JP5180303B2 - Method for producing improved acrylic acid production catalyst - Google Patents

Method for producing improved acrylic acid production catalyst Download PDF

Info

Publication number
JP5180303B2
JP5180303B2 JP2010520921A JP2010520921A JP5180303B2 JP 5180303 B2 JP5180303 B2 JP 5180303B2 JP 2010520921 A JP2010520921 A JP 2010520921A JP 2010520921 A JP2010520921 A JP 2010520921A JP 5180303 B2 JP5180303 B2 JP 5180303B2
Authority
JP
Japan
Prior art keywords
producing
catalyst
acrylic acid
salt
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010520921A
Other languages
Japanese (ja)
Other versions
JP2010535628A (en
Inventor
ユン−キョン・ソン
キョン−ヨン・チャ
ジン−ド・キム
ヒュン−ジュ・チョ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2010535628A publication Critical patent/JP2010535628A/en
Application granted granted Critical
Publication of JP5180303B2 publication Critical patent/JP5180303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明はアクリル酸製造用酸化物触媒の製造方法に関するものであって、より詳しくは、カルボン酸、過酸化物、及び硫酸化合物を含む複合酸混合物を添加剤として添加して触媒前駆体を得ることによって既存のアクリル酸製造用触媒に比べて高い活性でアクリル酸を得ることができるアクリル酸製造用酸化物触媒の製造方法に関するものである。   The present invention relates to a method for producing an oxide catalyst for producing acrylic acid, and more specifically, a catalyst precursor is obtained by adding a complex acid mixture containing a carboxylic acid, a peroxide, and a sulfuric acid compound as additives. It is related with the manufacturing method of the oxide catalyst for acrylic acid manufacture which can obtain acrylic acid with high activity compared with the catalyst for existing acrylic acid manufacture by this.

今までプロパンの直接酸化でアクリル酸を製造するために、MoVTeNbO系触媒のような4成分系の複合酸化物系触媒についてたくさんの研究がなされてきた。しかし、触媒の構成成分上の変化の無い状態では反応活性増加の程度は制限され、相変わらず触媒活性の向上程度は不十分な有り様である。従って、プロパンの転換率及びアクリル酸への選択度が高い高活性触媒の開発が必要であった。   Until now, in order to produce acrylic acid by direct oxidation of propane, much research has been conducted on quaternary complex oxide catalysts such as MoVTeNbO catalysts. However, in the state where there is no change in the constituent components of the catalyst, the degree of increase in reaction activity is limited, and the degree of improvement in catalyst activity is still insufficient. Therefore, it was necessary to develop a highly active catalyst having high propane conversion and selectivity to acrylic acid.

触媒の活性を高めるための研究の一環として添加剤を使用することについての研究がなされてきた。例えば、Applied catalysis A: General Vol 257, Issue 1, 67(2004)によると、複合酸化物系触媒の製造過程において硝酸の添加によって触媒の活性増加が現れ、pH2.0乃至2.5辺りで最大の活性を現すという研究結果が発表された。しかし、前記研究による触媒の活性は商業化可能の水準には至らないのみならず、その活性領域が非常に狭いという問題点を有している。韓国特許公開2001-0067257A_Pと米国特許6,642,174B2では本発明のような成分を有するMoVTeNbOの複合酸化物触媒を製造したが、製造過程時に如何なる添加剤を使用せず、触媒の活性も本研究結果に至ってはいない。   Research has been done on the use of additives as part of research to increase catalyst activity. For example, according to Applied catalysis A: General Vol 257, Issue 1, 67 (2004), the addition of nitric acid increases the activity of the catalyst during the production process of the complex oxide catalyst, and the maximum is around pH 2.0 to 2.5. The results of a study showing the activity of However, the activity of the catalyst according to the above research does not reach the level of commercialization, but has a problem that its active region is very narrow. In Korean Patent Publication 2001-0067257A_P and US Patent 6,642,174B2, MoVTeNbO composite oxide catalyst having the components as in the present invention was manufactured, but no additive was used during the manufacturing process, and the activity of the catalyst was also included in the results of this study. Not reached.

従って、より高い活性を現し、より広い領域で活性の増加を現すアクリル酸製造用触媒の製造方法に対する研究が至急の状況である。   Accordingly, there is an urgent need for research on a method for producing a catalyst for producing acrylic acid that exhibits higher activity and exhibits increased activity in a wider area.

韓国特許公開2001-0067257A_PKorean Patent Publication 2001-0067257A_P 米国特許6,642,174B2US Patent 6,642,174B2

Applied catalysis A: General Vol 257, Issue 1, 67(2004)Applied catalysis A: General Vol 257, Issue 1, 67 (2004)

本発明の目的はプロパンの気相酸化によるアクリル酸の製造時にプロパンの転換率及びアクリル酸の選択度に優れる、つまり触媒活性に優れるアクリル酸製造用触媒の製造方法を提供することである。   An object of the present invention is to provide a method for producing a catalyst for producing acrylic acid which is excellent in propane conversion and acrylic acid selectivity during the production of acrylic acid by gas phase oxidation of propane, that is, excellent in catalytic activity.

本発明はモリブデン塩、バナジウム塩、テルル塩、及びニオブ塩を含む溶液から触媒前駆体を得た後、前記前駆体を乾燥及び焼成してアクリル酸製造用酸化物触媒を製造する方法を提供する。前記から本発明は、前記金属塩の混合溶液に添加剤を添加する段階をさらに含み、前記添加剤はカルボン酸、過酸化物、及び硫酸化合物を含む複合酸混合物であることを特徴とする。   The present invention provides a method for producing an oxide catalyst for producing acrylic acid by obtaining a catalyst precursor from a solution containing a molybdenum salt, a vanadium salt, a tellurium salt, and a niobium salt, and then drying and calcining the precursor. . As described above, the present invention further includes a step of adding an additive to the mixed solution of the metal salt, wherein the additive is a complex acid mixture containing a carboxylic acid, a peroxide, and a sulfuric acid compound.

このように製造された本発明のアクリル酸製造用酸化物触媒は化学式1で示されるものである。   The oxide catalyst for acrylic acid production of the present invention thus produced is represented by Chemical Formula 1.

<化学式1>
Mo1.0VaTebNbcOn
<Chemical Formula 1>
Mo 1.0 V a Te b Nb c O n

前記式中、Moはモリブデン、Vはバナジウム、Teはテルル、Nbはニオブであり、a、b、c及びnはそれぞれバナジウム、テルル、ニオブ、及び酸素の原子モル比であり、0.01≦a≦1;0.01≦b≦1;0.01≦c≦1;及びnは他元素の原子価と量によって決められる数である。   In the above formula, Mo is molybdenum, V is vanadium, Te is tellurium, Nb is niobium, a, b, c, and n are atomic molar ratios of vanadium, tellurium, niobium, and oxygen, respectively, 0.01 ≦ a ≦ 1; 0.01 ≦ b ≦ 1; 0.01 ≦ c ≦ 1; and n is a number determined by the valence and amount of other elements.

本発明はモリブデン塩、バナジウム塩、テルル塩、及びニオブ塩を含む溶液から触媒前駆体を得た後、前記前駆体を乾燥及び焼成してアクリル酸製造用酸化物触媒を製造する方法を提供する。前記から本発明は、前記金属塩の混合溶液に添加剤を添加する段階をさらに含み、前記添加剤はカルボン酸、過酸化物、及び硫酸化合物を含む複合酸混合物であることを特徴とする。   The present invention provides a method for producing an oxide catalyst for producing acrylic acid by obtaining a catalyst precursor from a solution containing a molybdenum salt, a vanadium salt, a tellurium salt, and a niobium salt, and then drying and calcining the precursor. . As described above, the present invention further includes a step of adding an additive to the mixed solution of the metal salt, wherein the additive is a complex acid mixture containing a carboxylic acid, a peroxide, and a sulfuric acid compound.

本発明は先ず、モリブデン(Mo)塩、 バナジウム(V)塩、テルル(Te)塩、及びニオブ(Nb)塩を含む化合物を溶媒に混合して混合溶液を製造する段階を含む。前記で使用される溶媒は蒸留水、アルコール、エーテル、及びカルボン酸塩からなる群から選ばれるものが望ましく、それぞれの金属塩化合物において金属の対イオンは同一または相異である。具体的な例として、モリブデン(Mo)塩、 バナジウム(V)塩、及びテルル(Te)塩を蒸留水に溶かして混合溶液を製造し、ここに別途で蒸留水に溶かしたニオブ(Nb)塩溶液を添加した後、十分に混合するのが望ましい。この際使用できる化合物として、モリブデン(Mo)塩化合物としては、パラモリブデン酸アンモニウム(ammonium paramolybdate)、モリブデン酸、モリブデン酸ナトリウム、及び三酸化モリブデンなどがあり、バナジウム(V)塩化合物としては、メタバナジン酸アンモニウム(ammonium metavanadate)、VCl4のようなバナジウムハロゲン化合物、及びVO(OC2H5)3のようなバナジウムアルコキシドなどがあり、テルル(Te)塩化合物としては、テルル酸(telluric acid)、二酸化テルルなどがあり、ニオブ(Nb)塩化合物としては、シュウ酸ニオブアンモニウム(ammonium niobium oxalate)、ニオブ酸、及びシュウ酸ニオブなどがある。別途で蒸留水に溶かしたニオブ塩溶液を添加すれば、通常的に一定時間が過ぎた後に沈殿物が形成されて沈むことになり、混合溶液を継続的に攪拌すれば、沈殿された沈殿物は溶液中に分散された状態で沈殿物の形成が続けられる。 The present invention first includes a step of preparing a mixed solution by mixing a compound containing molybdenum (Mo) salt, vanadium (V) salt, tellurium (Te) salt, and niobium (Nb) salt in a solvent. The solvent used in the above is preferably selected from the group consisting of distilled water, alcohol, ether, and carboxylate, and the metal counterion is the same or different in each metal salt compound. As a specific example, a mixed solution is prepared by dissolving molybdenum (Mo) salt, vanadium (V) salt, and tellurium (Te) salt in distilled water, and niobium (Nb) salt separately dissolved in distilled water. It is desirable to mix thoroughly after adding the solution. Examples of compounds that can be used at this time include molybdenum (Mo) salt compounds such as ammonium paramolybdate, molybdate, sodium molybdate, and molybdenum trioxide, and vanadium (V) salt compounds include metavanadium Examples thereof include ammonium metavanadate, vanadium halogen compounds such as VCl 4 , and vanadium alkoxides such as VO (OC 2 H 5 ) 3. Tellurium (Te) salt compounds include telluric acid, Examples of the niobium (Nb) salt compound include ammonium niobium oxalate, niobic acid, and niobium oxalate. If a niobium salt solution dissolved in distilled water is added separately, a precipitate is usually formed after a certain time has passed, and if the mixed solution is continuously stirred, the precipitated precipitate Continues to form a precipitate while dispersed in the solution.

次に、本発明は前記の混合溶液に添加剤を添加する。本発明で使用される添加剤はカルボン酸、過酸化物、及び硫酸化合物を含む複合酸混合物である。前記硫酸化合物は硫酸、特に濃度が95%以上の濃い硫酸、硫酸アンモニウム、及び二酸化硫黄からなる群から1種以上選ばれるものが望ましい。前記カルボン酸はカルボン酸の作用基が一つ以上存在すれば特別に限られないが、望ましくはシュウ酸、コハク酸、酒石酸、及びグルタミン酸のようなジカルボン酸が良い。前記過酸化物は過酸化物であれば有機物の形態でも無機物の形態でも特別に限られないが、過酸化ジアルキル、過酸化アシル化合物などであり、取り扱いの便宜及び値段の側面から過酸化水素が望ましい。   Next, the present invention adds an additive to the mixed solution. The additive used in the present invention is a complex acid mixture containing a carboxylic acid, a peroxide, and a sulfuric acid compound. The sulfuric acid compound is preferably one or more selected from the group consisting of sulfuric acid, particularly concentrated sulfuric acid having a concentration of 95% or more, ammonium sulfate, and sulfur dioxide. The carboxylic acid is not particularly limited as long as one or more carboxylic acid functional groups are present, and preferably a dicarboxylic acid such as oxalic acid, succinic acid, tartaric acid, and glutamic acid. The peroxide is not particularly limited in the form of an organic substance or an inorganic substance as long as it is a peroxide, but is a dialkyl peroxide, an acyl peroxide compound, or the like. desirable.

また、添加される複合酸混合物の各成分の含量はモルブデン塩の形態で添加されるモリブデン(Mo)原子1モルに対して0.05乃至.5モルであるものが望ましい。もし、各成分の含量、特に硫酸化合物の含量がモリブデン原子1モルに対して0.05モル未満である場合、その触媒は全体反応温度の区間においてプロパンの転換率及びアクリル酸の選択度が低い。それと逆に、1.5モルを超える場合、触媒は低い温度である程度高いアクリル酸の選択度を示すが、この際の転換率が10%以下であり、温度が上がるほど選択度が急激に落ちる傾向をみせる。 Further, the content of each component of the composite acid mixture added is what desirably 0.05 to 1.5 mol per molybdenum (Mo) atoms to 1 mole of added in the form of Morubuden salt. If the content of each component, particularly the content of sulfuric acid compound, is less than 0.05 mol per mol of molybdenum atom, the catalyst has low propane conversion and acrylic acid selectivity in the whole reaction temperature interval. . On the other hand, when the amount exceeds 1.5 mol, the catalyst exhibits a certain degree of high acrylic acid selectivity at a low temperature, but the conversion at this time is 10% or less, and the selectivity drops sharply as the temperature increases. Show a trend.

このような添加剤は本発明の触媒の活性を向上させる役割のみならず、前記した金属塩の混合溶液で触媒前駆体の沈殿生成をさらに加速化させる役割も果たす。このような触媒前駆体の沈殿物は望ましくは蒸留水を蒸発させることによって、例えば回転減圧乾燥機を用いて蒸留水を蒸発させて収集されることができる。乾燥温度は水を効果的に蒸発させることができる程度の温度であれば特別に限られないが、凡そ100℃程度またはそれ以上の温度で乾燥を行うことができる。このように乾燥された触媒前駆体は粉砕された後、例えば油圧プレスによって圧縮成型され、次いで再び粉砕される。それから、触媒前駆体粒子は篩ってその大きさが均一なもので選別され、以後焼成過程が進まれることが望ましい。この時、触媒前駆体粒子は100乃至300μmの範囲であるものが望ましい。乾燥及び粉砕された触媒前駆体粉末を直ちに焼成することもできるが、それを圧縮成型して粉砕した後に焼成することがさらに望ましい。その理由は、圧縮成型する場合は触媒の密度が高くなって触媒がプロパンと反応する際にプロパンの転換率が高くなるからである。   Such an additive serves not only to improve the activity of the catalyst of the present invention but also to further accelerate the precipitation of the catalyst precursor in the mixed solution of the metal salt. Such catalyst precursor precipitate can be collected by evaporating distilled water, for example, evaporating distilled water using a rotary vacuum dryer. The drying temperature is not particularly limited as long as it can evaporate water effectively, but drying can be performed at a temperature of about 100 ° C. or higher. The catalyst precursor thus dried is pulverized, then compression molded, for example, by a hydraulic press, and then pulverized again. Then, it is desirable that the catalyst precursor particles are sieved and screened with a uniform size, and then the firing process proceeds. At this time, the catalyst precursor particles are preferably in the range of 100 to 300 μm. Although the dried and pulverized catalyst precursor powder can be calcined immediately, it is more desirable to calcine it after compression molding and pulverization. The reason is that in the case of compression molding, the density of the catalyst becomes high, and the conversion rate of propane increases when the catalyst reacts with propane.

次に、本発明は前記した触媒前駆体を焼成して最終的に触媒を得る。焼成は通常的に2段階からなる。第1段階の焼成過程は空気の流れ下で150乃至250℃の温度で1乃至4時間焼成し、第2段階の焼成過程は窒素または不活性気体の流れ下で500乃至650℃の温度で1乃至4時間焼成することが望ましい。   Next, in the present invention, the catalyst precursor is calcined to finally obtain a catalyst. Firing usually consists of two stages. The first stage firing process is performed at a temperature of 150 to 250 ° C. for 1 to 4 hours under a flow of air, and the second stage firing process is performed at a temperature of 500 to 650 ° C. under a flow of nitrogen or an inert gas. It is desirable to bake for 4 hours.

前記のように、製造される本発明のアクリル酸製造用酸化物触媒は下記化学式1で表示される。   As described above, the produced oxide catalyst for producing acrylic acid of the present invention is represented by the following chemical formula 1.

<化学式1>
Mo1.0VaTebNbcOn
<Chemical Formula 1>
Mo 1.0 V a Te b Nb c O n

前記式中、Moはモリブデン、Vはバナジウム、Teはテルル、Nbはニオブであり、a、b、c及びnはそれぞれバナジウム、テルル、ニオブ、及び酸素の原子モル比であり、0.01≦a≦1;0.01≦b≦1;0.01≦c≦1;及びnは他元素の原子価と量によって決められる数である。   In the above formula, Mo is molybdenum, V is vanadium, Te is tellurium, Nb is niobium, a, b, c, and n are atomic molar ratios of vanadium, tellurium, niobium, and oxygen, respectively, 0.01 ≦ a ≦ 1; 0.01 ≦ b ≦ 1; 0.01 ≦ c ≦ 1; and n is a number determined by the valence and amount of other elements.

前記のように製造された本発明の触媒は、プロパンから気相酸化反応によってアクリル酸を製造することに使用されて、プロパンの高い転換率とアクリル酸の高い選択度を提供する。   The catalyst of the present invention produced as described above is used for producing acrylic acid from propane by gas phase oxidation reaction, and provides high conversion of propane and high selectivity of acrylic acid.

本発明の実施例及び比較例による触媒を使用してプロパンを気相酸化してアクリル酸を得るとき、プロパンの転換率に応じるアクリル酸の選択度を示したグラフである。4 is a graph showing the selectivity of acrylic acid according to the conversion rate of propane when propane is vapor-phase oxidized to obtain acrylic acid using catalysts according to Examples and Comparative Examples of the present invention.

以下、本発明がわかるように実施例及び比較例を具体的に説明するが、これらの実施例は本発明を例示するために提示されるものだけであって、本発明の権利範囲が下記実施例に限られるものではない。   Hereinafter, examples and comparative examples will be specifically described so that the present invention can be understood. However, these examples are only presented to illustrate the present invention, and the scope of rights of the present invention is as follows. It is not limited to examples.

<実施例> <Example>

実施例1   Example 1

常温状態の50mlの蒸留水に1.178gのパラモリブデン酸アンモニウム(ammonium paramolybdate)、0.234gのメタバナジン酸アンモニウム(ammonium metavanadate)、及び0.352gテルル酸(telluric acid)を溶かして、きれいな溶液を作った。ここに4mlの蒸留水に0.3626gのシュウ酸ニオブアンモニウム(ammonium niobium oxalate)を予め溶かしておいた溶液を添加した後、180分間攪拌して混合溶液を製造した。   Dissolve 1.178 g ammonium paramolybdate, 0.234 g ammonium metavanadate, and 0.352 g telluric acid in 50 ml distilled water at room temperature to obtain a clean solution. Had made. A solution prepared by dissolving 0.3626 g of ammonium niobium oxalate in advance in 4 ml of distilled water was added thereto, followed by stirring for 180 minutes to prepare a mixed solution.

前記混合溶液に水素イオン(酸性水素作用基)基準の1mol/kg濃度で蒸留水に希釈させて製造しておいたシュウ酸水溶液0.403g、及び硫酸水溶液0.918g、そして過酸化水素濃度基準の1mol/kg濃度で製造しておいた過酸化水素水溶液6.011gを添加した後、60分間さらに攪拌した。   0.403 g of an oxalic acid aqueous solution and 0.918 g of an aqueous sulfuric acid solution prepared by diluting in distilled water at a concentration of 1 mol / kg of hydrogen ion (acidic hydrogen functional group) standard in the mixed solution, and hydrogen peroxide concentration standard After adding 6.011 g of an aqueous hydrogen peroxide solution prepared at a concentration of 1 mol / kg, the mixture was further stirred for 60 minutes.

次いで、回転減圧乾燥機を用いて蒸留水を蒸発させ、120℃で完全に乾燥させた。これを粉砕して圧縮成型体を製造した後、再び粉砕して180乃至250μmの粒子サイズの触媒粒子を選別した。選別した触媒粒子を空気雰囲気で200℃の温度で2時間1次焼成し、窒素雰囲気で600℃の温度で2時間2次焼成を行った。その結果、製造された触媒の組成は使用された金属塩のモル比によると、Mo1.0V0.3Te0.23Nb0.12Onでなければならないが、Te金属の溶融点は449.5℃で他の元素に比べて低い方であるから、焼成温度ではTe金属は揮発されて相当量が消失するため、実際ではその組成においてTeの組成比は低くようになる。これは以下の実施例に対しても同一である。 Next, the distilled water was evaporated using a rotary vacuum dryer and dried completely at 120 ° C. This was pulverized to produce a compression molded body, and then pulverized again to select catalyst particles having a particle size of 180 to 250 μm. The selected catalyst particles were subjected to primary calcination for 2 hours at a temperature of 200 ° C. in an air atmosphere, and secondary calcination was performed for 2 hours at a temperature of 600 ° C. in a nitrogen atmosphere. As a result, when the composition of the produced catalyst by molar ratio of the metal salt used must be a Mo 1.0 V 0.3 Te 0.23 Nb 0.12 O n, the melting point of Te metal other at 449.5 ° C. Since it is lower than the element, since the Te metal is volatilized and a considerable amount disappears at the firing temperature, the composition ratio of Te in the composition actually becomes low. This is the same for the following embodiments.

実施例2   Example 2

常温状態の50mlの蒸留水に1.178gのパラモリブデン酸アンモニウム(ammonium paramolybdate)、0.234gのメタバナジン酸アンモニウム(ammonium metavanadate)、及び0.352gテルル酸(telluric acid)を溶かしてきれいな溶液を作った。ここに4mlの蒸留水に0.3626gのシュウ酸ニオブアンモニウム(ammonium niobium oxalate)を予め溶かしておいた溶液を添加した後、180分間攪拌して混合溶液を製造した。   Dissolve 1.178 g ammonium paramolybdate, 0.234 g ammonium metavanadate, and 0.352 g telluric acid in 50 ml distilled water at room temperature to make a clean solution. It was. A solution prepared by dissolving 0.3626 g of ammonium niobium oxalate in advance in 4 ml of distilled water was added thereto, followed by stirring for 180 minutes to prepare a mixed solution.

前記混合溶液に水素イオン基準の1mol/kg濃度で蒸留水に希釈させて製造しておいたシュウ酸水溶液0.75g、硫酸水溶液0.75g、及び過酸化水素濃度基準の1mol/kg濃度で製造しておいた過酸化水素水溶液7.5gを添加した後、60分間さらに攪拌した。   Manufactured at a concentration of 1 mol / kg of oxalic acid aqueous solution, 0.75 g of aqueous oxalic acid solution and 0.75 g of sulfuric acid aqueous solution prepared by diluting the above mixed solution with distilled water at a concentration of 1 mol / kg of hydrogen ion. After adding 7.5 g of the aqueous hydrogen peroxide solution, the mixture was further stirred for 60 minutes.

次いで、回転減圧乾燥機を用いて蒸留水を蒸発させ、120℃で完全に乾燥させた。これを粉砕して圧縮成型体を製造した後、再び粉砕して180乃至250μmの粒子サイズの触媒粒子を選別した。選別した触媒粒子を空気雰囲気で200℃の温度で2時間1次焼成し、窒素雰囲気で600℃の温度で2時間2次焼成を行った。   Next, the distilled water was evaporated using a rotary vacuum dryer and dried completely at 120 ° C. This was pulverized to produce a compression molded body, and then pulverized again to select catalyst particles having a particle size of 180 to 250 μm. The selected catalyst particles were subjected to primary calcination for 2 hours at a temperature of 200 ° C. in an air atmosphere, and secondary calcination was performed for 2 hours at a temperature of 600 ° C. in a nitrogen atmosphere.

実施例3   Example 3

常温状態の50mlの蒸留水に1.178gのパラモリブデン酸アンモニウム(ammonium paramolybdate)、0.234gのメタバナジン酸アンモニウム(ammonium metavanadate)、及び0.352gテルル酸(telluric acid)を溶かしてきれいな溶液を作った。ここに4mlの蒸留水に0.3626gのシュウ酸ニオブアンモニウム(ammonium niobium oxalate)を予め溶かしておいた溶液を添加した後、180分間攪拌して混合溶液を製造した。   Dissolve 1.178 g ammonium paramolybdate, 0.234 g ammonium metavanadate, and 0.352 g telluric acid in 50 ml distilled water at room temperature to make a clean solution. It was. A solution prepared by dissolving 0.3626 g of ammonium niobium oxalate in advance in 4 ml of distilled water was added thereto, followed by stirring for 180 minutes to prepare a mixed solution.

前記混合溶液に水素イオン基準の1mol/kg濃度で蒸留水に希釈させて製造しておいたシュウ酸水溶液0.5g、硫酸水溶液1.0g、及び過酸化水素濃度基準の1mol/kg濃度で製造しておいた過酸化水素水溶液5.0g添加した後、60分間さらに攪拌した。   Manufactured at 0.5 mol of oxalic acid aqueous solution, 1.0 g of sulfuric acid aqueous solution and 1 mol / kg concentration based on hydrogen peroxide concentration, prepared by diluting the mixed solution in distilled water at a concentration of 1 mol / kg based on hydrogen ion. After adding 5.0 g of the aqueous hydrogen peroxide solution, the mixture was further stirred for 60 minutes.

次いで、回転減圧乾燥機を用いて蒸留水を蒸発させ、120℃で完全に乾燥させた。これを粉砕して圧縮成型体を製造した後、再び粉砕して180乃至250μmの粒子サイズの触媒粒子を選別した。選別した触媒粒子を空気雰囲気で200℃の温度で2時間1次焼成し、窒素雰囲気で600℃の温度で2時間2次焼成を行った。   Next, the distilled water was evaporated using a rotary vacuum dryer and dried completely at 120 ° C. This was pulverized to produce a compression molded body, and then pulverized again to select catalyst particles having a particle size of 180 to 250 μm. The selected catalyst particles were subjected to primary calcination for 2 hours at a temperature of 200 ° C. in an air atmosphere, and secondary calcination was performed for 2 hours at a temperature of 600 ° C. in a nitrogen atmosphere.

実施例4   Example 4

常温状態の50mlの蒸留水に1.178gのパラモリブデン酸アンモニウム(ammonium paramolybdate)、0.234gのメタバナジン酸アンモニウム(ammonium metavanadate)、及び0.352gテルル酸(telluric acid)を溶かしてきれいな溶液を作った。ここに4mlの蒸留水に0.3626gのシュウ酸ニオブアンモニウム(ammonium niobium oxalate)を予め溶かしておいた溶液を添加した後、180分間攪拌して混合溶液を製造した。   Dissolve 1.178 g ammonium paramolybdate, 0.234 g ammonium metavanadate, and 0.352 g telluric acid in 50 ml distilled water at room temperature to make a clean solution. It was. A solution prepared by dissolving 0.3626 g of ammonium niobium oxalate in advance in 4 ml of distilled water was added thereto, followed by stirring for 180 minutes to prepare a mixed solution.

前記混合溶液に水素イオン基準の1mol/kg濃度で蒸留水に希釈させて製造しておいたシュウ酸水溶液1.0g、硫酸水溶液1.0g、及び過酸化水素濃度基準の1mol/kg濃度で製造しておいた過酸化水素水溶液0.5g添加した後、60分間さらに攪拌した。   Manufactured with 1.0 g of oxalic acid aqueous solution, 1.0 g of sulfuric acid aqueous solution, and 1 mol / kg concentration based on hydrogen peroxide concentration, prepared by diluting distilled water with 1 mol / kg concentration based on hydrogen ions. After adding 0.5 g of the aqueous hydrogen peroxide solution, the mixture was further stirred for 60 minutes.

次いで、回転減圧乾燥機を用いて蒸留水を蒸発させ、120℃で完全に乾燥させた。これを粉砕して圧縮成型体を製造した後、再び粉砕して180乃至250μmの粒子サイズの触媒粒子を選別した。選別した触媒粒子を空気雰囲気で200℃の温度で2時間1次焼成し、窒素雰囲気で600℃の温度で2時間2次焼成を行った。   Next, the distilled water was evaporated using a rotary vacuum dryer and dried completely at 120 ° C. This was pulverized to produce a compression molded body, and then pulverized again to select catalyst particles having a particle size of 180 to 250 μm. The selected catalyst particles were subjected to primary calcination for 2 hours at a temperature of 200 ° C. in an air atmosphere, and secondary calcination was performed for 2 hours at a temperature of 600 ° C. in a nitrogen atmosphere.

<比較例>   <Comparative example>

比較例1   Comparative Example 1

常温状態の50mlの蒸留水に1.178gのパラモリブデン酸アンモニウム(ammonium paramolybdate)、0.234gのメタバナジン酸アンモニウム(ammonium metavanadate)、及び0.352gテルル酸(telluric acid)を溶かしてきれいな溶液を作った。ここに4mlの蒸留水に0.3626gのシュウ酸ニオブアンモニウム(ammonium niobium oxalate)を予め溶かしておいた溶液を添加した後、240分間攪拌して混合溶液を製造した。   Dissolve 1.178 g ammonium paramolybdate, 0.234 g ammonium metavanadate, and 0.352 g telluric acid in 50 ml distilled water at room temperature to make a clean solution. It was. A solution prepared by dissolving 0.3626 g of ammonium niobium oxalate in advance in 4 ml of distilled water was added thereto, followed by stirring for 240 minutes to prepare a mixed solution.

次いで、回転減圧乾燥機を用いて蒸留水を蒸発させ、120℃で完全に乾燥させた。これを粉砕して圧縮成型体を製造した後、再び粉砕して180乃至250μmの粒子サイズの触媒粒子を選別した。選別した触媒粒子を空気雰囲気で200℃の温度で2時間1次焼成し、窒素雰囲気で600℃の温度で2時間2次焼成を行った。   Next, the distilled water was evaporated using a rotary vacuum dryer and dried completely at 120 ° C. This was pulverized to produce a compression molded body, and then pulverized again to select catalyst particles having a particle size of 180 to 250 μm. The selected catalyst particles were subjected to primary calcination for 2 hours at a temperature of 200 ° C. in an air atmosphere, and secondary calcination was performed for 2 hours at a temperature of 600 ° C. in a nitrogen atmosphere.

比較例2   Comparative Example 2

常温状態の50mlの蒸留水に1.178gのパラモリブデン酸アンモニウム(ammonium paramolybdate)、0.234gのメタバナジン酸アンモニウム(ammonium metavanadate)、及び0.352gテルル酸(telluric acid)を溶かしてきれいな溶液を作った。ここに4mlの蒸留水に0.3626gのシュウ酸ニオブアンモニウム(ammonium niobium oxalate)を予め溶かしておいた溶液を添加した後、180分間攪拌して混合溶液を製造した。   Dissolve 1.178 g ammonium paramolybdate, 0.234 g ammonium metavanadate, and 0.352 g telluric acid in 50 ml distilled water at room temperature to make a clean solution. It was. A solution prepared by dissolving 0.3626 g of ammonium niobium oxalate in advance in 4 ml of distilled water was added thereto, followed by stirring for 180 minutes to prepare a mixed solution.

前記混合溶液に水素イオン基準の1mol/kg濃度で蒸留水に希釈させて製造しておいた硫酸水溶液0.918gを添加した後、60分間さらに攪拌した。   To the mixed solution was added 0.918 g of an aqueous sulfuric acid solution prepared by diluting in distilled water at a concentration of 1 mol / kg based on hydrogen ions, and the mixture was further stirred for 60 minutes.

次いで、回転減圧乾燥機を用いて蒸留水を蒸発させ、120℃で完全に乾燥させた。これを粉砕して圧縮成型体を製造した後、再び粉砕して180乃至250μmの粒子サイズの触媒粒子を選別した。選別した触媒粒子を空気雰囲気で200℃の温度で2時間1次焼成し、窒素雰囲気で600℃の温度で2時間2次焼成を行った。   Next, the distilled water was evaporated using a rotary vacuum dryer and dried completely at 120 ° C. This was pulverized to produce a compression molded body, and then pulverized again to select catalyst particles having a particle size of 180 to 250 μm. The selected catalyst particles were subjected to primary calcination for 2 hours at a temperature of 200 ° C. in an air atmosphere, and secondary calcination was performed for 2 hours at a temperature of 600 ° C. in a nitrogen atmosphere.

比較例3   Comparative Example 3

常温状態の50mlの蒸留水に1.178gのパラモリブデン酸アンモニウム(ammonium paramolybdate)、0.234gのメタバナジン酸アンモニウム(ammonium metavanadate)、及び0.352gテルル酸(telluric acid)を溶かしてきれいな溶液を作った。ここに4mlの蒸留水に0.3626gのシュウ酸ニオブアンモニウム(ammonium niobium oxalate)を予め溶かしておいた溶液を添加した後、180分間攪拌して混合溶液を製造した。   Dissolve 1.178 g ammonium paramolybdate, 0.234 g ammonium metavanadate, and 0.352 g telluric acid in 50 ml distilled water at room temperature to make a clean solution. It was. A solution prepared by dissolving 0.3626 g of ammonium niobium oxalate in advance in 4 ml of distilled water was added thereto, followed by stirring for 180 minutes to prepare a mixed solution.

前記混合溶液に水素イオン基準の1mol/kg濃度で蒸留水に希釈させて製造しておいたシュウ酸水溶液0.403gを添加した後、60分間さらに攪拌した。   To the mixed solution was added 0.403 g of an oxalic acid aqueous solution prepared by diluting in distilled water at a concentration of 1 mol / kg based on hydrogen ions, and the mixture was further stirred for 60 minutes.

次いで、回転減圧乾燥機を用いて蒸留水を蒸発させ、120℃で完全に乾燥させた。これを粉砕して圧縮成型体を製造した後、再び粉砕して180乃至250μmの粒子サイズの触媒粒子を選別した。選別した触媒粒子を空気雰囲気で200℃の温度で2時間1次焼成し、窒素雰囲気で600℃の温度で2時間2次焼成を行った。   Next, the distilled water was evaporated using a rotary vacuum dryer and dried completely at 120 ° C. This was pulverized to produce a compression molded body, and then pulverized again to select catalyst particles having a particle size of 180 to 250 μm. The selected catalyst particles were subjected to primary calcination for 2 hours at a temperature of 200 ° C. in an air atmosphere, and secondary calcination was performed for 2 hours at a temperature of 600 ° C. in a nitrogen atmosphere.

比較例4   Comparative Example 4

常温状態の50mlの蒸留水に1.178gのパラモリブデン酸アンモニウム(ammonium paramolybdate)、0.234gのメタバナジン酸アンモニウム(ammonium metavanadate)、及び0.352gテルル酸(telluric acid)を溶かしてきれいな溶液を作った。ここに4mlの蒸留水に0.3626gのシュウ酸ニオブアンモニウム(ammonium niobium oxalate)を予め溶かしておいた溶液を添加した後、180分間攪拌して混合溶液を製造した。   Dissolve 1.178 g ammonium paramolybdate, 0.234 g ammonium metavanadate, and 0.352 g telluric acid in 50 ml distilled water at room temperature to make a clean solution. It was. A solution prepared by dissolving 0.3626 g of ammonium niobium oxalate in advance in 4 ml of distilled water was added thereto, followed by stirring for 180 minutes to prepare a mixed solution.

前記混合溶液に過酸化水素濃度基準の1mol/kg濃度で製造しておいた過酸化水素水溶液6.011gを添加した後、60分間さらに攪拌した。   After adding 6.011 g of an aqueous hydrogen peroxide solution prepared at a concentration of 1 mol / kg based on the hydrogen peroxide concentration to the mixed solution, the mixture was further stirred for 60 minutes.

次いで、回転減圧乾燥機を用いて蒸留水を蒸発させ、120℃で完全に乾燥させた。これを粉砕して圧縮成型体を製造した後、再び粉砕して180乃至250μmの粒子サイズの触媒粒子を選別した。選別した触媒粒子を空気雰囲気で200℃の温度で2時間1次焼成し、窒素雰囲気で600℃の温度で2時間2次焼成を行った。   Next, the distilled water was evaporated using a rotary vacuum dryer and dried completely at 120 ° C. This was pulverized to produce a compression molded body, and then pulverized again to select catalyst particles having a particle size of 180 to 250 μm. The selected catalyst particles were subjected to primary calcination for 2 hours at a temperature of 200 ° C. in an air atmosphere, and secondary calcination was performed for 2 hours at a temperature of 600 ° C. in a nitrogen atmosphere.

比較例5   Comparative Example 5

常温状態の50mlの蒸留水に1.178gのパラモリブデン酸アンモニウム(ammonium paramolybdate)、0.234gのメタバナジン酸アンモニウム(ammonium metavanadate)、及び0.352gテルル酸(telluric acid)を溶かしてきれいな溶液を作った。ここに4mlの蒸留水に0.3626gのシュウ酸ニオブアンモニウム(ammonium niobium oxalate)を予め溶かしておいた溶液を添加した後、180分間攪拌して混合溶液を製造した。   Dissolve 1.178 g ammonium paramolybdate, 0.234 g ammonium metavanadate, and 0.352 g telluric acid in 50 ml distilled water at room temperature to make a clean solution. It was. A solution prepared by dissolving 0.3626 g of ammonium niobium oxalate in advance in 4 ml of distilled water was added thereto, followed by stirring for 180 minutes to prepare a mixed solution.

前記混合溶液に水素イオン基準の1mol/kg濃度で蒸留水に希釈させて製造しておいたシュウ酸水溶液0.403g、及び過酸化水素濃度基準の1mol/kg濃度で製造しておいた過酸化水素水溶液6.011gを添加した後、60分間さらに攪拌した。   0.403 g of an oxalic acid aqueous solution prepared by diluting the mixed solution in distilled water at a concentration of 1 mol / kg based on hydrogen ions, and peroxidation prepared at a concentration of 1 mol / kg based on hydrogen peroxide concentration. After adding 6.011 g of aqueous hydrogen solution, the mixture was further stirred for 60 minutes.

次いで、回転減圧乾燥機を用いて蒸留水を蒸発させ、120℃で完全に乾燥させた。これを粉砕して圧縮成型体を製造した後、再び粉砕して180乃至250μmの粒子サイズの触媒粒子を選別した。選別した触媒粒子を空気雰囲気で200℃の温度で2時間1次焼成し、窒素雰囲気で600℃の温度で2時間2次焼成を行った。   Next, the distilled water was evaporated using a rotary vacuum dryer and dried completely at 120 ° C. This was pulverized to produce a compression molded body, and then pulverized again to select catalyst particles having a particle size of 180 to 250 μm. The selected catalyst particles were subjected to primary calcination for 2 hours at a temperature of 200 ° C. in an air atmosphere, and secondary calcination was performed for 2 hours at a temperature of 600 ° C. in a nitrogen atmosphere.

比較例6   Comparative Example 6

常温状態の50mlの蒸留水に1.178gのパラモリブデン酸アンモニウム(ammonium paramolybdate)、0.234gのメタバナジン酸アンモニウム(ammonium metavanadate)、及び0.352gテルル酸(telluric acid)を溶かしてきれいな溶液を作った。ここに4mlの蒸留水に0.3626gのシュウ酸ニオブアンモニウム(ammonium niobium oxalate)を予め溶かしておいた溶液を添加した後、180分間攪拌して混合溶液を製造した。   Dissolve 1.178 g ammonium paramolybdate, 0.234 g ammonium metavanadate, and 0.352 g telluric acid in 50 ml distilled water at room temperature to make a clean solution. It was. A solution prepared by dissolving 0.3626 g of ammonium niobium oxalate in advance in 4 ml of distilled water was added thereto, followed by stirring for 180 minutes to prepare a mixed solution.

前記混合溶液に水素イオン基準の1mol/kg濃度で蒸留水に希釈させて製造しておいたシュウ酸水溶液0.403g、及び硫酸水溶液0.918gを添加した後、60分間さらに攪拌した。   To the mixed solution, 0.403 g of an oxalic acid aqueous solution prepared by diluting in distilled water at a concentration of 1 mol / kg based on hydrogen ions and 0.918 g of an aqueous sulfuric acid solution were added, followed by further stirring for 60 minutes.

次いで、回転減圧乾燥機を用いて蒸留水を蒸発させ、120℃で完全に乾燥させた。これを粉砕して圧縮成型体を製造した後、再び粉砕して180乃至250μmの粒子サイズの触媒粒子を選別した。選別した触媒粒子を空気雰囲気で200℃の温度で2時間1次焼成し、窒素雰囲気で600℃の温度で2時間2次焼成を行った。   Next, the distilled water was evaporated using a rotary vacuum dryer and dried completely at 120 ° C. This was pulverized to produce a compression molded body, and then pulverized again to select catalyst particles having a particle size of 180 to 250 μm. The selected catalyst particles were subjected to primary calcination for 2 hours at a temperature of 200 ° C. in an air atmosphere, and secondary calcination was performed for 2 hours at a temperature of 600 ° C. in a nitrogen atmosphere.

比較例7   Comparative Example 7

常温状態の50mlの蒸留水に1.178gのパラモリブデン酸アンモニウム(ammonium paramolybdate)、0.234gのメタバナジン酸アンモニウム(ammonium metavanadate)、及び0.352gテルル酸(telluric acid)を溶かしてきれいな溶液を作った。ここに4mlの蒸留水に0.3626gのシュウ酸ニオブアンモニウム(ammonium niobium oxalate)を予め溶かしておいた溶液を添加した後、180分間攪拌して混合溶液を製造した。   Dissolve 1.178 g ammonium paramolybdate, 0.234 g ammonium metavanadate, and 0.352 g telluric acid in 50 ml distilled water at room temperature to make a clean solution. It was. A solution prepared by dissolving 0.3626 g of ammonium niobium oxalate in advance in 4 ml of distilled water was added thereto, followed by stirring for 180 minutes to prepare a mixed solution.

前記混合溶液に水素イオン基準の1mol/kg濃度で蒸留水に希釈させて製造しておいたシュウ酸水溶液1.0g、硫酸水溶液0.5g、及び過酸化水素濃度基準の1mol/kg濃度で製造しておいた過酸化水素水溶液10gを添加した後、60分間さらに攪拌した。   Manufactured with 1.0 g of oxalic acid aqueous solution, 0.5 g of sulfuric acid aqueous solution and 1 mol / kg concentration based on hydrogen peroxide concentration, prepared by diluting the above mixed solution with distilled water at a concentration of 1 mol / kg based on hydrogen ion. After adding 10 g of the aqueous hydrogen peroxide solution, the mixture was further stirred for 60 minutes.

次いで、回転減圧乾燥機を用いて蒸留水を蒸発させ、120℃で完全に乾燥させた。これを粉砕して圧縮成型体を製造した後、再び粉砕して180乃至250μmの粒子サイズの触媒粒子を選別した。選別した触媒粒子を空気雰囲気で200℃の温度で2時間1次焼成し、窒素雰囲気で600℃の温度で2時間2次焼成を行った。   Next, the distilled water was evaporated using a rotary vacuum dryer and dried completely at 120 ° C. This was pulverized to produce a compression molded body, and then pulverized again to select catalyst particles having a particle size of 180 to 250 μm. The selected catalyst particles were subjected to primary calcination for 2 hours at a temperature of 200 ° C. in an air atmosphere, and secondary calcination was performed for 2 hours at a temperature of 600 ° C. in a nitrogen atmosphere.

<実験例>   <Experimental example>

実施例1乃至4、及び比較例1乃至7から製造された触媒を用いてプロパンの選択的酸化反応を次のように行った。   Using the catalysts prepared from Examples 1 to 4 and Comparative Examples 1 to 7, a selective oxidation reaction of propane was performed as follows.

0.1gの触媒を固定床型反応器に充填した後、340乃至400℃の反応温度で、プロパン:酸素:窒素:水のモル比が5.85:11.69:58.02:24.44である原料混合気体組成の有する原料ガスを時空間速度1329hr-1で触媒上に導入させて行った。その結果は図1の通りであり、同一転換率(25%)対比選択度の比較は下記表1の通りである。 After charging 0.1 g of the catalyst into the fixed bed reactor, the propane: oxygen: nitrogen: water molar ratio was 5.85: 11.69: 58.02: 24. A raw material gas having a raw material mixed gas composition of 44 was introduced onto the catalyst at a space time velocity of 1329 hr −1 . The result is as shown in FIG. 1, and the comparison of the same conversion rate (25%) relative selectivity is as shown in Table 1 below.

図1に示したように、本発明の実施例による触媒を使用してアクリル酸を製造する場合、プロパンの転換率が大体高く、なおアクリル酸の選択度が高いため、全体としてアクリル酸の収率に優れることがわかった。   As shown in FIG. 1, when acrylic acid is produced using the catalyst according to the embodiment of the present invention, the conversion rate of propane is generally high and the selectivity of acrylic acid is high, so that the acrylic acid yield is as a whole. It was found that the rate was excellent.

前記表1に示したように、本発明による実施例1乃至4は3種の化合物が混合された複合酸混合物を沈殿剤として使用することによって、単一或いは2種の化合物が混合された混合酸を使用した比較例1乃至6に比べて、アクリル酸の収率に優れることが確認できた。そして、添加剤の含量がモリブデン1モル基準の1.5倍を超えた、3種の化合物が混合された複合酸混合物の添加剤を使用した比較例7と比べた場合もアクリル酸の収率に優れることが確認できた。   As shown in Table 1, Examples 1 to 4 according to the present invention use a mixed acid mixture in which three kinds of compounds are mixed as a precipitant, thereby mixing a single compound or two kinds of compounds. It was confirmed that the yield of acrylic acid was excellent as compared with Comparative Examples 1 to 6 using an acid. And the yield of acrylic acid also compared with the comparative example 7 which used the additive of the complex acid mixture with which the content of the additive exceeded 1.5 times the molybdenum 1 mol reference | standard, and 3 types of compounds were mixed. It was confirmed that it was excellent.

本発明の方法に従ってアクリル酸製造用酸化物触媒を製造することにより、活性に優れる触媒を得ることができる。   By producing an oxide catalyst for producing acrylic acid according to the method of the present invention, a catalyst having excellent activity can be obtained.

Claims (6)

モリブデン塩、バナジウム塩、テルル塩、及びニオブ塩を含む溶液から触媒前駆体を得た後、前記前駆体を乾燥及び焼成してアクリル酸製造用酸化物触媒を製造する方法において、前記金属塩の混合溶液に添加剤を添加する段階をさらに含み、前記添加剤はカルボン酸、過酸化物、及び硫酸化合物を含む複合酸混合物であり、
前記カルボン酸、過酸化物、及び硫酸化合物の濃度はモリブデン塩の形態で添加されるモリブデンの原子1モルに対してそれぞれ0.05乃至1.5モルであることを特徴とするアクリル酸製造用酸化物触媒の製造方法。
In the method for producing an oxide catalyst for producing acrylic acid by obtaining a catalyst precursor from a solution containing molybdenum salt, vanadium salt, tellurium salt, and niobium salt, and drying and calcining the precursor, further comprising the step of adding an additive to the mixed solution, the additive acids, peroxides, and Ri complex acid mixtures der containing sulfuric acid compound,
The concentration of the carboxylic acid, peroxide, and sulfuric acid compound is 0.05 to 1.5 moles per mole of molybdenum atoms added in the form of molybdenum salt . A method for producing an oxide catalyst.
前記硫酸化合物は、硫酸、硫酸アンモニウム、及び二酸化硫黄からなる群から選ばれることを特徴とする請求項1に記載のアクリル酸製造用酸化物触媒の製造方法。  The method for producing an oxide catalyst for producing acrylic acid according to claim 1, wherein the sulfuric acid compound is selected from the group consisting of sulfuric acid, ammonium sulfate, and sulfur dioxide. 前記カルボン酸はシュウ酸であり、前記過酸化物は過酸化水素であり、前記硫酸化合物は硫酸であることを特徴とする請求項に記載のアクリル酸製造用酸化物触媒の製造方法。The method for producing an oxide catalyst for producing acrylic acid according to claim 1 , wherein the carboxylic acid is oxalic acid, the peroxide is hydrogen peroxide, and the sulfuric acid compound is sulfuric acid. 前記触媒は化学式1で表示されるものであることを特徴とする請求項1に記載のアクリル酸製造用酸化物触媒の製造方法。
<化学式1>
Mo1.0VaTebNbcOn
前記式中、Moはモリブデン、Vはバナジウム、Teはテルル、Nbはニオブであり、a、b、c及びnはそれぞれバナジウム、テルル、ニオブ、及び酸素の原子モル比であり、0.01≦a≦1;0.01≦b≦1;0.01≦c≦1;及びnは他元素の原子価と量によって決められる数である。
The method for producing an oxide catalyst for acrylic acid production according to claim 1, wherein the catalyst is represented by Chemical Formula 1.
<Chemical Formula 1>
Mo 1.0 V a Te b Nb c O n
In the above formula, Mo is molybdenum, V is vanadium, Te is tellurium, Nb is niobium, a, b, c, and n are atomic molar ratios of vanadium, tellurium, niobium, and oxygen, respectively, 0.01 ≦ a ≦ 1; 0.01 ≦ b ≦ 1; 0.01 ≦ c ≦ 1; and n is a number determined by the valence and amount of other elements.
前記触媒前駆体は別途の分離手段無く、前記添加剤が添加された前記金属塩の混合溶液から直接的に溶媒を蒸発させて前記溶媒を除去することによって得られるものであり、前記溶媒は水であることを特徴とする請求項1に記載のアクリル酸製造用酸化物触媒の製造方法。  The catalyst precursor is obtained by removing the solvent by directly evaporating the solvent from the mixed solution of the metal salt to which the additive is added, without any separate separation means, and the solvent is water. The method for producing an oxide catalyst for producing acrylic acid according to claim 1. 前記焼成は、空気の流れ下で150乃至250℃の温度で1乃至4時間行われた後、窒素または不活性気体の流れ下で500乃至650℃の温度で1乃至4時間行われるものであることを特徴とする請求項1に記載のアクリル酸製造用酸化物触媒の製造方法。  The firing is performed at a temperature of 150 to 250 ° C. for 1 to 4 hours under a flow of air, and then for 1 to 4 hours at a temperature of 500 to 650 ° C. under a flow of nitrogen or an inert gas. The manufacturing method of the oxide catalyst for acrylic acid manufacture of Claim 1 characterized by the above-mentioned.
JP2010520921A 2007-08-13 2008-02-27 Method for producing improved acrylic acid production catalyst Active JP5180303B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020070081258A KR100954045B1 (en) 2007-08-13 2007-08-13 Method for preparing improved catalyst for the production of acrylic acid
KR10-2007-0081258 2007-08-13
PCT/KR2008/001126 WO2009022780A1 (en) 2007-08-13 2008-02-27 Method of preparing improved catalyst for production of acrylic acid

Publications (2)

Publication Number Publication Date
JP2010535628A JP2010535628A (en) 2010-11-25
JP5180303B2 true JP5180303B2 (en) 2013-04-10

Family

ID=40350821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010520921A Active JP5180303B2 (en) 2007-08-13 2008-02-27 Method for producing improved acrylic acid production catalyst

Country Status (4)

Country Link
JP (1) JP5180303B2 (en)
KR (1) KR100954045B1 (en)
CN (1) CN101778669B (en)
WO (1) WO2009022780A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2900775C (en) * 2015-08-20 2023-10-10 Nova Chemicals Corporation Improved oxidative dehydrogenation catalyst
JPWO2018016155A1 (en) * 2016-07-20 2019-05-09 東亞合成株式会社 Method for producing metal oxide catalyst
CA2993683A1 (en) 2018-02-02 2019-08-02 Nova Chemicals Corporation Method for in situ high activity odh catalyst
CN113492017A (en) * 2020-04-08 2021-10-12 中国石油天然气股份有限公司 Supported catalyst for preparing acrylic acid by catalytic oxidation of propane, and preparation method and application thereof
CN116328796B (en) * 2021-12-22 2024-06-04 中国石油天然气股份有限公司 Mo-V-Te-Nb system catalyst and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813777B2 (en) * 1986-12-11 1996-02-14 三菱化学株式会社 Acrylic acid manufacturing method
WO2001096016A1 (en) * 2000-06-15 2001-12-20 Asahi Kasei Kabushiki Kaisha Catalyst for vapor-phase catalytic oxidation or vapor-phase catalytic ammoxidation of propane or isobutane
JP4530595B2 (en) 2000-12-13 2010-08-25 旭化成ケミカルズ株式会社 Oxide catalyst for oxidation or ammoxidation
US6645905B2 (en) * 2001-04-25 2003-11-11 Rohm And Haas Company Annealed and promoted catalyst
US6642173B2 (en) * 2001-04-25 2003-11-04 Rohm And Haas Company Catalyst
US6841699B2 (en) * 2001-04-25 2005-01-11 Rohm And Haas Company Recalcined catalyst
US6645906B2 (en) * 2001-04-30 2003-11-11 Rohm And Haas Company High temperature mixing
BRPI0500615B1 (en) * 2004-03-10 2015-07-14 Rohm & Haas Modified Catalyst and Modified Catalyst System
US7378367B2 (en) 2004-03-25 2008-05-27 Nippon Shokubai Co., Ltd. Catalyst for production of acrylic acid and process for production of acrylic acid using the catalyst
EP1776185A1 (en) * 2004-07-22 2007-04-25 Schlögl, Robert, Prof. Dr. Metal oxide catalyst and method for the preparation thereof

Also Published As

Publication number Publication date
JP2010535628A (en) 2010-11-25
WO2009022780A1 (en) 2009-02-19
KR100954045B1 (en) 2010-04-20
CN101778669B (en) 2014-02-12
KR20090016919A (en) 2009-02-18
CN101778669A (en) 2010-07-14

Similar Documents

Publication Publication Date Title
US7544633B2 (en) Catalyst for partial oxidation and preparation method thereof
KR101772247B1 (en) Improved mixed metal oxide ammoxidation catalysts
JP6629394B2 (en) Improved selective ammoxidation catalyst
JP5180303B2 (en) Method for producing improved acrylic acid production catalyst
CN117299142A (en) Ammonia oxidation catalyst with selective co-product HCN production
US7485596B2 (en) Process for synthesizing a heteropoly acid catalyst for oxidation of unsaturated aldehydes to unsaturated carboxylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP2004188231A (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4766610B2 (en) Method for producing a catalyst for methacrylic acid production
JP2002306970A (en) Catalyst for manufacturing methacrylic acid, method for manufacturing the catalyst and method for manufacturing methacrylic acid
JP2010162460A (en) Method of manufacturing catalyst for synthesizing methacrylic acid
JP4629886B2 (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
JP5155397B2 (en) Method for producing catalyst for acrylic acid production using reactive ball mill
JPH0615178A (en) Preparation of catalyst for production of methacrylic acid
CN110944747B (en) Catalyst precursor for production of methacrylic acid, acrylic acid and esters thereof, and method for production of catalyst
JP5861267B2 (en) Method for producing a catalyst for methacrylic acid production
JP2003190798A (en) Method for producing catalyst used for production of methacrylic acid, catalyst produced by the same, and method for producing methacrylic acid
JP2004141823A (en) Manufacturing method of catalyst for production of methacrylic acid and manufacturing method of methacrylic acid
CN112547082A (en) Catalyst for preparing acrylic acid by acrolein oxidation and preparation method and application thereof
KR101074498B1 (en) Catalyst for gas-phase contact oxidation of hydrocarbon, its preparation method and gas-phase oxidation method of hydrocarbon using the same
JP2002095972A (en) Catalyst for producing methacrylic acid, method for producing the catalyst, and method for producing methacrylic acid
WO2014129566A1 (en) Method for producing catalyst for acrylonitrile production and method for producing acrylonitrile
JP2007326034A (en) Catalyst for oxidation reaction or amm oxidation reaction
JP2006081974A (en) Manufacturing method of catalyst for methacrylic acid production
JP2009095713A (en) Catalyst for manufacturing methacrylic acid, manufacturing method of this catalyst and manufacturing method of methacrylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121031

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5180303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250