JP2017066383A - Method for processing carbon fiber-reinforced plastic and method for manufacturing fuel - Google Patents

Method for processing carbon fiber-reinforced plastic and method for manufacturing fuel Download PDF

Info

Publication number
JP2017066383A
JP2017066383A JP2016184430A JP2016184430A JP2017066383A JP 2017066383 A JP2017066383 A JP 2017066383A JP 2016184430 A JP2016184430 A JP 2016184430A JP 2016184430 A JP2016184430 A JP 2016184430A JP 2017066383 A JP2017066383 A JP 2017066383A
Authority
JP
Japan
Prior art keywords
carbon fiber
reinforced plastic
fiber reinforced
cfrp
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016184430A
Other languages
Japanese (ja)
Other versions
JP6649860B2 (en
Inventor
智典 竹本
Tomonori Takemoto
智典 竹本
泰之 石田
Yasuyuki Ishida
泰之 石田
充志 中村
Mitsuji Nakamura
充志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Publication of JP2017066383A publication Critical patent/JP2017066383A/en
Application granted granted Critical
Publication of JP6649860B2 publication Critical patent/JP6649860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method for processing a carbon fiber-reinforced plastic capable of improving crushability while maintaining recovery rate high when used as a fuel and a method for manufacturing the fuel capable of effectively using the carbon fiber-reinforced plastic, which is a waste, as the fuel.SOLUTION: There are provided a method for processing a carbon fiber-reinforced plastic by conducting a heating treatment on the carbon fiber-reinforced plastic according to conditions 1 and 2 and a method for manufacturing a fuel including a process for processing the carbon fiber-reinforced plastic by the method for processing the carbon fiber-reinforced plastic and a process for pulverizing the carbon fiber-reinforced plastic after the treatment. (Condition 1) The heating temperature is set in a range of 300 to 500°C. (Condition 2) The heating time is set in a range of 10 minutes to 12 hours depending on the set heating temperature.SELECTED DRAWING: None

Description

本発明は、炭素繊維強化プラスチックの機械強度を低下させる処理方法、及びをその処理方法で処理して得た炭素繊維強化プラスチックを用いる燃料の製造方法に関する。   The present invention relates to a treatment method for reducing the mechanical strength of a carbon fiber reinforced plastic, and a fuel production method using a carbon fiber reinforced plastic obtained by treating the carbon fiber reinforced plastic with the treatment method.

炭素繊維強化プラスチック(以下、「CFRP」とも呼ぶ。)は、軽量であり、高強度・高弾性などの機械的強度に優れているため、テニスラケット、ゴルフクラブ用シャフト、釣竿などの小型のものから、自動車や航空機などの産業用の大型のものまで幅広く、大量に使用されている。それらの製品ばかりでなく、その製造工程で発生する不良品等も加わり、今後廃棄されるCFRPの量は増加し続けると考えられ、これらを資源として有効利用することが求められている。   Carbon fiber reinforced plastic (hereinafter also referred to as “CFRP”) is lightweight and excellent in mechanical strength such as high strength and high elasticity, so it is small in size such as tennis rackets, golf club shafts, fishing rods, etc. To large-sized products for industrial use such as automobiles and aircraft, and is used in large quantities. Not only those products but also defective products generated in the manufacturing process are added, and it is considered that the amount of CFRP discarded in the future will continue to increase, and it is required to effectively use these as resources.

リサイクル技術として、CFRPの廃棄物から炭素繊維を分離回収する種々の技術が検討されている。例えば、特許文献1には、CFRPの処理方法として、炭素繊維強化プラスチックを、酸素濃度が3〜18体積%の範囲内で、温度が300〜600℃の範囲内のガス雰囲気下で燃焼させないで処理し、プラスチックを熱分解し、炭素繊維を回収することが提案されている。しかし、廃棄物から炭素繊維を回収しても、繊維が短くなったり、強度が低下したりすることが多い。そのため、マテリアルリサイクルやケミカルリサイクルが難しく、最終的に埋立て処分されている量も多い。しかし、今後、埋立て処分場の確保、規制の強化などにより、埋立て処分は困難となる。   As a recycling technique, various techniques for separating and recovering carbon fibers from CFRP waste have been studied. For example, in Patent Document 1, as a treatment method of CFRP, carbon fiber reinforced plastic is not burned in a gas atmosphere in which the oxygen concentration is in the range of 3 to 18% by volume and the temperature is in the range of 300 to 600 ° C. It has been proposed to treat, pyrolyze the plastic and recover the carbon fiber. However, even if carbon fibers are recovered from waste, the fibers are often shortened or the strength is reduced. Therefore, material recycling and chemical recycling are difficult, and there are many final landfills. However, landfill disposal will become difficult in the future due to securing landfill sites and strengthening regulations.

結局、CFRPを燃料として利用するサーマルリサイクルが、リサイクルと最終処分を両立させることができるので有効な方法である。その一つの方法として、セメント製造工程等での燃料化がある。これは、処理量が増加した場合でもそれに対処できること、CFRP以外の廃棄物が混入しても処理できること、様々な形状や組成のCFRPの処理に対応できること、及び処理により廃棄物が発生しないことなどの利点があり、有効なリサイクル方法である。   After all, thermal recycling using CFRP as a fuel is an effective method because it can achieve both recycling and final disposal. One method is to use fuel in cement manufacturing processes. This means that it is possible to cope with an increase in the processing amount, that it can be processed even when waste other than CFRP is mixed, that it can handle CFRP of various shapes and compositions, and that no waste is generated by the processing. This is an effective recycling method.

特許文献2には、炭素繊維を含む廃プラスチックをセメントキルンに供給し、燃焼処理を行うことにより生じる排気ガスを集塵装置に供給して、排気ガス中の煤塵を捕集するようにした炭素繊維を含む廃プラスチックの焼却処理方法において、炭素繊維を含む廃プラスチックを平均粒子径が3mm以下になるように粉砕し、セメントキルンの内部温度が1200℃以上である位置に供給することにより、炭素繊維の分別を施すことなく、セメント製造装置において燃料の一部に使用することができる旨記載されている。   Patent Document 2 discloses a carbon in which waste plastic containing carbon fiber is supplied to a cement kiln and exhaust gas generated by performing a combustion process is supplied to a dust collector to collect dust in the exhaust gas. In the incineration processing method for waste plastics containing fibers, the waste plastics containing carbon fibers are pulverized so as to have an average particle diameter of 3 mm or less, and supplied to a position where the internal temperature of the cement kiln is 1200 ° C. or more. It is described that it can be used as a part of fuel in a cement manufacturing apparatus without performing fiber separation.

特開平6−99160号公報JP-A-6-99160 特開2007−131463号公報JP 2007-131463 A

しかしながら、特許文献2に記載の処理方法においては、CFRPは機械的強度が優れているので粉砕機の磨耗が激しく、また大量の粉砕エネルギーが必要であるので、CFRPを3mm以下に粉砕する方式は現実的ではない。つまり、CFRPは、炭素繊維と樹脂の一体性が高く高強度であるため、破砕や微粉砕することが困難であり、これまでは燃料としては使用することが困難であった。また、特許文献1に記載の処理方法においては、燃料として用いる場合の回収率が低かった。ここで、回収率とは、加熱前のCFRPの発熱量に対する加熱後のCFRPの発熱量の割合を指す。より詳細には、測定で得られる単位発熱量(J/g)の比較ではなく、処理前の重量、処理後の重量を加味した発熱量のマテリアルバランスを示す。すなわち、回収率は以下の式で求められる。
回収率=処理後の単位発熱量×回収重量/処理前の単位発熱量×処理重量
なお、本明細書においては、カーボンと樹脂の発熱量はほぼ同等とみなし、残存重量≒回収率としている。
However, in the processing method described in Patent Document 2, since CFRP is excellent in mechanical strength, the grinder is severely worn and a large amount of grinding energy is required. Therefore, the method of grinding CFRP to 3 mm or less is Not realistic. That is, CFRP is difficult to crush and finely pulverize because carbon fiber and resin have a high unity and high strength, and until now it has been difficult to use as a fuel. Moreover, in the processing method described in Patent Document 1, the recovery rate when used as fuel was low. Here, the recovery rate refers to the ratio of the calorific value of CFRP after heating to the calorific value of CFRP before heating. More specifically, instead of comparing the unit calorific value (J / g) obtained by measurement, the material balance of the calorific value taking into account the weight before treatment and the weight after treatment is shown. That is, the recovery rate is obtained by the following formula.
Recovery rate = unit calorific value after treatment x recovered weight / unit calorific value before treatment x treated weight Note that in this specification, the calorific values of carbon and resin are considered to be substantially equal, and the residual weight is approximately equal to the recovery rate.

本発明の目的は、燃料として用いる場合の回収率を高く維持したまま、粉砕性を良くすることができる炭素繊維強化プラスチックの処理方法、及び廃材としての炭素繊維強化プラスチックを燃料として有効利用できる燃料の製造方法を提供することにある。   An object of the present invention is to provide a carbon fiber reinforced plastic processing method capable of improving the pulverization property while maintaining a high recovery rate when used as a fuel, and a fuel capable of effectively using a carbon fiber reinforced plastic as a waste material as a fuel. It is in providing the manufacturing method of.

本発明者らは、高強度のCFRPであっても、適切な温度及び適切な時間で加熱すると機械強度が低下し、微粉砕可能であることを見出し本発明を完成するに至った。より詳細には以下の通りである。すなわち、CFRPを加熱すると、樹脂が揮発・分解するため、その分重量が減少・熱量ロスが発生し、回収率が減少する。一方、炭素繊維は、樹脂に比べて熱安定性が高いため、重量減少・熱量ロスはほとんど発生しない。回収率が高いほど、加熱による発熱量ロスが少なく、化石燃料代替量が多くなる。また、タールの発生や一酸化炭素などの有害ガスの発生量も抑制できる。本発明者らはこれらの点を踏まえ、加熱条件を最適化して、樹脂の揮発・分解を最小限にして高い回収率を維持しつつ、粉砕性を高めるベストポイントを見出すための検討を行い本発明を完成した。   The present inventors have found that even when CFRP having high strength is heated at an appropriate temperature and for an appropriate time, the mechanical strength is lowered and can be finely pulverized, and the present invention has been completed. More details are as follows. That is, when CFRP is heated, the resin volatilizes and decomposes, so that the weight is reduced and the heat loss is lost, and the recovery rate is reduced. On the other hand, since carbon fiber has higher thermal stability than resin, weight loss and heat loss hardly occur. The higher the recovery rate, the smaller the calorific value loss due to heating and the greater the fossil fuel replacement amount. Moreover, generation | occurrence | production of noxious gas, such as generation | occurrence | production of tar and carbon monoxide, can also be suppressed. Based on these points, the present inventors have studied to find the best point to improve the grindability while optimizing the heating conditions, minimizing the volatilization and decomposition of the resin and maintaining a high recovery rate. Completed the invention.

本発明の炭素繊維強化プラスチックの処理方法は、炭素繊維強化プラスチックを以下の条件1及び2に従い加熱処理を施すことを特徴とする。
(条件1)加熱温度を300〜500℃の範囲内に設定する。
(条件2)設定した加熱温度に応じて10分〜12時間の範囲内で加熱時間を設定する。
The method for treating a carbon fiber reinforced plastic according to the present invention is characterized in that the carbon fiber reinforced plastic is subjected to a heat treatment according to the following conditions 1 and 2.
(Condition 1) The heating temperature is set within a range of 300 to 500 ° C.
(Condition 2) The heating time is set within a range of 10 minutes to 12 hours according to the set heating temperature.

本発明の炭素繊維強化プラスチックの処理方法では、加熱温度と加熱時間とを上記条件1及び2に従い設定することで、炭素繊維強化プラスチックの分子構造中の炭素と水素の結合の酸化、高分子構造の体積変化などを起こし物性が変化するため機械強度が低下し、ひいては微粉砕(例えば、0.1mm以下)が容易となる。そして、一般的に使用される石炭と同程度又はそれ以上に微粉砕が可能であり燃料として好適に使用し得る。   In the method for treating a carbon fiber reinforced plastic according to the present invention, the heating temperature and the heating time are set according to the above conditions 1 and 2, so that the carbon and hydrogen bonds in the molecular structure of the carbon fiber reinforced plastic are oxidized, and the polymer structure As a result, the mechanical strength is lowered due to the change in physical properties and the physical properties are changed. As a result, fine pulverization (for example, 0.1 mm or less) becomes easy. Further, it can be finely pulverized to the same level as or more than that of generally used coal, and can be suitably used as a fuel.

本発明において、条件1により、加熱温度を300〜500℃の範囲内に設定するが、300℃未満であると処理が長時間に及び、500℃を超えると回収率が低下し、タールや有害ガスの生成量が増加するので、タールにより軟化した樹脂が処理装置内部で付着するなどの悪影響を及ぼす。すなわち、本発明においては、上限500℃という比較的低温で加熱をするため、処理装置内での樹脂の付着を防止することができる。   In the present invention, the heating temperature is set in the range of 300 to 500 ° C. according to the condition 1, but if it is less than 300 ° C., the treatment takes a long time, and if it exceeds 500 ° C., the recovery rate decreases, and tar and harmful Since the amount of gas generated increases, the resin softened by tar adheres to the inside of the processing apparatus. That is, in the present invention, since heating is performed at a relatively low temperature of 500 ° C. as the upper limit, it is possible to prevent adhesion of resin in the processing apparatus.

また、本発明において、条件2により、設定した加熱温度に応じて10分〜12時間の範囲内で加熱時間を設定するが、加熱温度が高いほど加熱時間を短く、逆に加熱温度が低いほど加熱時間を長く設定する。また、処理するCFRPが小さいほど加熱時間を短く、逆に大きいほど加熱時間を長く設定する。   In the present invention, the heating time is set within a range of 10 minutes to 12 hours according to the set heating temperature according to the condition 2. However, the higher the heating temperature, the shorter the heating time, and vice versa. Set the heating time longer. Further, the heating time is set shorter as the CFRP to be processed is smaller, and the heating time is set longer as the CFRP is larger.

本発明の炭素繊維強化プラスチックの処理方法においては、炭素繊維強化プラスチックの重量減少率が5〜50%となるように加熱処理を施すことが好ましい。加熱により、炭素繊維強化プラスチック内の樹脂の一部が揮発して重量減少が発現するのであるが、重量減少は必要最小限に止めることで、燃料としての回収率と微粉砕性との両立をより効率的に達成することができる。   In the carbon fiber reinforced plastic treatment method of the present invention, it is preferable to perform heat treatment so that the weight reduction rate of the carbon fiber reinforced plastic is 5 to 50%. Heating causes a part of the resin in the carbon fiber reinforced plastic to volatilize, resulting in a weight reduction. By minimizing the weight reduction, it is possible to achieve both fuel recovery and fine pulverization. It can be achieved more efficiently.

さらに、本発明の炭素繊維強化プラスチックの処理方法においては、前記炭素繊維強化プラスチックの重量減少率を、JIS M8812(2004)(工業分析)により得られる前記炭素繊維強化プラスチック中の揮発分の含有率で除した値が、15〜70%となるように加熱処理を施すことが好ましい。このような条件で加熱処理を施すことで、CFRPの微粉砕が容易になるとともに、樹脂も燃料として回収することができる。   Furthermore, in the processing method of the carbon fiber reinforced plastic of this invention, the content rate of the volatile matter in the said carbon fiber reinforced plastic obtained by JISM8812 (2004) (industrial analysis) is used for the weight reduction rate of the said carbon fiber reinforced plastic. It is preferable to heat-process so that the value remove | divided by may become 15 to 70%. By performing the heat treatment under such conditions, the CFRP can be easily pulverized and the resin can also be recovered as fuel.

本発明の燃料の製造方法は、上記本発明の炭素繊維強化プラスチックの処理方法により、炭素繊維強化プラスチックを処理する工程と、前記処理後の炭素繊維強化プラスチックを粉砕する工程と、を含むことを特徴とする。前記処理後の炭素繊維強化プラスチックは3mm以下に粉砕することが好ましい。   The fuel production method of the present invention includes a step of treating the carbon fiber reinforced plastic by the carbon fiber reinforced plastic treatment method of the present invention and a step of pulverizing the carbon fiber reinforced plastic after the treatment. Features. The carbon fiber reinforced plastic after the treatment is preferably pulverized to 3 mm or less.

本発明の燃料の製造方法では、上述の本発明の炭素繊維強化プラスチックの処理方法により処理され機械強度が低下した炭素繊維強化プラスチックを用いるため、微粉砕が容易であり、特に、粒子径0.5mm以下、さらには微粉炭並みの粒子径0.1mm以下の燃料を容易に製造することができる。つまり、廃材としての炭素繊維強化プラスチックを燃料として有効利用が可能となる。   The fuel production method of the present invention uses carbon fiber reinforced plastic that has been processed by the above-described carbon fiber reinforced plastic processing method of the present invention and has reduced mechanical strength. Therefore, fine pulverization is easy. A fuel having a particle diameter of 0.1 mm or less, which is equal to or less than 5 mm, or similar to pulverized coal, can be easily produced. That is, the carbon fiber reinforced plastic as a waste material can be effectively used as a fuel.

本発明の炭素繊維強化プラスチックの処理方法を実施するためのシステムの全体構成図。The whole block diagram of the system for implementing the processing method of the carbon fiber reinforced plastics of this invention. 実施例で用いた各試料の加熱時間に対する燃焼率を示すグラフ。The graph which shows the combustion rate with respect to the heating time of each sample used in the Example.

以下に、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本実施形態のCFRPの処理方法は、CFRPを以下の条件1及び2に従い加熱処理を施す。
(条件1)加熱温度を300〜500℃の範囲内に設定する。
(条件2)設定した加熱温度に応じて10分〜12時間の範囲内で加熱時間を設定する。
In the CFRP processing method of the present embodiment, the CFRP is heat-treated according to the following conditions 1 and 2.
(Condition 1) The heating temperature is set within a range of 300 to 500 ° C.
(Condition 2) The heating time is set within a range of 10 minutes to 12 hours according to the set heating temperature.

条件1及び2に従い加熱処理を施すことで、CFRPの機械強度を低下させることができるのであるが、例えば、加熱温度を300℃に設定するなら加熱時間を2時間、同様に400℃に設定するなら1時間、500℃に設定するなら10分というように、加熱温度と加熱時間との関係は反比例するように設定することが好ましい。また、CFRPのサイズその他条件により、加熱温度及び加熱時間の好適な関係は異なるため適宜設定することが好ましい。   By performing heat treatment according to conditions 1 and 2, the mechanical strength of CFRP can be reduced. For example, if the heating temperature is set to 300 ° C., the heating time is set to 2 hours and similarly to 400 ° C. Thus, it is preferable to set the relationship between the heating temperature and the heating time so as to be in inverse proportion, such as 1 hour if set to 500 ° C. and 10 minutes if set. In addition, the preferred relationship between the heating temperature and the heating time varies depending on the size of the CFRP and other conditions, so it is preferable to set appropriately.

加熱処理を行う加熱手段としては、300〜500℃の温度範囲に設定できるものであればよく、固定炉、ストーカ炉、ロータリーキルン炉、流動床炉、竪型炉、多段炉などが挙げられる。   As a heating means for performing the heat treatment, any heating means can be used as long as it can be set in a temperature range of 300 to 500 ° C., and examples thereof include a fixed furnace, a stoker furnace, a rotary kiln furnace, a fluidized bed furnace, a vertical furnace, and a multistage furnace.

加熱処理は、大気中、酸化性雰囲気、還元性雰囲気、及び不活性雰囲気のいずれでもよいが、酸化性雰囲気であるとより短時間でCFRPの機械強度を低下することができ好ましい。   The heat treatment may be any of air, an oxidizing atmosphere, a reducing atmosphere, and an inert atmosphere. However, an oxidizing atmosphere is preferable because the mechanical strength of CFRP can be reduced in a shorter time.

加熱処理において、CFRPの重量減少率が5〜50%となるように加熱処理を施すことが好ましく、10〜40%とすることがより好ましく、15〜35%とすることがさらに好ましい。CFRPの重量が減少するのは樹脂が揮発するためと考えられ、重量減少率は樹脂の種類により異なるが、上記数値範囲はエポキシ樹脂の場合のものである。   In the heat treatment, the heat treatment is preferably performed so that the weight reduction rate of CFRP is 5 to 50%, more preferably 10 to 40%, and still more preferably 15 to 35%. The reason why the weight of CFRP decreases is that the resin volatilizes, and the weight reduction rate varies depending on the type of resin, but the above numerical range is for epoxy resin.

また、加熱処理において、JIS M8812(2004)(工業分析)により得られるCFRP中の揮発分の含有率に対するCFRPの重量減少率が、15〜70%となるように加熱処理を施すことが好ましく、20〜65%とすることがより好ましく、30〜55%とすることがさらに好ましい。当該値を15%以上とすることで、CFRPの微粉砕が容易となる。また、当該値を70%以下とすることで、樹脂も燃料として回収される。   Further, in the heat treatment, it is preferable to perform the heat treatment so that the weight reduction rate of CFRP with respect to the volatile content in CFRP obtained by JIS M8812 (2004) (industrial analysis) is 15 to 70%. It is more preferably 20 to 65%, and further preferably 30 to 55%. By making this value 15% or more, CFRP can be finely pulverized. Moreover, resin is also collect | recovered as a fuel by making the said value 70% or less.

なお、上述の通り、本実施形態のCFRPの処理方法によりCFRPの機械強度が低下することで、粉砕性が向上し、とくに微粉砕が容易となる。しかし、処理対象のCFRPが10cmを超えるような場合は、かえって加熱時間が長くなって負荷がかかったり、処理量が減少したり、加熱時間の調整が困難となってくる。従って、処理対象のCFRPを、数mm程度に粗粉砕したのち、加熱処理を行ってもよい。   As described above, the mechanical strength of CFRP is reduced by the CFRP processing method of the present embodiment, so that the pulverization property is improved, and in particular, the fine pulverization becomes easy. However, when the CFRP to be processed exceeds 10 cm, the heating time becomes longer and a load is applied, the amount of processing is reduced, or the adjustment of the heating time becomes difficult. Therefore, the heat treatment may be performed after roughly pulverizing the CFRP to be processed to about several mm.

一方、本実施形態の燃料の製造方法は、前記炭素繊維強化プラスチックの処理方法により、炭素繊維強化プラスチックを処理する工程と、処理後の炭素繊維強化プラスチックを粉砕する工程と、を含む。CFRPを処理する工程については既に説明したので、CFRPを粉砕する工程について以下に説明する。   On the other hand, the fuel production method of the present embodiment includes a step of treating the carbon fiber reinforced plastic and a step of pulverizing the treated carbon fiber reinforced plastic by the carbon fiber reinforced plastic treatment method. Since the process of processing CFRP has already been described, the process of pulverizing CFRP will be described below.

CFRPを粉砕する工程においては、その前工程における加熱処理によりCFRPの機械強度が低下しているため微粉砕が容易である。従って、粉砕装置としては、強力な粉砕能を有する装置は必ずしも必要ではない。粉砕装置としては、ハンマーミル、カッターミル、せん断破砕機、ロールクラッシャー、インパクトクラッシャー、ロータリーミル、ボールミル、ディスクミル、縦型ミルなどが挙げられる。また、既存の設備において燃料として使用されている石炭などとCFRPとを同時にミルに投入して混合粉砕すると、新規の粉砕設備が不要であり、また粉砕も容易であり、燃料の性状も大きく変化することがないため好ましい。   In the step of pulverizing the CFRP, the mechanical strength of the CFRP is reduced by the heat treatment in the previous step, so that fine pulverization is easy. Therefore, an apparatus having a strong pulverizing ability is not necessarily required as the pulverizing apparatus. Examples of the pulverizer include a hammer mill, a cutter mill, a shear crusher, a roll crusher, an impact crusher, a rotary mill, a ball mill, a disk mill, and a vertical mill. In addition, when coal and other materials used as fuel in the existing equipment and CFRP are mixed and pulverized at the same time, no new pulverization equipment is required, and pulverization is easy, and the properties of the fuel change greatly. This is preferable.

粉砕後のCFRPの粒子径は、3mmふるい残分が10%以下であることが好ましく、0.5mmふるい残分が10%以下であることがより好ましい。CFRPの粒子径が3mmを超えると、排ガス系統に悪影響を与える。具体的には、燃え残った炭素繊維が煤塵を捕集するための電気集塵機に荷電不良を起こし、捕集性能が低下する。CFRPの粒子径が大きくなるほど、絡みあって綿状の繊維が発生するため、電気集塵機系内で異常再飛散を起こす上に、装置壁面・配管・放電極・集じん極に付着、滞留するからである。   As for the particle diameter of CFRP after pulverization, the 3 mm sieve residue is preferably 10% or less, and the 0.5 mm sieve residue is more preferably 10% or less. If the particle size of CFRP exceeds 3 mm, the exhaust gas system is adversely affected. Specifically, the unburned carbon fiber causes a charging failure in the electric dust collector for collecting the dust, and the collecting performance is lowered. The larger the CFRP particle size, the more entangled and cotton-like fibers are generated, which causes abnormal re-scattering in the electrostatic precipitator system, and adheres to and stays on the device wall surface, piping, discharge electrode, and dust collection electrode. It is.

粉砕後のCFRPの粒子径を0.5mm以下とすることで、異常再飛散の原因となる極間距離の短縮が起きにくくなり、またCFRPが絡み合った綿状繊維は発生しないため、電気集塵機のトラブルが低減される。バグフィルタで集塵した場合も、粒子径0.5mm以下とすることで、CFRPが絡みあった綿状の繊維が、装置壁面や装置までの配管に付着、滞留することが防止される。また、綿状繊維がろ布から付着物を払い落す際に再飛散して、集じんダストとして回収されずに滞留されることも防止される。さらに、粒子径0.1mm以下とすることで、たとえ燃焼することなく電気集塵機の放電極に付着したとしても、極間放電は生じにくくなり、印加電圧の低下は通所運転のばらつき程度となる。   By making the particle diameter of CFRP after pulverization 0.5 mm or less, it becomes difficult to reduce the distance between the electrodes, which causes abnormal re-scattering, and the cotton fiber entangled with CFRP does not occur. Trouble is reduced. Even when the dust is collected by the bag filter, by setting the particle diameter to 0.5 mm or less, it is possible to prevent the cotton-like fibers entangled with CFRP from adhering to and staying on the apparatus wall surface and the pipe to the apparatus. Further, it is prevented that the cotton-like fibers are scattered again when the deposits are wiped off from the filter cloth and stayed without being collected as dust collection dust. Furthermore, by setting the particle diameter to 0.1 mm or less, even if it adheres to the discharge electrode of the electrostatic precipitator without burning, inter-electrode discharge is less likely to occur, and the decrease in applied voltage is about the variation of the routine operation.

また、CFRPの粒子径を0.1mm以下とすると燃えきり時間は微粉炭と同程度になるため、セメント工場の窯尻など比較的に温度が低い場所でも完全燃焼することができ、炭素繊維も燃料として有効活用される。   Also, if the CFRP particle size is 0.1 mm or less, the burn-out time will be about the same as that of pulverized coal, so it can be completely burned even at relatively low temperatures such as kiln bottoms in cement plants, and carbon fibers Effectively used as fuel.

なお、本発明において、「粒子径がAmmふるい残分が10%以下である」とは、目開きAmmのふるい上に残る粒子の重量が10%であることを指す。   In the present invention, “the particle size of the Amm sieve residue is 10% or less” means that the weight of the particles remaining on the sieve having an aperture of Amm is 10%.

次いで、図面を参照して、燃料の製造方法について説明する。図1は、本発明の燃料の製造方法の実施するためのシステムの一例を示し、この処理システム1は、受け入れた加熱処理後のCFRPを貯留するタンク2と、タンク2からのCFRPを段階的に破砕及び粉砕する二軸せん断破砕機4、カッターミル5及び縦型ミル6と、縦型ミル6からの粉砕物Pをセメント製造装置10に投入する投入装置7とで構成される。   Next, a method for producing fuel will be described with reference to the drawings. FIG. 1 shows an example of a system for carrying out the fuel production method of the present invention. This processing system 1 includes a tank 2 for storing received CFRP after the heat treatment, and a CFRP from the tank 2 in stages. Are composed of a biaxial shear crusher 4, a cutter mill 5 and a vertical mill 6, and a charging device 7 for charging the pulverized product P from the vertical mill 6 into the cement manufacturing apparatus 10.

二軸せん断破砕機4は、2本の軸の各々に鋭利な回転刃が設けられ、処理対象物を噛み込んで破砕する装置である。二軸せん断破砕機4に代えて、一軸せん断破砕機、四軸せん断破砕機、ロールクラッシャー、インパクトクラッシャー等を用いてもよい。   The biaxial shear crusher 4 is a device in which a sharp rotary blade is provided on each of two shafts, and the object to be processed is bitten and crushed. Instead of the biaxial shear crusher 4, a uniaxial shear crusher, a four-axis shear crusher, a roll crusher, an impact crusher, or the like may be used.

カッターミル5は、ロータに装着されたカッタと、ケーシングに装着された固定刃とで、せん断力を利用して挟み切るように処理対象物を破砕する装置であって、衝撃力を受けても力を吸収したり、延びたりして細かく破砕することが困難な物を破砕するのに適する。カッターミル5に代えて、ロータリーミル、ハンマーミル等を用いてもよい。   The cutter mill 5 is a device for crushing a processing object so as to be sandwiched by using a shearing force with a cutter attached to a rotor and a fixed blade attached to a casing, and can receive an impact force. It is suitable for crushing things that are difficult to crush finely by absorbing force or extending. Instead of the cutter mill 5, a rotary mill, a hammer mill or the like may be used.

縦型ミル6は、水平回転するテーブルと、テーブル凹部上面に沿うように取り付けられた複数のローラとを有し、テーブルとローラの間の処理対象物を粉砕する装置であって、粉砕された処理対象物はテーブルの外周方向に移動し、上昇気流でセパレータに運ばれて分級される。縦型ミル6に代えて、ボールミル、ディスクミル等を用いてもよい。   The vertical mill 6 is a device that has a horizontally rotating table and a plurality of rollers mounted along the upper surface of the table recess, and pulverizes the object to be processed between the table and the rollers. The object to be processed moves in the direction of the outer periphery of the table, and is carried to the separator by an ascending air current and classified. Instead of the vertical mill 6, a ball mill, a disk mill or the like may be used.

投入装置7には、スクリュー式、エゼクタ式の空気流動式のものや、ロータリフィーダ、スクリューフィーダ等が用いられる。   As the charging device 7, a screw type, an ejector type air flow type, a rotary feeder, a screw feeder or the like is used.

上記処理システム1によって得られた粉砕物Pを燃料として用いるセメント製造装置10は、セメント原料CRを予熱するためサイクロンを多段に重ねたプレヒータ16と、セメント原料CRを仮焼する仮焼炉15と、主バーナ12等を備えてセメント原料CRを焼成するセメントキルン(ロータリーキルン)11と、セメントキルン11から排出されたセメントクリンカを冷却するクリンカクーラ13等で構成される。   The cement manufacturing apparatus 10 using the pulverized product P obtained by the processing system 1 as a fuel includes a preheater 16 in which cyclones are stacked in multiple stages to preheat the cement raw material CR, and a calcining furnace 15 for calcining the cement raw material CR. The cement kiln (rotary kiln) 11 that includes the main burner 12 and the like and fires the cement raw material CR, and the clinker cooler 13 that cools the cement clinker discharged from the cement kiln 11 and the like.

次に、上記構成を有する処理システム1による燃料の燃焼処理方法について説明する。   Next, a fuel combustion processing method by the processing system 1 having the above configuration will be described.

受け入れたCFRPをタンク2に一時的に貯留した後、二軸せん断破砕機4、カッターミル5及び縦型ミル6でこの順に、最終的にCFRPの粒子径が0.2mmふるい残分が10%以下になるように粉砕する。   After the received CFRP is temporarily stored in the tank 2, the CFRP particle size is 0.2 mm in the final order in the biaxial shear crusher 4, the cutter mill 5, and the vertical mill 6. Crush to the following.

縦型ミル6からの粉砕物Pを、投入装置7を介してセメントキルン11の窯前11a、窯尻11bに投入したり、主バーナ12からセメントキルン11内に投入したりして燃料として使用しセメント原料CRを焼成する(図示例は、窯尻11bに投入した場合を示している)。窯前11a、窯尻11b、主バーナ12のいずれか一箇所からセメントキルン11に投入してもよく、複数箇所から投入してもよい。この中でも炭素繊維の燃え残りをなくすために主バーナ12から投入するのがよい。   The pulverized product P from the vertical mill 6 is used as fuel by being fed into the kiln 11a and the kiln bottom 11b of the cement kiln 11 through the feeding device 7 or by being fed into the cement kiln 11 from the main burner 12. Then, the cement raw material CR is fired (the illustrated example shows the case where it is put into the kiln bottom 11b). The cement kiln 11 may be charged from any one of the kiln front 11a, the kiln bottom 11b, and the main burner 12, or may be charged from a plurality of locations. Among these, in order to eliminate unburned carbon fiber, it is preferable to use the main burner 12.

尚、上記実施形態では、縦型ミル6からの粉砕物Pを投入装置7によってセメント製造装置10に投入したが、縦型ミル6と投入装置7との間にタンクを設け、粉砕物Pを一旦タンクに貯留した後投入装置7でセメント製造装置10に投入してもよい。   In the above embodiment, the pulverized material P from the vertical mill 6 is charged into the cement manufacturing apparatus 10 by the charging device 7. However, a tank is provided between the vertical mill 6 and the charging device 7, and the pulverized material P is Once stored in a tank, the cement production apparatus 10 may be charged by the charging apparatus 7.

以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

[実施例1]
1〜30mmに破砕したCFRP30gを、箱型電気炉(ヤマト科学社;FP-41)に投入し、表1に示す加熱温度及び加熱時間に設定してCFRPに加熱処理を施し、加熱前後の重量から重量減少率を確認した。結果を表1に示す。
[Example 1]
30 g of CFRP crushed to 1 to 30 mm is put into a box-type electric furnace (Yamato Scientific Co., Ltd .; FP-41), set to the heating temperature and heating time shown in Table 1, and subjected to heat treatment, and the weight before and after heating. The weight reduction rate was confirmed. The results are shown in Table 1.

表1より、CFRPの重量を一定以上減少させるには、加熱温度が高いほど加熱時間を短くし、逆に加熱温度が低いほど加熱時間を長く設定すればよいことが分かる。   From Table 1, it can be seen that in order to reduce the weight of CFRP above a certain level, the heating time is shortened as the heating temperature is higher, and conversely, the heating time is set longer as the heating temperature is lower.

次いで、表1に示す加熱温度及び加熱時間に設定して加熱処理を施したCFRPを10g分取してディスクミル(ハルツオック社製;HSM-100A)を用い、粉砕時間60秒にて粉砕した後、目開き1mm、0.5mm、0.1mmの篩を用いて篩い分けを行った。それぞれの粉砕後の粒度分布について表2に示す。   Next, 10 g of CFRP which was set to the heating temperature and heating time shown in Table 1 and subjected to the heat treatment was collected and pulverized using a disk mill (manufactured by Harzock; HSM-100A) at a pulverization time of 60 seconds. Further, sieving was performed using sieves having an opening of 1 mm, 0.5 mm, and 0.1 mm. The particle size distribution after pulverization is shown in Table 2.

表2より、加熱温度・加熱時間が、300℃・30分以上、400℃・10分以上、500℃・10分以上の場合に、0.1mm未満の粒度分布が多くなった。従って、そのような加熱温度・加熱時間で加熱処理及び微粉砕したCFRPが燃料としての利用に資する。   From Table 2, when the heating temperature and the heating time were 300 ° C. for 30 minutes or more, 400 ° C. for 10 minutes or more, and 500 ° C. for 10 minutes or more, the particle size distribution of less than 0.1 mm increased. Therefore, the heat-treated and finely pulverized CFRP at such heating temperature and heating time contributes to the use as fuel.

[実施例2]
2〜5mmに破砕したCFRP30gを、箱型電気炉(ヤマト科学社;FP−41)に投入し、表3に示す加熱温度及び加熱時間に設定してCFRPに加熱処理を施し、加熱前後の重量から重量減少率を確認した。結果を表3に示す。また、JIS M8812(2004)(工業分析)により得られるCFRP中の揮発分の含有率に対するCFRPの重量減少率の値を表4に示す。なお、未処理のCFRPの揮発分の含有率は33.8%であった。
[Example 2]
30 g of CFRP crushed to 2 to 5 mm was put into a box-type electric furnace (Yamato Scientific Co., Ltd .; FP-41), set to the heating temperature and heating time shown in Table 3, and subjected to heat treatment on the CFRP. The weight reduction rate was confirmed. The results are shown in Table 3. Table 4 shows the weight reduction rate of CFRP with respect to the content of volatile components in CFRP obtained by JIS M8812 (2004) (industrial analysis). In addition, the content rate of the volatile matter of untreated CFRP was 33.8%.

表4より、CFRPの揮発分の含有率に対するCFRPの重量減少率を一定以上減少させるには、加熱温度が高いほど加熱時間を短くし、逆に加熱温度が低いほど加熱時間を長く設定すればよいことが分かる。   From Table 4, in order to reduce the weight reduction rate of CFRP with respect to the volatile content of CFRP more than a certain value, the heating time is shortened as the heating temperature is higher, and conversely, the heating time is set longer as the heating temperature is lower. I know it ’s good.

次いで、表3および表4に示す加熱温度及び加熱時間に設定して加熱処理を施したCFRPを10g分取してディスクミル(ハルツオック社製;HSM−100A)を用い、粉砕時間60秒にて粉砕した後、目開き2mm、1mm、0.5mm、0.1mmの篩を用いて篩い分けを行った。それぞれの粉砕後の粒度分布について表5に示す。   Subsequently, 10 g of CFRP which was set to the heating temperature and heating time shown in Table 3 and Table 4 and subjected to the heat treatment was collected and pulverized for 60 seconds using a disk mill (Harzock, HSM-100A). After pulverization, sieving was performed using a sieve having openings of 2 mm, 1 mm, 0.5 mm, and 0.1 mm. It shows in Table 5 about the particle size distribution after each grinding | pulverization.

表5より、加熱温度・加熱時間が、300℃・2時間以上、350℃・30分以上、400℃・10分以上、450℃・10分以上、500℃・10分以上の場合に、0.1mm未満の粒度分布が多くなったことが分かる。   From Table 5, when the heating temperature / heating time is 300 ° C. · 2 hours or more, 350 ° C. · 30 minutes or more, 400 ° C. · 10 minutes or more, 450 ° C. · 10 minutes or more, 500 ° C. · 10 minutes or more, 0 It can be seen that the particle size distribution of less than 1 mm has increased.

次いで、セメント工場で燃料として使用した場合の電気集塵機に及ぼす影響を評価した。表5の未処理品及び400℃で1時間処理を行った粉砕物について、セメントキルン窯尻(クリンカ製造量150t/h)に1時間あたり400gを投入した。未処理品の場合、電気集塵機の印加電圧が30分後に50kVから35kVに低下した。一方、処理品は45kVを下回ることはなかった。   Next, the effect on the electrostatic precipitator when used as a fuel in a cement factory was evaluated. About the untreated product of Table 5 and the pulverized material treated at 400 ° C. for 1 hour, 400 g per hour was charged into a cement kiln kiln bottom (clinker production amount 150 t / h). In the case of an untreated product, the applied voltage of the electrostatic precipitator dropped from 50 kV to 35 kV after 30 minutes. On the other hand, the treated product never fell below 45 kV.

従って、本発明のCFRPの処理方法により処理して得られたCFRP脆化物は、未処理のCFRPと比較して、電気集塵機にほとんど影響を与えない0.1mm以下の粒度に容易に粉砕できることが分かる。   Therefore, the CFRP embrittlement obtained by the processing method of the CFRP of the present invention can be easily pulverized to a particle size of 0.1 mm or less that hardly affects the electrostatic precipitator compared to the untreated CFRP. I understand.

次いで、未処理のCFRPと400℃で1時間処理を行った粉砕物について、セメントキルンの主要燃料である微粉炭に対する燃焼性(所定時間燃焼した際の重量減少率)を評価するため、管状電気炉(直径42mm、温度1450℃、大気ガス流量1L/分、供試量1g)、を用いて、燃焼試験を実施した。試料の粒度(中位径D50)を表6に示す。燃焼試験中の重量減少率(燃焼率)は、図2に示す。   Next, in order to evaluate the combustibility (weight reduction rate when burned for a predetermined time) with respect to pulverized coal, which is the main fuel of the cement kiln, with respect to the untreated CFRP and the pulverized material treated at 400 ° C. for 1 hour, A combustion test was carried out using a furnace (diameter 42 mm, temperature 1450 ° C., atmospheric gas flow rate 1 L / min, test amount 1 g). Table 6 shows the particle size (median diameter D50) of the sample. The weight reduction rate (burning rate) during the burning test is shown in FIG.

図2より、CFRPは微粉炭より燃焼速度が遅く、さらにCFRP脆化物の燃焼速度は遅くなることが分かる。また、CFRP、CFRP脆化物ともに、粒径が大きくなると燃焼速度は遅くなる。しかし、CFRP、CFRP脆化物ともに、粒径0.1mm以下であれば、微粉炭、あるいは未処理のCFRPとほぼ同等の燃えきり時間(6分)となることが分かる。   From FIG. 2, it can be seen that the combustion rate of CFRP is slower than that of pulverized coal, and the combustion rate of the CFRP embrittlement is slower. In addition, for both CFRP and CFRP embrittled material, the burning rate decreases as the particle size increases. However, it can be seen that both the CFRP and the CFRP embrittled material have a burning time (6 minutes) substantially equal to that of pulverized coal or untreated CFRP if the particle size is 0.1 mm or less.

従って、本発明のCFRPの処理方法により処理して得られたCFRP脆化物は、未処理である場合に比べて、微粉炭と同様の燃えきり時間となるまでの粒度に容易に粉砕できることが分かる。   Therefore, it can be seen that the CFRP embrittlement obtained by the CFRP treatment method of the present invention can be easily pulverized to a particle size until the burn-out time is the same as that of pulverized coal, compared to the case where it is not treated. .

1 処理システム
2 タンク
4 二軸せん断破砕機
5 カッターミル
6 縦型ミル
7 投入装置
10 セメント製造装置
11 セメントキルン
12 主バーナ
13 クリンカクーラ
15 仮焼炉
16 プレヒータ
CR セメント原料
P 粉砕物
CFRP 炭素繊維強化プラスチック
DESCRIPTION OF SYMBOLS 1 Processing system 2 Tank 4 Biaxial shear crusher 5 Cutter mill 6 Vertical mill 7 Input apparatus 10 Cement production apparatus 11 Cement kiln 12 Main burner 13 Clinker cooler 15 Pre-heating furnace 16 Preheater CR Cement raw material P Ground material CFRP Carbon fiber reinforcement plastic

Claims (6)

炭素繊維強化プラスチックを以下の条件1及び2に従い加熱処理を施すことを特徴とする炭素繊維強化プラスチックの処理方法。
(条件1)加熱温度を300〜500℃の範囲内に設定する。
(条件2)設定した加熱温度に応じて10分〜12時間の範囲内で加熱時間を設定する。
A method for treating a carbon fiber reinforced plastic, comprising subjecting the carbon fiber reinforced plastic to a heat treatment according to the following conditions 1 and 2.
(Condition 1) The heating temperature is set within a range of 300 to 500 ° C.
(Condition 2) The heating time is set within a range of 10 minutes to 12 hours according to the set heating temperature.
請求項1に記載の炭素繊維強化プラスチックの処理方法において、前記炭素繊維強化プラスチックの重量減少率が5〜50%となるように加熱処理を施す炭素繊維強化プラスチックの処理方法。   The method for treating carbon fiber reinforced plastic according to claim 1, wherein the carbon fiber reinforced plastic is subjected to heat treatment so that a weight reduction rate of the carbon fiber reinforced plastic is 5 to 50%. 請求項1又は2に記載の炭素繊維強化プラスチックの処理方法において、前記炭素繊維強化プラスチックの重量減少率を、JIS M8812(2004)(工業分析)により得られる前記炭素繊維強化プラスチック中の揮発分の含有率で除した値が、15〜70%となるように加熱処理を施す炭素繊維強化プラスチックの処理方法。   In the processing method of the carbon fiber reinforced plastics of Claim 1 or 2, the weight reduction | decrease rate of the said carbon fiber reinforced plastics is volatile matter in the said carbon fiber reinforced plastics obtained by JISM8812 (2004) (industrial analysis). A method for treating a carbon fiber reinforced plastic, which is subjected to a heat treatment so that a value divided by a content rate is 15 to 70%. 請求項1〜3のいずれか1項に記載の炭素繊維強化プラスチックの処理方法により、炭素繊維強化プラスチックを処理する工程と、
前記処理後の炭素繊維強化プラスチックを粉砕する工程と、
を含むことを特徴とする燃料の製造方法。
The process of processing a carbon fiber reinforced plastic by the processing method of the carbon fiber reinforced plastic according to any one of claims 1 to 3,
Crushing the carbon fiber reinforced plastic after the treatment;
A fuel production method comprising:
請求項4に記載の燃料の製造方法において、
前記処理後の炭素繊維強化プラスチックを3mm以下に粉砕する燃料の製造方法。
The method for producing a fuel according to claim 4, wherein
A method for producing a fuel, wherein the treated carbon fiber reinforced plastic is pulverized to 3 mm or less.
請求項4に記載の燃料の製造方法において、
前記処理後の炭素繊維強化プラスチックを0.1mm以下に粉砕する燃料の製造方法。
The method for producing a fuel according to claim 4, wherein
A method for producing fuel, wherein the treated carbon fiber reinforced plastic is pulverized to 0.1 mm or less.
JP2016184430A 2015-09-30 2016-09-21 Fuel manufacturing method Active JP6649860B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015194434 2015-09-30
JP2015194434 2015-09-30

Publications (2)

Publication Number Publication Date
JP2017066383A true JP2017066383A (en) 2017-04-06
JP6649860B2 JP6649860B2 (en) 2020-02-19

Family

ID=58491706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016184430A Active JP6649860B2 (en) 2015-09-30 2016-09-21 Fuel manufacturing method

Country Status (1)

Country Link
JP (1) JP6649860B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177299A (en) * 2018-03-30 2019-10-17 宇部興産株式会社 Processing method of carbon fiber-reinforced plastic
EP3626769A4 (en) * 2017-05-17 2020-05-27 Shinryo Corporation Methods for producing regenerated carbon fiber bundles, regenerated carbon fibers and regenerated milled carbon fibers, apparatus for producing regenerated carbon fiber bundles, method for producing carbon fiber-reinforced resin, and regenerated carbon fiber bundles
JP2020146961A (en) * 2019-03-14 2020-09-17 太平洋セメント株式会社 Method and apparatus for separating and recovering carbon fiber from carbon fiber-reinforced plastic-containing material
JP2021161253A (en) * 2020-03-31 2021-10-11 宇部興産株式会社 Fuel reforming method and fuel reforming device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323009A (en) * 1991-04-23 1992-11-12 Toray Ind Inc Regenerating and reusing method for carbon fiber reinforced resin formed body
JPH0699160A (en) * 1992-09-21 1994-04-12 Toray Ind Inc Method for treating carbon fiber reinforced plastic
JPH06298993A (en) * 1993-04-15 1994-10-25 Kobe Steel Ltd Method for carrying out thermal decomposition treatment of carbon fiber reinforced composite material
JPH1150338A (en) * 1997-07-29 1999-02-23 Asics Corp Production of carbon short fiber
JPH11335929A (en) * 1998-05-21 1999-12-07 Asics Corp Highly electroconductive carbon fiber and its production
JP2007131463A (en) * 2005-11-08 2007-05-31 Ube Ind Ltd Method of treating waste plastic containing carbon fiber
JP2011068771A (en) * 2009-09-25 2011-04-07 Ube Industries Ltd Solid fuel and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323009A (en) * 1991-04-23 1992-11-12 Toray Ind Inc Regenerating and reusing method for carbon fiber reinforced resin formed body
JPH0699160A (en) * 1992-09-21 1994-04-12 Toray Ind Inc Method for treating carbon fiber reinforced plastic
JPH06298993A (en) * 1993-04-15 1994-10-25 Kobe Steel Ltd Method for carrying out thermal decomposition treatment of carbon fiber reinforced composite material
JPH1150338A (en) * 1997-07-29 1999-02-23 Asics Corp Production of carbon short fiber
JPH11335929A (en) * 1998-05-21 1999-12-07 Asics Corp Highly electroconductive carbon fiber and its production
JP2007131463A (en) * 2005-11-08 2007-05-31 Ube Ind Ltd Method of treating waste plastic containing carbon fiber
JP2011068771A (en) * 2009-09-25 2011-04-07 Ube Industries Ltd Solid fuel and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
材料, vol. Vol.45, No.10,, JPN6019043474, October 1996 (1996-10-01), pages 1125 - 1130, ISSN: 0004150305 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3626769A4 (en) * 2017-05-17 2020-05-27 Shinryo Corporation Methods for producing regenerated carbon fiber bundles, regenerated carbon fibers and regenerated milled carbon fibers, apparatus for producing regenerated carbon fiber bundles, method for producing carbon fiber-reinforced resin, and regenerated carbon fiber bundles
US11359060B2 (en) 2017-05-17 2022-06-14 Shinryo Corporation Method of producing reclaimed carbon fiber bundles, reclaimed carbon fibers, or reclaimed milled carbon fibers, device for producing reclaimed carbon fiber bundles, method of producing carbon fiber reinforced resin, and reclaimed carbon fiber bundles
JP2019177299A (en) * 2018-03-30 2019-10-17 宇部興産株式会社 Processing method of carbon fiber-reinforced plastic
JP2020146961A (en) * 2019-03-14 2020-09-17 太平洋セメント株式会社 Method and apparatus for separating and recovering carbon fiber from carbon fiber-reinforced plastic-containing material
JP7122988B2 (en) 2019-03-14 2022-08-22 太平洋セメント株式会社 Separation recovery method and separation recovery apparatus for carbon fiber from carbon fiber reinforced plastic content
JP2021161253A (en) * 2020-03-31 2021-10-11 宇部興産株式会社 Fuel reforming method and fuel reforming device

Also Published As

Publication number Publication date
JP6649860B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP2017066383A (en) Method for processing carbon fiber-reinforced plastic and method for manufacturing fuel
JP6238070B2 (en) Disposal of used lithium ion batteries
JP6840486B2 (en) Carbon fiber reinforced plastic processing method and fuel manufacturing method
KR100898076B1 (en) Recycling apparatus for used Zinc-Carbon and Alkaline batteries and method thereof
JP6378502B2 (en) Method for recovering valuable materials from lithium ion secondary batteries
JP6767088B2 (en) Fuel, fuel manufacturing method and carbon fiber-containing waste combustion treatment method
JP2009226302A (en) Method for treating waste printed circuit board
KR20220130157A (en) Metal Recovery Methods
CN109078964A (en) A kind of Changing Urban Garbage into Resources processing method
KR101339554B1 (en) Method and apparatus for refining available component of by-product form recovering ingot wire sawed slurry
JP4948429B2 (en) Processing system for combustible waste containing metals and chlorine
US20210343453A1 (en) Treatment method of coated wire
JP2014193788A (en) Incineration apparatus of waste carbon fiber-reinforced plastic, and incineration method
JP2010194860A (en) Processing method and processor for mixed waste containing waste plastic
JP2020023087A (en) Waste treatment system and waste treatment method
JP2020146961A (en) Method and apparatus for separating and recovering carbon fiber from carbon fiber-reinforced plastic-containing material
JP6994418B2 (en) Disposal device and treatment method for waste lithium-ion batteries
US7914684B2 (en) Method and apparatus for treating mixed waste by pyrolysis
DE2950324A1 (en) Solid fuel prodn. from waste materials - by low-temp. pyrolysis
JP7100602B2 (en) Incinerator ash treatment method and treatment equipment
JP6813323B2 (en) Carbon fiber reinforced plastic processing method and fuel manufacturing method
JP5112134B2 (en) Waste car shredder dust as fuel for cement firing
JP7436147B2 (en) Solid fuel manufacturing method and usage method, and solid fuel manufacturing device
KR100444361B1 (en) Separation of Chlorine Containing Materials from Shredder Dust of Old Car by Electrostatic Separation Method
JP6428137B2 (en) Recycling method of textile waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200117

R150 Certificate of patent or registration of utility model

Ref document number: 6649860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250