3速メインギヤ43aと第3速カウンタギヤ43cの歯車対で構成する。その第3速メインギヤ43aは、第1変速機構40の入力軸42と一体になって回転できるよう当該入力軸42に取り付ける。一方、第3速カウンタギヤ43cは、第1変速機構40の出力軸44に対して相対回転できるよう当該出力軸44に取り付ける。
ここで、第1変速機構40には、相対回転し得る第3速カウンタギヤ43cと出力軸44とが一体になって回転できるよう必要に応じてこれらを係合させる第3速カップリング機構43dを備えている。その第3速カップリング機構43dは、第3速カウンタギヤ43cと出力軸44とが一体回転するように係合させる係合状態と、その第3速カウンタギヤ43cと出力軸44とが相対回転するように解放(非係合)させる解放状態(非係合状態)と、の切り替えができるように構成されている。例えば、この第3速カップリング機構43dは、第1速カップリング機構41dと同様のシフト係合スリーブ、シフト解放スリーブ及びアクチュエータ(スリーブ操作モータ)を備えている。電子制御装置100の変速制御手段は、第3速ギヤ段43が選択されたならば、第3速カップリング機構43dを係合状態となるように作動させて第3速ギヤ段43での変速動作が実行できるようにし、それ以外の変速段が選択されたならば、第3速ギヤ段43での変速動作を回避すべく第3速カップリング機構43dを解放状態(非係合状態)となるように作動させる。
デュアルクラッチ式変速機30において第3速ギヤ段43が選択された場合、電子制御装置100の変速制御手段は、第3速カウンタギヤ43cと出力軸44とが係合状態となるように第3速カップリング機構43dを作動させる。これにより、このデュアルクラッチ式変速機30においては、第1変速機構40の入力軸42における回転トルク(入力トルク)が第3速メインギヤ43aと第3速カウンタギヤ43cを介して出力軸44に伝わる。つまり、この場合には、入力軸42の回転トルクを第3速ギヤ段43で変速して変化させた回転トルク(出力トルク)が出力軸44に伝達される。
第5速ギヤ段45は、互いに噛み合い状態にある第5速メインギヤ45aと第5速カウンタギヤ45cの歯車対で構成する。その第5速メインギヤ45aは、第1変速機構40の入力軸42と一体になって回転できるよう当該入力軸42に取り付ける。一方、第5速カウンタギヤ45cは、第1変速機構40の出力軸44に対して相対回転できるよう当該出力軸44に取り付ける。
ここで、第1変速機構40には、相対回転し得る第5速カウンタギヤ45cと出力軸44とが一体になって回転できるよう必要に応じてこれらを係合させる第5速カップリング機構45dを備えている。その第5速カップリング機構45dは、第5速カウンタギヤ45cと出力軸44とが一体回転するように係合させる係合状態と、その第5速カウンタギヤ45cと出力軸44とが相対回転するように解放(非係合)させる解放状態(非係合状態)と、の切り替えができるように構成されている。例えば、この第5速カップリング機構45dは、第1速カップリング機構41dと同様のシフト係合スリーブ、シフト解放スリーブ及びアクチュエータ(スリーブ操作モータ)を備えている。電子制御装置100の変速制御手段は、第5速ギヤ段45が選択されたならば、第5速カップリング機構45dを係合状態となるように作動させて第5速ギヤ段45での変速動作が実行できるようにし、それ以外の変速段が選択されたならば、第5速ギヤ段45での変速動作を回避すべく第5速カップリング機構45dを解放状態(非係合状態)となるように作動させる。
デュアルクラッチ式変速機30において第5速ギヤ段45が選択された場合、電子制御装置100の変速制御手段は、第5速カウンタギヤ45cと出力軸44とが係合状態となるように第5速カップリング機構45dを作動させる。これにより、このデュアルクラッチ式変速機30においては、第1変速機構40の入力軸42における回転トルク(入力トルク)が第5速メインギヤ45aと第5速カウンタギヤ45cを介して出力軸44に伝わる。つまり、この場合には、入力軸42の回転トルクを第5速ギヤ段45で変速して変化させた回転トルク(出力トルク)が出力軸44に伝達される。
後退ギヤ段49は、後退メインギヤ49aと後退中間ギヤ49bと後退カウンタギヤ49cとで構成する。その後退メインギヤ49aは、第1変速機構40の入力軸42と一体になって回転できるよう当該入力軸42に取り付ける。後退中間ギヤ49bは、後退メインギヤ49a及び後退カウンタギヤ49cと噛み合い状態にあり、第1変速機構40の入力軸42や出力軸44とは別の回転軸49fと一体になって回転できるよう当該回転軸49fに取り付ける。後退カウンタギヤ49cは、第1変速機構40の出力軸44に対して相対回転できるよう当該出力軸44に取り付ける。
ここで、第1変速機構40には、相対回転し得る後退カウンタギヤ49cと出力軸44とが一体になって回転できるよう必要に応じてこれらを係合させる後退カップリング機構49dを備えている。その後退カップリング機構49dは、後退カウンタギヤ49cと出力軸44とが一体回転するように係合させる係合状態と、その後退カウンタギヤ49cと出力軸44とが相対回転するように解放(非係合)させる解放状態(非係合状態)と、の切り替えができるように構成されている。例えば、この後退カップリング機構49dは、第1速カップリング機構41dと同様のシフト係合スリーブ、シフト解放スリーブ及びアクチュエータ(スリーブ操作モータ)を備えている。電子制御装置100の変速制御手段は、後退ギヤ段49が選択されたならば、後退カップリング機構49dを係合状態となるように作動させて後退ギヤ段49での変速動作が実行できるようにし、それ以外の変速段が選択されたならば、後退ギヤ段49での変速動作を回避すべく後退カップリング機構49dを解放状態(非係合状態)となるように作動させる。
デュアルクラッチ式変速機30において後退ギヤ段49が選択された場合、電子制御装置100の変速制御手段は、後退カウンタギヤ49cと出力軸44とが係合状態となるように後退カップリング機構49dを作動させる。これにより、このデュアルクラッチ式変速機30においては、第1変速機構40の入力軸42における回転トルク(入力トルク)が後退メインギヤ49aと後退中間ギヤ49bと後退カウンタギヤ49cを介して出力軸44に伝わる。つまり、この場合には、入力軸42の回転トルクを後退ギヤ段49で変速して変化させた回転トルク(出力トルク)が出力軸44に伝達される。
この第1変速機構40の出力軸44には、この出力軸44と一体になって回転できるように第1駆動ギヤ44aが取り付けられている。また、その第1駆動ギヤ44aは、デュアルクラッチ式変速機30の出力軸31と一体になって回転する動力統合ギヤ32に噛み合わされている。従って、そのデュアルクラッチ式変速機30の出力軸31には、第1駆動ギヤ44aと動力統合ギヤ32のギヤ比に応じて変化させた第1変速機構40の出力軸44の回転トルク(出力トルク)が伝達される。その第1駆動ギヤ44a、動力統合ギヤ32及び出力軸31は、後述する最終減速装置70や駆動軸DL,DRと共に、第1変速機構40における変速後の出力トルクを駆動輪WL,WRに向けて伝達するトルク伝達手段を成す。
次に、第2変速機構50について詳述する。この第2変速機構50は、第1変速機構40と同じように各々の変速段に応じた複数の歯車対を備える平行軸歯車装置として構成されたものであり、偶数段の第2速ギヤ段52と第4速ギヤ段54を第2変速段群として備えている。この第2変速機構50は、入力軸51に入力された入力トルクを第2変速段群(第2速ギヤ段52又は第4速ギヤ段54)の内の何れか1つの変速段を用いて変速し、それをデュアルクラッチ式変速機30の出力軸31に向けて出力する。
この第2変速機構50の入力軸51には、その一端側にデュアルクラッチ機構60の第2クラッチ62が連結され、他端側に前述したようにモータ/ジェネレータ20が連結されている。従って、その入力軸51には、第2クラッチ62を介してエンジン10からのエンジントルクを入力することができ、また、モータ/ジェネレータ20からのモータトルクを入力することができる。つまり、この第2変速機構50への入力トルクとしては、第2クラッチ62を介したエンジン10のエンジントルクと、モータ/ジェネレータ20のモータトルクと、が該当する。
第2速ギヤ段52は、互いに噛み合い状態にある第2速メインギヤ52aと第2速カウンタギヤ52cの歯車対で構成する。その第2速メインギヤ52aは、第2変速機構50の入力軸51と一体になって回転できるよう当該入力軸51に取り付ける。一方、第2速カウンタギヤ52cは、第2変速機構50の出力軸53に対して相対回転できるよう当該出力軸53に取り付ける。その入力軸51と出力軸53は、所定の間隔を空けて平行に配置されている。
ここで、第2変速機構50には、相対回転し得る第2速カウンタギヤ52cと出力軸53とが一体になって回転できるよう必要に応じてこれらを係合させる第2速カップリング機構52dを備えている。その第2速カップリング機構52dは、第2速カウンタギヤ52cと出力軸53とが一体回転するように係合させる係合状態と、その第2速カウンタギヤ52cと出力軸53とが相対回転するように解放(非係合)させる解放状態(非係合状態)と、の切り替えができるように構成されている。例えば、この第2速カップリング機構52dは、第1速カップリング機構41dと同様のシフト係合スリーブ、シフト解放スリーブ及びアクチュエータ(スリーブ操作モータ)を備えている。電子制御装置100の変速制御手段は、第2速ギヤ段52が選択されたならば、第2速カップリング機構52dを係合状態となるように作動させて第2速ギヤ段52での変速動作が実行できるようにし、それ以外の変速段が選択されたならば、第2速ギヤ段52での変速動作を回避すべく第2速カップリング機構52dを解放状態(非係合状態)となるように作動させる。
デュアルクラッチ式変速機30において第2速ギヤ段52が選択された場合、電子制御装置100の変速制御手段は、第2速カウンタギヤ52cと出力軸53とが係合状態となるように第2速カップリング機構52dを作動させる。これにより、このデュアルクラッチ式変速機30においては、第2変速機構50の入力軸51における回転トルク(入力トルク)が第2速メインギヤ52aと第2速カウンタギヤ52cを介して出力軸53に伝わる。つまり、この場合には、入力軸51の回転トルクを第2速ギヤ段52で変速して変化させた回転トルク(出力トルク)が出力軸53に伝達される。
第4速ギヤ段54は、互いに噛み合い状態にある第4速メインギヤ54aと第4速カウンタギヤ54cの歯車対で構成する。その第4速メインギヤ54aは、第2変速機構50の入力軸51と一体になって回転できるよう当該入力軸51に取り付ける。一方、第4速カウンタギヤ54cは、第2変速機構50の出力軸53に対して相対回転できるよう当該出力軸53に取り付ける。
ここで、第2変速機構50には、相対回転し得る第4速カウンタギヤ54cと出力軸53とが一体になって回転できるよう必要に応じてこれらを係合させる第4速カップリング機構54dを備えている。その第4速カップリング機構54dは、第4速カウンタギヤ54cと出力軸53とが一体回転するように係合させる係合状態と、その第4速カウンタギヤ54cと出力軸53とが相対回転するように解放(非係合)させる解放状態(非係合状態)と、の切り替えができるように構成されている。例えば、この第4速カップリング機構54dは、第1速カップリング機構41dと同様のシフト係合スリーブ、シフト解放スリーブ及びアクチュエータ(スリーブ操作モータ)を備えている。電子制御装置100の変速制御手段は、第4速ギヤ段54が選択されたならば、第4速カップリング機構54dを係合状態となるように作動させて第4速ギヤ段54での変速動作が実行できるようにし、それ以外の変速段が選択されたならば、第4速ギヤ段54での変速動作を回避すべく第4速カップリング機構54dを解放状態(非係合状態)となるように作動させる。
デュアルクラッチ式変速機30において第4速ギヤ段54が選択された場合、電子制御装置100の変速制御手段は、第4速カウンタギヤ54cと出力軸53とが係合状態となるように第4速カップリング機構54dを作動させる。これにより、このデュアルクラッチ式変速機30においては、第2変速機構50の入力軸51における回転トルク(入力トルク)が第4速メインギヤ54aと第4速カウンタギヤ54cを介して出力軸53に伝わる。つまり、この場合には、入力軸51の回転トルクを第4速ギヤ段54で変速して変化させた回転トルク(出力トルク)が出力軸53に伝達される。
この第2変速機構50の出力軸53には、この出力軸53と一体になって回転できるように第2駆動ギヤ53aが取り付けられている。また、その第2駆動ギヤ53aは、前述した動力統合ギヤ32に噛み合わされている。従って、デュアルクラッチ式変速機30の出力軸31には、第2駆動ギヤ53aと動力統合ギヤ32のギヤ比に応じて変化させた第2変速機構50の出力軸53の回転トルク(出力トルク)が伝達される。その第2駆動ギヤ53a、動力統合ギヤ32及び出力軸31は、後述する最終減速装置70や駆動軸DL,DRと共に、第2変速機構50における変速後の出力トルクを駆動輪WL,WRに向けて伝達するトルク伝達手段を成す。
次に、デュアルクラッチ機構60について詳述する。このデュアルクラッチ機構60は、前述したように、第1クラッチ61又は第2クラッチ62の内の何れか1つを用いてエンジン10のエンジントルクを第1変速機構40又は第2変速機構50の内の何れか1つに伝達させるものである。
先ず、第1クラッチ61は、エンジン出力軸11と第1変速機構40の入力軸42とを係合させる係合状態と、そのエンジン出力軸11と入力軸42とを係合状態から解放(非係合)させる解放状態(非係合状態)と、の切り替えができるように構成された摩擦クラッチ装置である。ここで言う係合状態とは、そのエンジン出力軸11と入力軸42との間でトルクの伝達をし得る状態のことであり、解放状態(非係合状態)とは、そのエンジン出力軸11と入力軸42との間でのトルクの伝達が行えない状態のことである。
例えば、この第1クラッチ61としては、乾式又は湿式の単板クラッチ又は多板クラッチを使用すればよい。ここでは、円板状の摩擦板を有し、その摩擦板の摩擦力によりエンジン10からのエンジントルクを第1変速機構40に伝達する摩擦式ディスククラッチを用いる。この第1クラッチ61は、係合動作を行ってエンジン出力軸11と第1変速機構40の入力軸42とを係合状態にすることで、そのエンジン出力軸11から伝わってきたエンジントルクを入力軸42に伝達する。これにより、第1変速機構40においては、そのエンジントルクが第1速ギヤ段41、第3速ギヤ段43、第5速ギヤ段45又は後退ギヤ段49の内の何れかで変速されて出力軸44に伝わる。
また、第2クラッチ62は、エンジン出力軸11と第2変速機構50の入力軸51とを係合させる係合状態と、そのエンジン出力軸11と入力軸51とを係合状態から解放(非係合)させる解放状態(非係合状態)と、の切り替えができるように構成された摩擦クラッチ装置である。ここで言う係合状態とは、そのエンジン出力軸11と入力軸51との間でトルクの伝達をし得る状態のことであり、解放状態(非係合状態)とは、そのエンジン出力軸11と入力軸51との間でのトルクの伝達が行えない状態のことである。
例えば、この第2クラッチ62としては、第1クラッチ61と同様に、乾式又は湿式の単板クラッチ又は多板クラッチを使用すればよい。ここでは、円板状の摩擦板を有し、その摩擦板の摩擦力によりエンジン10からのエンジントルクを第2変速機構50に伝達する摩擦式ディスククラッチを用いる。この第2クラッチ62は、係合動作を行ってエンジン出力軸11と第2変速機構50の入力軸51とを係合状態にすることで、そのエンジン出力軸11から伝わってきたエンジントルクを入力軸51に伝達する。これにより、第2変速機構50においては、そのエンジントルクが第2速ギヤ段52又は第4速ギヤ段54の内の何れかで変速されて出力軸53に伝わる。
第1クラッチ61と第2クラッチ62は、その作動形態の切り替えが夫々に図1に示すアクチュエータ61a,62aを介して電子制御装置100に制御される。その電子制御装置100は、第1クラッチ61又は第2クラッチ62の内の何れか一方のみを係合状態に切り替えて、他方を解放状態(非係合状態)に切り替えるクラッチ制御手段を備えている。これが為、デュアルクラッチ機構60は、エンジン10のエンジントルクを第1変速機構40又は第2変速機構50の内の何れか一方にのみ伝達させることができる。また、そのクラッチ制御手段は、第1クラッチ61と第2クラッチ62の双方を解放状態(非係合状態)に切り替えできるようにも構成されている。これが為、デュアルクラッチ機構60は、エンジン10のエンジントルクを第1変速機構40にも第2変速機構50にも伝えないようにすることが可能である。
以下に、このデュアルクラッチ機構60の具体的な構造について図2を用いて詳述する。
このデュアルクラッチ機構60は、第1クラッチ61を構成する環状又は円板状の摩擦板61bと、第2クラッチ62を構成する環状又は円板状の摩擦板62bと、これら夫々の摩擦板61b,62bを収容するクラッチハウジング63と、を備えている。そのクラッチハウジング63は、エンジン出力軸11と同心円上に配置され、そのエンジン出力軸11に対してデュアルクラッチ機構60のエンジン側の回転軸(以下、「エンジン側回転軸」という。)63aを介して結合状態にある。従って、このクラッチハウジング63は、エンジン出力軸11と一体になって回転する。尚、そのエンジン側回転軸63aは、第1クラッチ61と第2クラッチ62とで共通の回転軸である。
ここで、第1変速機構40の入力軸42と第2変速機構50の入力軸51は、図2に示す如く、同軸上に配置された2重軸構造になっている。ここでは、その第1変速機構40の入力軸42を中空軸として成形し、この入力軸42の内方に第2変速機構50の入力軸51を配設して相互に相対回転できるように構成している。その第2変速機構50の入力軸51は、その一端を第1変速機構40の入力軸42よりもエンジン10側に向けて延伸させている。第1クラッチ61を成す摩擦板61bは、その第1変速機構40の入力軸42の一端に第1クラッチ61の駆動輪側の回転軸(以下、「駆動輪側回転軸」という。)61cを介して同心円上に取り付けられており、また、第2クラッチ62を成す摩擦板62bは、その第2変速機構50の入力軸51の一端に第2クラッチ62の駆動輪側回転軸62cを介して同心円上に取り付けられている。これら夫々の摩擦板61b,62bについても互いに相対回転を行う。
尚、本実施例のデュアルクラッチ式変速機30においては、エンジン出力軸11側からデュアルクラッチ式変速機30の出力軸31側に向けて、第1変速機構40の第1速ギヤ段41、第3速ギヤ段43、第5速ギヤ段45及び後退ギヤ段49における第1速メインギヤ41a、第3速メインギヤ43a、第5速メインギヤ45a及び後退メインギヤ49aが入力軸42上に配設され、次に、第2変速機構50の第2速ギヤ段52及び第4速ギヤ段54における第2速メインギヤ52a及び第4速メインギヤ54aが入力軸51上に配設されている。
第1クラッチ61は、上記の摩擦板61bに加えて、その摩擦板61bの摩擦材部分とは反対側の面に対向させて配置した摩擦板作動部材(図示略)と、この摩擦板作動部材を駆動させるアクチュエータ61aと、を備えている。そのアクチュエータ61aとしては、例えば回転数及び回転トルクを増減して摩擦板作動部材を駆動させるクラッチ操作モータを用いる。電子制御装置100のクラッチ制御手段は、第1クラッチ61を係合状態に切り替える際、回転数及び回転トルクを増減制御して、その摩擦板作動部材が摩擦板61bをクラッチハウジング63に押し付けるようにアクチュエータ61aを作動させる。これにより、摩擦板61bの摩擦材部分とクラッチハウジング63との間に摩擦力が発生し、その摩擦板61bとクラッチハウジング63とが一体となって一緒に回転し始める。このようにして、第1クラッチ61は、エンジン出力軸11と第1変速機構40の入力軸42とを係合させ、これらの間でのトルクの伝達を可能にする。ここで、アクチュエータ61aには、例えば油圧(以下、「第1クラッチ油圧」という。)の増減制御によって作動するものを利用してもよい。この場合のクラッチ制御手段は、第1クラッチ61を係合状態に切り替える際、第1クラッチ油圧を増圧制御して、その摩擦板作動部材が摩擦板61bをクラッチハウジング63に押し付けるようにアクチュエータ61aを作動させる。
クラッチ制御手段は、アクチュエータ61aの作動量(換言するならば、入力軸42とエンジン出力軸11との間の係合量であって、ここでは回転数及び回転トルクの変化量や第1クラッチ油圧の変化量)を調整し、摩擦板作動部材の移動量(換言するならば、摩擦板61bのクラッチハウジング63への押圧力)を制御して、第1クラッチ61の伝達トルク容量TC1を所望の大きさに変化させる。そして、このクラッチ制御手段は、その伝達トルク容量TC1を変化させることによって、解放状態、半係合状態及び完全係合状態の3つの作動状態を作り出す。その作動状態は、伝達トルク容量TC1が大きくなるにつれて、解放状態、半係合状態、完全係合状態の順に変移していく。ここで云う解放状態とは、摩擦板61bとクラッチハウジング63とが接触していない状態を指す。一方、半係合状態とは、摩擦板61bとクラッチハウジング63とがアクチュエータ61aの制御に伴い接触し、その摩擦板61bとクラッチハウジング63の回転(換言するならば、エンジン出力軸11と第1変速機構40の入力軸42の回転)が同期するまでの状態を指す。これが為、ここで言う完全係合状態とは、その摩擦板61bとクラッチハウジング63の回転が同期してからの状態を指す。ここで、半係合状態においては、第1クラッチ61の伝達トルク容量TC1が大きくなるほど半係合度合いがより完全係合状態に近づいていく。これら解放状態、半係合状態及び完全係合状態については、第2クラッチ62においても同様である。
この第1クラッチ61は、半係合状態と完全係合状態において、エンジン側回転軸63aの回転トルクが伝達トルク容量TC1よりも小さいときに、そのエンジン側回転軸63aの回転トルクを駆動輪側回転軸61cに伝達する。このときには、そのエンジン側回転軸63aの回転トルクと同じ大きさの回転トルクがクラッチ伝達トルクTC1rとして駆動輪側回転軸61cに伝達される。これに対して、エンジン側回転軸63aの回転トルクが伝達トルク容量TC1以上のときには、その伝達トルク容量TC1分しか駆動輪側回転軸61cに伝達されない。このときには、その伝達トルク容量TC1分と同じ大きさの回転トルクがクラッチ伝達トルクTC1rとして駆動輪側回転軸61cに伝達される。この逆もあり、駆動輪側回転軸61cの回転トルクが伝達トルク容量TC1よりも小さいときには、その駆動輪側回転軸61cの回転トルクと同じ大きさの回転トルクがクラッチ伝達トルクTC1rとしてエンジン側回転軸63aに伝達され、駆動輪側回転軸61cの回転トルクが伝達トルク容量TC1以上のときには、その伝達トルク容量TC1分と同じ大きさの回転トルクしかクラッチ伝達トルクTC1rとしてエンジン側回転軸63aに伝達されない。
そのクラッチ伝達トルクTC1rとは、エンジン側回転軸63aと駆動輪側回転軸61cとの間で実際に伝達されるトルクのことをいう。本実施例においては、このクラッチ伝達トルクTC1rについて、エンジン側回転軸63aから駆動輪側回転軸61cにトルクが伝達される場合を正とし、駆動輪側回転軸61cからエンジン側回転軸63aにトルクが伝達される場合を負とする。
また、この第1クラッチ61は、完全係合状態又は半係合状態から解放状態(非係合状態)へと切り替える際の形態として、アクチュエータ61aの作動を停止させ、弾性部の反発力等で摩擦板61bをクラッチハウジング63から切り離すものであってもよく、そのアクチュエータ61aを係合動作のときとは逆方向に作動させ、摩擦板作動部材を動かして摩擦板61bをクラッチハウジング63から切り離すものであってもよい。
第2クラッチ62は、上記の摩擦板62bに加えて、第1クラッチ61と同様の摩擦板作動部材(図示略)とアクチュエータ62aを備えている。クラッチ制御手段は、第2クラッチ62を係合状態に切り替える際、回転数及び回転トルクを増減制御して、その摩擦板作動部材が摩擦板62bをクラッチハウジング63に押し付けるようにアクチュエータ62aを作動させる。これにより、摩擦板62bの摩擦材部分とクラッチハウジング63との間に摩擦力が発生し、その摩擦板62bとクラッチハウジング63とが一体となって一緒に回転し始める。このようにして、第2クラッチ62は、エンジン出力軸11と第2変速機構50の入力軸51とを係合させ、これらの間でのトルクの伝達を可能にする。ここで、アクチュエータ62aには油圧(以下、「第2クラッチ油圧」という。)の増減制御によって作動するものを利用してもよく、この場合のクラッチ制御手段は、第2クラッチ62を係合状態に切り替える際、第2クラッチ油圧を増圧制御して、その摩擦板作動部材が摩擦板62bをクラッチハウジング63に押し付けるようにアクチュエータ62aを作動させる。
クラッチ制御手段は、アクチュエータ62aの作動量(換言するならば、入力軸51とエンジン出力軸11との間の係合量であって、ここでは回転数及び回転トルクの変化量や第2クラッチ油圧の変化量)を調整し、摩擦板作動部材の移動量(換言するならば、摩擦板62bのクラッチハウジング63への押圧力)を制御して、第2クラッチ62の伝達トルク容量TC2を所望の大きさに変化させる。そして、このクラッチ制御手段は、その伝達トルク容量TC2を変化させることによって、解放状態、半係合状態及び完全係合状態の3つの作動状態を作り出す。
この第2クラッチ62は、半係合状態と完全係合状態において、エンジン側回転軸63aの回転トルクが伝達トルク容量TC2よりも小さいときに、そのエンジン側回転軸63aの回転トルクを駆動輪側回転軸62cに伝達する。このときには、そのエンジン側回転軸63aの回転トルクと同じ大きさの回転トルクがクラッチ伝達トルクTC2rとして駆動輪側回転軸62cに伝達される。これに対して、エンジン側回転軸63aの回転トルクが伝達トルク容量TC2以上のときには、その伝達トルク容量TC2分しか駆動輪側回転軸62cに伝達されない。このときには、その伝達トルク容量TC2分と同じ大きさの回転トルクがクラッチ伝達トルクTC2rとして駆動輪側回転軸62cに伝達される。この逆もあり、駆動輪側回転軸62cの回転トルクが伝達トルク容量TC2よりも小さいときには、その駆動輪側回転軸62cの回転トルクと同じ大きさの回転トルクがクラッチ伝達トルクTC2rとしてエンジン側回転軸63aに伝達され、駆動輪側回転軸62cの回転トルクが伝達トルク容量TC2以上のときには、その伝達トルク容量TC2分と同じ大きさの回転トルクしかクラッチ伝達トルクTC2rとしてエンジン側回転軸63aに伝達されない。
そのクラッチ伝達トルクTC2rとは、エンジン側回転軸63aと駆動輪側回転軸62cとの間で実際に伝達されるトルクのことをいう。本実施例においては、このクラッチ伝達トルクTC2rについて、エンジン側回転軸63aから駆動輪側回転軸62cにトルクが伝達される場合を正とし、駆動輪側回転軸62cからエンジン側回転軸63aにトルクが伝達される場合を負とする。
また、このクラッチ制御手段は、半係合状態において、その伝達トルク容量TC2を変えて半係合度合いを調整する。
ここで、この第2クラッチ62は、第1クラッチ61と同様に、完全係合状態又は半係合状態から解放状態(非係合状態)へと切り替える際の形態として、アクチュエータ62aの作動を停止させ、反発力等で摩擦板62bをクラッチハウジング63から切り離すものであってもよく、そのアクチュエータ62aを係合状態のときとは逆方向に作動させ、摩擦板作動部材を動かして摩擦板62bをクラッチハウジング63から切り離すものであってもよい。
最終減速装置70は、デュアルクラッチ式変速機30の出力軸31から入力された入力トルクを減速して、左右夫々の駆動軸DL,DRに分配するものである。この最終減速装置70は、その出力軸31の端部に取り付けたピニオンギヤ71と、このピニオンギヤ71に噛み合い、このピニオンギヤ71の回転トルクを減速させつつ回転方向を直交方向へと変換するリングギヤ72と、このリングギヤ72を介して入力された回転トルクを左右夫々の駆動軸DL,DRに分配する差動機構73と、を備えている。そのピニオンギヤ71とリングギヤ72のギヤ比が最終減速装置70における最終減速比になる。
以上示したハイブリッド車両1において、電子制御装置100は、主として、その変速制御手段が一方の変速機構における要求変速段のカップリング機構を係合状態となるように作動させ、その要求変速段に対応するクラッチをクラッチ制御手段が係合させる。その際、この電子制御装置100は、変速制御手段が他方の変速機構における次の要求変速段のカップリング機構を係合状態となるように作動させ、かかる要求変速段に対応する他方のクラッチをクラッチ制御手段が解放させておく。この電子制御装置100は、次の要求変速段へと変速させるときに、クラッチ制御手段が現在の要求変速段に対応するクラッチを解放させると同時に、次の要求変速段に対応する他方のクラッチを係合させる。これにより、このハイブリッド車両1は、次の要求変速段への素早い変速が可能になり、エンジン10のエンジントルクを途切れることなく駆動力として駆動輪WL,WRに伝え続けることができる。
具体的に、第1変速機構40における第1速ギヤ段41、第3速ギヤ段43又は第5速ギヤ段45の中から要求変速段が選択された場合、電子制御装置100は、変速制御手段によってその要求変速段のカップリング機構(第1速カップリング機構41d、第3速カップリング機構43d又は第5速カップリング機構45d)を係合状態に制御し、且つ、クラッチ制御手段によって第1クラッチ61を完全係合状態となるように制御すると共に第2クラッチ62を解放状態に制御する。
更に、この制御と同時又はこの制御の後、変速制御手段は、第2変速機構50における次の要求変速段(加速中ならばアップシフト側の変速段、減速中ならばダウンシフト側の変速段であって、第2速ギヤ段52又は第4速ギヤ段54)のカップリング機構(第2速カップリング機構52d又は第4速カップリング機構54d)を係合状態に制御しておく。ここで、このときの第2変速機構50の出力軸53には、後述するエンジントルクによる第1変速機構40の出力軸44の回転トルクの一部が第1駆動ギヤ44a、動力統合ギヤ32及び第2駆動ギヤ53aを介して伝達されている。従って、このときには、その出力軸53の回転トルクが次の要求変速段で変速されて入力軸51に伝わり、その入力軸51を回転させる。つまり、このときの第2変速機構50においては、次の要求変速段を同調(シンクロ)した状態で待機させたまま入力軸51と出力軸53が第1変速機構40側の動力の一部によって回転している。
そのような変速制御手段とクラッチ制御手段の制御を行うことによって、このハイブリッド車両1においては、エンジン出力軸11のエンジントルクが半係合状態又は完全係合状態の第1クラッチ61を介して第1変速機構40の入力軸42にのみ伝わり、その入力軸42の回転トルクが要求変速段を介して変速されて第1変速機構40の出力軸44に伝達される。そして、その出力軸44の回転トルク(第1変速機構40の出力トルク)は、第1駆動ギヤ44a、動力統合ギヤ32及び最終減速装置70を介して減速され、その最終減速装置70の差動機構73によって左右夫々の駆動軸DL,DRに分配される。従って、この場合のハイブリッド車両1は、エンジン10のエンジントルクを第1変速機構40及び最終減速装置70で変速及び減速し、これにより得られる駆動力を各駆動輪WL,WRに伝達してエンジン走行モードで走行する。
ここで、そのエンジントルクが駆動輪WL,WR側に伝えられているときには、モータ/ジェネレータ20をモータとして作動させてもジェネレータとして作動させてもよい。つまり、エンジン10とモータ/ジェネレータ20を利用したハイブリッド走行モードでハイブリッド車両1を走行させてもよい。
例えば、モータ/ジェネレータ制御手段は、ハイブリッド走行モードにおいて、二次電池28への充電が不要(つまり二次電池28が必要充電量を満たしている)又は二次電池28の放電が可能ならば、モータ/ジェネレータ20をモータとして作動させる。ここでは第2クラッチ62が解放状態になっているので、第2変速機構50の入力軸51には、モータ/ジェネレータ20のモータトルクのみが入力されている。そして、その入力軸51の回転トルクは、待機状態にある次の要求変速段で変速されて出力軸53に伝わり、第2駆動ギヤ53a及び動力統合ギヤ32を介して出力軸31に伝達される。つまり、この場合には、第1変速機構40を経たエンジントルクによる回転トルクと第2変速機構50を経たモータトルクによる回転トルクとを足し合わせたものがデュアルクラッチ式変速機30の出力軸31に伝えられている。これが為、このハイブリッド車両1においては、その出力軸31の回転トルクが最終減速装置70で減速させられ、その最終減速装置70の差動機構73で左右夫々の駆動軸DL,DRに分配される。このように、ハイブリッド車両1は、第1変速機構40を介して伝えられたエンジン10のエンジントルクと、第2変速機構50を介して伝えられたモータ/ジェネレータ20のモータトルクと、を利用して走行することができる。
一方、このモータ/ジェネレータ制御手段は、ハイブリッド走行モードにおいて、二次電池28への充電が必要ならば、モータ/ジェネレータ20をジェネレータとして作動させる。その際、モータ/ジェネレータ20のロータ22(第2変速機構50の入力軸51)には、第1変速機構40の出力軸44から出力されたエンジントルクによる回転トルクの一部が第1駆動ギヤ44a、動力統合ギヤ32、第2駆動ギヤ53a、第2変速機構50の出力軸53及び待機状態にある次の要求変速段を介して伝わっている。これが為、このときには、エンジン10のエンジントルクを第1変速機構40で変速してハイブリッド車両1を走行させつつ、そのエンジントルクの一部を利用してモータ/ジェネレータ20で電力の回生を行うこともできる。
待機中の次の要求変速段への切り替えが要求されたとき、クラッチ制御手段は、第1クラッチ61を完全係合状態から解放状態に切り替えると共に、第2クラッチ62を解放状態から完全係合状態となるように切り替える。これにより、デュアルクラッチ式変速機30においては、待機状態にある次の要求変速段への変速が完了するので、エンジン出力軸11のエンジントルクが第2変速機構50の入力軸51にのみ伝えられ、その入力軸51の回転トルクが次の要求変速段で変速されて第2変速機構50の出力軸53に伝達されるようになる。これが為、その際のハイブリッド車両1においては、その出力軸53の回転トルクが第2駆動ギヤ53a、動力統合ギヤ32、最終減速装置70を介して左右夫々の駆動軸DL,DRに伝わる。
このハイブリッド車両1では、このクラッチ制御と同時又はこのクラッチ制御の後、変速制御手段が第1変速機構40における更に次の要求変速段(加速中ならばアップシフト側の変速段、減速中ならばダウンシフト側の変速段であって、第1速ギヤ段41、第3速ギヤ段43又は第5速ギヤ段45)のカップリング機構(第1速カップリング機構41d、第3速カップリング機構43d又は第5速カップリング機構45d)を係合状態に制御する。これにより、このときの第1変速機構40においては、待機状態にある更に次の要求変速段を介して入力軸42と出力軸44との間のトルク伝達が可能になっている。
このハイブリッド車両1は、かかる状態においても、二次電池28の充電状態に応じてモータ/ジェネレータ20の作動形態を決定し、ハイブリッド走行モードで走行することができる。
このハイブリッド走行モードにおいては、エンジン10とモータ/ジェネレータ20による総出力トルクを利用してハイブリッド車両1を走行させる場合、第2変速機構50の入力軸51における総出力トルクが現在の変速段(次の要求変速段)で変速された後、第2駆動ギヤ53a、動力統合ギヤ32及び最終減速装置70を介して左右夫々の駆動軸DL,DRに分配される。
一方、モータ/ジェネレータ制御手段は、ハイブリッド走行モードにおいて、二次電池28への充電が必要ならば、モータ/ジェネレータ20をジェネレータとして作動させる。その際、モータ/ジェネレータ20のロータ22には、第2変速機構50の入力軸51を介してエンジントルクの一部が入力される。これが為、このときには、エンジン10のエンジントルクを第2変速機構50で変速してハイブリッド車両1を走行させつつ、そのエンジントルクの一部を利用して電力の回生を行うこともできる。
このように、デュアルクラッチ式変速機30は、エンジン走行モードであれば、変速段を待機中の次の要求変速段へと素早く切り替えて、エンジン10のエンジントルクを次の要求変速段に対して間髪入れずに伝えることが可能なので、そのエンジントルクを途切れることなく駆動力として駆動輪WL,WRに伝達することができる。また、ハイブリッド走行モードにおいては、変速段を待機中の次の要求変速段へと素早く切り替えて、エンジン10のエンジントルクとモータ/ジェネレータ20のモータトルクを次の要求変速段に対して間髪入れずに伝えることが可能なので、そのエンジントルクとモータトルクを途切れることなく駆動力として駆動輪WL,WRに伝達することができる。
このデュアルクラッチ式変速機30は、新たな要求変速段が変速制御手段によって選択されている間、上述した変速を第1変速機構40の変速段と第2変速機構50の変速段との間で交互に繰り返し行う。
また、このハイブリッド車両1において第1変速機構40の後退ギヤ段49が要求変速段として選択された場合、電子制御装置100は、変速制御手段によってその後退ギヤ段49の後退カップリング機構49dを係合状態に制御し、且つ、クラッチ制御手段によって第1クラッチ61を完全係合状態となるように制御すると共に第2クラッチ62を解放状態に制御する。これにより、このハイブリッド車両1においては、エンジントルクが半係合状態又は完全係合状態の第1クラッチ61を介して第1変速機構40の入力軸42に伝わり、その入力軸42の回転トルクが後退ギヤ段49を介して変速されて第1変速機構40の出力軸44に伝達される。そして、その出力軸44の回転トルクは、第1駆動ギヤ44a、動力統合ギヤ32及び最終減速装置70を介して左右夫々の駆動軸DL,DRに分配される。従って、このハイブリッド車両1は、エンジントルクが駆動輪WL,WRに伝達されて後退走行を行う。尚、ハイブリッド走行モードで後退走行させる場合には、第2変速機構50における第2速ギヤ段52の第2速カップリング機構52d又は第4速ギヤ段54の第4速カップリング機構54dの内の何れか一方を係合状態に制御しておけばよい。
更に、このハイブリッド車両1は、モータ/ジェネレータ20のモータトルクのみでの走行、所謂EV走行モードでの走行も可能である。この場合、変速制御手段は、第2変速機構50における第2速ギヤ段52又は第4速ギヤ段54の中から要求変速段の選択を行う。また、電子制御装置100のモータ/ジェネレータ制御手段は、駆動輪WL,WRにおける要求駆動力に応じたモータトルクを発生させるようにモータ/ジェネレータ20の制御を行う。そして、電子制御装置100は、変速制御手段によってその要求変速段のカップリング機構(第2速カップリング機構52d又は第4速カップリング機構54d)を係合状態に制御し、且つ、クラッチ制御手段によって第1及び第2のクラッチ61,62を解放状態に制御する。これにより、このハイブリッド車両1においては、ロータ22の回転トルク(モータトルク)が第2変速機構50の入力軸51に伝わり、その入力軸51の回転トルクが要求変速段を介して変速されて第2変速機構50の出力軸53に伝達される。そして、その出力軸53の回転トルクは、第2駆動ギヤ53a、動力統合ギヤ32及び最終減速装置70を介して左右夫々の駆動軸DL,DRに分配される。従って、このハイブリッド車両1は、モータ/ジェネレータ20のモータトルクのみを駆動輪WL,WRの駆動力にして走行することができる。このハイブリッド車両1においては、EV運転モードでの走行中に、その第2変速機構50の他の変速段への変速(所謂連続しない変速段間の飛ばし変速)を行うことができる。このEV走行モードにおいては、燃料を無駄に消費しないように、エンジン制御手段によってエンジン10を停止させておく。
また、このハイブリッド車両1においては、モータ/ジェネレータ20をジェネレータとして作動させることによって、前述したように回生制動を行うことができる。この場合、電子制御装置100の変速制御手段は、第1変速機構40におけるカップリング機構(第1速カップリング機構41d、第3速カップリング機構43d、第5速カップリング機構45d及び後退カップリング機構49d)を全て解放状態に制御すると共に、第2変速機構50において選択した要求変速段のカップリング機構(第2速カップリング機構52d又は第4速カップリング機構54d)を係合状態に制御する。その要求変速段は、例えば二次電池28の充電状態に基づいて設定する。例えば、二次電池28の充電状態が低下しているほど(蓄電量が少ないほど)多量に充電を行う必要があるので、要求変速段は、二次電池28の充電状態が低下しているほどロータ22の回転を速めることのできる低速側の変速段を設定すればよい。また、このときのクラッチ制御手段は、第1及び第2のクラッチ61,62を双方とも解放状態に制御する。また、モータ/ジェネレータ制御手段は、電力の回生が行われるようにインバータ27を制御して、モータ/ジェネレータ20を発電機として作動させる。尚、このときには、燃料を無駄に消費しないように、エンジン制御手段によってエンジン10を停止させておくことが望ましい。かかる状態において、駆動輪WL,WRの回転トルクは、最終減速装置70、動力統合ギヤ32及び第2駆動ギヤ53aを介して第2変速機構50の出力軸53に入力される。その出力軸53の回転トルクは、要求変速段で変速されて第2変速機構50の入力軸51に伝達され、モータ/ジェネレータ20のロータ22に伝わる。その際、モータ/ジェネレータ20は、ジェネレータとして作動しているので、電力の回生を行うと共に、ロータ22の回転が駆動輪WL,WRの回転負荷となる。従って、このときのハイブリッド車両1においては、回生制動が行われて駆動輪WL,WRに制動力(回生制動力)が加わるようになる。かかる回生制動は、走行モードに関係なく実行可能である。
以上示したハイブリッド車両1においては、運転者がアクセルペダル120を踏み込んだ際に、そのアクセルペダル120の操作量(以下、「アクセル操作量」という。)に応じた駆動輪WL,WRの要求駆動力が演算され、その要求駆動力を発生させるべく動力源(エンジン10、モータ/ジェネレータ20)やデュアルクラッチ式変速機30が制御される。そのアクセル操作量とは、アクセルペダル120に入力されたペダル踏力やアクセルペダル120の踏み込み量(つまり移動量)などであり、図1に示すアクセル操作量検出手段121で検出する。
ところで、EV走行モードでの走行や回生制動が行われている場合には、何れ停止中のエンジン10を再起動(始動)して、エンジン走行モードやハイブリッド走行モードでの走行に切り替わることがある。例えば、EV走行モードでの走行中には、運転者のアクセル操作や二次電池28の残存蓄電量(所謂SOC量)の低下によって、エンジン10の始動要求が為される。このハイブリッド車両1においては、そのエンジン10の再起動をモータ/ジェネレータ20のモータトルクを利用して行う。
エンジン10を始動するときには、選択されている第2変速機構50の変速段を変速制御手段がそのままにして、クラッチ制御手段が第2クラッチ62を解放状態から完全係合状態へと制御しながら、モータ/ジェネレータ制御手段がモータ/ジェネレータ20のモータトルクをエンジン10の始動に必要な分だけ増加させていく。これにより、エンジン10においては、増加分のモータトルクが第2クラッチ62を介してエンジン出力軸11に入力されるようになり、そのエンジン出力軸11が回転を始める。そして、エンジン制御手段は、エンジン出力軸11が所定回転数まで上昇したときに燃料噴射と点火を行い、エンジン10を始動させる。尚、その増加分のモータトルクは、同時期の第2クラッチ62の伝達トルク容量TC2以下に調整することが燃費性能の点で望ましい。本実施例における車両のエンジン制御装置は、少なくともその変速制御手段、クラッチ制御手段、モータ/ジェネレータ制御手段及びエンジン制御手段によって構成されている。
ここで、このエンジン10の始動時には、エンジン回転数NE(=第2クラッチ62のエンジン側回転軸63aの回転数(以下、「エンジン側回転数」という。)NCe)が第2クラッチ62の駆動輪側回転軸62cの回転数(以下、「駆動輪側回転数」という。)NC2dを超えるときがある。例えば、エンジン10は、初爆以降エンジン回転数NEの上昇速度が上がるので、初爆以降にエンジン回転数NEが駆動輪側回転数NC2dを上回り易い。そして、エンジン回転数NE(エンジン側回転数NCe)と駆動輪側回転数NC2dとが同一回転数になる前後においては、駆動輪側回転軸62cに加わる回転トルクでエンジン出力軸11(エンジン側回転軸63a)を回転させる状況に替わって、エンジン出力軸11(エンジン側回転軸63a)の回転トルクで駆動輪側回転軸62cを回転させる状況になるので、第2クラッチ62でクラッチ伝達トルクTC2rの向きが逆転する。この逆転の際、第2クラッチ62においては、少なくとも駆動輪側回転軸62cからエンジン側回転軸63aに伝達されるクラッチ伝達トルクTC2rの2倍、最大でそのときの伝達トルク容量TC2の2倍のトルク変動が生じるので、振動が発生してしまう。
そこで、本実施例における車両のエンジン制御装置は、モータ/ジェネレータ20のモータトルクTMGでエンジン10を始動させる場合、第2クラッチ62の係合制御に伴い上昇し始めたエンジン回転数NEが第2クラッチ62の駆動輪側回転数NC2dよりも高くなるときに当該第2クラッチ62の伝達トルク容量TC2を減少させるよう構成する。別の云い方をするならば、このエンジン制御装置は、モータ/ジェネレータ20のモータトルクTMGでエンジン10を始動させる場合に、第2クラッチ62の係合制御に伴い上昇し始めたエンジン回転数NEが遅くとも第2クラッチ62の駆動輪側回転数NC2dと同一回転数になるまでに当該第2クラッチ62の伝達トルク容量TC2を減少させるよう構成する。
このような伝達トルク容量TC2の調整を行うことにより、第2クラッチ62は、エンジン回転数NE(=エンジン側回転数NCe)と駆動輪側回転数NC2dとが同一回転数になる前後において、最大でも減少後の伝達トルク容量TC2分のクラッチ伝達トルクTC2rしか駆動輪側回転軸62cとエンジン側回転軸63aとの間で伝達できない。従って、この第2クラッチ62においては、エンジン回転数NE(=エンジン側回転数NCe)と駆動輪側回転数NC2dとが同一回転数になる前後のトルク変動が小さくなるので、つまりクラッチ伝達トルクTC2rの落差が小さくなるので、振動を抑えることができる。
ここで、その伝達トルク容量TC2については、エンジン回転数NE(=エンジン側回転数NCe)が駆動輪側回転数NC2dを上回ったときのトルク変動を抑える大きさまで減少させることが望ましい。換言するならば、この伝達トルク容量TC2は、エンジン回転数NE(=エンジン側回転数NCe)が駆動輪側回転数NC2dを上回ったときに、第2クラッチ62において振動が発生しない又は許容範囲内の振動に抑える大きさまで減少させることが望ましい。つまり、単に伝達トルク容量TC2を減少させるだけでも十分に第2クラッチ62の振動を抑えることはできるが、そのようにして伝達トルク容量TC2の減少代を決めることで、より確実に振動の発生を抑制することができ、又は、振動が発生するにしても許容範囲内の振動に抑えることができるようになる。
一方、この伝達トルク容量TC2の減少は、そのままクラッチ伝達トルクTC2rの減少に直結するので、エンジン出力軸11への入力トルクを減少させ、エンジン回転数NEの上昇速度を遅らせる虞がある。そして、そのエンジン回転数NEの上昇速度の遅れは、その分だけエンジン10の始動時間を長引かせる。
これが為、第2クラッチ62は、エンジン回転数NE(=エンジン側回転数NCe)が駆動輪側回転数NC2dと同一回転数になった時に伝達トルク容量TC2を減少し終えることが望ましい。これにより、伝達トルク容量TC2の減少開始時を限界まで延ばして、クラッチ伝達トルクTC2rの減少量を小さくできるので、エンジン回転数NEの上昇速度の低下を抑え、エンジン10の始動時間の増加を少なくすることができる。
また、この第2クラッチ62は、一旦伝達トルク容量TC2を増加させ、その後、エンジン回転数NE(=エンジン側回転数NCe)が遅くとも駆動輪側回転数NC2dと同一回転数になるまでに伝達トルク容量TC2を減少させることがより望ましい。その伝達トルク容量TC2の増加は、後の伝達トルク容量TC2の減少に伴うクラッチ伝達トルクTC2rの減少分を補う又はクラッチ伝達トルクTC2rを増加させることになる。これが為、このように第2クラッチ62を構成することで、本実施例のエンジン始動制御においては、エンジン10の始動時間を変えずに又はエンジン10の始動時間を短縮して、第2クラッチ62における振動の発生を抑えることができる又は許容範囲内の振動に抑えることができるようになる。
以下に、本実施例における車両のエンジン始動制御装置の制御動作の具体例について図3のフローチャートを用いて行う。
運転者のアクセル操作等によってエンジン10の始動要求が為された場合(ステップST1)、クラッチ制御手段は、第2クラッチ62の駆動輪側回転数NC2dの情報を取得して(ステップST2)、エンジン回転数NEがその駆動輪側回転数NC2dを超える時、つまりエンジン回転数NEが駆動輪側回転数NC2dまで上昇した時(NE=NC2dの時)の第2クラッチ62の伝達トルク容量TC2Lを設定する(ステップST3)。尚、エンジン出力軸11と第2クラッチ62のエンジン側回転軸63aは同一回転数で回っているので、ステップST3においては、そのエンジン回転数NEに替えて第2クラッチ62のエンジン側回転数NCeと比較させてもよい。
その駆動輪側回転数NC2dは、モータ/ジェネレータ20のロータ22の回転数と同じなので、モータ/ジェネレータ制御手段が把握しているモータジェネレータ回転数NMGの情報を利用すればよい。また、この駆動輪側回転数NC2dの情報については、第2クラッチ62の駆動輪側回転軸62c又は第2変速機構50の入力軸51の回転角度を検出する回転角センサを配設し、この回転角センサの検出信号を利用して求めてもよい。尚、ここで例示するエンジン10の始動制御においては、第2変速機構50の入力軸51の回転数を一定にして行うことにしているので、駆動輪側回転数NC2dについても始動制御中は一定の回転数になっている(後述する図5,7)。
また、ステップST3で設定する第2クラッチ62の伝達トルク容量TC2Lは、エンジン回転数NE(又はエンジン側回転数NCe)と駆動輪側回転数NC2dとが同一回転数になる前後において、第2クラッチ62での振動の発生を抑えることができる又は許容範囲内の振動に抑えることができる伝達トルク容量TC2である。この伝達トルク容量TC2Lは、予め実験やシミュレーションを行い、マップデータとして用意しておく。例えば、駆動輪側回転数NC2dが高くなるにつれてクラッチ伝達トルクTC2rの向きが逆転する際の反動が大きくなるので、そのマップデータは、例えば駆動輪側回転数NC2dが高くなるほど小さな伝達トルク容量TC2Lとなる
更に、このクラッチ制御手段は、エンジン10の始動の為にモータ/ジェネレータ20が出力可能なモータトルクTMGstを求める(ステップST4)。そのモータトルクTMGstは、モータ/ジェネレータ20が増量し得るモータトルクの増加限界値であり、エンジン10の始動用としてモータ/ジェネレータ20が出力可能なモータ出力PMGstと、その出力時におけるモータ/ジェネレータ20のモータジェネレータ回転数NMGstと、を下記の式1に代入して求めることができる。
TMGst=PMGst/NMGst … (1)
この式1において、モータ出力PMGstは、下記の式2で求めたものを使い、モータジェネレータ回転数NMGstは、上記ステップST2で用いたモータジェネレータ回転数NMGの情報を利用すればよい。
PMGst=PMGmax−PMGev … (2)
この式2における「PMGmax」は、モータ/ジェネレータ20が出力し得るモータ出力PMGの最大値であって、モータ/ジェネレータ20や二次電池28の仕様により決まっている。また、「PMGev」は、今現在EV走行に使われているモータ出力PMGである。
このときのモータ/ジェネレータ20は、モータトルクTMGをこのステップST4で求めたモータトルクTMGstよりも増加させることができない。従って、第2クラッチ62は、その伝達トルク容量TC2をどれだけ大きくしても、最大でモータトルクTMGstしかエンジン側回転軸63a(エンジン出力軸11)に伝えることができない。これが為、この第2クラッチ62はモータトルクTMGstをエンジン10側に伝えられればよいので、クラッチ制御手段は、そのモータトルクTMGstを第2クラッチ62における半係合状態での上限の伝達トルク容量TC2Hとして設定する(ステップST5)。
続いて、このクラッチ制御手段は、第2クラッチ62の伝達トルク容量TC2を上記ステップST5の伝達トルク容量TC2Hから上記ステップST3の伝達トルク容量TC2Lまで減少させる際の減少開始時を設定する(ステップST6)。
例えば、このクラッチ制御手段は、エンジン回転数NEが或る大きさ(以下、「減少開始時エンジン回転数NEdown」という。)まで上昇した時を伝達トルク容量TC2の減少開始時として設定する。
伝達トルク容量TC2が伝達トルク容量TC2Hから伝達トルク容量TC2Lへと減少するまでに要する時間t1(図4,5)は、第2クラッチ62の仕様、つまりその減少時の第2クラッチ62の摩擦板作動部材の移動に要する時間から把握することができる。ここで、初爆後のエンジン回転数NEの単位時間当りの変化量は、エンジン10固有のものであり、例えばエンジン10の水温や油温等の情報に基づいてマップデータ等から把握することができる。また、初爆時のエンジン回転数NEについては、エンジン10固有のものとして予めわかっている。これが為、エンジン回転数NEが初爆後に第2クラッチ62の駆動輪側回転数NC2dと同一回転数になるまでの時間t2(図5)を把握することができる。
その時間t2が伝達トルク容量TC2の減少に要する時間t1以上の場合には、エンジン回転数NEが第2クラッチ62の駆動輪側回転数NC2dと同一回転数になる時から時間t1だけ前の時点でのエンジン回転数NEを求め、このエンジン回転数NEを減少開始時エンジン回転数NEdownとする。この場合の減少開始時エンジン回転数NEdownは、駆動輪側回転数NC2dと時間t1と初爆後のエンジン回転数NEの単位時間当りの変化量とに基づいて求めることができる。例えば、これらの関係をマップデータとして予め用意しておいてもよい。
一方、その時間t2が伝達トルク容量TC2の減少に要する時間t1よりも短い場合には、初爆時から時間t1−t2だけ前の時点でのエンジン回転数NEを求め、このエンジン回転数NEを減少開始時エンジン回転数NEdownとする。ここで、初爆前のエンジン回転数NEの単位時間当りの変化量は、例えば第2クラッチ62の伝達トルク容量TC2、つまりエンジン側回転軸63a(エンジン出力軸11)に伝わる回転トルクの大きさから把握することができる。これが為、このときの減少開始時エンジン回転数NEdownは、初爆時のエンジン回転数NEと時間t1,t2と初爆前のエンジン回転数NEの単位時間当りの変化量とに基づいて求めることができる。例えば、これらの関係をマップデータとして予め用意しておいてもよい。
ここで、エンジン10の始動制御開始時からエンジン回転数NEが駆動輪側回転数NC2dと同一回転数になるまでの時間t3は、第2クラッチ62の伝達トルク容量TC2(エンジン側回転軸63a(エンジン出力軸11)に伝わる回転トルクの大きさ)の変移と第2クラッチ62の仕様(その変移に応じた第2クラッチ62の摩擦板作動部材の移動時間)とから把握することができる。これが為、この時間t3から伝達トルク容量TC2の減少に要する時間t1を引いた時間t3−t1は、エンジン10の始動制御開始時から伝達トルク容量TC2を減少し始めるまでの時間となる。従って、クラッチ制御手段には、エンジン10の始動制御開始時を起算点とし、その時間t3−t1がカウントされた時を伝達トルク容量TC2の減少開始時として設定させてもよい。
次に、このエンジン始動制御装置においては、クラッチ制御手段が第2クラッチ62の係合制御を実行して、伝達トルク容量TC2を0から上記ステップST5の伝達トルク容量TC2Hまで増加させると共に、モータ/ジェネレータ制御手段がモータトルクTMGをモータトルクTMGst分だけ増加させるようモータ/ジェネレータ20の出力制御を行う(ステップST7)。
これにより、第2クラッチ62においては、アクチュエータ62aの動作によって摩擦板作動部材が移動し、図4に示す如く、伝達トルク容量TC2が伝達トルク容量TC2Hまで増加していく。その際、モータ/ジェネレータ20は、そのモータトルクTMGst分を一度に増加させてもよいが、エンジン始動制御に伴う無駄な二次電池28の電力消費と運転者に違和感を与える駆動輪WL,WRの駆動力の変動を避けるべく、図5に示すように伝達トルク容量TC2の増加勾配に合わせてモータトルクTMGを増加させていく。つまり、エンジン側回転軸63aには伝達トルク容量TC2に相当するモータトルクTMGがクラッチ伝達トルクTC2rとして伝わるようにする一方、駆動輪WL,WR側には今現在EV走行に使われているモータトルクTMGevが伝わるようにする。このときには、駆動輪側回転軸62cからエンジン側回転軸63aにトルク伝達が行われるので、そのクラッチ伝達トルクTC2rは、図5に示すようにクラッチ伝達トルクTC2H(<0)まで変移する。エンジン回転数NEは、そのクラッチ伝達トルクTC2rの変移、つまりエンジン出力軸11に入力される回転トルクの増加に合わせて、図5に示すように上昇し始める。
ここで、クラッチ制御手段は、伝達トルク容量TC2が上限の伝達トルク容量TC2Hまで増加したら、図4に示す如く、この伝達トルク容量TC2Hのまま一定に保たせる。また、モータ/ジェネレータ制御手段は、モータトルクTMGをモータトルクTMGst分だけ増加させたら、この最大モータトルクTMGmaxの出力状態を保たせる。従って、エンジン回転数NEは、エンジン側回転軸63aに伝達されたモータトルクTMGstによって上昇し続ける。一方、このときにも、駆動輪WL,WR側には今現在EV走行に使われているモータトルクTMGev以外の回転トルクが加わらないので、駆動輪WL,WRにおいて、運転者に違和感を与える駆動力の変動が生じない。
このエンジン始動制御装置は、このようにして駆動輪WL,WRへのEV走行用のモータトルクTMGevを増加も減少もさせないので、車両前後加速度が変わらず、運転者に加速感も減速感も与えずにエンジン10のクランキングを始めることができる。
続いて、クラッチ制御手段は、上記ステップST6で設定した伝達トルク容量TC2の減少開始時になったのか否か、つまりエンジン回転数NEが減少開始時エンジン回転数NEdownまで上昇したのか否か又はエンジン10の始動制御開始後、時間t3−t1がカウントされたのか否かの判定を行う(ステップST8)。
ここで、未だ伝達トルク容量TC2の減少開始時に到達していない場合には、クラッチ制御手段とモータ/ジェネレータ制御手段が上記ステップST7のクランキング制御を継続させる。
一方、伝達トルク容量TC2の減少開始時になった場合には、クラッチ制御手段が第2クラッチ62の伝達トルク容量TC2を伝達トルク容量TC2Hから上記ステップST3の伝達トルク容量TC2Lまで減少させ始めると共に、モータ/ジェネレータ制御手段がモータ/ジェネレータ20のモータトルクTMGを減少させる(ステップST9)。
これにより、第2クラッチ62においては、図4に示すように伝達トルク容量TC2が伝達トルク容量TC2Lまで減少していく。このときのモータトルクTMGは、図5に示すように伝達トルク容量TC2の減少勾配に合わせて減少させる。これが為、クラッチ伝達トルクTC2r(<0)は、図5に示すように、クラッチ伝達トルクTC2H(=モータトルクTMGst)から徐々にクラッチ伝達トルクTC2Lまで変移する。その際、そのようなクラッチ伝達トルクTC2rの変移によってエンジン出力軸11に入力される回転トルクは減少するが、エンジン回転数NEは、慣性による回転によって上昇し続ける。そして、エンジン制御手段による燃料噴射制御や点火制御等によってエンジン10が燃焼動作を開始するので(初爆)、エンジン回転数NEは、回転速度を上げて上昇し続ける。また、このときのモータトルクTMGも伝達トルク容量TC2の変化勾配に合わせて変えているので、駆動輪WL,WR側には今現在EV走行に使われているモータトルクTMGev以外の回転トルクが加わらず、駆動輪WL,WRにおいて、運転者に違和感を与える駆動力の変動が生じない。
このエンジン始動制御装置は、このようにして駆動輪WL,WRへのEV走行用のモータトルクTMGevを増加も減少もさせないので、車両前後加速度が変わらず、運転者に加速感も減速感も与えずにクランキングを続けてエンジン10を始動させることができる。
クラッチ制御手段は、エンジン回転数NEが第2クラッチ62の駆動輪側回転数NC2dまで上昇したのか否かを判定する(ステップST10)。
ここで、エンジン回転数NEが駆動輪側回転数NC2dまで上昇していない場合、クラッチ制御手段は、第2クラッチ62の伝達トルク容量TC2が伝達トルク容量TC2Lまで減少し終えていないと判断して、上記ステップST9のクランキング制御を継続させる。
一方、エンジン回転数NEが駆動輪側回転数NC2dまで上昇したと判定した場合には、第2クラッチ62の伝達トルク容量TC2が伝達トルク容量TC2Lまで減少し終えたと判断して、クラッチ制御手段が第2クラッチ62を完全係合状態となるように制御し始めると共に、モータ/ジェネレータ制御手段がモータ/ジェネレータ20のモータトルクTMGをEV走行用のモータトルクTMGevまで減少させる(ステップST11)。
これにより、第2クラッチ62においては、図4に示すように伝達トルク容量TC2が伝達トルク容量TC2Lから最大伝達トルク容量TC2maxまで徐々に増加していく。このときには、エンジン側回転軸63aから駆動輪側回転軸62cにトルク伝達が行われるようになるので、クラッチ伝達トルクTC2rが図5に示すようにクラッチ伝達トルクTC2L(>0)からエンジントルクTEの増加に合わせて増加していく。
このように、本実施例のエンジン始動制御装置は、エンジン回転数NEが駆動輪側回転数NC2dを上回る時に第2クラッチ62の伝達トルク容量TC2を伝達トルク容量TC2Lまで減少させるので、第2クラッチ62での振動の発生を抑えることができる又は許容範囲内の振動に抑えることができる。
ここで、本実施例のエンジン始動制御について、従来のエンジン始動制御が本実施例のハイブリッド車両1に適用された場合と比較する。
先ず、エンジン10の始動時間に殆ど差はないが、クラッチ伝達トルクTC2rの向きが逆転する際の落差が大きく第2クラッチ62において許容し得ない振動を発生させてしまう従来のエンジン始動制御との比較を図4,5に基づいて行う。
従来のエンジン始動制御では、図4に示す如く、エンジン始動制御の開始に伴い第2クラッチ62の伝達トルク容量TC2を伝達トルク容量TC2Hまで増加させ、エンジン回転数NEが第2クラッチ62の駆動輪側回転数NC2dと同一回転数に上昇するまでその伝達トルク容量TC2Hのまま一定に保っている。この従来のエンジン始動制御では、図5に示す如く、その伝達トルク容量TC2の変化に合わせてモータトルクTMGを変化させるので、これに合わせてクラッチ伝達トルクTC2rがエンジン出力軸11に伝達される。これが為、エンジン回転数NEが第2クラッチ62の駆動輪側回転数NC2dと同一回転数となり、クラッチ伝達トルクTC2rの向きが逆転したときに、第2クラッチ62においては、そのクラッチ伝達トルクTC2rの落差によって許容し得ない振動を発生させる。
これに対して、本実施例のエンジン始動制御は、図4に示す如く、エンジン始動制御の開始に伴い第2クラッチ62の伝達トルク容量TC2を伝達トルク容量TC2Hまで増加させるまで一緒だが、エンジン回転数NEが第2クラッチ62の駆動輪側回転数NC2dと同一回転数になる時までに、伝達トルク容量TC2を伝達トルク容量TC2Hから伝達トルク容量TC2Lまで減少させる。従って、クラッチ伝達トルクTC2rについても、図5に示すように、エンジン回転数NEが第2クラッチ62の駆動輪側回転数NC2dになるまでに減少する。これが為、本実施例のエンジン始動制御においては、エンジン回転数NEが第2クラッチ62の駆動輪側回転数NC2dと同一回転数となり、クラッチ伝達トルクTC2rの向きが逆転したときのクラッチ伝達トルクTC2rの落差を小さくでき、第2クラッチ62での振動の発生を抑えることができる又は許容範囲内の振動に抑えることができる。
この図4,5に示すように、本実施例のエンジン始動制御装置は、その従来のエンジン始動制御に対して、エンジン10の始動時間を同等に保ったまま第2クラッチ62における振動の発生を抑えることができる又は許容範囲内の振動に抑えることができる。
次に、クラッチ伝達トルクTC2rの向きが逆転する際の落差を本実施例と同等にして、第2クラッチ62での振動の発生を抑えることができる又は許容範囲内の振動に抑えることができる従来のエンジン始動制御との比較を図6,7に基づいて行う。
従来のエンジン始動制御では、図6に示す如く、エンジン始動制御の開始に伴い第2クラッチ62の伝達トルク容量TC2を伝達トルク容量TC2Lまで増加させ、その伝達トルク容量TC2Lのまま一定に保つ。一方、本実施例のエンジン始動制御においては、伝達トルク容量TC2を伝達トルク容量TC2H(>TC2L)まで増加させて一定に保持する。つまり、本実施例のエンジン始動制御においては、従来と比べて、図7に示すように、エンジン始動制御が開始されてからのモータトルクTMGが大きいので、エンジン回転数NEの上昇速度が速くなる。これに対して、従来のエンジン始動制御は、伝達トルク容量TC2を低く抑えているので、エンジン回転数NEの上昇が遅くなる。これが為、本実施例のエンジン始動制御は、従来よりも初爆が早くなり、エンジン10の始動時間を短縮できる。
また、本実施例のエンジン始動制御においては、伝達トルク容量TC2を最大限まで増加させた後、伝達トルク容量TC2の減少開始時(NE=NEdown)になると、エンジン回転数NEが第2クラッチ62の駆動輪側回転数NC2dと同一回転数になる時までに、伝達トルク容量TC2を伝達トルク容量TC2Lまで減少させる。これが為、本実施例のエンジン始動制御は、第2クラッチ62での振動の発生を抑えることができる又は許容範囲内の振動に抑えることができる。尚、従来のエンジン始動制御においては、伝達トルク容量TC2の上限を伝達トルク容量TC2Lに抑えているので、初爆後にエンジン回転数NEが第2クラッチ62の駆動輪側回転数NC2dまで上昇した際に、第2クラッチ62での振動の発生を抑えることができる又は許容範囲内の振動に抑えることができる。
この図6,7に示すように、本実施例のエンジン始動制御装置は、その従来のエンジン始動制御に対して、エンジン10の始動時間を短縮しつつ第2クラッチ62における振動の発生を抑えることができる又は許容範囲内の振動に抑えることができる。
ここで、従来のエンジン始動制御においては、エンジン始動制御の開始後に増加させる伝達トルク容量TC2が伝達トルク容量TC2Lと伝達トルク容量TC2Hの間の大きさの場合も考えられる。この場合の従来のエンジン始動制御と本実施例のエンジン始動制御とを比較すると、本実施例のエンジン始動制御は、従来と比べて、エンジン回転数NEが第2クラッチ62の駆動輪側回転数NC2dまで上昇した際に第2クラッチ62における振動の発生を抑えることができ又は許容範囲内の振動に抑えることができ、且つ、エンジン10の始動時間も短縮することができる。
ところで、上述した本実施例のデュアルクラッチ式変速機30においては第1変速機構40の入力軸42と第2変速機構50の入力軸51を同軸上に配置した2重軸構造のものとして例示したが、例えば、その夫々の入力軸42,51は、図8に示す如く所定の間隔を空けて平行に配置してもよい。この場合のデュアルクラッチ機構60には、エンジン出力軸11に当該エンジン出力軸11と一体になって回転するよう取り付けたメイン駆動ギヤ64と、このメイン駆動ギヤ64に噛み合う第1及び第2の駆動ギヤ65,66と、を設ける。この場合の第1クラッチ61は、そのエンジン側回転軸61dに第1駆動ギヤ65を取り付けると共に、駆動輪側回転軸61cに第1変速機構40の入力軸42を取り付け、エンジン出力軸11に対してメイン駆動ギヤ64を介して係合状態にある第1駆動ギヤ65と第1変速機構40の入力軸42とを係合させることができる。一方、第2クラッチ62は、そのエンジン側回転軸62dに第2駆動ギヤ66を取り付けると共に、駆動輪側回転軸62cに第2変速機構50の入力軸51を取り付け、エンジン出力軸11に対してメイン駆動ギヤ64を介して係合状態にある第2駆動ギヤ66と第2変速機構50の入力軸51とを係合させることができる。これら第1及び第2のクラッチ61,62は、例えば乾式又は湿式の単板クラッチ又は多板クラッチを用いればよい。この場合のクラッチ制御手段は、第1クラッチ61と第2クラッチ62を交互に係合状態と解放状態(非係合状態)とで切り替えさせるように構成し、エンジン10のエンジントルクが第1変速機構40又は第2変速機構50の内の何れか一方にのみ伝達されるようにする。
更に、本実施例においてはモータ/ジェネレータ20を第2変速機構50側に設けたが、そのモータ/ジェネレータ20を第1変速機構40側に設けたものであってもよく、第1クラッチ61とモータ/ジェネレータ20を上記の例示と同様に制御することによって、その例示と同様の作用及び効果を得ることができる。
また、本実施例においては上記のハイブリッド車両1を例に挙げたが、原動機と電動機との間に係合状態と解放状態とを自動制御可能なクラッチを有する車両であれば、本発明は、如何様な車両に適用してもよい。例えば、上記の例示の車両においては原動機として内燃機関を挙げたが、その原動機として上述したように外燃機関を適用してもよい。また、上記の例示の車両においては制御形態に応じてモータ又はジェネレータの内の何れか一方で作動させるモータ/ジェネレータ20を電動機の一例として示したが、電気的なエネルギを機械的なエネルギに変換して動力として出力するものであれば、如何様な形態の電動機を適用してもよい。例えば、その電動機としては、主にモータとして作動させるが、必要であればジェネレータとしても作動させることができるモータ、主にジェネレータとして作動させるが、必要であればモータとしても作動させることができるジェネレータ等の適用が可能である。ここで、そのジェネレータを電動機として適用する場合、本発明は、クラッチの第1回転軸側に原動機(エンジン)を連結させると共に、そのクラッチの第2回転軸側にジェネレータを連結させた車両への適用も可能である。
以上のように、本発明に係る車両制御装置は、電動機の出力トルクによるエンジン始動制御時のクラッチの振動を抑制する技術に有用である。
1 ハイブリッド車両
10 エンジン(原動機)
11 エンジン出力軸
20 モータ/ジェネレータ(電動機)
30 デュアルクラッチ式変速機
40 第1変速機構
42 入力軸
44 出力軸
50 第2変速機構
51 入力軸
53 出力軸
60 デュアルクラッチ機構
61 第1クラッチ
62 第2クラッチ
61a,62a アクチュエータ
61c,62c 駆動輪側回転軸
61d,62d,63a エンジン側回転軸
100 電子制御装置
WL,WR 駆動輪

Claims (4)

  1. エンジンと、該エンジンのエンジン出力軸に連結されたエンジン側回転軸と駆動輪側の駆動輪側回転軸との間の伝達トルク容量を変化させることが可能なクラッチと、前記駆動輪側回転軸に対して直接又は間接的に電気的なエネルギを動力として出力する電動機と、を備えた車両のエンジン始動制御装置であって、
    前記クラッチの係合制御に伴い伝達された前記電動機の出力トルクで前記エンジンを始動させる場合、前記電動機の出力トルクによって上昇し始めた前記エンジンのエンジン回転数が前記駆動輪側回転軸の回転数よりも高くなるときに前記クラッチの伝達トルク容量を減少させることを特徴とする車両のエンジン始動制御装置。
  2. エンジンと、該エンジンのエンジン出力軸に連結されたエンジン側回転軸と駆動輪側の駆動輪側回転軸との間の伝達トルク容量を変化させることが可能なクラッチと、前記駆動輪側回転軸に対して直接又は間接的に電気的なエネルギを動力として出力する電動機と、を備えた車両のエンジン始動制御装置であって、
    前記クラッチの係合制御に伴い伝達された前記電動機の出力トルクで前記エンジンを始動させる場合、前記電動機の出力トルクによって上昇し始めた前記エンジンのエンジン回転数が遅くとも前記駆動輪側回転軸の回転数と同一回転数になるまでに前記クラッチの伝達トルク容量を減少させることを特徴とする車両のエンジン始動制御装置。
  3. 前記クラッチの伝達トルク容量は、前記エンジン回転数が前記駆動輪側回転軸の回転数を上回ったときのトルク変動を抑える大きさまで減少させることを特徴とする請求項1又は2に記載の車両のエンジン始動制御装置。
  4. 前記クラッチの伝達トルク容量は、該伝達トルク容量の減少の前に、該伝達トルク容量の減少に伴うクラッチ伝達トルクの減少分を少なくとも補うよう増加させることを特徴とする請求項1,2又は3に記載の車両のエンジン始動制御装置。
JP2009151500A 2009-06-25 2009-06-25 車両のエンジン始動制御装置 Expired - Fee Related JP5040965B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009151500A JP5040965B2 (ja) 2009-06-25 2009-06-25 車両のエンジン始動制御装置
PCT/IB2010/001519 WO2010150081A2 (en) 2009-06-25 2010-06-24 Vehicular engine start control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009151500A JP5040965B2 (ja) 2009-06-25 2009-06-25 車両のエンジン始動制御装置

Publications (2)

Publication Number Publication Date
JP2011005957A true JP2011005957A (ja) 2011-01-13
JP5040965B2 JP5040965B2 (ja) 2012-10-03

Family

ID=43243428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009151500A Expired - Fee Related JP5040965B2 (ja) 2009-06-25 2009-06-25 車両のエンジン始動制御装置

Country Status (2)

Country Link
JP (1) JP5040965B2 (ja)
WO (1) WO2010150081A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162235A (ja) * 2011-02-09 2012-08-30 Honda Motor Co Ltd 車両用駆動装置
JP2012166574A (ja) * 2011-02-09 2012-09-06 Honda Motor Co Ltd ハイブリッド車両
JP2013087648A (ja) * 2011-10-14 2013-05-13 Toyota Motor Corp エンジン始動システム
CN103502074A (zh) * 2011-03-29 2014-01-08 格特拉格传动机构和齿轮工厂赫尔曼·哈根迈尔有限公司&两合公司 用于运行混合动力传动系的方法
WO2015155872A1 (ja) * 2014-04-10 2015-10-15 三菱電機株式会社 エンジン始動制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069790A (ja) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP2009208563A (ja) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224714A (ja) * 1999-02-03 2000-08-11 Mitsubishi Motors Corp 電動機付車両
IT1320579B1 (it) * 2000-08-02 2003-12-10 Fiat Ricerche Procedimento e sistema di controllo della propulsione di unautoveicolo.
JP3912368B2 (ja) * 2003-12-05 2007-05-09 日産自動車株式会社 ハイブリッド変速機搭載車のエンジン始動方法
JP3858904B2 (ja) * 2004-03-11 2006-12-20 日産自動車株式会社 ハイブリッド変速機のエンジンクラッチ締結方法
US7370715B2 (en) * 2004-12-28 2008-05-13 Ford Global Technologies, Llc Vehicle and method for controlling engine start in a vehicle
JP4424245B2 (ja) 2005-04-19 2010-03-03 日産自動車株式会社 ハイブリッド車のエンジン始動制御装置およびエンジン始動制御方法
JP5371200B2 (ja) 2006-05-24 2013-12-18 日産自動車株式会社 ハイブリッド車両のエンジン始動制御装置及びハイブリッド車両のエンジン始動制御方法。

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069790A (ja) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP2009208563A (ja) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162235A (ja) * 2011-02-09 2012-08-30 Honda Motor Co Ltd 車両用駆動装置
JP2012166574A (ja) * 2011-02-09 2012-09-06 Honda Motor Co Ltd ハイブリッド車両
CN103502074A (zh) * 2011-03-29 2014-01-08 格特拉格传动机构和齿轮工厂赫尔曼·哈根迈尔有限公司&两合公司 用于运行混合动力传动系的方法
JP2013087648A (ja) * 2011-10-14 2013-05-13 Toyota Motor Corp エンジン始動システム
WO2015155872A1 (ja) * 2014-04-10 2015-10-15 三菱電機株式会社 エンジン始動制御装置
JP6042033B2 (ja) * 2014-04-10 2016-12-14 三菱電機株式会社 エンジン始動制御装置
US10006391B2 (en) 2014-04-10 2018-06-26 Mitsubishi Electric Corporation Engine start control device

Also Published As

Publication number Publication date
WO2010150081A2 (en) 2010-12-29
JP5040965B2 (ja) 2012-10-03
WO2010150081A3 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
US8452469B2 (en) Control apparatus for hybrid vehicle
JP4816778B2 (ja) ハイブリッド車両の制御装置
JP6176011B2 (ja) 車両の制御装置
JP6060850B2 (ja) ハイブリッド車両の制御装置
JP5359387B2 (ja) ハイブリッド車両のエンジン始動制御装置
JP6003843B2 (ja) ハイブリッド車両の制御装置
US9393953B2 (en) Transmission for vehicle and control device
JP2009001165A (ja) 摩擦クラッチ
JP2006306325A (ja) 車両用ハイブリッド駆動装置
JP2009179208A (ja) ハイブリッド車両
JP2010076625A (ja) ハイブリッド車両
JP2010083454A (ja) ハイブリッド車両
JP2013071562A (ja) ハイブリッド車両の制御装置
JP5251495B2 (ja) ハイブリッド車両の駆動制御装置および駆動制御方法
JP2009113535A (ja) ハイブリッド車両
WO2014080527A1 (ja) ハイブリッド車両の動力伝達装置及びハイブリッドシステム
JP5040965B2 (ja) 車両のエンジン始動制御装置
JP2012121495A (ja) クラッチの学習制御装置
JP2019166939A (ja) ハイブリッド車両の駆動装置
JP6048154B2 (ja) ハイブリッド車両の動力伝達装置及びハイブリッドシステム
JP2010184535A (ja) ハイブリッド車両
JP5018744B2 (ja) ハイブリッド車両
JP2012086717A (ja) ハイブリッド車両の制御装置
JP5083171B2 (ja) 内燃機関始動制御装置
JP2010076543A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R151 Written notification of patent or utility model registration

Ref document number: 5040965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees