JP2016109041A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2016109041A
JP2016109041A JP2014247324A JP2014247324A JP2016109041A JP 2016109041 A JP2016109041 A JP 2016109041A JP 2014247324 A JP2014247324 A JP 2014247324A JP 2014247324 A JP2014247324 A JP 2014247324A JP 2016109041 A JP2016109041 A JP 2016109041A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
exhaust gas
rich
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014247324A
Other languages
English (en)
Inventor
中山 茂樹
Shigeki Nakayama
茂樹 中山
俊博 森
Toshihiro Mori
俊博 森
小林 大
Masaru Kobayashi
大 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014247324A priority Critical patent/JP2016109041A/ja
Publication of JP2016109041A publication Critical patent/JP2016109041A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

【課題】酸素吸蔵剤の発熱によるNOx吸蔵還元触媒等の熱劣化を抑制する。【解決手段】NOx吸蔵還元触媒と、酸素吸蔵剤と、を担体21に担持した触媒コンバータ20を排気通路19に備える内燃機関100の制御装置200が、NOx吸蔵還元触媒を硫黄被毒から回復させるときは、NOx吸蔵還元触媒から硫黄成分が放出される所定温度まで担体21の温度を昇温させると共に触媒コンバータ20に流入する排気の空燃比を交互にリーンとリッチに切り替える硫黄被毒回復制御を実施し、硫黄被毒回復制御時に排気の空燃比をリッチからリーンに切り替えるときは、排気の空燃比をリッチからリーンに向けて変化させるための排気の目標空燃比として、酸素吸蔵剤の発熱による担体21の温度増加量が所定値未満となる過渡目標空燃比を設定し、排気の空燃比をその過渡目標空燃比に制御する。【選択図】図1

Description

本発明は、内燃機関の制御装置に関する。
従来の内燃機関の制御装置として、排気通路に設けられたNOx吸蔵還元触媒の硫黄被毒回復制御時に、NOx吸蔵還元触媒に流入する排気の空燃比を交互にリーンとリッチに切り替えるものがある(特許文献1参照)。
特表2003−518578号公報
しかしながら、前述した従来の内燃機関の制御装置は、硫黄被毒回復制御時に排気の空燃比をリッチからリーンに向けて急峻に変化させていた。そのため、排気の空燃比をリッチからリーンに切り替えたときに排気中の酸素量が急増するので、例えばNOx吸蔵還元触媒として、酸素吸蔵時に発熱する酸素吸蔵剤を含むものを使用すると、酸素吸蔵剤の発熱量が大きくなるという問題点があった。硫黄被毒回復制御時は、NOx吸蔵還元触媒から硫黄成分を放出するために雰囲気温度が例えば600℃以上の高温とされる。そのため、酸素吸蔵剤の発熱量が大きくなると、NOx吸蔵還元触媒などを熱劣化させてしまうおそれがある。
本発明はこのような問題点に着目してなされたものであり、酸素吸蔵剤の発熱によるNOx吸蔵還元触媒などの熱劣化を抑制することを目的とする。
上記課題を解決するために、本発明のある態様によれば、流入する排気の空燃比がリーンのときに排気中のNOxを酸化して吸蔵し、ストイキ又はリッチのときに吸蔵したNOxを放出して還元するNOx吸蔵還元触媒と、流入する排気の空燃比がリーンのときに排気中の酸素を吸蔵すると共に発熱し、リッチのときに吸蔵した酸素を放出する酸素吸蔵剤と、を担体に担持した触媒コンバータを排気通路に備える内燃機関を制御する制御装置が、NOx吸蔵還元触媒を硫黄被毒から回復させるときは、NOx吸蔵還元触媒から硫黄成分が放出される所定温度まで担体の温度を昇温させると共に触媒コンバータに流入する排気の空燃比を交互にリーンとリッチに切り替える硫黄被毒回復制御を実施し、硫黄被毒回復制御時に排気の空燃比をリッチからリーンに切り替えるときは、排気の空燃比をリッチからリーンに向けて変化させるための排気の目標空燃比として、酸素吸蔵剤の発熱による担体の温度増加量が所定値未満となる過渡目標空燃比を設定し、排気の空燃比をその過渡目標空燃比に制御するように構成されている。
本発明によれば、硫黄被毒回復制御時において、酸素吸蔵剤の発熱による触媒コンバータの担体の温度上昇を抑えることができる。よって、触媒コンバータの担体に担持されたNOx吸蔵還元触媒などの熱劣化を抑制することができる。
図1は、本発明の一実施形態による内燃機関及び内燃機関を制御する電子制御ユニットの概略構成図である。 図2は、追加燃料の噴射について説明する図である。 図3は、NOx再生制御について説明するタイムチャートである。 図4は、NOx排出量のマップを示す図である。 図5は、硫黄被毒回復制御について説明するタイムチャートである。 図6は、SOx排出量のマップを示す図である。 図7Aは、排気の空燃比をリッチからリーンに向けて急峻に変化させたときの入口空燃比と出口空燃比の変化を示す図である。 図7Bは、排気の空燃比をリッチからリーンに向けて緩やかに変化させたときの入口空燃比と出口空燃比の変化を示す図である。 図8は、本発明の一実施形態による過渡時の空燃比制御について説明するフローチャートである。 図9は、本発明の一実施形態による目標入口空気過剰率の具体的な設定方法について説明する図である。 図10は、本発明の一実施形態による過渡時の空燃比制御の動作について説明するタイムチャートである。
以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。
図1は、本発明の一実施形態による内燃機関100及び内燃機関100を制御する電子制御ユニット200の概略構成図である。
内燃機関100は、内部で燃料を圧縮自己着火燃焼させて、例えば車両などを駆動するための動力を発生させる機関本体1を備える。機関本体1は、各気筒に形成される燃焼室2と、各燃焼室2内にそれぞれ燃料を噴射するための電子制御式の燃料噴射弁3と、各燃焼室2内に吸入空気を導入するための吸気マニホールド4と、各燃焼室2内から排気を排出するための排気マニホールド5と、を含む。
各燃料噴射弁3は、燃料供給管15を介してコモンレール16に連結される。コモンレール16は、吐出量の変更が可能な電子制御式の燃料ポンプ17を介して燃料タンク18に連結される。燃料タンク18内に貯蔵されている燃料は、燃料ポンプ17によってコモンレール16内に供給される。コモンレール16内に供給された燃料は、各燃料供給管15を介して燃料噴射弁3に供給される。
吸気マニホールド4は、吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結される。コンプレッサ7aの入口は、吸気管8を介してエアクリーナ9に連結される。吸気管8には、吸入空気量を検出するためのエアフローメータ211が設けられる。吸気ダクト6内には、ステップモータにより駆動される電気制御式のスロットル弁10が配置される。吸気ダクト6の周りには、吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。
排気マニホールド5は、排気ターボチャージャ7の排気タービン7bの入口に連結される。排気タービン7bの出口は、触媒コンバータ20が設けられた排気管19に連結される。排気マニホールド5と吸気マニホールド4とは、排気再循環(Exhaust Gas Recirculation;以下「EGR」という。)を行うためにEGR通路12を介して互いに連結される。EGR通路12内には、電子制御式のEGR制御弁13が配置される。EGR通路12の周りには、EGR通路12内を流れるEGRガスを冷却するための冷却装置14が配置される。
触媒コンバータ20は、NOx(窒素酸化物)の酸化・還元反応を促進する貴金属触媒と、NOxを吸蔵・放出する機能を有するNOx吸蔵剤と、を含むいわゆるNOx吸蔵還元触媒に、酸素を吸蔵・放出する機能(酸素吸蔵能;OSC(Oxygen Storage capacity))を有する酸素吸蔵剤を添加したものを、アルミナ(AL)などの担体21に担持したものである。本実施形態では、吸収及び吸着の双方を含む用語として吸蔵という用語を使用している。
貴金属触媒としては、例えば白金(Pt)やパラジウム(Pd)などの貴金属類が挙げられる。本実施形態では、貴金属触媒として白金(Pt)を用いている。
NOx吸蔵剤としては、カリウム(K)、ナトリウム(Na)、セシウム(Cs)などのアルカリ金属、バリウム(Ba)、カルシウム(Ca)などのアルカリ土類、又は、ランタン(La)、イットリウム(Y)などの希土類から選ばれた少なくとも1つが挙げられる。本実施形態では、NOx吸蔵剤としてバリウム(Ba)を用いている。
酸素吸蔵剤としては、セリア(酸化セリウムIV:CeO)などの遷移金属や、セリアを含む複合酸化物、例えばセリア−ジルコニア複合酸化物(CeO−ZrO複合酸化物)などが挙げられる。本実施形態では、酸素吸蔵剤としてセリアを用いている。
機関吸気通路、燃焼室2及び触媒コンバータ20よりも上流の排気通路内に供給された空気及び燃料(炭化水素)の比を排気の空燃比と定義すると、NOx吸蔵還元触媒は、触媒コンバータ20に流入する排気の空燃比がリーンのときに排気ガス中のNOxを吸蔵し、流入する排気の空燃比がリッチ又はストイキになると吸蔵しているNOxを放出して還元する。
すなわち、触媒コンバータ20に流入する排気の空燃比がリーンのとき、つまり排気中に酸素(O)が存在するときは、排気中に含まれる一酸化窒素(NO)は白金により酸化されて二酸化窒素(NO)となる。このNOは、NOx吸蔵剤内に吸収されて炭酸バリウム(BaCO)と結合しながら硝酸イオン(NO )の形でNOx吸蔵剤内に拡散する。このようにしてNOxがNOx吸蔵剤内に吸収される。排気中の酸素濃度が高い限り白金の表面でNOが生成され、NOx吸蔵剤のNOx吸蔵能力が飽和しない限り、NOがNOx吸蔵剤内に吸蔵されて硝酸イオン(NO )が生成される。
これに対し、触媒コンバータ20に流入する排気の空燃比がリーンからストイキ(理論空燃比)又はリッチに切り換えられて排気中に酸素が存在しなくなると、排気中の酸素濃度が低下するために反応が逆方向(NO →NO)に進み、NOx吸蔵剤内の硝酸イオン(NO )がNOの形でNOx吸蔵剤から放出される。放出されたNOは、排気中に含まれる未燃炭化水素(HC)や一酸化炭素(CO)によって還元されて窒素(N)となり、排気中の諸成分は、二酸化炭素(CO)や水(HO)、Nなどの無害な物質として大気中に排出される。
酸素吸蔵剤は、触媒コンバータ20に流入する排気の空燃比がリーンのときは、以下の(1)式に示す酸化反応を起こしてΔH=191kJ/molの熱を発熱する。また酸素吸蔵剤は、流入する排気の空燃比がリッチのときは、以下の(2)式に示す還元反応を起こしてΔH=191kJ/molの熱を吸熱する。
Ce+O→2CeO+ΔH …(1)
2CeO→Ce+O−ΔH …(2)
すなわち酸素吸蔵剤は、流入する排気の空燃比がリーンのときに排気中の酸素を吸蔵すると共に発熱し、リッチのときに吸蔵した酸素を放出し、これにより前述したNOx吸蔵還元触媒において生じる反応を助ける。
触媒コンバータ20には、触媒コンバータ20の担体21の温度(以下「触媒床温」という。)Tcatを検出するための触媒床温センサ212が設けられる。
また、触媒コンバータ20よりも上流側の排気管19には、触媒コンバータ20に流入する排気の温度Tgasを検出するための排気温度センサ213と、触媒コンバータ20に流入する排気の空燃比(以下「入口空燃比」という。)AFRinを検出するための第1空燃比センサ214と、が設けられる。
さらに、触媒コンバータ20よりも下流側の排気管19には、触媒コンバータ20から流出する排気の空燃比(以下「出口空燃比」という。)AFRoutを検出するための第2空燃比センサ215が設けられる。
電子制御ユニット200は、デジタルコンピュータから構成され、双方性バス201によって互いに接続されたROM(リードオンリメモリ)202、RAM(ランダムアクセスメモリ)203、CPU(マイクロプロセッサ)204、入力ポート205及び出力ポート206を備える。
入力ポート205には、前述したエアフローメータ211や触媒床温センサ212、排気温度センサ213、第1空燃比センサ214、第2空燃比センサ215のほか、外気温度Toutを検出するための外気温度センサ216などの出力信号が、対応する各AD変換器207を介して入力される。また、入力ポート205には、アクセルペダル220の踏み込み量(以下「アクセル踏込量」という。)Lに比例した出力電圧を発生する負荷センサ217の出力電圧が、対応するAD変換器207を介して入力される。さらに入力ポート205には、機関回転数Nを算出するための信号として、機関本体1のクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ218の出力信号が入力される。このように入力ポート205には、内燃機関100を制御するために必要な各種センサの出力信号が入力される。
出力ポート206は、対応する駆動回路208を介して燃料噴射弁3、スロットル弁10を駆動するステップモータ、EGR制御弁13及び燃料ポンプ17に接続される。
電子制御ユニット200は、機関通常運転時には機関運転状態(アクセル踏込量L及び機関回転数N)に基づいて設定した目標噴射量を燃料噴射弁3から主燃料Qmとして圧縮上死点(TDC)周りで噴射し、機関本体1の燃焼室2内において酸素過剰状態の混合気を燃焼させている。したがって、機関通常運転時には触媒コンバータ20に流入する排気の空燃比がリーンとなり、排気中のNOxがNOx吸蔵還元触媒に吸蔵される。しかしながら、機関運転時間が長くなるとNOx吸蔵還元触媒に吸蔵されているNOx量が多くなり、ついにはNOx吸蔵還元触媒がNOxを吸蔵できなくなってしまう。
そこで本実施形態による電子制御ユニット200は、NOx吸蔵還元触媒からNOxを放出してNOx吸蔵還元触媒のNOx吸蔵能力を回復させるために、必要に応じて入口空燃比AFRinを一時的にリッチに切り換えるNOx再生制御を実施する。電子制御ユニット200は、NOx再生制御時には、図2に示すように圧縮上死点周りで噴射する主燃料Qmとは別に、燃焼行程又は排気行程に追加燃料Qaを燃料噴射弁3から燃焼室2内に噴射することで、入口空燃比AFRinを一時的にリッチに切り換える。なお、追加燃料Qaについては、例えば排気マニホールド5や触媒コンバータ20よりも上流側の排気管19に燃料添加弁を別途に設け、燃料添加弁から供給するようにしても良い。
図3は、NOx再生制御について説明するタイムチャートである。
図3に示すように、電子制御ユニット200は、NOx吸蔵還元触媒に吸蔵されたNOx吸蔵量NOXが許容量MAXNを越えたときにNOx再生制御を実施する。その結果、入口空燃比AFRinが一時的にリッチに切り換えられ、NOx吸蔵量NOXが減少する。本実施形態では、NOx吸蔵量NOXは例えば機関本体1から排出されるNOx排出量に基づいて算出される。すなわち、機関本体1から単位時間当り排出されるNOx排出量NOXAがアクセル踏込量L及び機関回転数Nの関数として図4に示すようなマップの形で予めROM202内に記憶されており、電子制御ユニット200は、このNOx排出量NOXAを繰り返し積算することでNOx吸蔵量NOXを算出する。
ところで、排気中にはNOxの他にもSOx(硫黄酸化物)すなわち二酸化硫黄(SO)が含まれており、SOが触媒コンバータ20に流入すると、SOは白金により酸化されて三酸化硫黄(SO)となる。このSOはNOx吸蔵剤内に吸蔵されて炭酸バリウム(BaCO)と結合しながら硫酸イオン(SO 2−)の形でNOx吸蔵剤内に拡散し、安定した硫酸塩(BaSO)を生成する。
この硫酸塩BaSOは、NOx吸蔵剤が強い塩基性を有するために安定していて分解しづらく、排気の空燃比を単にリッチにしただけでは分解されずにNOx吸蔵剤内にそのまま残ってしまう。したがって、NOx吸蔵剤内には時間が経過するにつれて硫酸塩BaSOが増大することになり、時間が経過するにつれてNOx吸蔵剤が吸収しうるNOx吸蔵量が低下するいわゆる硫黄被毒が生じる。
一方、触媒床温(NOx吸蔵還元触媒の温度)Tcatを600℃以上の所定のSOx放出温度(本実施形態では680℃)まで上昇させた状態で触媒コンバータ20に流入する排気の空燃比をリッチにするとNOx吸蔵剤からSOxが放出される。
そこで本実施形態による電子制御ユニット200は、NOx吸蔵還元触媒からSOxを放出するために、燃焼行程又は排気行程に燃焼室2内に追加燃料Qbを噴射することにより触媒床温TcatをSOx放出温度以上に維持しつつ入口空燃比AFRinをリッチ及びリーンに交互に切り換える硫黄被毒回復制御を実施する。追加燃料Qbについても、追加燃料Qaと同様に、排気マニホールド5や触媒コンバータ20よりも上流側の排気管19に別途に設けた燃料添加弁から供給するようにしても良い。
図5は、硫黄被毒回復制御について説明するタイムチャートである。
図5に示すように、電子制御ユニット200は、NOx吸蔵還元触媒に吸蔵されたSOx吸蔵量SOXが許容量MAXSを越えたときに硫黄被毒回復制御を実施する。その結果、触媒床温TcatがSOx放出温度以上まで高められると共に入口空燃比AFRinがリッチ及びリーンに交互に切り換えられ、SOx吸蔵量SOXが減少する。本実施形態では、SOx吸蔵量SOXは例えば機関本体1から排出されるSOx排出量に基づいて算出される。すなわち、機関本体1から単位時間当り排出されるSOx排出量SOXAがアクセル踏込量L及び機関回転数Nの関数として図6に示すようなマップの形で予めROM202内に記憶されており、電子制御ユニット200は、このSOx排出量SOXAを繰り返し積算することによってSOx吸蔵量SOXを算出する。
なお、硫黄被毒回復制御時に、入口空燃比AFRinをリッチに維持するのではなく、リッチ及びリーンに交互に切り換えるのは以下の理由による。すなわち、入口空燃比AFRinがリッチのときは、排気中にOが存在しないため、NOx吸蔵還元触媒から放出された硫黄成分がHと結合し、有毒な硫化水素(HS)が生成される場合がある。そのため、入口空燃比AFRinを所定期間リッチにした後は、生成されたHSを酸化してSOにするために必要なOを供給するために、所定期間リーンに戻すようにしているのである。
そして本実施形態では、硫黄被毒回復制御時に入口空燃比AFRinをリッチからリーンに切り替える場合は、NOx再生制御時のように入口空燃比AFRinをリッチからリーンに向けて急峻に変化させるのではなく、入口空燃比AFRinをリッチからリーンに向けて緩やかに変化させる。以下、その理由について、図7A及び図7Bを参照して説明する。
図7Aは、排気の空燃比をリッチからリーンに向けて急峻に変化させたときの入口空燃比AFRinと出口空燃比AFRoutの変化を示す図である。図7Bは、排気の空燃比をリッチからリーンに向けて緩やかに変化させたときの入口空燃比AFRinと出口空燃比AFRoutの変化を示す図である。図7A及び図7Bにおいて、実線が入口空燃比AFRinであり、破線が出口空燃比AFRoutである。
前述したように、NOx吸蔵還元触媒に添加されている酸素吸蔵剤は、排気の空燃比がリーンのときに排気中の酸素を吸蔵し、リッチのときに吸蔵した酸素を放出する。
そのため、図7A及び図7Bに示すように、排気の空燃比がリーンからリッチに切り替わると、酸素吸蔵剤に吸蔵されていた酸素が酸素吸蔵剤から放出される。したがって、触媒コンバータ20の入口側と出口側の酸素量を比べると、酸素吸蔵剤から放出された分だけ出口側の酸素量のほうが多くなる。その結果、酸素が放出されている間は、出口空燃比AFRoutが入口空燃比AFRinよりも大きくなる。そして、酸素が全て放出された後は、出口空燃比AFRoutと入口空燃比AFRinとが等しくなる。
その後、排気の空燃比がリッチからリーンに切り替わると、酸素吸蔵剤に酸素が吸蔵される。そのため、触媒コンバータ20の入口側と出口側の酸素量を比べると、酸素吸蔵剤に吸蔵された分だけ出口側の酸素量のほうが少なくなる。その結果、酸素が吸蔵されている間は、出口空燃比AFRoutが入口空燃比AFRinよりも小さくなる。そして、酸素吸蔵剤の酸素吸蔵能力が飽和した後は、それ以上酸素を吸蔵できなくなるので、出口空燃比AFRoutと入口空燃比AFRinとが等しくなる。
ここで前述したように、酸素吸蔵剤は酸素を吸蔵したときに発熱する。このときの単位時間当たりの発熱量は、単位時間当たりに吸蔵される酸素量が多くなるほど、換言すれば入口空燃比AFRinと出口空燃比AFRoutとの差(以下「前後空燃比差」という。)が大きくなるほど多くなる。
そして、図7Aに示すように、排気の空燃比をリッチからリーンに向けて急峻に変化させた場合は、排気中の酸素量が一気に増加するため、前後空燃比差が大きくなる。
一方で、図7Bに示すように、排気の空燃比をリッチからリーンに向けて緩やかに変化させた場合は、排気中の酸素量が緩やかに増加する。そのため、排気の空燃比をリッチからリーンに向けて急峻に変化させた場合と比較して、単位時間当たりに酸素吸蔵剤に吸蔵される酸素量が抑えられ、前後空燃比差が小さくなる。
すなわち、図7Aに示すように排気の空燃比をリッチからリーンに向けて急峻に変化させた場合は、排気中の酸素量が一気に増加するため、単位時間当たりに酸素吸蔵剤に吸蔵される酸素量が多くなり、前後空燃比差が大きくなって単位時間当たりの発熱量が多くなる。その結果、酸素吸蔵剤の発熱に起因する触媒床温の温度増加量も多くなる。
硫黄被毒回復制御時は、NOx再生制御時と比べて触媒床温が高くなる。そのため、硫黄被毒回復制御時に、酸素吸蔵剤の発熱に起因する触媒床温の増加を無視して排気の空燃比をリッチからリーンに急峻に変化させてしまうと、触媒床温が過剰に上昇してNOx吸蔵還元触媒や酸素吸着剤、さらには触媒コンバータ20自体が熱劣化するおそれがある。
そこで本実施形態では、硫黄被毒回復制御時に排気の空燃比をリッチからリーンに向けて変化させる過渡時は、前後空燃比差が、酸素吸蔵剤の発熱による触媒床温の温度増加量が所定値未満となる前後空燃比差となるように入口空燃比AFRinを制御し、入口空燃比AFRinをリッチからリーンに向けて緩やかに変化させることにしたのである。以下、この本実施形態による過渡時の空燃比制御について説明する。
図8は、電子制御ユニットが実施する本実施形態による過渡時の空燃比制御について説明するフローチャートである。
ステップS1において、電子制御ユニット200は、出口空燃比AFRoutに基づいて、触媒コンバータ20から流出する排気の空気過剰率(以下「出口空気過剰率」という。)λoutを算出する。電子制御ユニット200は、具体的には出口空燃比AFRoutを理論空燃比で除算して出口空気過剰率λoutを算出する。
なお電子制御ユニット200は、本ルーチンの初回の演算時はステップS1において出口空燃比AFRoutを理論空燃比に設定して出口空気過剰率λoutを算出し、それ以降は後述するステップS6において第2空燃比センサ215で検出された出口空燃比AFRoutに基づいて出口空気過剰率λoutを算出する。
このように、初回の演算時は出口空燃比AFRoutを理論空燃比に設定して出口空気過剰率λoutを算出することで、硫黄被毒回復制御時に排気の空燃比をリッチからリーンに切り替えるときは、リッチからストイキ近傍までは排気の空燃比を急峻に変化させている。これは、酸素吸蔵剤の発熱は、触媒コンバータ20に流入する排気の空燃比がリーンのとき、すなわち入口空燃比AFRinがリーンのときに起こり、入口空燃比AFRinがストイキのときには起こらない。したがって、リッチからストイキ近傍までは排気の空燃比を急峻に変化させても、酸素吸蔵剤で発熱が生じず、NOx吸蔵還元触媒等が熱劣化するおそれがないためである。
ステップS2において、電子制御ユニット200は、出口空気過剰率λoutに基づいて、排気の空燃比をリッチからリーンに向けて変化させる過渡時に触媒コンバータ20に流入させる排気の空気過剰率(以下「入口空気過剰率」という。)λinの目標値(以下「目標入口空気過剰率」という。)tλinを設定する。この目標入口空気過剰率tλinは、換言すれば、硫黄被毒回復制御時に排気の空燃比をリッチからリーンに向けて変化させる過渡時における入口空燃比AFRinの目標値(以下「過渡目標入口空燃比」という。)tAFRinである。
以下、図9を参照して、ステップS2における目標入口空気過剰率tλinの具体的な設定方法について説明する。
本実施形態では、排気から触媒コンバータ20の担体21が受ける単位時間当たりの熱量Q[J/s]、触媒コンバータ20の担体21から外気に放出される単位時間当たりの熱量Q[J/s]、及び、酸素吸蔵剤から触媒コンバータ20の担体21が受ける単位時間当たりの熱量(酸素吸蔵剤の単位時間当たりの発熱量)Q[J/s]を考慮し、以下の(3)式が成立する入口空気過剰率λinを目標入口空気過剰率tλinとして設定する。
total=(Q1+Q3)−Q2=許容熱量 …(3)
熱量Qは、排気温度Tgas[K]と、触媒床温Tcat[K]と、排気と担体21間の熱伝達率h[W/mK]と、排気と担体21との接触面積A[m]と、に基づいて、以下の(4)式によって算出される。
=h×A(Tgas−Tcat) …(4)
なお、熱量Qに関しては、触媒床温Tcatよりも排気温度Tgasのほうが高くなる場合も考えられるので、マイナスの値となる場合もある。
熱量Qは、触媒床温Tcat[K]と、触媒コンバータ20周りの温度、すなわち外気温度センサで検出される外気温度Tout[K]と、担体21と外気間の熱伝達率h[W/mK]と、担体21(触媒コンバータ20)と外気との接触面積A[m]と、に基づいて、以下の(5)式によって算出される。
=h×A(Tcat−Tout) …(5)
熱量Qは、エンタルピーΔH[J/mol]と、エアフローメータ211で検出される吸入空気量Ga[g/s]と、空気中の酸素分率(=0.21)と、酸素のモル質量(=32[g/mol])と、出口空気過剰率λoutと、入口空気過剰率λinと、に基づいて、以下の(6)式の通り表すことができる。
=ΔH(1/λout−1/λin)×Ga×0.21×32 …(6)
なお(6)式について簡単に説明すると、(6)式は、触媒コンバータ20に供給された単位時間当たりの酸素量(Ga×0.21×32)のうち、酸素吸蔵剤に吸蔵された酸素の割合(すなわち吸蔵酸素量)を求め、その吸蔵酸素量に、1molの酸素が酸素吸蔵剤に吸蔵されたときに発生する熱量(ΔH)を乗算したものである。
つまり本実施形態では、担体21が受ける熱量(Q1+Q3)から担体21から放出される熱量Q2を減算した最終的に担体21が受ける熱量Qtotal、すなわち触媒床温の増加に用いられる熱量Qtotalが許容熱量となる入口空気過剰率λinを、(3)式から(6)式に基づいて算出し、算出した入口空気過剰率λinを目標入口空気過剰率tλinとして設定する。
許容熱量に関しては、担体21に担持されたNOx吸蔵還元触媒等が熱劣化する触媒床温(以下「熱劣化床温」という。)と、硫黄被毒回復制御中に触媒床温を熱劣化床温まで昇温させるために必要な熱量(以下「熱劣化熱量」という。)と、を予め実験等で求めておくことで、その熱劣化熱量未満の熱量から適宜選択することができる。本実施形態では、酸素吸蔵剤の発熱によって触媒床温が増加しないように、許容熱量をゼロに設定して酸素吸蔵剤の発熱による触媒床温の温度増加量がゼロになるようにしている。
このように、熱劣化熱量未満の熱量から予め選択された所定の熱量を許容熱量として設定することで、酸素吸蔵剤の発熱による触媒床温の温度増加量を、触媒床温を熱劣化床温まで増加させる温度増加量未満にすることができる。
再び図8に戻り、ステップS3において、電子制御ユニット200は、目標入口空気過剰率tλinに基づいて、追加燃料Qbの目標噴射量を算出する。電子制御ユニット200は、具体的には機関運転状態(アクセル踏込量L及び機関回転数N)に基づいて設定される主燃料Qmの目標噴射量と、吸入空気量Gaと、を読み込み、それらから入口空気過剰率λinを目標入口空気過剰率tλinにするために必要な追加燃料Qbの目標噴射量を算出する。
ステップS4において、電子制御ユニット200は、ステップS3で算出された目標噴射量を、燃焼行程又は排気行程で追加燃料Qbとして燃料噴射弁3から噴射させる。これにより、入口空気過剰率λinが目標入口空気過剰率tλinに制御される。すなわち、入口空燃比AFRinが過渡目標入口空燃比tAFRinに制御される。
ステップS5において、電子制御ユニット200は、リッチからリーンの切り替えが終了したか否かを判定する。電子制御ユニット200は、ステップS3で算出した追加燃料Qbの目標噴射量がゼロであれば、リッチからリーンの切り替えが終了したと判定して過渡時におる空燃比制御を終了する。一方で電子制御ユニット200は、ステップS3で算出した追加燃料Qbの目標噴射量がゼロよりも多ければ、ステップS6の処理に進む。
ステップS6において、電子制御ユニット200は、入口空気過剰率λinがステップ2で設定された目標入口空気過剰率tλinに制御された後の出口空燃比AFRoutを、第2空燃比センサ215によって検出する。
電子制御ユニット200は、ステップS6で出口空燃比AFRoutを検出した後は、ステップS1に戻り、それ以降は追加燃料Qbの目標噴射量がゼロになるまで、順次検出される出口空燃比AFRoutに基づいて目標入口空気過剰率tλinを設定する。
図10は、本実施形態による過渡時における空燃比制御の動作について説明するタイムチャートである。なお、機関運転状態は一定とする。
時刻t1で、硫黄被毒回復制御中に排気の空燃比がリーンからリッチに切り替えられたとすると、時刻t1から所定期間が経過した時刻t2で、排気の空燃比をリッチからリーンに切り替えるために、本実施形態による過渡時における空燃比制御が実施される。
時刻t2で過渡時における空燃比制御が開始されると、まず出口空気過剰率λoutを1にすることができ、かつ、担体21が受ける熱量Qtotalを許容熱量にすることができる目標入口空気過剰率tλinが設定される。すなわち、出口空燃比AFRoutをストイキにすることができ、かつ、担体21が受ける熱量Qtotalを許容熱量にすることができる過渡目標入口空燃比tAFRinが設定される。そして、入口空燃比AFRinが過渡目標入口空燃比tAFRinとなるように追加燃料Qbの噴射量が制御され、追加燃料Qの噴射量が減少する。
このように、過渡時の空燃比制御が開始されると、まず出口空気過剰率λoutが1になるように入口空燃比AFRinが制御されるので、リッチからストイキ近傍まで入口空燃比AFRinが急峻に変化する。これは前述したように、酸素吸蔵剤の発熱は、入口空燃比AFRinがリーンのときに起こり、ストイキのときには起こらないため、リッチからストイキ近傍までは排気の空燃比を急峻に変化させても、酸素吸蔵剤で発熱が生じず、NOx吸蔵還元触媒等が熱劣化するおそれがないためである。リッチからストイキ近傍までは入口空燃比AFRinを急峻に変化させることで、追加燃料Qbの噴射量を抑えることができるので、燃費の悪化を抑制できる。
入口空燃比AFRinをストイキ近傍まで変化させた後は、第2空燃比センサ215で検出された出口空燃比AFRoutに基づいて、担体21が受ける熱量Qtotalを許容熱量にすることができる目標入口空気過剰率tλin、すなわち過渡目標入口空燃比tAFRinが順次設定される。
入口空燃比AFRinをストイキ近傍まで変化させることにより、排気温度Tgasが低下して熱量Qが減少するため、その分熱量Qを増大させる必要がある。その結果、入口空燃比AFRinをストイキ近傍まで変化させた後は、目標入口空気過剰率tλin、すなわち過渡目標入口空燃比tAFRinが徐々に増加していく。また、酸素吸蔵剤に酸素が吸蔵されていくと酸素吸蔵剤の酸素吸蔵効率が低下していき、ある時点で出口空燃比AFRoutが増加していく。その結果、過渡目標入口空燃比tAFRinがさらに増加していく。
そして、入口空燃比AFRinが順次設定された過渡目標入口空燃比tAFRinとなるように、追加燃料Qbの噴射量が順次制御され、追加燃料Qの噴射量が徐々に減少していく。これにより、前後空燃比差が、酸素吸蔵剤の発熱による触媒床温の温度増加量が所定値(=触媒床温を熱劣化床温まで増加させる温度増加量)未満となる前後空燃比差に制御される。そのため、酸素吸蔵剤の発熱による触媒床温の過剰な上昇を抑制できるので、NOx吸蔵還元触媒等の熱劣化を抑制することができる。
時刻t3で、追加燃料Qbの噴射量(目標噴射量)がゼロになると、過渡時における空燃比制御が終了される。
以上説明した本実施形態によれば、流入する排気の空燃比がリーンのときに排気中のNOxを酸化して吸蔵し、ストイキ又はリッチのときに吸蔵したNOxを放出して還元するNOx吸蔵還元触媒と、流入する排気の空燃比がリーンのときに排気中の酸素を吸蔵すると共に発熱し、リッチのときに吸蔵した酸素を放出する酸素吸蔵剤と、を担体21に担持した触媒コンバータ20を排気管(排気通路)19に備える内燃機関100を制御する電子制御ユニット(制御装置)200が、NOx吸蔵還元触媒を硫黄被毒から回復させるときは、NOx吸蔵還元触媒から硫黄成分が放出されるSOx放出温度(所定温度)まで担体21の温度を昇温させると共に触媒コンバータ20に流入する排気の空燃比(入口空燃比AFRin)を交互にリーンとリッチに切り替える硫黄被毒回復制御を実施し、硫黄被毒回復制御時に排気の空燃比をリッチからリーンに切り替えるときは、排気の空燃比をリッチからリーンに向けて変化させるための排気の目標空燃比として、酸素吸蔵剤の発熱による担体21の温度増加量が所定値未満となる過渡目標空燃比(過渡目標入口空燃比tλin)を設定し、排気の空燃比をその過渡目標空燃比に制御するように構成されている。
具体的には、電子制御ユニット200は、触媒コンバータ20に流入する排気の空燃比と流出する排気の空燃比(出口空燃比AFRout)との空燃比差(前後空燃比差)が、酸素吸蔵剤の発熱による担体21の温度増加量が所定値未満となる空燃比差となるように、触媒コンバータ20から流出する排気の空燃比に基づいて過渡目標空燃比を設定するように構成されている。
そのため、硫黄被毒回復制御時において、酸素吸蔵剤の発熱による触媒コンバータ20の担体21の温度上昇を抑えることができる。よって、触媒コンバータ20や触媒コンバータ20の担体21に担持されたNOx吸蔵還元触媒の熱劣化を抑制することができる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
例えば上記の実施形態では、(3)式から(6)式に基づいて演算によって目標入口空気過剰率tλin、すなわち過渡目標入口空燃比tAFRinを設定していたが、予め設定した傾きで入口空燃比AFRinがリッチからリーンに向けて変化するように過渡目標入口空燃比tAFRinを設定しても良い。
すなわち、酸素吸蔵剤の発熱による触媒床温の温度増加量が所定値未満となる入口空燃比AFRinの傾きを予め実験等で求めておき、その傾きで入口空燃比AFRinがリッチからリーンに向けて変化するように過渡目標入口空燃比tAFRinを設定する。そして、入口空燃比AFRinが過渡目標入口空燃比tAFRinとなるように追加燃料Qbの噴射量を制御する。この場合、入口空燃比AFRinの傾きについては、固定値としても良いし、排気温度Tgasや吸入空気量Gaなど機関運転状態に基づいて補正するようにしても良い。
このようにしても、上記の実施形態と同様の効果が得られるほか、電子制御ユニット200の演算負荷を軽減することができる。また、目標入口空気過剰率tλinを演算するために必要だったセンサ類(例えば第2空燃比センサ215など)が不要となるので、コストの削減を図ることができる。
また、上記の実施形態では、燃料を圧縮自己着火燃焼させるように機関本体1を構成していたが、火花点火燃焼させるように構成しても良い。
また、上記の実施形態において、排気管19に他の排気浄化触媒や、排気中のパティキュレートを捕集するパティキュレートフィルタなどを別途に配置しても良い。
また、上記の実施形態では、排気の空燃比を制御するために燃料噴射量を制御していたが、必要に応じてスロットル弁10の開度等を制御するようにしても良い。
1 機関本体
19 排気管(排気通路)
20 触媒コンバータ
21 担体
100 内燃機関
200 電子制御ユニット(制御装置)

Claims (1)

  1. 流入する排気の空燃比がリーンのときに排気中のNOxを酸化して吸蔵し、ストイキ又はリッチのときに吸蔵したNOxを放出して還元するNOx吸蔵還元触媒と、流入する排気の空燃比がリーンのときに排気中の酸素を吸蔵すると共に発熱し、リッチのときに吸蔵した酸素を放出する酸素吸蔵剤と、を担体に担持した触媒コンバータを排気通路に備える内燃機関の制御装置であって、
    前記NOx吸蔵還元触媒を硫黄被毒から回復させるときは、前記NOx吸蔵還元触媒から硫黄成分が放出される所定温度まで前記担体の温度を昇温させると共に前記触媒コンバータに流入する排気の空燃比を交互にリーンとリッチに切り替える硫黄被毒回復制御を実施し、
    前記硫黄被毒回復制御時に排気の空燃比をリッチからリーンに切り替えるときは、排気の空燃比をリッチからリーンに向けて変化させるための排気の目標空燃比として、前記酸素吸蔵剤の発熱による前記担体の温度増加量が所定値未満となる過渡目標空燃比を設定し、排気の空燃比をその過渡目標空燃比に制御するように構成された、
    ことを特徴とする内燃機関の制御装置。
JP2014247324A 2014-12-05 2014-12-05 内燃機関の制御装置 Pending JP2016109041A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014247324A JP2016109041A (ja) 2014-12-05 2014-12-05 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014247324A JP2016109041A (ja) 2014-12-05 2014-12-05 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2016109041A true JP2016109041A (ja) 2016-06-20

Family

ID=56123590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014247324A Pending JP2016109041A (ja) 2014-12-05 2014-12-05 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2016109041A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361094A (zh) * 2016-12-22 2018-08-03 丰田自动车株式会社 用于内燃机的排气控制设备
DE102018005836A1 (de) 2017-07-26 2019-01-31 Mazda Motor Corporation Steuersystem für einen Motor, Motor, Steuerverfahren und Computerprogrammprodukt
JP2019027383A (ja) * 2017-08-01 2019-02-21 マツダ株式会社 エンジンの制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361094A (zh) * 2016-12-22 2018-08-03 丰田自动车株式会社 用于内燃机的排气控制设备
DE102018005836A1 (de) 2017-07-26 2019-01-31 Mazda Motor Corporation Steuersystem für einen Motor, Motor, Steuerverfahren und Computerprogrammprodukt
US10598121B2 (en) 2017-07-26 2020-03-24 Mazda Motor Corporation Control system for engine
DE102018005836B4 (de) 2017-07-26 2023-03-23 Mazda Motor Corporation Steuersystem für einen Motor, Motor, Steuerverfahren und Computerprogrammprodukt
JP2019027383A (ja) * 2017-08-01 2019-02-21 マツダ株式会社 エンジンの制御装置

Similar Documents

Publication Publication Date Title
US8297044B2 (en) Exhaust purification device of an internal combustion engine
KR101033748B1 (ko) 내연 기관용 nox 배기가스 정화 장치
JP4158697B2 (ja) 内燃機関の排気浄化装置および排気浄化方法
US20060064969A1 (en) Exhaust purification device of compression ignition type internal combustion engine
US20120017587A1 (en) Control system of internal combustion engine
JP5056725B2 (ja) 内燃機関の制御装置
JP2004239218A (ja) 内燃機関の排気ガス浄化システム
JP2005113801A (ja) 内燃機関の排気浄化装置
JP5163809B2 (ja) 内燃機関の排気浄化装置
JP2010127251A (ja) 内燃機関の排気浄化装置
JP2016109041A (ja) 内燃機関の制御装置
JP4935928B2 (ja) 内燃機関の排気浄化装置
JP2009264320A (ja) 内燃機関の排気ガス浄化装置
JP2006348904A (ja) 内燃機関の排気浄化装置
JP4269919B2 (ja) 内燃機関の排気浄化装置
JP2010127182A (ja) 内燃機関の排気浄化装置
JP2009293572A (ja) 内燃機関の排気浄化装置
JP5206597B2 (ja) 内燃機関の排気浄化装置
JP4379099B2 (ja) 内燃機関の排気浄化装置
JP2010106813A (ja) 内燃機関の排気浄化装置
JP4178851B2 (ja) 内燃機関の排気浄化装置
JP2010025014A (ja) 内燃機関の排気ガス浄化装置
JP4254505B2 (ja) 内燃機関の排気浄化装置
JP4003730B2 (ja) 内燃機関の排気浄化装置
JP3891034B2 (ja) 内燃機関の排気浄化装置