JP2010538417A - Waste manganese battery and alkaline battery recycling apparatus and method - Google Patents

Waste manganese battery and alkaline battery recycling apparatus and method Download PDF

Info

Publication number
JP2010538417A
JP2010538417A JP2010522787A JP2010522787A JP2010538417A JP 2010538417 A JP2010538417 A JP 2010538417A JP 2010522787 A JP2010522787 A JP 2010522787A JP 2010522787 A JP2010522787 A JP 2010522787A JP 2010538417 A JP2010538417 A JP 2010538417A
Authority
JP
Japan
Prior art keywords
battery
waste
iron
powder
clothing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010522787A
Other languages
Japanese (ja)
Inventor
イム,ヒョン−ハク
Original Assignee
イム,ヒョン−ハク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イム,ヒョン−ハク filed Critical イム,ヒョン−ハク
Publication of JP2010538417A publication Critical patent/JP2010538417A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • B03B9/061General arrangement of separating plant, e.g. flow sheets specially adapted for refuse the refuse being industrial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/06General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
    • B03B2009/066General arrangement of separating plant, e.g. flow sheets specially adapted for refuse the refuse being batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

【課題】廃マンガン電池及びアルカリ電池の埋め立て時に発生する社会的費用の所要及び環境汚染の問題を解消するための廃マンガン電池及びアルカリ電池のリサイクル装置及び方法を提供する。
【解決手段】廃マンガン電池及びアルカリ電池をその形状に応じて第1に鉄材被服電池と第2に一名ランタン電池と呼ばれる国際規格4R25ランタン電池又はアメリカ規格4FMランタン電池(以下、非鉄材被服電池とする)に選別して、前記鉄材被服電池は、破砕、粉砕、粒度選別、磁力線別工程を介して、鉄材片と二酸化マンガンを主に含む廃電池粉末を回収してリサイクル処理し、前記鉄材被服電池の可燃性残渣物と前記非鉄材被服電池は、熱分解炭化、1次粉砕、1次粒度選別、2次粉砕、2次粒度選別を介して亜鉛塊、炭素棒、及びその他残りの炭化物の総混合物である二酸化マンガンを主に含む廃電池粉末を有価物として回収して100%リサイクル処理する。
【選択図】図1
The present invention provides a recycling apparatus and method for waste manganese batteries and alkaline batteries for solving social cost requirements and environmental pollution problems that occur when landfilling waste manganese batteries and alkaline batteries.
According to the shape of waste manganese batteries and alkaline batteries, an international standard 4R25 lantern battery or an American standard 4FM lanthanum battery (hereinafter referred to as a nonferrous material-coated battery) called an iron-coated battery and secondly a single name lanthanum battery. The iron-coated battery is subjected to crushing, pulverization, particle size sorting, and separation of magnetic field lines to collect and recycle waste battery powder mainly containing iron pieces and manganese dioxide. The flammable residue of the clothing battery and the non-ferrous clothing battery are composed of a zinc block, a carbon rod, and other remaining carbides through pyrolytic carbonization, primary grinding, primary particle size sorting, secondary grinding, and secondary particle size sorting. The waste battery powder mainly containing manganese dioxide, which is a total mixture of the above, is collected as a valuable material and recycled 100%.
[Selection] Figure 1

Description

本発明は、廃電池リサイクル技術に関し、さらに詳細には廃マンガン電池及びアルカリ電池のリサイクル装置及び方法に関する。   The present invention relates to waste battery recycling technology, and more particularly, to a recycling apparatus and method for waste manganese batteries and alkaline batteries.

一般的な電池は、その再使用の有無によって使い捨て1次電池と充電用2次電池とに区分され、特に、マンガン電池とアルカリ電池とは、代表的な1次電池であって、産業用電池類を除いて一般生活系ごみに含まれて排出される電池類のうち、90%以上を占める。   Common batteries are classified into disposable primary batteries and rechargeable secondary batteries depending on whether they are reused. In particular, manganese batteries and alkaline batteries are typical primary batteries, and are industrial batteries. 90% or more of batteries discharged in general household waste, except for the type.

一方、このように多量に排出する廃マンガン電池及びアルカリ電池は、主に地中に埋め立てて廃棄するが、この場合、埋め立てによる社会的費用の発生だけでなく、土壌及び地下水汚染などの環境汚染を引き起こすという問題点があるため、最近では、単純埋め立てより廃マンガン電池及びアルカリ電池に含まれている有価物(例えば、鉄、マンガン、亜鉛等)の回収及び無害化処理のための多様なリサイクル技術が開発されている。   On the other hand, waste manganese batteries and alkaline batteries that discharge in large quantities are mainly disposed of in landfills. In this case, in addition to the generation of social costs due to landfill, environmental pollution such as soil and groundwater contamination In recent years, the recycling of valuable materials (for example, iron, manganese, zinc, etc.) contained in waste manganese batteries and alkaline batteries and simpler detoxification than simple landfilling Technology has been developed.

例えば、湿式分離方式は、廃マンガン電池及びアルカリ電池を形状の差に無関係に一度に破砕した後、鉄−スクラップを磁力線別に回収した後、硫酸浸出法で残余鉄成分、亜鉛及びマンガンを浸出及び沈殿させて、軟質フェライトを製造するリサイクル技術であって、純度の高いリサイクル金属原料を獲得することができるという長所がある。   For example, in the wet separation method, waste manganese batteries and alkaline batteries are crushed at once regardless of the difference in shape, and then iron-scrap is collected by magnetic field lines, and then the remaining iron components, zinc and manganese are leached by the sulfuric acid leaching method. This is a recycling technique for producing soft ferrite by precipitation, and has an advantage that a highly pure recycled metal raw material can be obtained.

中温処理方式は、廃電池の形状の差に無関係に一度に廃マンガン電池及びアルカリ電池を700℃の温度で熱処理した後、樹脂系及びビニール系成分を焼却した後、破砕及び鉄−スクラップ回収過程を経、残余微粉末と亜鉛酸化物とをリサイクル事業体で処理するリサイクル技術であって、最終廃棄物の体積を縮小することができ、酸化亜鉛をリサイクルできるという長所がある。   Medium temperature treatment system is a process of heat treatment of waste manganese battery and alkaline battery at a temperature of 700 ° C at one time regardless of the difference in shape of waste battery, incineration of resin system and vinyl system component, crushing and iron-scrap recovery process The recycling technology for processing the remaining fine powder and zinc oxide by a recycling business unit, which can reduce the volume of the final waste and can recycle zinc oxide.

高温処理方式は、廃マンガン電池及びアルカリ電池を含むさらに広範囲な廃電池(例えば、酸化銀電池等、その他生活系廃電池などを含む)を、1000℃に還元焙燒した後亜鉛蒸気を凝縮した後、水銀を分離し、残渣物とフェロマンガンを回収するリサイクル技術であって、処理工程が簡単で、かつ大量処理が容易であるという長所がある。   The high-temperature treatment method is a method for reducing and roasting a wider range of waste batteries including waste manganese batteries and alkaline batteries (for example, silver oxide batteries and other life-type waste batteries) after condensing zinc vapor. It is a recycling technology that separates mercury and collects residues and ferromanganese, and has the advantages of simple processing steps and easy mass processing.

ところが、上述の湿式分離方式は、リサイクル金属原料の純度が高い分だけ処理費用が上昇して経済性を深刻に低下させ、特に、導電性カーボンにリサイクル可能な炭素棒が流失するだけでなく、多量の最終廃棄物及び廃液が発生するという短所がある。   However, the above-described wet separation method not only reduces the economics by increasing the processing cost by the high purity of the recycled metal raw material, but in particular, not only the carbon rod that can be recycled into conductive carbon is washed away, There is a disadvantage that a large amount of final waste and waste liquid are generated.

また、上述の中温処理方式は、依然として導電性カーボンにリサイクル可能な炭素棒が流失するだけでなく、多量の最終廃棄物が発生するという短所があり、特に、熱処理による鉄の回収率が減少するという短所がある。   In addition, the above-described medium temperature treatment method still has the disadvantage that not only the carbon rod that can be recycled into the conductive carbon is washed away, but also a large amount of final waste is generated, and in particular, the iron recovery rate by heat treatment is reduced. There are disadvantages.

また、上述の高温処理方式は、選別費用は低減されても、回収される亜鉛の純度が低く底質フェロマンガンの需要処を探すのが難しいという短所がある。   In addition, the high-temperature treatment method described above has a disadvantage that the purity of the recovered zinc is low and it is difficult to find a demand place for bottom ferromanganese even if the sorting cost is reduced.

そこで、本発明は、前記のような従来の方法において廃電池の互いに異なる形状に応じて適した解体工程を対応できなくて発生する費用上昇の問題点及び有価物の純度低下などの問題点を解決するためのものであって、本発明の目的は、廃マンガン電池及びアルカリ電池をその形状に応じて第1に鉄材被服電池と第2に一名ランタン電池と呼ばれる国際規格4R25ランタン電池又はアメリカ規格4FMランタン電池(以下、非鉄材被服電池とする)に別に選別して、前記鉄材被服電池は、破砕、粉砕、粒度選別、磁力線別工程を介して、鉄材片と廃電池粉末を有価物として回収してリサイクル処理し、前記鉄材被服電池の可燃性残渣物と前記非鉄材被服電池は、熱分解炭化、1次粉砕、1次粒度選別、2次粉砕2次粒度選別を介して、亜鉛塊、炭素棒、鉄材端子スプリング及びその他残りの物質の総混合物である二酸化マンガンを主に含む廃電池粉末を有価物として回収する廃マンガン電池及びアルカリ電池のリサイクル装置並びに方法を提供することにある。   Therefore, the present invention has problems such as an increase in costs and a decrease in the purity of valuable materials that cannot be dealt with by a disassembly process suitable for different shapes of waste batteries in the conventional methods as described above. An object of the present invention is to solve the above-mentioned problem. The object of the present invention is to provide an international standard 4R25 lanthanum battery or an American standard battery called an iron material battery and a second name lanthanum battery according to the shape of waste manganese batteries and alkaline batteries Separately sorted into standard 4FM lanthanum batteries (hereinafter referred to as non-ferrous clothing batteries), the iron clothing batteries are treated with valuable pieces of iron material and waste battery powder through crushing, crushing, particle size sorting, and magnetic field separation processes. Recovered and recycled, the flammable residue of the iron clothing battery and the non-ferrous clothing battery are subjected to zinc through pyrolysis carbonization, primary pulverization, primary particle size selection, secondary pulverization secondary particle size selection , Carbon rod, to provide a ferrous material terminals springs and other remaining waste manganese battery and recycling apparatus and method for alkaline batteries recovering waste battery powder mainly containing manganese dioxide is the total mixture as valuable substances.

上記の目的を達成すべく、本発明による廃マンガン電池及びアルカリ電池のリサイクル装置は、収集された廃マンガン電池及びアルカリ電池のうち、鉄材被服電池の格納される第1ホッパーと、収集された廃マンガン電池及びアルカリ電池のうち、非鉄材被服電池の格納される第2ホッパーと、前記第1ホッパーに格納された後、移送される鉄材被服電池を破砕する破砕機と、前記破砕機により破砕された鉄材被服電池を粉砕して微粉化する第1粉碎機と、前記第1粉碎機により微粉化された鉄材被服電池の粉砕物を、粒度選別用金網を利用して廃電池粉末、電池外皮用鉄材片及び鉄材被服電池の最終残渣物に区分して選別し、前記廃電池粉末を回収する第1振動選別機と、前記第1振動選別機により濾された電池外皮用鉄材片及び鉄材被服電池の最終残渣物のうち、前記電池外皮用鉄材片を磁力選別して回収し、前記鉄材被服電池の最終残渣物を濾す磁力選別機と、前記第2ホッパーに格納された非鉄材被服電池と前記第1磁力選別機により濾された前記鉄材被服電池の最終残渣物を直火ではない間接熱、すなわち酸素供給のない状態で輻射熱による熱分解を介して完全炭化させる熱分解炉と、前記熱分解炉により熱分解された廃電池炭化物を1次粉砕して、前記廃電池炭化物を非鉄材被服電池の炭素棒と1次粉砕廃電池炭化物とに剥離する第2粉碎機と、前記第2粉碎機により剥離吐き出された前記1次粉砕廃電池吐き出し物から1次粉砕廃電池炭化物を選別し、前記非鉄材被服電池の炭素棒を回収する第2振動選別機と、選別された前記1次粉砕廃電池炭化物を2次粉砕して微粉化する第3粉碎機と、前記第3粉碎機により微粉化された2次粉砕廃電池炭化物を、粒度選別用金網を利用して廃電池粉末と非鉄材被服電池の陰極用亜鉛塊及び非鉄材被服電池端子スプリングに区分して選別、回収する第3振動選別機とから構成される。   In order to achieve the above object, a recycling apparatus for waste manganese batteries and alkaline batteries according to the present invention includes a first hopper in which iron clothing batteries are stored among collected waste manganese batteries and alkaline batteries, and collected waste. Among manganese batteries and alkaline batteries, a second hopper in which non-ferrous clothing batteries are stored, a crusher that crushes iron clothing batteries that are transferred after being stored in the first hopper, and crushed by the crusher. A first powdering machine that pulverizes and finely pulverizes the iron-coated battery, and a pulverized product of the iron-coated battery that is pulverized by the first powdering machine, using a wire mesh for particle size sorting, for waste battery powder and battery skin A first vibration sorter that sorts and sorts into an iron material piece and a final residue of an iron clothing battery, and collects the waste battery powder, and an iron material piece and iron clothing for a battery outer shell that is filtered by the first vibration sorter. Among the final residue of the pond, the magnetic material for the battery shell is recovered by magnetic separation, and the magnetic separator for filtering the final residue of the iron clothing battery, and the nonferrous clothing battery stored in the second hopper, A pyrolysis furnace that completely carbonizes the final residue of the iron-coated battery filtered by the first magnetic separator through indirect heat that is not an open fire, that is, thermal decomposition by radiant heat in the absence of oxygen supply; A second powder mill for primary pulverizing the waste battery carbide pyrolyzed by the cracking furnace, and separating the waste battery carbide into a carbon rod of the non-ferrous material-coated battery and the primary pulverized waste battery carbide; A second vibration sorter that sorts primary ground waste battery carbide from the primary ground waste battery discharge exfoliated and discharged by a machine, and collects the carbon rods of the non-ferrous clothing battery; and the sorted primary grinding Secondary crushing of waste battery carbide Third powdering machine to be pulverized, and secondary pulverized waste battery carbide finely pulverized by the third powdering machine, using a wire mesh for particle size sorting, waste battery powder and zinc lump for cathode of non-ferrous clothing battery and non-ferrous It is comprised from the 3rd vibration sorter which classify | categorizes into a material clothing battery terminal spring, and sorts and collects.

また、本発明の廃マンガン電池及びアルカリ電池のリサイクル装置の前記第1粉碎機は、高速横型回転式衝撃せん断破砕機であり、第2粉碎機及び第3粉碎機は、ロール粉碎機であることを特徴とする。   Moreover, the said 1st powdering machine of the recycling apparatus of the waste manganese battery of this invention and an alkaline battery is a high-speed horizontal rotary impact shear crusher, and a 2nd powdering machine and a 3rd powdering machine are roll powdering machines. It is characterized by.

また、本発明の廃マンガン電池及びアルカリ電池のリサイクル装置の前記第2粉碎機は、前記熱分解炉により熱分解された廃電池炭化物を一定間隔に離隔された上部ロールと下部ロールとの間を通過させて1次粉砕して、前記廃電池炭化物を非鉄材被服電池の炭素棒と1次粉砕廃電池炭化物とに選別し、前記非鉄材被服電池の炭素棒を回収するロール粉碎機であることを特徴とする。   In addition, the second dusting machine of the waste manganese battery and alkaline battery recycling apparatus of the present invention is configured such that the waste battery carbide pyrolyzed by the pyrolysis furnace is disposed between an upper roll and a lower roll separated by a predetermined interval. It is a roll powder grinder that passes and primary pulverizes, sorts the waste battery carbide into carbon rods of non-ferrous clothing batteries and primary grinding waste battery carbide, and collects the carbon rods of non-ferrous clothing batteries. It is characterized by.

また、上記の目的を達成すべく、本発明による廃マンガン電池及びアルカリ電池のリサイクル方法は、収集された廃マンガン電池及びアルカリ電池のうち、鉄材被服電池を第1ホッパーに格納する第1工程と、収集された廃マンガン電池及びアルカリ電池のうち、非鉄材被服電池を第2ホッパーに格納する第2工程と、前記第1ホッパーに格納された後鉄材被服電池を破砕機で破砕する第3工程と、前記破砕機により破砕された鉄材被服電池を第1粉碎機で粉砕して微粉化する第4工程と、前記第1粉碎機により微粉化された鉄材被服電池の粉砕物を、粒度選別用金網を備えた第1振動選別機を利用して廃電池粉末、電池外皮用鉄材片及び鉄材被服電池の最終残渣物に区分して選別し、前記廃電池粉末を回収する第5工程と、磁力選別機を利用して、前記第1振動選別機により濾された電池外皮用鉄材片及び鉄材被服電池の最終残渣物のうち、前記電池外皮用鉄材片を磁力選別して回収し、前記鉄材被服電池の最終残渣物を濾す第6工程と、前記第2ホッパーに格納された非鉄材被服電池と前記磁力選別機により濾された前記鉄材被服電池の最終残渣物を熱分解炉に投入して、直火ではない間接熱、すなわち酸素供給のない状態で輻射熱による熱分解を介して完全炭化させる第7工程と、前記熱分解炉により熱分解された廃電池炭化物を第2粉碎機で1次粉砕して、前記廃電池炭化物を非鉄材被服電池の炭素棒と1次粉砕廃電池炭化物とに剥離吐き出す第8工程と、前記第2粉碎機により剥離吐き出された1次粉砕廃電池吐き出し物のうち、第2振動選別機で1次粉砕廃電池炭化物を選別し、非鉄材被服電池の炭素棒を回収する第9工程と、前記第2振動選別機により選別された前記1次粉砕廃電池炭化物を第3粉碎機で2次粉砕して微粉化する第10工程と、前記第3粉碎機により微粉化された2次粉砕廃電池炭化物を、粒度選別用金網を備えた第3振動選別機を利用して廃電池粉末と非鉄材被服電池の陰極用亜鉛塊及び非鉄材被服電池端子スプリングに区分して選別、回収する第11工程とからなる。   In addition, in order to achieve the above object, a method for recycling a waste manganese battery and an alkaline battery according to the present invention includes a first step of storing an iron-coated battery among the collected waste manganese battery and alkaline battery in a first hopper. Among the collected waste manganese battery and alkaline battery, a second step of storing the non-ferrous material-coated battery in the second hopper, and a third step of crushing the post-iron-coated cell stored in the first hopper with a crusher And a fourth step of pulverizing and finely pulverizing the iron-coated battery crushed by the crusher with a first powdering machine, and a pulverized product of the iron-coated battery pulverized by the first powdering machine for particle size selection. A fifth step of sorting and sorting the waste battery powder, the iron pieces for battery skin and the final residue of the iron-coated battery using the first vibration sorter equipped with a wire mesh, and collecting the waste battery powder; Use a sorter Then, out of the iron material pieces for the battery skin and the final residue of the iron clothing battery filtered by the first vibration sorter, the iron material pieces for the battery skin are magnetically sorted and recovered, and the final residue of the iron clothing battery is collected. The sixth step of filtering the object, the non-ferrous clothing battery stored in the second hopper and the final residue of the iron clothing battery filtered by the magnetic separator are put into a pyrolysis furnace, not an open flame Indirect heat, that is, a seventh step of complete carbonization through thermal decomposition by radiant heat in the absence of oxygen supply, and primary pulverization of waste battery carbide pyrolyzed by the pyrolysis furnace with a second powdering machine, Of the 8th step of exfoliating and discharging the waste battery carbide to the carbon rod of the non-ferrous material coated battery and the primary pulverized waste battery carbide, and the second vibration of the primary pulverized waste battery discharge being exfoliated and discharged by the second powdering machine. Sorted primary pulverized waste battery carbide Ninth step of sorting and collecting carbon rods of non-ferrous material-coated batteries, and second pulverization of the primary pulverized waste battery carbide selected by the second vibration sorter by a third powdering machine. 10 steps and the secondary pulverized waste battery carbide finely pulverized by the third dusting machine using a third vibration sorter equipped with a particle size sorting wire mesh, and waste battery powder and zinc for cathode of non-ferrous material coated battery It consists of an eleventh step of sorting and collecting into lump and non-ferrous material coated battery terminal springs.

また、本発明の廃マンガン電池及びアルカリ電池のリサイクル方法の前記第4工程では、前記第1粉碎機として高速横型回転式衝撃せん断破砕機を利用し、第8工程及び第10工程では、第2粉碎機及び第3粉碎機としてロール粉碎機を利用することを特徴とする。   In the fourth step of the method for recycling waste manganese batteries and alkaline batteries of the present invention, a high-speed horizontal rotary impact shear crusher is used as the first dusting machine, and in the eighth and tenth steps, the second step. A roll powder mill is used as the powder mill and the third powder mill.

また、本発明の廃マンガン電池及びアルカリ電池のリサイクル方法の前記第8工程では、前記熱分解炉により熱分解された廃電池炭化物を前記第2粉碎機の一定間隔に離隔された上部ロールと下部ロールとの間を通過させ、1次粉砕して前記廃電池炭化物を非鉄材被服電池が損傷しなく、かつ残りの1次粉砕廃電池炭化物を剥離できるロール粉碎機を利用することを特徴とする。   Further, in the eighth step of the method for recycling the waste manganese battery and alkaline battery of the present invention, the upper battery roll and the lower roll separated from the second battery duster at a predetermined interval by separating the waste battery carbide pyrolyzed by the pyrolysis furnace. It is characterized by using a roll grinder which passes between the rolls and is primarily pulverized so that the non-ferrous material coated battery is not damaged by the non-ferrous material-coated battery and can peel the remaining primary pulverized waste battery carbide. .

本発明によれば、従来の廃マンガン電池及びアルカリ電池の埋め立て時に発生する社会的費用の消費及び環境汚染の問題を完壁に解消し、従来の廃マンガン電池及びアルカリ電池のリサイクル技術と比較するとき、従来の技術では回収できなかった導電性炭素棒を含んで鉄材片、亜鉛塊、及びその他残りの物質の総混合物である二酸化マンガンを主に含む廃電池粉末などの有価物を相対的に低廉な費用で回収することができる。   According to the present invention, the problem of consumption of social costs and environmental pollution that occur when landfilling conventional waste manganese batteries and alkaline batteries are completely solved, and compared with conventional waste manganese battery and alkaline battery recycling technologies. Relatively valuable materials such as waste battery powder mainly containing manganese dioxide, which is a total mixture of iron pieces, zinc blocks, and other remaining materials, including conductive carbon rods that could not be recovered by conventional technology It can be collected at low cost.

また、前記鉄材被服電池の可燃性残渣物と前記ランタン電池を熱分解炭化処理する時に発生する排気ガスの廃熱を回収して、暖房あるいは温水用として活用できる。   In addition, the waste heat of the exhaust gas generated when the flammable residue of the iron-coated battery and the lanthanum battery are pyrolytic carbonized can be recovered and used for heating or hot water.

本発明の実施の形態に係る廃マンガン電池及びアルカリ電池のリサイクル装置の構成を示す図である。It is a figure which shows the structure of the recycling apparatus of the waste manganese battery which concerns on embodiment of this invention, and an alkaline battery. 本発明の実施の形態に係る廃マンガン電池及びアルカリ電池のリサイクル方法の動作手順を示すフローチャートである。It is a flowchart which shows the operation | movement procedure of the recycling method of a waste manganese battery and an alkaline battery which concerns on embodiment of this invention.

以下、本発明の実施の形態を、添付された図面を参照してさらに詳細に説明する。
図1に示すように、第1ホッパー100は、収集された廃マンガン電池及びアルカリ電池のうち、鉄材被服電池が格納される。
Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
As shown in FIG. 1, the first hopper 100 stores an iron clothing battery among the collected waste manganese battery and alkaline battery.

第2ホッパー110は、収集された廃マンガン電池及びアルカリ電池のうち、非鉄材被服電池が格納される。   The second hopper 110 stores a non-ferrous clothing battery among the collected waste manganese battery and alkaline battery.

破砕機120は、前記第1ホッパー100に格納された後、移送される鉄材被服電池を破砕する。   After being stored in the first hopper 100, the crusher 120 crushes the iron clothing battery that is transferred.

第1粉碎機130は、前記破砕機120により破砕された鉄材被服電池を粉砕して微粉化する。前記第1粉碎機130には、多様な形態の粉碎機を使用することができ、特に、高速横型回転式衝撃せん断破砕機を使用することが好ましい。   The 1st powder grinder 130 grind | pulverizes and pulverizes the iron material clothing battery crushed by the said crusher 120. FIG. As the first powder grinder 130, various types of powder grinders can be used, and it is particularly preferable to use a high-speed horizontal rotary impact shear crusher.

第1振動選別機140は、前記第1粉碎機130により微粉化された鉄材被服電池の粉砕物を、粒度選別用金網を利用して廃電池粉末、電池外皮用鉄材片及び鉄材被服電池の最終残渣物に区分して選別し、前記廃電池粉末を回収する。   The first vibration sorter 140 uses the particle size sorting wire mesh to pulverize the iron-coated battery pulverized material that has been pulverized by the first powder grinder 130, and the final of the battery-covered iron pieces and the iron-coated battery. The waste battery powder is collected by sorting into residues.

磁力選別機150は、前記第1振動選別機140により濾された電池外皮用鉄材片及び鉄材被服電池の最終残渣物のうち、前記電池外皮用鉄材片を磁力選別して回収し、前記鉄材被服電池の最終残渣物を濾す。   The magnetic separator 150 magnetically sorts and recovers the iron pieces for the battery outer skin from the iron pieces for the battery outer shell and the final residue of the iron clothing batteries filtered by the first vibration sorter 140, and collects the iron clothing. Filter the final battery residue.

熱分解炉160は、前記第2ホッパー110に格納された非鉄材被服電池と前記第1磁力選別機140により濾された前記鉄材被服電池の最終残渣物を直火ではない間接熱、すなわち酸素供給のない状態で輻射熱による熱分解により完全炭化させる。   The pyrolysis furnace 160 supplies non-ferrous clothing cells stored in the second hopper 110 and the final residue of the iron clothing cells filtered by the first magnetic separator 140 to indirect heat, that is, oxygen supply. Complete carbonization by thermal decomposition with radiant heat in the absence of heat.

前記熱分解炉160は、本発明者の既出願発明である韓国特許出願番号第10−2007−0032554号による1次廃電池のリサイクル装置として紹介された熱分解炉を使用することが好ましい。   The pyrolysis furnace 160 is preferably a pyrolysis furnace introduced as a primary waste battery recycling apparatus according to Korean Patent Application No. 10-2007-0032554, which is an invention of the present inventor.

前記熱分解炉160は、略1〜2時間の間に600〜700℃の輻射熱を加えて、前記非鉄材被服電池と前記磁力選別機140により濾された前記鉄材被服電池の最終残渣物を完全炭化させる。この過程において形状を維持させていた非鉄材被服電池の外形維持材であるP.P樹脂類、タール、紙類は、可燃性ガスを発生させつつ炭化して解体され、このときに発生する可燃性ガスは、前記熱分解炉160の火口に引き込んで電池自身を分解する燃料として再度用いられ、前記熱分解炉160から排出する不完全燃焼ガスは、別途に設備された排出ガス完全燃焼システムを適用して、1,250℃以上の温度で完全燃焼させることが好ましく、特に、この過程で発生する廃熱を回収して温水及び暖房用等としてリサイクルできる。   The pyrolysis furnace 160 applies radiant heat of 600 to 700 ° C. in about 1 to 2 hours to completely remove the non-ferrous clothing battery and the final residue of the iron clothing battery filtered by the magnetic separator 140. Carbonize. P., which is an outer shape maintaining material of a non-ferrous clothing battery that maintained its shape during this process. P resins, tar and paper are carbonized and dismantled while generating a combustible gas. The combustible gas generated at this time is drawn into the crater of the pyrolysis furnace 160 as fuel for decomposing the battery itself. The incomplete combustion gas used again and discharged from the pyrolysis furnace 160 is preferably completely burned at a temperature of 1,250 ° C. or higher by applying an exhaust gas complete combustion system separately provided. Waste heat generated in this process can be recovered and recycled for hot water and heating.

前記熱分解炉160の代わりに、通常の廃棄物焼却炉に前記非鉄材被服電池と前記第1磁力選別機140により濾された可燃性物質である前記鉄材被服電池の最終残渣物を投入して、外皮のみを焼却させることもできる。   In place of the pyrolysis furnace 160, a non-ferrous clothing battery and a final residue of the iron clothing battery, which is a combustible material filtered by the first magnetic separator 140, are put into a normal waste incinerator. Only the outer skin can be incinerated.

第2粉碎機170は、前記熱分解炉160により熱分解された廃電池炭化物を1次粉砕して、前記廃電池炭化物を非鉄材被服電池の炭素棒と1次粉砕廃電池炭化物とに分離されるように剥離、吐き出す。   The second powder mill 170 primarily pulverizes the waste battery carbide pyrolyzed by the pyrolysis furnace 160, and separates the waste battery carbide into a carbon rod of a non-ferrous clothing battery and a primary pulverized waste battery carbide. Exfoliate and exhale.

前記第2粉碎機170には、多様な形態の粉碎機を使用することができ、特にロール粉碎機を使用することが好ましい。   As the second powder grinder 170, various types of powder grinders can be used, and it is particularly preferable to use a roll powder grinder.

例えば、前記第2粉碎機170には、前記熱分解炉160により熱分解された廃電池炭化物を一定間隔(炭素棒は、損傷しない程度の間隔)に離隔された上部ロールと下部ロールとの間を通過させて1次粉砕して、前記廃電池炭化物が非鉄材被服電池炭素棒と1次粉砕廃電池炭化物とに互いに剥離されて吐き出されるように製作されたロール粉碎機を使用することが好ましい。   For example, in the second powder mill 170, the waste battery carbide pyrolyzed by the pyrolysis furnace 160 is separated between an upper roll and a lower roll separated at regular intervals (carbon rods are not damaged). It is preferable to use a roll grinder that is made to pass through a primary pulverization, and the waste battery carbide is peeled off and discharged from the non-ferrous material coated battery carbon rod and the primary pulverization waste battery carbide. .

第2振動選別機180は、粒度選別用金網が備えられて前記第2粉碎機170により剥離、吐き出された吐き出し物から前記1次粉砕廃電池炭化物を振動選別し、非鉄材被服電池の炭素棒を回収する。   The second vibration sorter 180 is equipped with a particle screen for particle size sorting, and vibrationally sorts the primary pulverized waste battery carbide from the exhaled material exfoliated and exhaled by the second powder mill 170, and carbon rods of non-ferrous clothing batteries Recover.

前記第2振動選別機180には、多様な形態の選別機を使用することができ、特に振動選別機を使用することが好ましい。   For the second vibration sorter 180, various types of sorters can be used, and it is particularly preferable to use a vibration sorter.

第3粉碎機190は、前記第2振動選別機180により選別された1次粉砕廃電池炭化物をリサイクル原料として使用できるように、さらに細かく微粉化する2次粉砕を行う。第3粉碎機190は、多様な形態の粉碎機を使用することができ、特に、ロール粉碎機を使用することが好ましい。   The third powder grinder 190 performs secondary pulverization to further finely pulverize so that the primary pulverized waste battery carbide selected by the second vibration sorter 180 can be used as a recycled raw material. As the third powder grinder 190, various types of powder grinders can be used, and it is particularly preferable to use a roll powder grinder.

第3振動選別機200は、前記第3粉碎機から微粉化された2次粉砕廃電池炭化物中に含まれた廃電池粉末と電池外皮用亜鉛管が溶融されてから冷却凝固された亜鉛塊及び非鉄材被服電池端子スプリングを選別、回収する。   The third vibration sorter 200 includes a zinc lump that has been cooled and solidified after the waste battery powder and the zinc tube for the battery outer shell contained in the secondary pulverized waste battery carbide finely powdered from the third duster are melted. Select and collect non-ferrous clothing battery terminal springs.

上記のように構成される本発明による廃マンガン電池及びアルカリ電池のリサイクル装置は、図2に示したような方法により、以下のように作動する。   The waste manganese battery and alkaline battery recycling apparatus according to the present invention configured as described above operates as follows by the method shown in FIG.

本発明では、廃マンガン電池及びアルカリ電池をその外観の形状に応じて鉄材被服電池と非鉄材被服電池とに選別した後、前記鉄材被服電池は、破砕、粉砕、粒度選別、磁力選別工程を介して、そして前記鉄材被服電池の最終残渣物と前記非鉄材被服電池とは、熱分解炭化、1次粉砕、1次粒度選別、2次粉砕、2次粒度選別−工程を介して最終的に次のような有価物を回収してリサイクル原料として使用する。第1に、鉄材片(例えば、鉄材被服電池の外皮用鉄材片、非鉄材被服電池の端子スプリング)、第2に、炭素棒(非鉄材被服電池の炭素棒)、第3に、亜鉛塊(非鉄材被服電池の亜鉛管が熱分解工程で溶融されてから再度冷却凝固された塊)、第4に、廃電池粉末(第1から第3までのリサイクル原料を除いた残りの物質の総混合粉末、−鉄材被服電池でも発生し非鉄材被服電池でも発生)のそのものが廃マンガン電池及びアルカリ電池から回収する最終的なリサイクル原料になるものである。   In the present invention, after the waste manganese battery and the alkaline battery are sorted into a ferrous battery and a non-ferrous battery according to the shape of the appearance, the ferrous battery is subjected to crushing, pulverization, particle size sorting, and magnetic force sorting. The final residue of the iron-coated battery and the non-ferrous-coated battery are finally subjected to pyrolytic carbonization, primary pulverization, primary particle size selection, secondary pulverization, and secondary particle size selection through a process. Such valuable materials are collected and used as recycling materials. First, an iron piece (for example, an iron piece for an iron-coated battery, a terminal spring of a non-ferrous-coated battery), a carbon rod (a carbon rod of a non-ferrous-coated battery), and a zinc block ( Non-ferrous coated battery zinc tube melted in the pyrolysis process and then cooled and solidified again) Fourth, waste battery powder (total mixing of the remaining substances excluding the first to third recycled materials) The powder itself, which is generated in the iron-coated battery and the non-ferrous coated battery) itself becomes the final recycling raw material to be recovered from the waste manganese battery and the alkaline battery.

参考に、前記非鉄材被服電池は、一般生活系ごみに含まれて排出される廃マンガン電池及びアルカリ電池のうち、略20%を占め、外皮が紙又はP.P系樹脂からなっており、内部にタールで密封した亜鉛管が4ケ組合せで構成される一名ランタン電池のことを言う。このように構成される非鉄材被服電池は、リサイクル処理のために鉄材被服電池と同じ工程で破砕、粉砕、振動選別する場合、粉砕過程において膨らんで盛り上がった紙質繊維とタールとが粉碎機の網と振動選別機の金網にねばねばと絡み付いてその機能をマヒさせるだけでなく、磁性のない片状亜鉛は、選別が難しく、炭素棒も破損されると、選別作業が難しくなり回収率も急激に落ちるようになる。したがって、本発明では、前記非鉄材被服電池は、鉄材被服電池とは別途に、熱分解炭化方式を採択して外皮の構成物質がリサイクル過程で不純物として取扱われる蓋然性をなくす。   For reference, the non-ferrous clothing battery occupies approximately 20% of the waste manganese battery and alkaline battery contained in general household waste and discharged, and the outer skin is made of paper or P.I. This is a one-person lanthanum battery made of P-based resin and consisting of a combination of four zinc tubes sealed with tar inside. When the non-ferrous clothing battery constructed in this way is crushed, crushed and vibration-sorted in the same process as the iron clothing battery for recycling, the paper fibers and tar that swelled and swelled during the grinding process are used in the powder mill network. In addition to being tangled around the wire mesh of the vibration sorter and making it function, the non-magnetic zinc flakes are difficult to sort, and if the carbon rod is damaged, the sorting work becomes difficult and the recovery rate is drastically increased. It will fall. Therefore, in the present invention, the non-ferrous clothing battery adopts a pyrolytic carbonization method separately from the iron clothing battery to eliminate the possibility that the constituent materials of the outer skin are handled as impurities in the recycling process.

図2に示すように、収集された廃マンガン電池及びアルカリ電池は、その形状に応じて鉄材被服電池と非鉄材被服電池とに選別された後、前記鉄材被服電池は、第1ホッパー100に格納され(S100)、前記非鉄材被服電池は、第2ホッパー110に格納される(S110)。   As shown in FIG. 2, the collected waste manganese battery and alkaline battery are sorted into a ferrous battery and a non-ferrous battery according to their shapes, and then the ferrous battery is stored in the first hopper 100. The non-ferrous clothing battery is stored in the second hopper 110 (S110).

次に、前記鉄材被服電池のリサイクル処理が行われるが、前記第1ホッパー100に格納された鉄材被服電池は、破砕機120に移送されて破砕(S120)された後、前記第1粉碎機130により微粉化される(S130)。   Next, the iron clothing battery is recycled. The iron clothing battery stored in the first hopper 100 is transferred to the crusher 120 and crushed (S120). (S130).

次に、前記第1粉碎機130により微粉化された鉄材被服電池の粉砕物は、粒度選別用金網を備えた前記第1振動選別機140の粒度選別用金網上に投入されて、下に濾される微細粉末は、リサイクルのための廃電池粉末として回収され(S140)、前記粒度選別用金網上に残存する電池外皮用鉄材片及び前記粒度選別用金網により濾されない太い炭素粉末を含む可燃性残渣物から構成される鉄材被服電池の最終残渣物は、磁力選別機150に投入される。   Next, the pulverized iron-coated battery powder pulverized by the first dusting machine 130 is put on the particle size selection wire mesh of the first vibration sorter 140 equipped with the particle size selection wire mesh, and filtered downward. The fine powder to be collected is recovered as waste battery powder for recycling (S140), and includes a flammable iron powder piece remaining on the particle size selection wire mesh and a thick carbon powder not filtered by the particle size selection wire mesh. The final residue of the iron clothing battery composed of the residue is put into the magnetic separator 150.

このとき、第1振動選別機から回収される前記廃電池粉末は、主に二酸化マンガンを含む粉末であり、煉瓦や床材などの着色剤として有用に活用でき、実際に本発明者の既出願である韓国特許出願番号第10−2007−0021344号による廃乾電池破砕粉末を利用した粘土煉瓦の製造方法に紹介されたように、煉瓦製造用着色剤として活用される。   At this time, the waste battery powder recovered from the first vibration sorter is a powder mainly containing manganese dioxide, which can be usefully used as a colorant for bricks, flooring, etc. As described in the manufacturing method of clay brick using waste dry battery crushed powder according to Korean Patent Application No. 10-2007-0021344, it is used as a colorant for brick manufacturing.

次に、前記第1振動選別機140により濾された電池外皮用鉄材片及び鉄材被服電池の最終残渣物のうち、前記電池外皮用鉄材片が前記磁力選別機150により磁力選別されて回収され、前記鉄材被服電池の最終残渣物が濾される(S150)。   Next, of the iron pieces for battery skin and the final residue of the iron-coated battery filtered by the first vibration sorter 140, the iron pieces for battery skin are magnetically sorted by the magnetic sorter 150 and collected, The final residue of the iron clothing battery is filtered (S150).

このとき、前記磁力選別機150から回収される前記電池外皮用鉄材片は、製鉄所の製鉄過程に投入される重要なリサイクル原料となる。   At this time, the iron pieces for the battery outer shell collected from the magnetic separator 150 become an important recycling raw material that is put into the iron making process of the ironworks.

次に、前記非鉄材被服電池のリサイクル処理が行われるが、前記第2ホッパー110に格納された非鉄材被服電池と前記磁力選別機により濾された前記鉄材被服電池の最終残渣物は、前記熱分解炉160に投入されて直火ではない間接熱、すなわち酸素供給のない状態で輻射熱による熱分解を介して完全炭化される(S160)。   Next, recycling processing of the non-ferrous clothing battery is performed, and the non-ferrous clothing battery stored in the second hopper 110 and the final residue of the ferrous clothing battery filtered by the magnetic separator are the heat It is charged into the cracking furnace 160 and is completely carbonized through indirect heat that is not an open flame, that is, thermal decomposition by radiant heat in the absence of oxygen supply (S160).

次に、前記熱分解炉160により熱分解された廃電池炭化物は、第2粉碎機170の一定間隔に離隔された上部ロールと下部ロールとの間を通過する間に、非鉄材被服電池の炭素棒と1次粉砕廃電池炭化物とに剥離されて吐き出される(S170)。   Next, while the waste battery carbide pyrolyzed by the pyrolysis furnace 160 passes between the upper roll and the lower roll which are spaced apart from each other in the second powder mill 170, the carbon of the non-ferrous material-coated battery. It is peeled off and discharged from the rod and the primary pulverized waste battery carbide (S170).

この場合、前記上部ロールと下部ロールとの間の間隔は、前記廃電池炭化物に含まれた炭素棒を損傷無しで回収できる間隔に適切に調節できる。   In this case, the interval between the upper roll and the lower roll can be appropriately adjusted to an interval at which the carbon rods contained in the waste battery carbide can be recovered without damage.

次に、前記第2粉碎機170により剥離されて吐き出された1次粉砕廃電池炭化物は、第2振動選別機180に移送されて内部に備えられている粒度選別用金網により下部の1次粉砕廃電池炭化物に振動選別され、上部の非鉄材被服電池の炭素棒は回収される(S180)。   Next, the primary pulverized waste battery carbide peeled off and discharged by the second powder grinder 170 is transferred to the second vibration sorter 180 and subjected to the primary pulverization at the lower portion by the particle size sorting wire mesh provided inside. The waste cell carbide is subjected to vibration sorting, and the carbon rod of the upper non-ferrous clothing battery is recovered (S180).

次に、前記第2振動選別機180により選別された前記1次粉砕廃電池炭化物は、第3粉碎機190に移送されて2次粉砕されて微粉化された後(S190)、最終的に粒度選別用金網を備えた第3振動選別機200により廃電池粉末と非鉄材被服電池陰極管用亜鉛塊及び非鉄材被服電池端子スプリングに区分されて選別、回収される(S200)。   Next, the primary pulverized waste battery carbide selected by the second vibration sorter 180 is transferred to the third powder mill 190 and secondarily pulverized to be pulverized (S190), and finally the particle size. A third vibration sorter 200 equipped with a sorting wire netting sorts and collects waste battery powder, zinc ingots for non-ferrous material-coated battery cathode tubes, and non-ferrous material-coated battery terminal springs (S200).

このとき、回収される前記廃電池粉末も、主に二酸化マンガンを含む粉末であり、煉瓦や床材などの着色剤として有用に活用でき、実際に本発明者が出願した韓国特許出願番号第10−2007−0021344号による廃乾電池破砕粉末を利用した粘土と煉瓦の製造方法に紹介されたように、煉瓦製造用着色剤として活用される。   At this time, the recovered waste battery powder is also a powder mainly containing manganese dioxide, which can be usefully used as a colorant for bricks, flooring, and the like. As introduced in the method for producing clay and brick using waste dry cell crushed powder according to -2007-0021344, it is used as a colorant for brick production.

以上説明した本発明による廃マンガン電池及びアルカリ電池のリサイクル装置及び方法は、上述の実施の形態に限定されず、以下の特許請求の範囲で請求する本発明の要旨から逸脱せずに本発明の属する分野における通常の知識を有した者であれば、誰でも多様に変更して実施できる範囲までその技術的精神があるはずである。   The recycling apparatus and method of the waste manganese battery and alkaline battery according to the present invention described above are not limited to the above-described embodiments, but without departing from the gist of the present invention claimed in the following claims. Anyone with ordinary knowledge in the field to which they belong should have the technical spirit to the extent that various modifications can be implemented.

100 第1ホッパー
110 第2ホッパー
120 破砕機
130 第1粉碎機
140 第1振動選別機
150 磁力選別機
160 熱分解炉
170 第2粉碎機
180 第2振動選別機
190 第3粉碎機
200 第3振動選別機
DESCRIPTION OF SYMBOLS 100 1st hopper 110 2nd hopper 120 Crusher 130 1st powder sorter 140 1st vibration sorter 150 Magnetic sorter 160 Pyrolysis furnace 170 2nd powder sorter 180 2nd vibration sorter 190 3rd powder sorter 200 3rd vibration Sorting machine

Claims (6)

収集された廃マンガン電池及びアルカリ電池のうち、鉄材被服電池の格納される第1ホッパー(100)と、
収集された廃マンガン電池及びアルカリ電池のうち、非鉄材被服電池の格納される第2ホッパー(110)と、
前記第1ホッパー(100)に格納された後、移送される鉄材被服電池を破砕する破砕機(120)と、
前記破砕機(120)により破砕された鉄材被服電池を粉砕して微粉化する第1粉碎機(130)と、
前記第1粉碎機(130)により微粉化された鉄材被服電池の粉砕物を、粒度選別用金網を利用して廃電池粉末、電池外皮用鉄材片及び鉄材被服電池の最終残渣物に区分して選別し、前記廃電池粉末を回収する第1振動選別機(140)と、
前記第1振動選別機(140)により濾された電池外皮用鉄材片及び鉄材被服電池の最終残渣物のうち、前記電池外皮用鉄材片を磁力選別して回収し、前記鉄材被服電池の最終残渣物を濾す磁力選別機(150)と、
前記第2ホッパー(110)に格納された非鉄材被服電池と前記第1磁力選別機(140)により濾された前記鉄材被服電池の最終残渣物を直火ではない間接熱、すなわち酸素供給のない状態で輻射熱による熱分解を介して完全炭化させる熱分解炉(160)と、
前記熱分解炉(160)により熱分解された廃電池炭化物を1次粉砕して、前記廃電池炭化物を非鉄材被服電池の炭素棒と1次粉砕廃電池炭化物とに剥離する第2粉碎機(170)と、
前記第2粉碎機(170)により剥離吐き出された前記1次粉砕廃電池吐き出し物から1次粉砕廃電池炭化物を選別し、前記非鉄材被服電池の炭素棒を回収する第2振動選別機(180)と、
選別された前記1次粉砕廃電池炭化物を2次粉砕して微粉化する第3粉碎機(190)と、
前記第3粉碎機(190)により微粉化された2次粉砕廃電池炭化物を、粒度選別用金網を利用して廃電池粉末と非鉄材被服電池の陰極用亜鉛塊及び非鉄材被服電池端子スプリングに区分して選別、回収する第3振動選別機(200)と、から構成されることを特徴とする廃マンガン電池及びアルカリ電池のリサイクル装置。
Of the collected waste manganese battery and alkaline battery, the first hopper (100) in which the iron clothing battery is stored;
Of the collected waste manganese battery and alkaline battery, the second hopper (110) in which the non-ferrous clothing battery is stored;
A crusher (120) for crushing the iron-clothed battery to be transferred after being stored in the first hopper (100);
A first powder grinder (130) for crushing and pulverizing the iron-coated clothing battery crushed by the crusher (120);
The pulverized product of the iron-coated battery finely pulverized by the first powdering machine (130) is divided into waste battery powder, an iron material piece for the battery skin, and a final residue of the iron-coated cell using a particle size selection wire mesh. A first vibration sorter (140) for sorting and collecting the waste battery powder;
Of the iron pieces for the battery skin and the final residue of the iron clothing battery filtered by the first vibration sorter (140), the iron pieces for the battery skin are magnetically sorted and collected, and the final residue of the iron clothing battery is collected. A magnetic separator (150) for filtering things,
The non-ferrous clothing battery stored in the second hopper (110) and the final residue of the iron clothing battery filtered by the first magnetic separator (140) are not indirect heat, that is, without oxygen supply. A pyrolysis furnace (160) for complete carbonization via pyrolysis by radiant heat in a state;
A second powdering machine for first crushing the waste battery carbide pyrolyzed by the pyrolysis furnace (160) and separating the waste battery carbide into a carbon rod of a non-ferrous material coated battery and a primary grinding waste battery carbide ( 170)
A second vibration sorter (180) that sorts primary ground waste battery carbide from the primary ground waste battery discharge exfoliated and discharged by the second powdering machine (170), and collects carbon rods of the non-ferrous clothing battery. )When,
A third pulverizer (190) for secondary pulverization of the sorted primary pulverized waste battery carbide,
The secondary pulverized waste battery carbide finely pulverized by the third dusting machine (190) is used as the waste battery powder, the zinc block for the cathode of the non-ferrous material-coated battery and the non-ferrous material-coated battery terminal spring using the particle size selection wire mesh. A waste manganese battery and alkaline battery recycling apparatus comprising a third vibration sorter (200) that sorts and collects and sorts and collects.
前記第1粉碎機(130)は、高速横型回転式衝撃せん断破砕機であり、第2粉碎機(170)及び第3粉碎機(190)は、ロール粉碎機であることを特徴とする請求項1に記載の廃マンガン電池及びアルカリ電池のリサイクル装置。   The first powder mill (130) is a high-speed horizontal rotary impact shear crusher, and the second powder mill (170) and the third powder mill (190) are roll powder mills. The waste manganese battery and alkaline battery recycling apparatus according to 1. 前記第2粉碎機(170)は、前記熱分解炉(160)により熱分解された廃電池炭化物を一定間隔に離隔された上部ロールと下部ロールとの間を通過させて1次粉砕して、前記廃電池炭化物を非鉄材被服電池の炭素棒と1次粉砕廃電池炭化物とに選別し、前記非鉄材被服電池の炭素棒を回収するロール粉碎機であることを特徴とする請求項1に記載の廃マンガン電池及びアルカリ電池のリサイクル装置。   The second powder grinder (170) passes the waste battery carbide pyrolyzed by the pyrolysis furnace (160) between an upper roll and a lower roll that are separated at regular intervals, and primary pulverizes. 2. The roll dusting machine according to claim 1, wherein the waste battery carbide is sorted into a non-ferrous clothing battery carbon rod and a primary pulverized waste battery carbide, and the non-ferrous clothing battery carbon rod is recovered. Waste manganese battery and alkaline battery recycling equipment. 収集された廃マンガン電池及びアルカリ電池のうち、鉄材被服電池を第1ホッパー(100)に格納する第1工程(S100)と、
収集された廃マンガン電池及びアルカリ電池のうち、非鉄材被服電池を第2ホッパー(110)に格納する第2工程(S110)と、
前記第1ホッパー(100)に格納された後鉄材被服電池を破砕機(120)で破砕する第3工程(S120)と、
前記破砕機(120)により破砕された鉄材被服電池を第1粉碎機(130)で粉砕して微粉化する第4工程(S130)と、
前記第1粉碎機(130)により微粉化された鉄材被服電池の粉砕物を、粒度選別用金網を備えた第1振動選別機(140)を利用して廃電池粉末、電池外皮用鉄材片及び鉄材被服電池の最終残渣物に区分して選別し、前記廃電池粉末を回収する第5工程(S140)と、
磁力選別機(150)を利用して、前記第1振動選別機(140)により濾された電池外皮用鉄材片及び鉄材被服電池の最終残渣物のうち、前記電池外皮用鉄材片を磁力選別して回収し、前記鉄材被服電池の最終残渣物を濾す第6工程(S150)と、
前記第2ホッパー(110)に格納された非鉄材被服電池と前記磁力選別機により濾された前記鉄材被服電池の最終残渣物を熱分解炉(160)に投入して、直火ではない間接熱、すなわち酸素供給のない状態で輻射熱による熱分解を介して完全炭化させる第7工程(S160)と、
前記熱分解炉(160)により熱分解された廃電池炭化物を第2粉碎機(170)で1次粉砕して、前記廃電池炭化物を非鉄材被服電池の炭素棒と1次粉砕廃電池炭化物とに剥離吐き出す第8工程(S170)と、
前記第2粉碎機(170)により剥離吐き出された1次粉砕廃電池吐き出し物のうち、第2振動選別機(180)で1次粉砕廃電池炭化物を選別し、非鉄材被服電池の炭素棒を回収する第9工程(S180)と、
前記第2振動選別機(180)により選別された前記1次粉砕廃電池炭化物を第3粉碎機(190)で2次粉砕して微粉化する第10工程(S190)と、
前記第3粉碎機(190)により微粉化された2次粉砕廃電池炭化物を、粒度選別用金網を備えた第3振動選別機(200)を利用して廃電池粉末と非鉄材被服電池の陰極用亜鉛塊及び非鉄材被服電池端子スプリングに区分して選別、回収する第11工程(S200)と、からなることを特徴とする廃マンガン電池及びアルカリ電池のリサイクル方法。
Of the collected waste manganese battery and alkaline battery, a first step (S100) of storing the iron-coated battery in the first hopper (100);
Of the collected waste manganese battery and alkaline battery, the second step (S110) of storing the non-ferrous clothing battery in the second hopper (110);
A third step (S120) of crushing the iron-coated battery stored in the first hopper (100) with a crusher (120);
A fourth step (S130) of pulverizing and finely pulverizing the iron coated battery crushed by the crusher (120) with the first powder grinder (130);
Using the first vibration sorter (140) equipped with a wire mesh for particle size sorting, the pulverized iron-coated battery powder pulverized by the first powder grinder (130) is used as a waste battery powder, a battery shell iron piece, A fifth step (S140) of sorting and sorting the final residue of the iron-coated battery and collecting the waste battery powder;
Using the magnetic separator (150), the iron pieces for the battery outer shell are magnetically selected from the iron outer pieces for the battery outer shell and the final residue of the iron-coated battery filtered by the first vibration sorter (140). And collecting the final residue of the iron-coated battery by the sixth step (S150),
The non-ferrous clothing battery stored in the second hopper (110) and the final residue of the iron clothing battery filtered by the magnetic separator are put into a pyrolysis furnace (160) to indirect heat that is not an open fire. That is, the seventh step (S160) for complete carbonization through thermal decomposition by radiant heat in the absence of oxygen supply,
The waste battery carbide pyrolyzed by the pyrolysis furnace (160) is first ground by a second powder mill (170), and the waste battery carbide is converted into a non-ferrous material-coated battery carbon rod and primary ground waste battery carbide. The eighth step (S170) for exfoliating
Of the primary pulverized waste battery discharges exfoliated and discharged by the second powdering machine (170), the primary pulverized waste battery carbides are sorted by the second vibration sorter (180), and the carbon rods of the non-ferrous clothing batteries are used. A ninth step (S180) to be collected;
A tenth step (S190) in which the primary pulverized waste battery carbide selected by the second vibration sorter (180) is secondly pulverized by the third powder mill (190) to be pulverized;
The secondary pulverized waste battery carbide finely pulverized by the third powder grinder (190) is used as a waste battery powder and a non-ferrous material-coated battery cathode using a third vibration sorter (200) equipped with a wire mesh for particle size sorting. A waste manganese battery and an alkaline battery recycling method, comprising: an eleventh step (S200) of sorting and collecting zinc ingots and nonferrous material coated battery terminal springs.
前記第4工程(S130)では、前記第1粉碎機(130)として高速横型回転式衝撃せん断破砕機を利用し、第8工程(S170)及び第10工程(S190)では、第2粉碎機(170)及び第3粉碎機(190)としてロール粉碎機を利用することを特徴とする請求項4に記載の廃マンガン電池及びアルカリ電池のリサイクル方法。   In the fourth step (S130), a high-speed horizontal rotary impact shear crusher is used as the first powder grinder (130). In the eighth step (S170) and the tenth step (S190), the second powder grinder ( 170. The waste manganese battery and the alkaline battery recycling method according to claim 4, wherein a roll duster is used as 170) and the third duster (190). 前記第8工程(S170)では、前記熱分解炉(160)により熱分解された廃電池炭化物を前記第2粉碎機(170)の一定間隔に離隔された上部ロールと下部ロールとの間を通過させ、1次粉砕して前記廃電池炭化物を非鉄材被服電池が損傷しなく、かつ残りの1次粉砕廃電池炭化物を剥離できるロール粉碎機を利用することを特徴とする請求項4に記載の廃マンガン電池及びアルカリ電池のリサイクル方法。   In the eighth step (S170), the waste battery carbide pyrolyzed by the pyrolysis furnace (160) passes between the upper roll and the lower roll, which are spaced apart from each other by the second powder mill (170). 5. The roll powder grinder is used, which is primarily pulverized so that the non-ferrous material coated battery does not damage the waste battery carbide and can peel the remaining primary pulverized waste battery carbide. A method for recycling waste manganese batteries and alkaline batteries.
JP2010522787A 2007-08-29 2008-07-18 Waste manganese battery and alkaline battery recycling apparatus and method Withdrawn JP2010538417A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070086836A KR100898076B1 (en) 2007-08-29 2007-08-29 Recycling apparatus for used Zinc-Carbon and Alkaline batteries and method thereof
PCT/KR2008/004215 WO2009028795A2 (en) 2007-08-29 2008-07-18 Recycling apparatus for used zinc-carbon and alkaline batteries and method thereof

Publications (1)

Publication Number Publication Date
JP2010538417A true JP2010538417A (en) 2010-12-09

Family

ID=40387985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010522787A Withdrawn JP2010538417A (en) 2007-08-29 2008-07-18 Waste manganese battery and alkaline battery recycling apparatus and method

Country Status (4)

Country Link
JP (1) JP2010538417A (en)
KR (1) KR100898076B1 (en)
CN (1) CN101801551A (en)
WO (1) WO2009028795A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201784A (en) * 2013-04-03 2014-10-27 東邦亜鉛株式会社 Metal recovery method
JP2018087365A (en) * 2016-11-29 2018-06-07 Jfeスチール株式会社 Method for producing metal manganese

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2778136C (en) * 2009-03-13 2013-04-09 Wayne C. Stevens System of battery recycling
KR101325176B1 (en) * 2011-03-23 2013-11-07 한국지질자원연구원 Method of manufacturing chemical manganese dioxide from trivalent cathode active material, the chemical manganese dioxide manufactured by the method and secondary battery including the chemical manganese dioxide
US8807466B2 (en) 2011-06-06 2014-08-19 Raw Materials Company Inc. Method and system for reclamation of battery constituents
KR101348490B1 (en) * 2011-12-19 2014-01-09 박세웅 Waste battery recycling apparatus
DE102016115714A1 (en) * 2016-08-24 2018-03-01 Schäfer E. Technik u. Sondermaschinen GmbH baffle reactor
CN106734052A (en) * 2016-11-22 2017-05-31 长春工业大学 A kind of method that old and useless battery graded crushing is reclaimed
CN109004305B (en) * 2017-06-06 2020-08-14 湖南省正源储能材料与器件研究所 Method for separating lithium iron phosphate and free carbon from positive electrode mixture
CN109132275B (en) * 2018-09-07 2021-07-16 丁柳朋 Waste battery recovery equipment convenient for discharging
CN110117719A (en) * 2019-04-17 2019-08-13 苏州市甘泉自动化环保设备股份有限公司 A kind of processing method of household refuse battery
KR102182290B1 (en) * 2019-05-09 2020-11-24 안태철 A method of highly efficient separation and recovery of high-purity anode material by treating the waste cathode scrap with a dry method
CN111468285A (en) * 2020-04-16 2020-07-31 中国恩菲工程技术有限公司 Method for recovering nickel, cobalt and manganese from waste ternary lithium ion battery
KR102470530B1 (en) * 2022-04-20 2022-11-23 박만수 Valuable metal recovery system for waste batteries
CN114850184B (en) * 2022-04-27 2022-12-09 娄底职业技术学院 Safe automatic disassembling system for environmentally-friendly recycling of waste power batteries and disassembling method thereof
CN114558780B (en) * 2022-04-28 2022-07-15 河南中鑫新材料有限公司 System for recycling and reusing positive pole piece of efficient lithium ion battery
KR102612378B1 (en) * 2023-05-04 2023-12-11 장동곤 secondary battery material extraction system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785897A (en) * 1993-06-30 1995-03-31 Tdk Corp Method for useddry battery disposal
JPH1177011A (en) 1997-09-02 1999-03-23 Mitsui Mining & Smelting Co Ltd Recovery of valuables from waste battery
JP3828461B2 (en) 2002-04-03 2006-10-04 Jfe環境株式会社 Waste treatment system and waste dry battery treatment method
KR100709268B1 (en) 2006-05-04 2007-04-19 한국지질자원연구원 A recycling apparatus for used zinc-carbon and alkaline batteries and its method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014201784A (en) * 2013-04-03 2014-10-27 東邦亜鉛株式会社 Metal recovery method
JP2018087365A (en) * 2016-11-29 2018-06-07 Jfeスチール株式会社 Method for producing metal manganese

Also Published As

Publication number Publication date
WO2009028795A3 (en) 2009-04-23
CN101801551A (en) 2010-08-11
KR20090021928A (en) 2009-03-04
KR100898076B1 (en) 2009-05-18
WO2009028795A2 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP2010538417A (en) Waste manganese battery and alkaline battery recycling apparatus and method
CN108011148B (en) A method of metal is recycled from waste and old lithium ion battery
CN104577249B (en) Method for recycling waste lithium cobalt oxide lithium ion battery
JP2581891B2 (en) Method of treating nickel-cadmium battery or nickel-hydride battery
CN107623152B (en) Applying waste lithium ionic power battery resource recycle method
WO2007129845A1 (en) Apparatus and method for recycling of used zinc-carbon and alkaline batteries
CN108325738B (en) Step recovery method for metal aluminum in aluminum ash
CN111934042B (en) Physical recycling method for retired power battery
CN102703714A (en) Method for preparing iron powder and recovering nonferrous metal from blast furnace iron making smoke dust
CN112670609B (en) Method and device for integrally recovering and regenerating all components of graphite cathode of waste lithium battery
CN103949459B (en) A kind of electrolytic aluminium breeze of recycling produces aluminium electrolyte and the method reclaiming carbon
CN102441554A (en) Method for recycling valuable resources of waste glass fiber reinforced plastics and waste circuit boards
CN108031702A (en) Complete processing equipment and processing method for old circuit board recycling
CN106099239A (en) A kind of waste secondary battery copper and the recovery method of aluminum
CN110808430A (en) Separation and purification method of lithium ion battery anode material and obtained lithium ion battery anode material
WO2023070801A1 (en) Recovery method for valuable components of waste lithium-ion batteries
CN113564363B (en) Method for enriching and recovering chromium resource by synergistic utilization of chromium-containing sludge and chromium-containing waste residue
CN113426804A (en) Physical separation and enrichment method for resource components of waste lithium ion battery
JP2017066383A (en) Method for processing carbon fiber-reinforced plastic and method for manufacturing fuel
CN105600791B (en) A kind of method and apparatus for comprehensively utilizing building waste
CN105239097A (en) Water quenching and separating treatment method for anode carbon slime in aluminum electrolysis
CN109876919A (en) A method of separated from electron wastes using Low Temperature Heat Treatment shaping metal with it is nonmetallic
CN114171813B (en) Method for magnetic separation of anode and cathode powder from waste lithium batteries
CN104724749B (en) A kind of method for producing ultrafine copper oxide powder
CN114381603A (en) Method for fully recycling valuable metal components of waste lithium batteries from anode powder stripped by hydrodynamic sorting wet method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110715

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110