JP2010536552A - Method for producing catalyst for acrylic acid production using reactive ball mill - Google Patents

Method for producing catalyst for acrylic acid production using reactive ball mill Download PDF

Info

Publication number
JP2010536552A
JP2010536552A JP2010521779A JP2010521779A JP2010536552A JP 2010536552 A JP2010536552 A JP 2010536552A JP 2010521779 A JP2010521779 A JP 2010521779A JP 2010521779 A JP2010521779 A JP 2010521779A JP 2010536552 A JP2010536552 A JP 2010536552A
Authority
JP
Japan
Prior art keywords
catalyst
producing
acrylic acid
salt
oxide catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010521779A
Other languages
Japanese (ja)
Other versions
JP5155397B2 (en
Inventor
キョン−ヨン・チャ
ジン−ド・キム
ユン−キョン・ソン
ヒュン−ジュ・チョ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2010536552A publication Critical patent/JP2010536552A/en
Application granted granted Critical
Publication of JP5155397B2 publication Critical patent/JP5155397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying

Abstract

本発明は、アクリル酸製造用の酸化物触媒の製造方法を提供する。本発明は、モリブデン塩、バナジウム塩、テルル塩、およびニオブ塩を含む溶液から触媒前駆体を調製する工程、次いで、前記前駆体を乾燥および焼成する工程を含む。本発明は、極性溶媒の存在下でボールミルすることによって、この調製された触媒から不純物を除去することを特徴とする。したがって、本発明の方法によれば、非常に高い触媒活性を有するアクリルサン製造法酸化触媒を調製することができる。  The present invention provides a method for producing an oxide catalyst for producing acrylic acid. The present invention includes the steps of preparing a catalyst precursor from a solution containing a molybdenum salt, a vanadium salt, a tellurium salt, and a niobium salt, and then drying and calcining the precursor. The invention is characterized by removing impurities from the prepared catalyst by ball milling in the presence of a polar solvent. Therefore, according to the method of the present invention, an oxidation catalyst for producing acrylsan having a very high catalytic activity can be prepared.

Description

本発明はアクリル酸製造用酸化物触媒の製造方法に関するものであって、より詳しくは、製造された触媒を極性溶媒の存在下でボールミルして不純物を除去することにより、既存のアクリル酸製造用触媒に比べて高い活性でアクリル酸を得ることができるアクリル酸製造用酸化物触媒の製造方法に関するものである。   The present invention relates to a method for producing an oxide catalyst for producing acrylic acid, and more particularly, for producing an existing acrylic acid by ball milling the produced catalyst in the presence of a polar solvent to remove impurities. The present invention relates to a method for producing an oxide catalyst for producing acrylic acid, which can obtain acrylic acid with higher activity than the catalyst.

今までプロパンの直接酸化でアクリル酸を製造するために、MoVTeNbO系触媒などの4成分系の複合酸化物系触媒についてたくさんの研究がなされてきた。米国特許第5,380,933号では、MoVTeNbO形態の4成分系触媒を用いて60.5%の高い選択性でアクリル酸が合成されたことを報告している。その後、基本の4成分に追加成分を添加して、触媒の活性を高めたり、触媒の合成法を変化させたりしようとする研究が続けられた。しかし、共触媒(co-catalyst)を使用したり、触媒の合成法を変化させたりする方法によっては、活性増加の程度は限られており、触媒活性の向上の程度は不十分であった。従って、従来の技術とは異なる新方法を通じて、プロパンの転換率およびアクリル酸への選択性が高い高活性触媒の開発が必要であった。   Until now, in order to produce acrylic acid by direct oxidation of propane, much research has been conducted on quaternary complex oxide catalysts such as MoVTeNbO catalyst. US Pat. No. 5,380,933 reports that acrylic acid was synthesized with a high selectivity of 60.5% using a four-component catalyst in the form of MoVTeNbO. After that, research was continued to add additional components to the four basic components to increase the activity of the catalyst and change the synthesis method of the catalyst. However, depending on the method of using a co-catalyst or changing the synthesis method of the catalyst, the degree of activity increase is limited, and the degree of improvement in catalyst activity is insufficient. Therefore, it was necessary to develop a highly active catalyst having high propane conversion and selectivity to acrylic acid through a new method different from the conventional technology.

しかし、一般に知られた既存の合成方法で、活性成分のみから構成された触媒を製造することは不可能であり、合成過程で生じた不純物成分は、反応物と反応を行わないため転換率が最大化されず、中間体または生成物との完全酸化反応を起こして選択性を減少させる。   However, it is impossible to produce a catalyst composed only of active components by a generally known existing synthesis method, and since the impurity components generated in the synthesis process do not react with the reactants, the conversion rate is low. Not maximized, causing a complete oxidation reaction with the intermediate or product to reduce selectivity.

従って、より高い活性と選択性を有する触媒を合成するために、合成中に生成される不純物成分の含量が最小限である触媒を製造することができる方法を確立することが求められている。   Therefore, in order to synthesize a catalyst having higher activity and selectivity, it is required to establish a method capable of producing a catalyst having a minimum content of impurity components generated during the synthesis.

米国特許第5,380,933号U.S. Pat.No. 5,380,933

本発明者らは、アクリル酸製造用触媒として4成分系触媒の低い活性および低い選択性の問題点を改善するために、触媒の合成または焼成過程で生じる不純物を除去することによって、触媒の活性を向上させる方法を探ろうと努力した。本発明は、このような努力の結果として得られたものである。   In order to improve the problems of low activity and low selectivity of a quaternary catalyst as a catalyst for producing acrylic acid, the present inventors removed the impurities generated during the synthesis or calcination process of the catalyst, thereby improving the activity of the catalyst. I tried to find a way to improve it. The present invention has been obtained as a result of such efforts.

従って、本発明の目的は、プロパンの気相酸化によるアクリル酸の製造時の、プロパンの転換率、アクリル酸の選択性、および触媒活性に優れるアクリル酸製造用触媒の製造方法を提供することである。   Therefore, an object of the present invention is to provide a method for producing a catalyst for producing acrylic acid, which is excellent in propane conversion, acrylic acid selectivity, and catalytic activity during the production of acrylic acid by gas phase oxidation of propane. is there.

より具体的には、本発明は、モリブデン塩、バナジウム塩、テルル塩およびニオブ塩を含有する溶液から触媒前駆体を調製した後、この前駆体を乾燥および焼成することによって、アクリル酸製造用酸化物触媒を製造する方法を提供する。本発明の方法は、このように製造した触媒を極性溶媒の存在下でボールミルすることによって、不純物を除去することを特徴とする。   More specifically, the present invention relates to an oxidation process for producing acrylic acid by preparing a catalyst precursor from a solution containing molybdenum, vanadium, tellurium and niobium salts, and then drying and calcining the precursor. A method for producing a product catalyst is provided. The method of the present invention is characterized in that impurities are removed by ball milling the catalyst thus prepared in the presence of a polar solvent.

本発明のアクリル酸製造用酸化物触媒は、下記化学式1で示される。

Figure 2010536552
前記式中、Moはモリブデン、Vはバナジウム、Teはテルル、Nbはニオブであり、a、b、cおよびnは、それぞれバナジウム、テルル、ニオブおよび酸素の原子モル比であり、0.01≦a≦1;0.01≦b≦1;0.01≦c≦1であり;nは他元素の原子価と量によって決められる数である The oxide catalyst for producing acrylic acid of the present invention is represented by the following chemical formula 1.
Figure 2010536552
In the above formula, Mo is molybdenum, V is vanadium, Te is tellurium, Nb is niobium, and a, b, c, and n are atomic molar ratios of vanadium, tellurium, niobium, and oxygen, respectively. a ≦ 1; 0.01 ≦ b ≦ 1; 0.01 ≦ c ≦ 1; n is a number determined by the valence and amount of other elements

本発明は、モリブデン塩、バナジウム塩、テルル塩、およびニオブ塩を含む溶液から触媒前駆体を調製した後、前記前駆体を乾燥および焼成する方法によって、アクリル酸製造用酸化物触媒を製造する方法を提供する。本発明は、このように製造した触媒を極性溶媒の存在下でボールミルすることによって、不純物を除去することを特徴とする。   The present invention relates to a method for producing an oxide catalyst for producing acrylic acid by a method in which a catalyst precursor is prepared from a solution containing molybdenum salt, vanadium salt, tellurium salt, and niobium salt, and then the precursor is dried and calcined. I will provide a. The present invention is characterized in that impurities are removed by ball milling the catalyst thus prepared in the presence of a polar solvent.

本発明は先ず、モリブデン(Mo)塩、 バナジウム(V)塩、テルル(Te)塩およびニオブ(Nb)塩を含む化合物を溶媒に混合して混合溶液を製造する工程を含む。ここで使用される溶媒は、蒸留水、アルコール、エーテル、およびカルボン酸エステルからなる群から選ばれるものが望ましく、それぞれの金属塩化合物において金属の対イオンは同一であっても異っていてもよい。具体的な例として、モリブデン(Mo)塩、 バナジウム(V)塩、およびテルル(Te)塩を蒸留水に溶解して混合溶液を製造し、ここに別途に蒸留水に溶解したニオブ(Nb)塩溶液を添加した後、十分に混合するのが望ましい。この際、使用できる化合物として、モリブデン(Mo)塩化合物としては、パラモリブデン酸アンモニウム(ammonium paramolybdate)、モリブデン酸、モリブデン酸ナトリウム、および三酸化モリブデンが例示され、バナジウム(V)塩化合物としては、メタバナジン酸アンモニウム(ammonium metavanadate)、バナジウムハロゲン化合物(例えば、VCl4など)、および
バナジウムアルコキシド(例えば、VO(OC2H5)3など)が例示され、テルル(Te)塩化合物としては、テルル酸(telluric acid)、二酸化テルルが例示され、ニオブ(Nb)塩化合物としては、シュウ酸ニオブアンモニウム(ammonium niobium oxalate)、ニオブ酸およびシュウ酸ニオブが例示される。一般に、蒸留水に溶解したニオブ塩溶液を別に添加すると、一定時間が過ぎた後に沈殿物が形成されて沈む。混合溶液を継続的に攪拌することにより、沈殿された沈殿物が溶液中に分散された状態で沈殿物の形成が続けられる。
The present invention first includes a step of preparing a mixed solution by mixing a compound containing molybdenum (Mo) salt, vanadium (V) salt, tellurium (Te) salt and niobium (Nb) salt in a solvent. The solvent used here is preferably selected from the group consisting of distilled water, alcohol, ether, and carboxylic acid ester, and in each metal salt compound, the metal counter ion may be the same or different. Good. As a specific example, a mixed solution is prepared by dissolving molybdenum (Mo) salt, vanadium (V) salt, and tellurium (Te) salt in distilled water, and niobium (Nb) separately dissolved in distilled water. It is desirable to mix well after adding the salt solution. In this case, examples of compounds that can be used include molybdenum (Mo) salt compounds such as ammonium paramolybdate, molybdic acid, sodium molybdate, and molybdenum trioxide. Examples of vanadium (V) salt compounds include: Examples include ammonium metavanadate, vanadium halogen compounds (such as VCl 4 ), and vanadium alkoxides (such as VO (OC 2 H 5 ) 3 ). Telluric acid (Te) salt compounds include telluric acid. (Telluric acid) and tellurium dioxide are exemplified, and niobium (Nb) salt compounds include ammonium niobium oxalate, niobic acid and niobium oxalate. In general, when a niobium salt solution dissolved in distilled water is added separately, a precipitate is formed and sinks after a certain period of time. By continuously stirring the mixed solution, the formation of the precipitate is continued while the precipitated precipitate is dispersed in the solution.

次に、本発明は前記の混合溶液に添加剤を添加する。添加剤は、濃硫酸(特に濃度が95%以上の濃い硫酸)、硫酸アンモニウム、および二酸化硫黄からなる群から選ばれる1種以上の硫酸化合物であることが望ましい。この添加剤は、触媒の活性を高めるために添加されるものでもあり、触媒前駆体の沈殿を加速させる効果をも有するものでもある。このような硫酸化合物は、添加されるモリブデン(Mo)原子1モルに対して、0.05〜0.5モルであることが望ましい。触媒前駆体の沈殿物は、望ましくは蒸留水を蒸発させることによって、例えばロータリーエバポレーターを用いて蒸留水を蒸発させることによって、収集することができる。乾燥温度は、水を効果的に蒸発させることができる程度の温度であれば特に制限されないが、100℃程度またはそれ以上の温度で乾燥を行うことができる。この乾燥した触媒前駆体を、粉砕した後、例えば、油圧プレスによって圧縮成型し、次いで再び粉砕する。この触媒前駆体粒子を、篩で篩ってその大きさが均一になるように選別し、以後の焼成過程を進めることが望ましい。触媒前駆体粒子の大きさは、100〜300μmの範囲であることが望ましい。乾燥および粉砕した触媒前駆体粉末は、直ちに焼成することもできるが、それを圧縮成型して粉砕した後に焼成することがさらに望ましい。この理由は、焼成前に圧縮成型する場合には、触媒の密度が高くなり、これによって、触媒がプロパンと反応する際のプロパンの転換率も高くなるからである。   Next, the present invention adds an additive to the mixed solution. The additive is desirably one or more sulfuric acid compounds selected from the group consisting of concentrated sulfuric acid (particularly concentrated sulfuric acid having a concentration of 95% or more), ammonium sulfate, and sulfur dioxide. This additive is added to increase the activity of the catalyst and also has the effect of accelerating the precipitation of the catalyst precursor. Such a sulfuric acid compound is desirably 0.05 to 0.5 mol with respect to 1 mol of molybdenum (Mo) atom added. The catalyst precursor precipitate can be collected, preferably by evaporating the distilled water, for example by evaporating the distilled water using a rotary evaporator. The drying temperature is not particularly limited as long as it is a temperature capable of effectively evaporating water, but drying can be performed at a temperature of about 100 ° C. or higher. The dried catalyst precursor is pulverized, then compression molded by, for example, a hydraulic press, and then pulverized again. It is desirable to screen the catalyst precursor particles so as to be uniform in size by sieving with a sieve and proceed with the subsequent calcination process. The size of the catalyst precursor particles is desirably in the range of 100 to 300 μm. Although the dried and pulverized catalyst precursor powder can be calcined immediately, it is more desirable to calcine it after it is compression-molded and pulverized. This is because, when compression molding is performed before firing, the density of the catalyst is increased, and this also increases the conversion rate of propane when the catalyst reacts with propane.

次に、本発明の方法では、調製した前記触媒前駆体を焼成して最終的な触媒を得る。焼成は、通常、2工程からなる。焼成過程の第1工程では、空気流下で、150〜250℃の温度にて1〜4時間焼成し、焼成過程の第2工程では、窒素または不活性気体の気流下で、500〜650℃の温度にて1〜4時間焼成することが望ましい。   Next, in the method of the present invention, the prepared catalyst precursor is calcined to obtain a final catalyst. Firing usually consists of two steps. In the first step of the firing process, firing is performed at a temperature of 150 to 250 ° C. for 1 to 4 hours in an air stream. In the second step of the firing process, 500 to 650 ° C. is performed under a stream of nitrogen or an inert gas. It is desirable to bake at temperature for 1-4 hours.

調製した本発明のアクリル酸製造用酸化物触媒は、下記化学式1で表される。

Figure 2010536552
前記式中、Moはモリブデン、Vはバナジウム、Teはテルル、Nbはニオブであり、a、b、cおよびnは、それぞれ、バナジウム、テルル、ニオブ、および酸素の原子モル比であり、0.01≦a≦1;0.01≦b≦1;0.01≦c≦1であり;nは他元素の原子価と量によって決められる数である。 The prepared oxide catalyst for producing acrylic acid of the present invention is represented by the following chemical formula 1.
Figure 2010536552
In the above formula, Mo is molybdenum, V is vanadium, Te is tellurium, Nb is niobium, and a, b, c, and n are atomic molar ratios of vanadium, tellurium, niobium, and oxygen, respectively. 01 ≦ a ≦ 1; 0.01 ≦ b ≦ 1; 0.01 ≦ c ≦ 1; n is a number determined by the valence and amount of other elements.

触媒は、その触媒の製造過程から含まれる不純物が原因で、十分な触媒活性を発揮することができない場合がある。従って、本発明は焼成によって形成された触媒から不純物を除去することによって、触媒活性、すなわちプロパンの転換率とアクリル酸の選択性とを画期的に向上させることができる。   A catalyst may not be able to exhibit sufficient catalytic activity due to impurities contained in the catalyst production process. Therefore, the present invention can remarkably improve the catalytic activity, that is, the conversion rate of propane and the selectivity of acrylic acid by removing impurities from the catalyst formed by calcination.

本発明は、製造した触媒を、極性溶媒の存在下でボールミルすることによって不純物を除去することを特徴とする。ボールミルは、イットリウムが添加されたジルコニアボールを使用して行うことが望ましい。ボールミルにおいて使用する溶媒の量は、触媒の体積に対して2倍〜100倍の量が望ましく、5倍〜20倍の量がさらに望ましい。ボールミルに使用する溶媒としては、極性溶媒であれば特別に限られるものではなく、例えば、水、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール、1,2−エタンジオール、アセトン、酢酸などを用いることができる。   The present invention is characterized in that impurities are removed by ball milling the produced catalyst in the presence of a polar solvent. The ball mill is desirably performed using zirconia balls to which yttrium is added. The amount of the solvent used in the ball mill is preferably 2 to 100 times the amount of the catalyst volume, and more preferably 5 to 20 times. The solvent used for the ball mill is not particularly limited as long as it is a polar solvent. For example, water, methanol, ethanol, 1-propanol, 2-propanol, butanol, 1,2-ethanediol, acetone, acetic acid, and the like. Can be used.

本発明は、ボールミルによる触媒からの不純物除去と触媒活性の向上とを共に達成したが、どのような理由によって触媒活性の向上が達成できるのかについては明らかでない。しかし、焼成された触媒を極性溶媒の存在下で数時間攪拌した後に洗浄および乾燥して得た触媒は、その活性においてあまり変化が無かったという点を考えると、本発明のボールミルによる触媒活性の向上は、予測できない意外な結果である。したがって、本発明におけるボールミルの役割は、単純な触媒の粉砕および不純物の精製によってではなく、極性溶媒の存在の環境下でボールミルの高いエネルギーによる触媒の構造的変化を引き起すことによって触媒活性の向上を達成することであると推測される。従って、本発明におけるボールミルは「反応性ボールミル」と呼ぶに値する。   The present invention achieves both removal of impurities from the catalyst by the ball mill and improvement of the catalyst activity, but it is not clear why the improvement of the catalyst activity can be achieved. However, in view of the fact that the catalyst obtained by stirring the calcined catalyst for several hours in the presence of a polar solvent and then washing and drying did not change much in its activity, Improvement is an unexpected and unexpected result. Thus, the role of the ball mill in the present invention is to improve the catalytic activity by causing structural changes in the catalyst due to the high energy of the ball mill in the presence of a polar solvent, rather than by simple catalyst grinding and impurity purification. Is presumed to be achieved. Accordingly, the ball mill in the present invention is worthy of being called “reactive ball mill”.

本発明の方法によって製造された触媒は、プロパンの気相酸化反応によるアクリル酸の製造に使用することができ、プロパンの高い転換率とアクリル酸の高い選択性を提供する。   The catalyst produced by the method of the present invention can be used for the production of acrylic acid by the gas phase oxidation reaction of propane, providing high conversion of propane and high selectivity of acrylic acid.

以下、本発明の実際的かつ好ましい態様を、以下の実施例において例示するが、当業者であれば、本開示に基づいて、本発明の精神および範囲内でさまざまな変形または改良を加えることができることが考慮されるべきである。   Hereinafter, practical and preferable embodiments of the present invention will be illustrated in the following examples. However, those skilled in the art can make various modifications or improvements within the spirit and scope of the present invention based on the present disclosure. It should be considered what can be done.

[実施例]
[比較例1]
常温の50mlの蒸留水に0.234gのメタバナジン酸アンモニウム(ammonium metavanadate)、0.352gのテルル酸(telluric acid)、およびパラモリブデン酸アンモニウム(ammonium paramolybdate)1.178gを溶解して溶液を作った。ここに、4mlの蒸留水に予め溶解した0.3626gのシュウ酸ニオブアンモニウム(ammonium niobium oxalate)を添加した後、180分間攪拌して混合溶液を製造した。
[Example]
[Comparative Example 1]
A solution was prepared by dissolving 0.234 g of ammonium metavanadate, 0.352 g of telluric acid, and 1.178 g of ammonium paramolybdate in 50 ml of distilled water at room temperature. . To this, 0.3626 g of ammonium niobium oxalate previously dissolved in 4 ml of distilled water was added and stirred for 180 minutes to prepare a mixed solution.

95%の濃硫酸溶液5.2gを、蒸留水に希釈させて1mol/kg濃度の溶液を用意した。前記混合溶液に、この濃硫酸溶液1.2gを添加した後、60分間さらに攪拌した。   A 1 mol / kg concentration solution was prepared by diluting 5.2 g of 95% concentrated sulfuric acid solution in distilled water. After adding 1.2 g of this concentrated sulfuric acid solution to the mixed solution, the mixture was further stirred for 60 minutes.

次いで、ロータリーエバポレーターを用いて蒸留水を蒸発させ、120℃で完全に乾燥させた。乾燥した触媒を、内径4mm、長さ12.5cmのチューブに満たして入れ、雰囲気炉で焼成した。空気雰囲気で210℃の温度で2時間1次焼成し、窒素雰囲気で640℃の温度で2時間2次焼成を行った。   The distilled water was then evaporated using a rotary evaporator and dried completely at 120 ° C. The dried catalyst was filled in a tube having an inner diameter of 4 mm and a length of 12.5 cm, and calcined in an atmosphere furnace. Primary firing was performed at a temperature of 210 ° C. for 2 hours in an air atmosphere, and secondary firing was performed at a temperature of 640 ° C. for 2 hours in a nitrogen atmosphere.

[実施例1]
比較例1の触媒1gを、60ml体積の単形容器に入れ、直径が10mmのジルコニアボール15個、直径5mmのジルコニアボール80個を入れ、水を15ml添加した後、150rpmの速度で15時間ボールミルを行った。
[Example 1]
1 g of the catalyst of Comparative Example 1 was placed in a 60 ml volume single container, 15 zirconia balls with a diameter of 10 mm and 80 zirconia balls with a diameter of 5 mm were added, 15 ml of water was added, and then ball milled at a speed of 150 rpm for 15 hours. Went.

ボールミルの後、触媒および溶媒を回収した。これに、溶媒を30cc追加で添加して遠心分離を行った。遠心分離の条件は、4000rpmで2時間である。触媒の不純物が溶解されて出たことを確認するために、遠心分離後の溶液を回収して黄褐色を帯びていることを確認した。底に沈んだ触媒を回収し、80℃で4時間乾燥した後、アゲート(agate)で粉砕して触媒を完成した。   After the ball mill, the catalyst and solvent were recovered. An additional 30 cc of solvent was added thereto and centrifuged. Centrifugation is performed at 4000 rpm for 2 hours. In order to confirm that the impurities of the catalyst were dissolved, the solution after centrifugation was collected and confirmed to be tan. The catalyst that had settled to the bottom was collected, dried at 80 ° C. for 4 hours, and then ground by an agate to complete the catalyst.

[実施例2]
比較例1の触媒1gを60ml体積の単形容器に入れ、直径が10mmのジルコニアボール15個、直径5mmのジルコニアボール80個を入れ、エタノール15mlを添加した後、150rpmの速度で15時間ボールミルを行った。
[Example 2]
1 g of the catalyst of Comparative Example 1 is put into a 60 ml volume single container, 15 zirconia balls having a diameter of 10 mm and 80 zirconia balls having a diameter of 5 mm are added, 15 ml of ethanol is added, and then ball milling is performed at a speed of 150 rpm for 15 hours. went.

ボールミルの後、触媒および溶媒を回収した。これに、溶媒を30cc追加で添加して遠心分離を行った。遠心分離の条件は、4000rpmで2時間である。触媒の不純物が溶解されて出たことを確認するために、遠心分離後の溶液を回収して黄褐色を帯びていることを確認した。底に沈んだ触媒を回収し、80℃で4時間乾燥した後、アゲート(agate)で粉砕して触媒を完成した。   After the ball mill, the catalyst and solvent were recovered. An additional 30 cc of solvent was added thereto and centrifuged. Centrifugation is performed at 4000 rpm for 2 hours. In order to confirm that the impurities of the catalyst were dissolved, the solution after centrifugation was collected and confirmed to be tan. The catalyst that had settled to the bottom was collected, dried at 80 ° C. for 4 hours, and then ground by an agate to complete the catalyst.

[実施例3]
比較例1の触媒1gを60ml体積の単形容器に入れ、直径が10mmのジルコニアボール15個、直径5mmのジルコニアボール80個を入れ、1−プロパノールを15ml添加した後、150rpmの速度で15時間ボールミルを行った。
[Example 3]
1 g of the catalyst of Comparative Example 1 was put into a 60 ml volume single container, 15 zirconia balls having a diameter of 10 mm and 80 zirconia balls having a diameter of 5 mm were added, 15 ml of 1-propanol was added, and then 15 hours at a speed of 150 rpm. A ball mill was performed.

ボールミルの後、触媒および溶媒を回収した。これに、溶媒を30cc追加で添加して遠心分離を行った。遠心分離の条件は、4000rpmで2時間である。触媒の不純物が溶解されて出たことを確認するために、遠心分離後の溶液を回収して黄褐色を帯びていることを確認した。底に沈んだ触媒を回収し、80℃で4時間乾燥した後、アゲート(agate)で粉砕して触媒を完成した。   After the ball mill, the catalyst and solvent were recovered. An additional 30 cc of solvent was added thereto and centrifuged. Centrifugation is performed at 4000 rpm for 2 hours. In order to confirm that the impurities of the catalyst were dissolved, the solution after centrifugation was collected and confirmed to be tan. The catalyst that had settled to the bottom was collected, dried at 80 ° C. for 4 hours, and then ground by an agate to complete the catalyst.

[実施例4]
比較例1の触媒1gを60ml体積の単形容器に入れ、直径が10mmのジルコニアボール15個、直径5mmのジルコニアボール80個を入れ、2−プロパノールを15ml添加した後、150rpmの速度で15時間ボールミルを行った。
[Example 4]
1 g of the catalyst of Comparative Example 1 was put into a 60 ml volume single container, 15 zirconia balls having a diameter of 10 mm and 80 zirconia balls having a diameter of 5 mm were added, 15 ml of 2-propanol was added, and then 15 hours at a speed of 150 rpm. A ball mill was performed.

ボールミルの後、触媒および溶媒を回収した。これに、溶媒を30cc追加で添加して遠心分離を行った。遠心分離の条件は、4000rpmで2時間である。触媒の不純物が溶解されて出たことを確認するために、遠心分離後の溶液を回収して青色を帯びていることを確認した。底に沈んだ触媒を回収し、80℃で4時間乾燥した後、アゲート(agate)で粉砕して触媒を完成した。   After the ball mill, the catalyst and solvent were recovered. An additional 30 cc of solvent was added thereto and centrifuged. Centrifugation is performed at 4000 rpm for 2 hours. In order to confirm that the impurities of the catalyst were dissolved, the solution after centrifugation was collected and confirmed to be blue. The catalyst that had settled to the bottom was collected, dried at 80 ° C. for 4 hours, and then ground by an agate to complete the catalyst.

[実施例5]
比較例1の触媒1gを60ml体積の単形容器に入れ、直径が10mmのジルコニアボール15個、直径5mmのジルコニアボール80個を入れ、ブタノールを15ml添加した後、150rpmの速度で15時間ボールミルを行った。
[Example 5]
1 g of the catalyst of Comparative Example 1 is placed in a 60 ml volume single container, 15 zirconia balls having a diameter of 10 mm and 80 zirconia balls having a diameter of 5 mm are added, 15 ml of butanol is added, and then ball milling is performed at a speed of 150 rpm for 15 hours. went.

ボールミルの後、触媒および溶媒を回収した。これに、溶媒を30cc追加で添加して遠心分離を行った。遠心分離の条件は、4000rpmで2時間である。触媒の不純物が溶解されて出たことを確認するために、遠心分離後の溶液を回収して黄褐色を帯びていることを確認した。底に沈んだ触媒を回収し、80℃で4時間乾燥した後、アゲート(agate)で粉砕して触媒を完成した。   After the ball mill, the catalyst and solvent were recovered. An additional 30 cc of solvent was added thereto and centrifuged. Centrifugation is performed at 4000 rpm for 2 hours. In order to confirm that the impurities of the catalyst were dissolved, the solution after centrifugation was collected and confirmed to be tan. The catalyst that had settled to the bottom was collected, dried at 80 ° C. for 4 hours, and then ground by an agate to complete the catalyst.

[実施例6]
比較例1の触媒1gを60ml体積の単形容器に入れ、直径が10mmのジルコニアボール15個、直径5mmのジルコニアボール80個を入れ、1,2−エタンジオールを15ml添加した後、150rpmの速度で15時間ボールミルを行った。
[Example 6]
1 g of the catalyst of Comparative Example 1 is placed in a 60 ml volume single container, 15 zirconia balls having a diameter of 10 mm and 80 zirconia balls having a diameter of 5 mm are added, 15 ml of 1,2-ethanediol is added, and then the speed is 150 rpm. And then ball milled for 15 hours.

ボールミルの後、触媒および溶媒を回収した。これに、溶媒を30cc追加で添加して遠心分離を行った。触媒の不純物が溶解されて出たことを確認するために、遠心分離後の溶液を回収して黄褐色を帯びていることを確認した。底に沈んだ触媒を回収し、80℃で4時間乾燥した後、アゲート(agate)で粉砕して触媒を完成した。   After the ball mill, the catalyst and solvent were recovered. An additional 30 cc of solvent was added thereto and centrifuged. In order to confirm that the impurities of the catalyst were dissolved, the solution after centrifugation was collected and confirmed to be tan. The catalyst that had settled to the bottom was collected, dried at 80 ° C. for 4 hours, and then ground by an agate to complete the catalyst.

[比較例2]
比較例1の触媒1gを60ml体積の単形容器に入れ、直径が10mmのジルコニアボール15個、直径5mmのジルコニアボール80個を入れ、ヘプタンを15ml添加した後、150rpmの速度で15時間ボールミルを行った。
[Comparative Example 2]
1 g of the catalyst of Comparative Example 1 is put into a 60 ml volume single container, 15 zirconia balls having a diameter of 10 mm and 80 zirconia balls having a diameter of 5 mm are added, 15 ml of heptane is added, and then the ball mill is run at a speed of 150 rpm for 15 hours. went.

ボールミルの後、触媒および溶媒を回収した。これに、溶媒を30cc追加で添加して遠心分離を行った。遠心分離の条件は、4000rpmで2時間である。遠心分離後の溶液を回収して無色を帯びていることを確認し、触媒の不純物が溶解されて出たことを確認した。触媒成分が溶出されていないことを確認するためにICP分析を行った。底に沈んだ触媒を回収し、80℃で4時間乾燥した後、アゲート(agate)で粉砕して触媒を完成した。   After the ball mill, the catalyst and solvent were recovered. An additional 30 cc of solvent was added thereto and centrifuged. Centrifugation is performed at 4000 rpm for 2 hours. The solution after centrifugation was collected and confirmed to be colorless, and it was confirmed that catalyst impurities were dissolved. ICP analysis was performed to confirm that the catalyst component was not eluted. The catalyst that had settled to the bottom was collected, dried at 80 ° C. for 4 hours, and then ground by an agate to complete the catalyst.

[比較例3]
比較例1の触媒1gを60ml体積の単形容器に入れ、直径が10mmのジルコニアボール15個、直径5mmのジルコニアボール80個を入れ、ヘキサン15mlを添加した後、150rpmの速度で15時間ボールミルを行った。
[Comparative Example 3]
1 g of the catalyst of Comparative Example 1 is put into a 60 ml volume single container, 15 zirconia balls having a diameter of 10 mm and 80 zirconia balls having a diameter of 5 mm are added, 15 ml of hexane is added, and then ball milling is performed at a speed of 150 rpm for 15 hours. went.

ボールミルの後、触媒および溶媒を回収した。これに、溶媒を30cc追加で添加して遠心分離を行った。遠心分離の条件は、4000rpmで2時間である。遠心分離後の溶液を回収して無色を帯びていることを確認し、触媒の不純物が溶解されて出たことを確認した。触媒成分が溶出されていないことを確認するためにICP分析を行った。底に沈んだ触媒を回収し、80℃で4時間乾燥した後、アゲート(agate)で粉砕して触媒を完成した。   After the ball mill, the catalyst and solvent were recovered. An additional 30 cc of solvent was added thereto and centrifuged. Centrifugation is performed at 4000 rpm for 2 hours. The solution after centrifugation was collected and confirmed to be colorless, and it was confirmed that the impurities of the catalyst were dissolved. ICP analysis was performed to confirm that the catalyst component was not eluted. The catalyst that had settled to the bottom was collected, dried at 80 ° C. for 4 hours, and then ground by an agate to complete the catalyst.

[比較例4]
比較例1の触媒1gを攪拌機付の反応器に入れ、水50mlを添加した後、300rpmの速度で4時間攪拌した。溶液の色は透明であり、不純物が溶解されていないことを確認することができた。その後、触媒を濾過、洗浄、および乾燥した後、最終的に触媒を得た。
[Comparative Example 4]
1 g of the catalyst of Comparative Example 1 was placed in a reactor equipped with a stirrer, 50 ml of water was added, and the mixture was stirred for 4 hours at a speed of 300 rpm. The color of the solution was transparent, and it was confirmed that impurities were not dissolved. Thereafter, the catalyst was finally filtered after washing, drying and drying.

[比較例5]
比較例1の触媒1gを攪拌機付の反応器に入れ、2−プロパノール50mlを添加した後、300rpmの速度で4時間攪拌した。溶液の色は透明であり、不純物が溶解されていないことを確認することができた。その後、触媒を濾過、洗浄、および乾燥した後、最終的に触媒を得た。
[Comparative Example 5]
1 g of the catalyst of Comparative Example 1 was placed in a reactor equipped with a stirrer, 50 ml of 2-propanol was added, and the mixture was stirred at a speed of 300 rpm for 4 hours. The color of the solution was transparent, and it was confirmed that impurities were not dissolved. Thereafter, the catalyst was finally filtered after washing, drying and drying.

[実験例]
実施例1〜6、および比較例1〜5で製造した触媒を用いてプロパンの選択的酸化反応を次のように行った。
0.1gの触媒を、固定床型反応器に充填した後、プロパン:酸素:窒素:水のモル比が8.3:11.8:42.3:37.6である原料ガスを時空間速度1100hr−1で触媒上に導入して、プロパンの転換率が40%になる条件での反応温度およびアクリル酸の選択性を測定した。その結果は下記表1の通りである。
[Experimental example]
The selective oxidation reaction of propane was performed as follows using the catalysts prepared in Examples 1 to 6 and Comparative Examples 1 to 5.
After 0.1 g of catalyst was charged into a fixed bed reactor, a raw material gas having a propane: oxygen: nitrogen: water molar ratio of 8.3: 11.8: 42.3: 37.6 was spatiotemporal. The catalyst was introduced onto the catalyst at a rate of 1100 hr −1 , and the reaction temperature and the selectivity of acrylic acid were measured under the condition that the propane conversion was 40%. The results are shown in Table 1 below.

Figure 2010536552
Figure 2010536552

表1に示したように、本発明による実施例1〜6の触媒は、極性溶媒を使用してボールミルを行ったことを特徴とするが、ボールミルを行わなかったかあるいは極性溶媒を使用せずにボールミルを行った比較例1〜3の触媒と、同じ転換率で比較した場合に、反応温度がより低く、アクリル酸の選択性およびアクリル酸の収率により優れることが実証された。一方、極性溶媒の存在下で触媒を攪拌する触媒の精製過程を行った比較例4および5による触媒は、そのような精製過程を行わない比較例1の触媒と比較して、その活性に変化が殆ど無かった。   As shown in Table 1, the catalysts of Examples 1 to 6 according to the present invention are characterized in that a ball mill was performed using a polar solvent, but the ball mill was not performed or the polar solvent was not used. It was demonstrated that the reaction temperature was lower and the selectivity of acrylic acid and the yield of acrylic acid were better when compared with the catalysts of Comparative Examples 1 to 3 that performed ball milling at the same conversion rate. On the other hand, the catalysts according to Comparative Examples 4 and 5 in which the catalyst purification process in which the catalyst is stirred in the presence of the polar solvent are changed in their activity as compared with the catalyst in Comparative Example 1 in which such a purification process is not performed. There was almost no.

本発明は、触媒前駆体から焼成によって触媒を製造した後、触媒の製造工程中に含まれる不純物を極性溶媒の存在下においてボールミルすることで除去することによって、活性に優れる触媒を得ることができる。   In the present invention, a catalyst having excellent activity can be obtained by producing a catalyst by calcination from a catalyst precursor and then removing the impurities contained in the production process of the catalyst by ball milling in the presence of a polar solvent. .

以下、本発明の理解を助けるために好ましい実施例を提示するが、下記実施例は本発明を例示するものであり、本発明の範疇および技術思想の範囲内で多様な変更および変形が可能であることは当業者において明白であり、このような変形および修正が添付された特許請求の範囲に包含されることも当然である。   Hereinafter, preferred examples are presented to help understanding of the present invention. However, the following examples illustrate the present invention, and various changes and modifications can be made within the scope and technical idea of the present invention. It will be apparent to those skilled in the art that such variations and modifications are also encompassed by the appended claims.

Claims (7)

モリブデン塩、バナジウム塩、テルル塩、およびニオブ塩を含有する溶液から触媒前駆体を調製する工程;
前記触媒前駆体を乾燥および焼成する工程;および
焼成によって製造された前期触媒を、極性溶媒の存在下でボールミルする工程
を含む、アクリル酸製造用酸化物触媒の製造方法。
Preparing a catalyst precursor from a solution containing molybdenum, vanadium, tellurium, and niobium salts;
A method for producing an oxide catalyst for producing acrylic acid, comprising: drying and calcining the catalyst precursor; and ball milling a pre-catalyst produced by calcination in the presence of a polar solvent.
前記極性溶媒の使用量が、前記触媒の体積の2倍〜100倍であることを特徴とする、請求項1に記載のアクリル酸製造用酸化物触媒の製造方法。   The method for producing an oxide catalyst for producing acrylic acid according to claim 1, wherein the amount of the polar solvent used is 2 to 100 times the volume of the catalyst. 前記極性溶媒が、水、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール、1,2−エタンジオール、アセトン、および酢酸からなる群から選択されることを特徴とする、請求項1に記載のアクリル酸製造用酸化物触媒の製造方法。   The said polar solvent is selected from the group consisting of water, methanol, ethanol, 1-propanol, 2-propanol, butanol, 1,2-ethanediol, acetone, and acetic acid. Of producing an oxide catalyst for producing acrylic acid. 前記触媒が、化学式1:
Figure 2010536552
[前記式中、Moはモリブデン、Vはバナジウム、Teはテルル、Nbはニオブであり、a、b、c、およびnは、それぞれ、バナジウム、テルル、ニオブ、および酸素の原子モル比であり、0.01≦a≦1であり;0.01≦b≦1であり;0.01≦c≦1であり;かつ、nは他元素の原子価および量によって決定される数である]
で表されることを特徴とする、請求項1に記載のアクリル酸製造用酸化物触媒の製造方法。
The catalyst is represented by the chemical formula 1:
Figure 2010536552
[In the above formula, Mo is molybdenum, V is vanadium, Te is tellurium, Nb is niobium, and a, b, c, and n are atomic molar ratios of vanadium, tellurium, niobium, and oxygen, respectively. 0.01 ≦ a ≦ 1; 0.01 ≦ b ≦ 1; 0.01 ≦ c ≦ 1; and n is a number determined by the valence and amount of other elements]
It is represented by these, The manufacturing method of the oxide catalyst for acrylic acid manufacture of Claim 1 characterized by the above-mentioned.
前記モリブデン塩、バナジウム塩、テルル塩、およびニオブ塩を含有する混合溶液に、添加剤を添加する工程をさらに含み、前記添加剤が、濃硫酸、硫酸アンモニウム、および二酸化硫黄からなる群から選択される1種以上の硫酸化合物であることを特徴とする、請求項1に記載のアクリル酸製造用酸化物触媒の製造方法。   The method further includes adding an additive to the mixed solution containing the molybdenum salt, vanadium salt, tellurium salt, and niobium salt, and the additive is selected from the group consisting of concentrated sulfuric acid, ammonium sulfate, and sulfur dioxide. The method for producing an oxide catalyst for producing acrylic acid according to claim 1, wherein the method is one or more sulfuric acid compounds. 前記添加剤の含量が、前記モリブデンの原子1モル当たり0.05〜0.5モルであることを特徴とする、請求項5に記載のアクリル酸製造用酸化物触媒の製造方法。   The method for producing an oxide catalyst for producing acrylic acid according to claim 5, wherein the content of the additive is 0.05 to 0.5 mol per mol of the molybdenum atom. 前記焼成が、最初に、空気流下、150〜250℃の温度にて1〜4時間行われ、次いで、窒素または不活性気体の気流下、500〜650℃の温度にて1〜4時間行われるものであることを特徴とする、請求項1に記載のアクリル酸製造用酸化物触媒の製造方法。   The calcination is first performed at a temperature of 150 to 250 ° C. for 1 to 4 hours under a stream of air, and then performed at a temperature of 500 to 650 ° C. for 1 to 4 hours under a stream of nitrogen or an inert gas. The method for producing an oxide catalyst for producing acrylic acid according to claim 1, wherein
JP2010521779A 2007-08-22 2008-08-20 Method for producing catalyst for acrylic acid production using reactive ball mill Active JP5155397B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2007-0084398 2007-08-22
KR1020070084398A KR100954046B1 (en) 2007-08-22 2007-08-22 Preparation Method of Catalyst for Production of Acrylic Acid Using Reactive Ball-Milling
PCT/KR2008/004817 WO2009025486A1 (en) 2007-08-22 2008-08-20 Method of preparing catalyst for production of acrylic acid using reactive ball milling

Publications (2)

Publication Number Publication Date
JP2010536552A true JP2010536552A (en) 2010-12-02
JP5155397B2 JP5155397B2 (en) 2013-03-06

Family

ID=40378338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010521779A Active JP5155397B2 (en) 2007-08-22 2008-08-20 Method for producing catalyst for acrylic acid production using reactive ball mill

Country Status (4)

Country Link
JP (1) JP5155397B2 (en)
KR (1) KR100954046B1 (en)
CN (1) CN101784341B (en)
WO (1) WO2009025486A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3050795A1 (en) * 2018-08-03 2020-02-03 Nova Chemicals Corporation Oxidative dehydrogenation catalysts

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279351A (en) * 1993-01-28 1994-10-04 Mitsubishi Kasei Corp Production of unsaturated carboxylic acid
JP2002179610A (en) * 2000-09-28 2002-06-26 Rohm & Haas Co Method for producing unsaturated carboxylic acid
JP2003024789A (en) * 2001-04-25 2003-01-28 Rohm & Haas Co Improved catalyst
JP2003024788A (en) * 2001-04-25 2003-01-28 Rohm & Haas Co Improved catalyst
JP2004041880A (en) * 2002-07-10 2004-02-12 Toagosei Co Ltd Method of producing catalyst for acrylic acid production
JP2006218478A (en) * 2005-02-11 2006-08-24 Rohm & Haas Co Method for manufacturing catalyst and catalyst manufactured by the method
JP2006279351A (en) * 2005-03-28 2006-10-12 Shinano Kenshi Co Ltd Electronic sound volume adjustment apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69402567T2 (en) * 1993-01-28 1997-11-27 Mitsubishi Chem Corp Method of producing an unsaturated carboxylic acid
JP4845325B2 (en) 2000-06-15 2011-12-28 旭化成ケミカルズ株式会社 Catalyst for gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of propane or isobutane
US6407280B1 (en) * 2000-09-28 2002-06-18 Rohm And Haas Company Promoted multi-metal oxide catalyst
EP1407819A3 (en) 2002-10-01 2004-06-23 Rohm And Haas Company Hydrothermally synthesized Mo-V-M-Nb-X oxide catalysts for the selective oxidation of hydrocarbons
WO2006008177A1 (en) * 2004-07-22 2006-01-26 Fritz Haber Institut Der Max Planck Gesellschaft Metal oxide catalyst and method for the preparation thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279351A (en) * 1993-01-28 1994-10-04 Mitsubishi Kasei Corp Production of unsaturated carboxylic acid
JP2002179610A (en) * 2000-09-28 2002-06-26 Rohm & Haas Co Method for producing unsaturated carboxylic acid
JP2003024789A (en) * 2001-04-25 2003-01-28 Rohm & Haas Co Improved catalyst
JP2003024788A (en) * 2001-04-25 2003-01-28 Rohm & Haas Co Improved catalyst
JP2004041880A (en) * 2002-07-10 2004-02-12 Toagosei Co Ltd Method of producing catalyst for acrylic acid production
JP2006218478A (en) * 2005-02-11 2006-08-24 Rohm & Haas Co Method for manufacturing catalyst and catalyst manufactured by the method
JP2006279351A (en) * 2005-03-28 2006-10-12 Shinano Kenshi Co Ltd Electronic sound volume adjustment apparatus

Also Published As

Publication number Publication date
CN101784341B (en) 2013-03-27
WO2009025486A1 (en) 2009-02-26
KR20090020023A (en) 2009-02-26
JP5155397B2 (en) 2013-03-06
KR100954046B1 (en) 2010-04-20
CN101784341A (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US7414008B2 (en) Catalyst for synthesis of unsaturated aldehyde, production process for said catalyst, and production process for unsaturated aldehyde using said catalyst
US7544633B2 (en) Catalyst for partial oxidation and preparation method thereof
JP2006527075A (en) Mixed metal oxide catalysts for the oxidation and ammoxidation of propane and isobutane and methods for their preparation
JP5180303B2 (en) Method for producing improved acrylic acid production catalyst
CN111389410A (en) Composite metal oxide catalyst and preparation method thereof
JPWO2005039760A1 (en) Method for producing catalyst for producing methacrylic acid, catalyst for producing methacrylic acid, method for producing methacrylic acid
JP2007229561A (en) Molybdenum oxide, catalyst, method for manufacturing the catalyst and method for producing (meth)acrylic acid or the like
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP5155397B2 (en) Method for producing catalyst for acrylic acid production using reactive ball mill
JP2005329363A (en) Manufacturing method of composite oxide catalyst
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP5362370B2 (en) Method for producing catalyst for synthesis of methacrylic acid
KR100970084B1 (en) Preparation of catalyst with controlled tellurium contents
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP4947753B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP2000237592A (en) Catalyst for synthesis of methacrolein and methacrylic acid and production of methacrolein and methacrylic acid
JPH0615178A (en) Preparation of catalyst for production of methacrylic acid
JP3859397B2 (en) Catalyst for production of methacrolein and methacrylic acid
JP6769557B2 (en) Catalyst precursor, catalyst production method, methacrylic acid and acrylic acid production method, and methacrylic acid ester and acrylic acid ester production method.
JP2003154273A (en) Method for manufacturing catalyst for manufacture of methacrylic acid, catalyst for manufacture of methacrylic acid and method for manufacturing methacrylic acid
JP2003251188A (en) Catalyst for synthesizing methacrylic acid and manufacturing method for methacrylic acid
CN105498808A (en) Method for milling of catalyst for preparation of acrylic acid by reactive ball mill
CN112547082A (en) Catalyst for preparing acrylic acid by acrolein oxidation and preparation method and application thereof
JP2002095972A (en) Catalyst for producing methacrylic acid, method for producing the catalyst, and method for producing methacrylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5155397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250