JP2011001832A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2011001832A
JP2011001832A JP2009143368A JP2009143368A JP2011001832A JP 2011001832 A JP2011001832 A JP 2011001832A JP 2009143368 A JP2009143368 A JP 2009143368A JP 2009143368 A JP2009143368 A JP 2009143368A JP 2011001832 A JP2011001832 A JP 2011001832A
Authority
JP
Japan
Prior art keywords
reduction catalyst
exhaust gas
air
fuel ratio
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009143368A
Other languages
English (en)
Other versions
JP5206597B2 (ja
Inventor
Kenichi Tsujimoto
健一 辻本
Toshihiro Mori
俊博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009143368A priority Critical patent/JP5206597B2/ja
Publication of JP2011001832A publication Critical patent/JP2011001832A/ja
Application granted granted Critical
Publication of JP5206597B2 publication Critical patent/JP5206597B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】酸素貯蔵機能を有するNOx吸蔵還元触媒の硫黄被毒回復処理を、触媒機能の劣化を生じさせることなく行う。
【解決手段】機関排気通路内に、NOx吸蔵還元触媒22を配置すると共にNOx吸蔵還元触媒22の上流の機関排気通路21内に還元剤供給手段24を配置し、NOx吸蔵還元触媒22が酸素貯蔵機能を更に備え、NOx吸蔵還元触媒22に吸蔵されたSOxを放出させるべきときに硫黄被毒回復処理を行う硫黄被毒回復処理手段を具備する内燃機関の排気浄化装置において、硫黄被毒回復処理手段が、硫黄被毒回復処理を実行すべきときに、筒内ガスの空燃比をリーンにするリーン燃焼期間中に還元剤供給手段から還元剤を供給し、リーン燃焼期間経過後に筒内ガスの空燃比をリッチにする制御を行い、リーン燃焼期間は、排気ガス量が小さいほど長く設定される。
【選択図】図1

Description

本発明は内燃機関の排気浄化装置に関する。
流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し、流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを還元浄化するNOx吸蔵還元触媒を機関排気通路内に配置した内燃機関が公知である。この内燃機関ではリーン空燃比の下で燃焼が行われているときに発生するNOxがNOx吸蔵還元触媒に吸蔵される。一方、NOx吸蔵還元触媒のNOx吸蔵能力が飽和に近づくと排気ガスの空燃比が一時的にリッチにされ、それによってNOx吸蔵還元触媒からNOxが還元浄化される。
ところで燃料及び潤滑油内には硫黄が含まれており、従って排気ガス中には硫黄化合物(SOx、例えばSO2)が含まれている。このSOxはNOxと共にNOx吸蔵還元触媒に吸蔵される。ところがこのSOxは、排気ガスの空燃比を単にリッチにしただけではNOx吸蔵還元触媒から放出されず、従ってNOx吸蔵還元触媒に吸蔵されているSOxの量が次第に増大していく(以下、「硫黄被毒」という)。その結果としてNOx吸蔵還元触媒に吸蔵しうるNOx量が次第に減少してしまう。
NOx吸蔵還元触媒からSOxを放出させる(すなわち、硫黄被毒回復を行う)ために、NOx吸蔵還元触媒の触媒温度をSOxが放出される温度、すなわちSOx放出温度(例えば、600℃)にまで昇温させると共に、NOx吸蔵還元触媒に流入する排気ガスの空燃比を理論空燃比又はリッチ空燃比にする硫黄被毒回復処理を行う必要がある。
そこで、機関排気通路内にNOx吸蔵還元触媒を配置し、NOx吸蔵還元触媒の上流排気通路内に還元剤を添加する還元剤添加弁を備えた内燃機関の排気浄化装置において、NOx吸蔵還元触媒の硫黄被毒回復処理時に、NOx吸蔵還元触媒を昇温すると共に還元剤を供給するようにした内燃機関の排気浄化装置が公知である(特許文献1)。
ところで、上記構成におけるNOx吸蔵還元触媒に代えて酸素貯蔵機能を有するNOx吸蔵還元触媒とする構成がある。ここで、酸素貯蔵機能とは、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれる酸素を蓄え流入する排気ガスの空燃比がリッチになると蓄えられている酸素を放出する機能をいい、例えば三元触媒がその機能を有する。
特開2003−176715号公報
この構成において、硫黄被毒回復処理をすべきときに、還元剤を供給しNOx吸蔵還元触媒に流入する排気ガスの空燃比をリッチにすると、供給された還元剤がNOx吸蔵還元触媒から放出された酸素と反応することによって反応熱が生じる。この反応熱は排気ガスの流れを介してNOx吸蔵還元触媒の下流側部分に伝達され、それによって、NOx吸蔵還元触媒の上流側部分に比べて下流側部分の温度がより上昇する。一方、NOx吸蔵還元触媒の硫黄被毒の度合はその上流側部分が下流側部分よりも大きく、効果的に硫黄被毒回復を行うためには、NOx吸蔵還元触媒の上流側部分をより十分に昇温させることが必要である。
従って、この状態で、NOx吸蔵還元触媒の上流側部分をSOx放出温度まで昇温させようとすると、下流側部分が過度に昇温してしまい、触媒機能が劣化してしまうという問題が生じる。一方、NOx吸蔵還元触媒の下流側部分の触媒の劣化を防止しようとすると上流側部分の昇温が不十分となり、硫黄被毒回復処理の効率が悪化し処理時間が長くなり、燃費も悪化するという問題も生じる。
また、NOx吸蔵還元触媒に流入する排気ガスの空燃比をリッチにする際に、燃焼室内のガスの空燃比、すなわち筒内ガスの空燃比をリッチにすることが、硫黄被毒回復処理における反応性の観点から好ましい。しかし、反応性が良くなる一方で、NOx吸蔵還元触媒から放出された酸素との反応性も良くなり、下流側部分の温度上昇はより大きくなるため上述の問題はより顕著になる。
更に、吸気量が少ない場合には、排気ガスを介してNOx吸蔵還元触媒の外へ排出される熱量も少なくなるため、NOx吸蔵還元触媒の上流側部分と下流側部分との間の温度差はより大きくなる。
そこで本発明は、酸素貯蔵機能を有するNOx吸蔵還元触媒の硫黄被毒回復処理を、触媒機能の劣化を生じさせることなく行うことができる内燃機関の排気浄化装置を提供することを目的とする。
前記課題を解決するために請求項1に記載の発明によれば、機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを還元浄化するNOx吸蔵還元触媒を配置すると共に該NOx吸蔵還元触媒の上流の機関排気通路内に還元剤供給手段を配置し、NOx吸蔵還元触媒が、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれる酸素を蓄え流入する排気ガスの空燃比がリッチになると蓄えられている酸素を放出する酸素貯蔵機能を更に備え、NOx吸蔵還元触媒に吸蔵されたSOxを放出させるべきときに、NOx吸蔵還元触媒の触媒温度をSOx放出温度に昇温させると共に流入する排気ガスの空燃比をリッチにする硫黄被毒回復処理を行う硫黄被毒回復処理手段を具備する内燃機関の排気浄化装置において、前記硫黄被毒回復処理手段が、硫黄被毒回復処理を実行すべきときに、筒内ガスの空燃比をリーンにするリーン燃焼期間中に還元剤供給手段から還元剤を供給し、前記リーン燃焼期間経過後に筒内ガスの空燃比をリッチにする制御を行い、前記リーン燃焼期間は、排気ガス量が小さいほど長く設定されることを特徴とする内燃機関の排気浄化装置が提供される。
請求項1に記載の発明によれば、酸素貯蔵機能を有するNOx吸蔵還元触媒の硫黄被毒回復処理を、触媒機能の劣化を生じさせることなく行うことができるという効果を奏する。
圧縮着火式内燃機関の全体図である。 NOx吸蔵還元触媒の側面断面図である。 触媒担体の表面部分の断面図である。 単位時間当たりに吸蔵されるSOx量SOXAのマップを示す図である。 NOx吸蔵還元触媒の位置と温度との関係を示す図である。 硫黄被毒回復処理における添加制御と燃焼制御との関係を示すタイムチャートである。 硫黄被毒回復処理における添加制御と燃焼制御との関係を示すタイムチャートである。
図1は本発明を圧縮着火式内燃機関に適用した場合を示している。しかしながら本発明を火花点火式内燃機関に適用することもできる。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内にそれぞれ燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドをそれぞれ示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量を検出するためのエアフローメータ8を介してエアクリーナ9に連結される。なお、エアフローメータ8によって検出される吸入空気量は排気ガス量SVと等しい。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口は排気後処理装置20に連結される。
排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、「EGR」という)通路12を介して互いに連結され、EGR通路12内には電子制御式EGR制御弁13が配置される。また、EGR通路12周りにはEGR通路12内を流れるEGRガスを冷却するための冷却装置14が配置される。図1に示される実施例では機関冷却水が冷却装置14内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管15を介してコモンレール16に連結される。このコモンレール16内へは電子制御式の吐出量可変な燃料ポンプ17から燃料が供給され、コモンレール16内に供給された燃料は各燃料供給管15を介して燃料噴射弁3に供給される。
排気後処理装置20は、排気タービン7bの出口に連結された排気管21と、排気管21に連結されたNOx吸蔵還元触媒22と、NOx吸蔵還元触媒22に連結された排気管23とを有する。また、排気管21には還元剤添加弁24が取り付けられる。NOx吸蔵還元触媒22に流入する排気ガスの空燃比を検出するための空燃比センサ25が配置され、NOx吸蔵還元触媒22には、その触媒温度Tを検出するための温度センサ26が取り付けられる。
還元剤添加弁24にはコモンレール16から還元剤としての燃料が添加され、還元剤添加弁24から排気管21内に燃料が添加される。本発明による実施形態ではこの燃料は軽油からなる。なお、還元剤添加弁24を排気マニホルド5に取り付けることもできる。また、本発明による実施形態では、還元剤添加弁24から燃料を添加する他に、還元剤としてCO(一酸化炭素)を含む排気ガスを生成し、リッチ空燃比の排気ガスを生成することもできる。COは、燃料よりも還元性が高く、燃焼室の混合気の空燃比をリッチにし高温で燃焼させることによって生成することができる。
なお、還元剤添加弁24から添加された燃料を含まない、例えば、排気マニホルド5内におけるガスの空燃比は、燃焼室5内(筒内)のガスの空燃比を示すため、筒内ガスの空燃比と称する。従って、上述のCOを含む排気ガスを生成することは、筒内ガスの空燃比をリッチにしていることとなる。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。エアフローメータ8、空燃比センサ25、及び温度センサ26の出力信号はそれぞれ対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル39にはアクセルペダル39の踏込み量Lに比例した出力電圧を発生する負荷センサ40が接続され、負荷センサ40の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ41が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10駆動用ステップモータ、EGR制御弁13、燃料ポンプ17及び還元剤添加弁24に接続される。
図2はNOx吸蔵還元触媒22の構造を示している。図2に示される実施例ではNOx吸蔵還元触媒22はハニカム構造をなしており、薄肉の隔壁60により互いに分離された複数個の排気ガス流通路61を具備する。各隔壁60の両側表面上には例えばアルミナからなる触媒担体が担持されており、図3(A)及び(B)はこの触媒担体65の表面部分の断面を図解的に示している。図3(A)及び(B)に示されるように触媒担体65の表面上には貴金属触媒66が分散して担持されており、更に触媒担体65の表面上にはNOx吸収剤67の層が形成されている。
本発明による実施例では貴金属触媒66として白金Ptが用いられており、NOx吸収剤67を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。
機関吸気通路、燃焼室2及びNOx吸蔵還元触媒22上流の排気通路内に供給された空気及び燃料(炭化水素)の比を排気ガスの空燃比と称すると、NOx吸収剤67は排気ガスの空燃比がリーンのときにはNOxを吸収し、排気ガス中の酸素濃度が低下すると吸収したNOxを放出するNOxの吸放出作用を行う。
すなわち、NOx吸収剤67を構成する成分としてバリウムBaを用いた場合を例にとって説明すると、排気ガスの空燃比がリーンのとき、すなわち排気ガス中の酸素濃度が高いときには排気ガス中に含まれるNOは図3(A)に示されるように白金Pt66上において酸化されてNO2となり、次いでNOx吸収剤67内に吸収されて酸化バリウムBaOと結合しながら硝酸イオンNO3 -の形でNOx吸収剤67内に拡散する。このようにしてNOxがNOx吸収剤67内に吸収される。排気ガス中の酸素濃度が高い限り白金Pt66の表面でNO2が生成され、NOx吸収剤67のNOx吸収能力が飽和しない限りNO2がNOx吸収剤67内に吸収されて硝酸イオンNO3 -が生成される。
これに対し、排気ガスの空燃比がリッチ又は理論空燃比にされると排気ガス中の酸化濃度が低下するために反応が逆方向(NO3 -→NO2)に進み、斯くして図3(B)に示されるようにNOx吸収剤67内の硝酸イオンNO3 -がNO2の形でNOx吸収剤67から放出される。次いで放出されたNOxは、還元剤添加弁24から添加された燃料又は燃焼室内の燃焼によって生成されたCO等の、排気ガス中に含まれる未燃HC,COによって還元される。
更に、本発明の実施形態によれば、NOx吸蔵還元触媒22は、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれる酸素を蓄え流入する排気ガスの空燃比がリッチになると蓄えられている酸素を放出する酸素貯蔵機能を有する。すなわち、酸素貯蔵機能を実現するため、酸素吸蔵物質をセリウムCeから構成した場合を例にとって説明すると、流入排気ガスの空燃比がリーンのときには排気ガス中に含まれる酸素分子O2がCeO2の形で取り込まれる(Ce23−>2CeO2)。これに対し、流入排気ガスの空燃比がリッチになると反応が逆方向(2CeO2−>Ce23)に進み、酸素分子O2が放出される。
ところで排気ガス中にはSOx(例えばSO2)が含まれており、このSO2がNOx吸蔵還元触媒22に流入するとこのSO2は白金Pt66において酸化されてSO3となる。次いでこのSO3はNOx吸収剤67内に吸収されて炭酸化バリウムBaCO3と結合しながら、硫酸イオンSO4 2-の形でNOx吸収剤67内に拡散し、安定した硫酸塩BaSO4を生成する。しかしながらNOx吸収剤67が強い塩基性を有するためにこの硫酸塩BaSO4は安定していて分解しづらく、排気ガスの空燃比を単にリッチにしただけでは硫酸塩BaSO4は分解されずにそのまま残る。従ってNOx吸収剤67内には時間が経過するにつれて硫酸塩BaSO4が増大(すなわち、硫黄被毒)することになり、時間が経過するにつれてNOx吸収剤67が吸収しうるNOx量が低下することになる。
そこでこの場合、吸蔵したSOxを放出すべきとき、すなわち、硫黄被毒回復処理をすべきとき、NOx吸蔵還元触媒22の触媒温度Tを600℃以上のSOx放出温度まで上昇させた状態で、NOx吸蔵還元触媒22に流入する排気ガスの空燃比をリッチにする(以下、「リッチ処理」という)ことによって、NOx吸収剤67からSOxが放出され、NOx吸収剤67が吸収しうるNOx量が回復する。
ここで、硫黄被毒回復処理をすべきときとは、NOx吸蔵還元触媒22に吸蔵された推定SOx量ΣSが予め定められた値SOX0を超えたときをいう。燃料中には或る割合で硫黄が含まれており、従って排気ガス中に含まれるSOx量、すなわちNOx吸蔵還元触媒22に吸蔵されるSOx量は燃料噴射量に比例する。燃料噴射量は要求トルクTQ及び機関回転数Nの関数であり、従ってNOx吸蔵還元触媒22に吸蔵されるSOx量も要求トルクTQ及び機関回転数Nの関数となる。本発明による実施形態ではNOx吸蔵還元触媒22に単位時間当り吸蔵されるSOx量SOXAが要求トルクTQ及び機関回転数Nの関数として図4に示されるようなマップの形で予めROM32内に記憶されている。単位時間当たりのSOx量SOXAを積算することによってNOx吸蔵還元触媒22に吸蔵された推定SOx量ΣSが算出される。
さて、硫黄被毒回復処理は上述のように、まずNOx吸蔵還元触媒22をSOx放出温度まで昇温させることから開始される。この昇温処理を筒内ガスの空燃比をリッチにすることによって行うと、NOx吸蔵還元触媒22の酸素貯蔵機能によって貯蔵されていた酸素と良好に反応し大量の反応熱が生じる。この反応熱が、排気ガスを介してNOx吸蔵還元触媒22の下流側部分に伝達されることによって、NOx吸蔵還元触媒22の下流側部分を上流側部分よりも昇温させ、その結果、上流側部分と下流側部分との間に温度差が生じてしまう。
これに関し、NOx吸蔵還元触媒22の排気ガス流れ方向の各部位における温度の関係を図5に示す。図5のAによって示される曲線が、本発明による硫黄被毒回復処理を行わなかった場合に、NOx吸蔵還元触媒22の下流側部分が上流側部分よりも昇温している状態を示している。その結果、触媒の劣化や燃費の悪化といった上述の問題が生じる。
一方、図5のBによって示される曲線は、本発明による硫黄被毒回復処理を行った状態を示している。曲線Bは、曲線Aに較べてNOx吸蔵還元触媒22の上流側部分の温度が上昇し、下流側部分の温度が低下している。その結果、下流側部分の過昇温による触媒の劣化を防止すると共に、硫黄被毒の度合の大きい上流側部分の硫黄被毒回復処理を十分に行うことが可能となる。
図5の曲線Bのような温度状態を実現するための本発明の実施形態による硫黄被毒回復処理について、図6を参照しながら説明する。図6は、硫黄被毒回復処理における還元剤添加弁24からの還元剤を添加する時期の制御、すなわち添加制御と、筒内ガスの空燃比の制御、すなわち燃焼制御との関係を示すタイムチャートである。
図6を参照すると、硫黄被毒回復処理をすべきとき、筒内ガスの空燃比がリーンとなるリーン燃焼を行うように燃焼制御を行うと共に、還元剤添加弁24から還元剤の添加を行う。このとき、添加された燃料がNOx吸蔵還元触媒22上で酸化反応をすることによって、NOx吸蔵還元触媒22の温度が全体的に徐々に上昇する。また、NOx吸蔵還元触媒22の温度の上昇と共に、NOx吸蔵還元触媒22に貯蔵された酸素も徐々に放出されることによって、酸素の貯蔵量も徐々に減少する。ここで放出された酸素は還元剤と反応する。
リーン燃焼中に還元剤の添加を行うと、排気ガス中には還元性の高いCOはほとんど含まれない状態でNOx吸蔵還元触媒22を昇温させることができ、且つ、NOx吸蔵還元触媒22に貯蔵された酸素とCOとの反応による大量の発熱を抑えることができる。また、添加された還元剤と貯蔵された酸素との反応により発生した反応熱は、後述のリッチ燃焼よりは低温の排気ガスによって、NOx吸蔵還元触媒22の下流側部分へ伝達され、最終的にNOx吸蔵還元触媒22の下流排気通路内へ放出される。従って、NOx吸蔵還元触媒22の下流側部分の過昇温を抑え、上流側部分と下流側部分の温度差を減少させることが可能となる。
次に、NOx吸蔵還元触媒22の上流側部分の温度がSOx放出温度に十分達した場合、燃焼制御を、リーン燃焼から筒内ガスの空燃比をリッチにするリッチ燃焼へと切り替える。リッチ燃焼を行うことによって、還元性の高いCOが排気ガス中に多く含まれることとなり、吸蔵したSOxを放出させる硫黄被毒の回復が良好に行われる。また、リッチ燃焼の前のリーン燃焼によって、NOx吸蔵還元触媒22に貯蔵された酸素の大半は放出されているため、排気ガス中のCOと放出された酸素との反応による反応熱もほとんど生じない。
ここで、硫黄被毒回復処理において、リッチ燃焼に切り替える前のリーン燃焼を実行する時間をリーン燃焼期間t1と称すると、リーン燃焼期間t1は排気ガス量が小さいほど長く設定する。すなわち、排気ガス量が小さいということは、NOx吸蔵還元触媒22の下流側部分の温度が上流側部分よりも高い場合に、NOx吸蔵還元触媒22の外へ放出される単位時間当たりの熱量が少なくなる。従って、リーン燃焼期間t1をより長く設定することによって、NOx吸蔵還元触媒22の外への熱の放出を促し、NOx吸蔵還元触媒22の上流側部分と下流側部分との温度差をできるだけ減少させるようにしている。
リーン燃焼中における添加制御による還元剤の添加時期は、例えば触媒温度Tに応じて決定され、排気ガス量に応じたリーン燃焼期間t1と共に予め実験等によって求め、ROM32内に記憶されている。
以上より、本発明によれば、酸素貯蔵機能を有するNOx吸蔵還元触媒22の硫黄被毒回復処理において、NOx吸蔵還元触媒22内の温度をより均一にすることが可能となることから、触媒機能の劣化を生じさせることなく、硫黄被毒回復の処理効率向上と処理時間の短縮を図ることが可能となるという効果を奏する。
続いて、本発明の別の実施形態による硫黄被毒回復処理について説明する。図7は、硫黄被毒回復処理における添加制御と、燃焼制御との関係を示す、図6とは異なるタイムチャートである。
図7を参照し図6と異なる点について説明すると、本実施形態においては、リーン燃焼期間t1の後半において、添加時間t2をより長く設定する。これによって、より多くの還元剤がNOx吸蔵還元触媒22に添加され、NOx吸蔵還元触媒22に流入する排気ガスの空燃比が一時的にリッチとなり、貯蔵された酸素のほぼ全てが放出される。その結果、次のリッチ燃焼中に、NOx吸蔵還元触媒22に貯蔵された酸素に起因する反応熱を最小限抑えることが可能となり、従って、NOx吸蔵還元触媒22内の温度を均一にすることが可能となる。添加時間t2は、例えば触媒温度Tに応じて予め実験等によって求め、ROM32内に記憶されている。
以上より、本実施形態によれば、上述の本発明の効果に加え、NOx吸蔵還元触媒22内の温度の更なる均一化が図れる。更に、リーン燃焼中にNOx吸蔵還元触媒22に流入する排気ガスの空燃比が一時的にリッチとなることから、吸蔵されたSOxの一部が放出され、更なるリッチ燃焼時の硫黄被毒回復の処理効率向上と処理時間の短縮を図ることが可能となるという効果を奏する。
4 吸気マニホルド
5 排気マニホルド
7 排気ターボチャージャ
21 排気管
22 NOx吸蔵還元触媒
24 還元剤供給弁

Claims (1)

  1. 機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入する排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを還元浄化するNOx吸蔵還元触媒を配置すると共に該NOx吸蔵還元触媒の上流の機関排気通路内に還元剤供給手段を配置し、NOx吸蔵還元触媒が、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれる酸素を蓄え流入する排気ガスの空燃比がリッチになると蓄えられている酸素を放出する酸素貯蔵機能を更に備え、NOx吸蔵還元触媒に吸蔵されたSOxを放出させるべきときに、NOx吸蔵還元触媒の触媒温度をSOx放出温度に昇温させると共に流入する排気ガスの空燃比をリッチにする硫黄被毒回復処理を行う硫黄被毒回復処理手段を具備する内燃機関の排気浄化装置において、前記硫黄被毒回復処理手段が、硫黄被毒回復処理を実行すべきときに、筒内ガスの空燃比をリーンにするリーン燃焼期間中に還元剤供給手段から還元剤を供給し、前記リーン燃焼期間経過後に筒内ガスの空燃比をリッチにする制御を行い、前記リーン燃焼期間は、排気ガス量が小さいほど長く設定されることを特徴とする内燃機関の排気浄化装置。
JP2009143368A 2009-06-16 2009-06-16 内燃機関の排気浄化装置 Expired - Fee Related JP5206597B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143368A JP5206597B2 (ja) 2009-06-16 2009-06-16 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143368A JP5206597B2 (ja) 2009-06-16 2009-06-16 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2011001832A true JP2011001832A (ja) 2011-01-06
JP5206597B2 JP5206597B2 (ja) 2013-06-12

Family

ID=43560001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143368A Expired - Fee Related JP5206597B2 (ja) 2009-06-16 2009-06-16 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP5206597B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173628A1 (ja) * 2017-03-22 2018-09-27 日立オートモティブシステムズ株式会社 内燃機関の制御装置及び制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003731A (ja) * 1999-04-20 2001-01-09 Mazda Motor Corp 排気ガス浄化装置、排気ガス浄化方法及び排気ガス浄化用触媒
JP2002256853A (ja) * 2001-03-02 2002-09-11 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003286878A (ja) * 2002-01-28 2003-10-10 Toyota Motor Corp 内燃機関の排気浄化装置および排気浄化方法
JP2006152947A (ja) * 2004-11-30 2006-06-15 Isuzu Motors Ltd 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム
JP2007239472A (ja) * 2006-03-06 2007-09-20 Toyota Motor Corp 内燃機関の触媒温度推定装置
JP2008223679A (ja) * 2007-03-14 2008-09-25 Toyota Motor Corp 内燃機関の排気浄化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003731A (ja) * 1999-04-20 2001-01-09 Mazda Motor Corp 排気ガス浄化装置、排気ガス浄化方法及び排気ガス浄化用触媒
JP2002256853A (ja) * 2001-03-02 2002-09-11 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003286878A (ja) * 2002-01-28 2003-10-10 Toyota Motor Corp 内燃機関の排気浄化装置および排気浄化方法
JP2006152947A (ja) * 2004-11-30 2006-06-15 Isuzu Motors Ltd 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム
JP2007239472A (ja) * 2006-03-06 2007-09-20 Toyota Motor Corp 内燃機関の触媒温度推定装置
JP2008223679A (ja) * 2007-03-14 2008-09-25 Toyota Motor Corp 内燃機関の排気浄化装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173628A1 (ja) * 2017-03-22 2018-09-27 日立オートモティブシステムズ株式会社 内燃機関の制御装置及び制御方法
CN109690043A (zh) * 2017-03-22 2019-04-26 日立汽车系统株式会社 内燃机的控制装置以及控制方法
CN109690043B (zh) * 2017-03-22 2020-09-11 日立汽车系统株式会社 内燃机的控制装置以及控制方法

Also Published As

Publication number Publication date
JP5206597B2 (ja) 2013-06-12

Similar Documents

Publication Publication Date Title
JP4420048B2 (ja) 内燃機関の排気浄化装置
US20120017587A1 (en) Control system of internal combustion engine
US20060064969A1 (en) Exhaust purification device of compression ignition type internal combustion engine
US20090049825A1 (en) Exhaust Gas Purification Device For Internal Combustion Engine
JP2008063988A (ja) 内燃機関の排気浄化装置
JP4697305B2 (ja) 内燃機関の排気浄化装置
JP4039349B2 (ja) 内燃機関の排気浄化装置
JP2010112200A (ja) 内燃機関の制御装置
JP5163809B2 (ja) 内燃機関の排気浄化装置
JP2010048134A (ja) 内燃機関の排気浄化装置
JP2006336589A (ja) 内燃機関の排気浄化装置
JP5206597B2 (ja) 内燃機関の排気浄化装置
JP2016109041A (ja) 内燃機関の制御装置
JP2008208739A (ja) 内燃機関の排気浄化装置
JP2009156165A (ja) 内燃機関の排気浄化装置
JP2009293572A (ja) 内燃機関の排気浄化装置
JP2008303791A (ja) 内燃機関の排気浄化装置
JP6183537B2 (ja) 内燃機関の排気浄化装置
JP4438880B2 (ja) 内燃機関の排気浄化装置
JP2009228525A (ja) 内燃機関の排気浄化装置
JP2005171805A (ja) 内燃機関の排気浄化装置
JPWO2010089901A1 (ja) 内燃機関の排気浄化装置
JP2000073741A (ja) 内燃機関の排気浄化装置
JP2009180128A (ja) 内燃機関の排気浄化装置
JP2009250130A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5206597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees