JP2010530206A - 電力供給網に電気エネルギを供給する装置および前記装置に用いる直流電圧変圧器 - Google Patents

電力供給網に電気エネルギを供給する装置および前記装置に用いる直流電圧変圧器 Download PDF

Info

Publication number
JP2010530206A
JP2010530206A JP2010511483A JP2010511483A JP2010530206A JP 2010530206 A JP2010530206 A JP 2010530206A JP 2010511483 A JP2010511483 A JP 2010511483A JP 2010511483 A JP2010511483 A JP 2010511483A JP 2010530206 A JP2010530206 A JP 2010530206A
Authority
JP
Japan
Prior art keywords
voltage
inverter
coil
voltage transformer
storage choke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010511483A
Other languages
English (en)
Other versions
JP5127001B2 (ja
Inventor
ザカリアス,ペーター
サハン,ベンジャミン
Original Assignee
エスエムエー ソーラー テクノロジー アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスエムエー ソーラー テクノロジー アーゲー filed Critical エスエムエー ソーラー テクノロジー アーゲー
Publication of JP2010530206A publication Critical patent/JP2010530206A/ja
Application granted granted Critical
Publication of JP5127001B2 publication Critical patent/JP5127001B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Rectifiers (AREA)

Abstract

本発明は、直流電圧発生装置(1)に接続するための直流電圧変圧器(2)、およびバイポーラ電圧中間回路を有し、前記直流電圧変圧器(2)に接続され、かつ電力供給網(8)に接続するためのインバータ(3)を備える、前記電力供給網(8)に電気エネルギを供給する装置に関する。本発明によれば、前記直流電圧変圧器(2)は、前記直流電圧発生装置(1)を負側、正側の出力装置、またはその他の中央出力装置のいずれにおいても接地できるよう構成される。そのため、通常の動作においては充電および放電の際に接地線(19)に電流が流れないよう構成されるストレージチョーク(16)を備える。
【選択図】図1

Description

本発明は、請求項1の前提部に記載のような装置、および前記装置に適合する直流電圧変圧器に関する。
例えば太陽光発電プラント、もしくは燃料電池プラント等の直流電圧発生装置により発生した電気エネルギを交流電力送電網、詳細には電力供給網(50/60Hz)に供給するために、様々なインバータが用いられている。ほとんどの場合、直流電圧発生装置およびインバータの間には、直流電圧発生装置により供給される直流電圧を、インバータが必要とする、もしくはインバータに適合する直流電圧に変換する直流電圧変圧器(DC−DCチョッパ)が設けられる。
様々な理由により、直流電圧発生装置の出力装置のうち1個を接地するのが好ましい。接地が好ましい理由の一つは、国によっては接地が規則として求められるからである。他の理由は、接地しない場合、動作において様々な不都合が発生するためである。また、発生する問題の1つに高周波漏れ電流がある。ポテンシャル揺動が発生した場合、直流電圧発生装置および接地間の不可避な寄生容量が原因で、安全面において非常に大きいリスクをもたらす相当量の電流が発生する場合があり、そのため故障電流センサ等を用いた複雑なモニタ方法により接点を保護、もしくは電磁両立性(EMC)を実現する必要があり、上述の電流は接地によってのみ確実に防止できる。更に、太陽光発電装置は、製造時に用いられる技術によって、劣化に対する反応が非常に異なることが知られている。結晶セルおよび多結晶セル、もしくは所定の薄膜モジュールを備える発電装置は、好ましくは負極において接地され、裏面コンタクトセルは好ましくは正極において接地される。
上述の不都合を防止可能な上述のような接地は、直流電圧側と交流電圧側を直流的に分離する変圧器を備える直流電圧変圧器を用いることにより容易に実現可能である。使用されているのがグリッド変圧器か高周波変圧器かに関係なく、変圧器はとりわけ効率低下、相当の重量および外形寸法を有する部材、および/もしくは更なる管理費が発生する原因となり、そのため、変圧器不要の電圧コンバータが原則的に好ましい。しかしながら、変圧器不要の直流電圧変圧器を通常の形態で接続すると、必要なスイッチ、コンデンサ等が短絡する原因となるため任意の接地が不可能になったり、もしくは回路のコストが高くなったり、その他の不都合の原因となる。
したがって、他の方法で上述の不都合を防止するための多くの試みがなされている。特に、不要な漏れ電流を低減する回路が知られている(例えば、特許文献1、特許文献2、特許文献3)。これらの回路においては、例えば太陽光発電装置は、内部の電気エネルギ輸送の所定の段階において電力系統から絶縁して駆動される。太陽光発電装置が電力系統に周期的および電気的に再接続されると、その寄生容量は少量が再変換され、これにより太陽光発電装置の電位はグリッド周波数によって正弦的に、かつグリッド電圧の半分に相当する電圧振幅で変化する。すると、太陽光発電装置における2個のスイッチング周期間の低い電圧差およびスイッチングの際の非対称性により高周波電流が発生する。したがって、容量性漏れ電流をしっかりと最小限に抑えることはできるが、原則として完全に防止することはできない。
別の公知の回路装置(特許文献4)は、接地された中心点を有する、分割された太陽光発電装置を使用している。その結果、前記太陽光発電装置の全部材が固定電位を有し、そのため原則として容量性漏れ電流は流れることができない。2個の直流電流源はそれぞれ異なる発生量を有するため、電力差および電圧を補償する回路が更に設けられる。当該回路における不都合は、太陽光発電装置およびスイッチにおける高い電圧差、補償回路における更なる損失、および少なくとも4個の高周波パルススイッチが必要となるということである。
更に、変圧器を備えていないにも関わらず、太陽光発電装置を一方側で接地可能な公知の回路装置がある。その結果、原則として、容量性漏れ電流を防止することができる。しかしながら、このような回路装置には、高周波で同時にスイッチングし、平均出力電流を供給するため、5個の能動スイッチ、1個もしくは2個のスイッチを必要とするものがある(特許文献5)。したがって、「フライング・インダクタ」とも呼ばれるこの回路の効率は、電流フローに対して同時に直列に接続される構成要素の数の多さに影響を受ける。この回路の他の不都合は、電力系統に不連続な電流パルスが付加されるため容量性の電源フィルタが必要となり、この容量性の電源フィルタはその機能原則により力率を低下し、また自己が遊休電力を必要とするため部材の負荷範囲における回路の効率も低下することである。他の公知の回路(特許文献6)を用いることにより上記のような容量性の電源フィルタを使用しないことも可能ではあるが、当該回路は9個の能動スイッチを必要とし、そのうち少なくとも2個を高周波で同時に切替える必要があるため、生産コストが更に増大し、装置全体のロバスト性および効率が悪影響を受ける。フライング・インダクタの接続形態はまた、前記スイッチの電圧負荷がグリッド電圧に依存し、かつ電源異常の影響を受け、またフライング・インダクタは3個のインバータを利用して3倍にすることによる三相の動作モードでのみ駆動可能という不都合を有する。また上記とは別に、電流源特性を有するインバータが必要となり、これは、多くの場合好ましくない。
最後に、公知の装置に、直列接続され、かつ接地端子に接続される2個のコンデンサを備えるバイポーラ電圧中間回路を有するインバータに用いられるものがある(特許文献7)。そのような、今日ではここで述べるような目的で主に使用されるインバータは、3レベル回路からなるハーフブリッジインバータとして、また必要に応じて単相もしくは三相のグリッド電力用のインバータとして構成することが可能である。前述のいずれの場合においても、2個のコンデンサ間の接点は、各電力系統の中性線と連動し、各電力系統に接続される接地端子を形成する。
この公知の装置の直流電圧変圧器は、1個のチョーク、2個のダイオード、および1個のスイッチを備える。この場合、インバータの接地端子は直流電圧発生装置の負側の出力装置に接続可能である。このような接続は、2個の磁気的に結合されたコイルからなるストレージチョークを用いることにより可能となる。ストレージチョークの2個のコイルは、一方側において、スイッチが閉鎖されると2個のコイルのうち一方が直流電圧発生装置により充電され、また他方のコイルが当該一方のコイルを介して電磁結合により充電され、また他方側において、スイッチが開放されると、2個のコイルが連動する前記2個のコンデンサの各々、および当該コンデンサが備えるダイオードを介して放電されるよう、一方端において直流的に接続される。
この装置が有する、比較的単純な手段により、詳細には変圧器を用いずに1個のスイッチのみを用いて直流電圧発生装置を接地可能であるという利点は、接地端子は直流電圧変圧器の負側の出力装置にのみ接続可能であるという不都合により差引きされる。更に、この装置においては、原則として動作電流も接地端子から直流電圧発生装置に接続する接地線を流れるため、当該接地線を故障電流に関してモニタすることができない。
独国特許公開公報第102004037466号 独国特許公開公報第10221592号 独国特許公報第102004030912号 独国特許公開公報第10225020号 独国特許公報第19642522号 独国特許公報第19732218号 米国特許公開公報第2007/0047277号
上述の先行技術の観点から、本発明の技術的課題は上述したような装置、および詳細には前記装置に適合する直流電圧変圧器を、比較的単純な構成手段を用いて前記直流電圧発生装置をどの端子においても接地可能なように構成することである。
本発明によれば、上記課題の解決方法は請求項1および請求項16に記載の特徴的事項により実現される。
本発明によれば、最も単純な場合には1個のストレージチョーク、2個のダイオード、および2個のスイッチのみを必要とする直流電圧変圧器を用いることにより、直流電圧発生装置を接地して動作させることが可能である。その結果、多少コストが上がるだけで、直流電圧発生装置をほぼどこにおいてでも接地可能という利点が得られる。
本発明のその他の効果は、本発明の従属請求項により明らかである。
本発明は、例示としての記載を添付の図面と共に参照ことにより、より理解可能である。
図1は、直流電圧発生装置を異なる3種類の方法で接地した、本発明によるエネルギ供給システムに電気エネルギ供給する装置の第1の実施例を示す。 図2は、直流電圧発生装置を異なる3種類の方法で接地した、本発明によるエネルギ供給システムに電気エネルギ供給する装置の第1の実施例を示す。 図3は、直流電圧発生装置を異なる3種類の方法で接地した、本発明によるエネルギ供給システムに電気エネルギ供給する装置の第1の実施例を示す。 図4は、図1〜図3に示す装置の2個のスイッチを制御する信号、およびその結果発生する電流曲線を示す。 図5は、図1〜図3に示す装置を多少変形した直流電圧変圧器を示す。 図6は、直流電圧発生装置を異なる2種類の方法で接地した、本発明による装置の第2の実施例を示す。 図6は、直流電圧発生装置を異なる2種類の方法で接地した、本発明による装置の第2の実施例を示す。 図8は、図6および図7に示す直流電圧変圧器を、プラグ端子を介して構成を選択可能な構成部材として構成したものを概略的に示す。 図8は、図6および図7に示す直流電圧変圧器を、プラグ端子を介して構成を選択可能な構成部材として構成したものを概略的に示す。 図8は、図6および図7に示す直流電圧変圧器を、プラグ端子を介して構成を選択可能な構成部材として構成したものを概略的に示す。 図11は、本発明の直流電圧変圧器を用いて駆動可能な、図1〜図3に示すインバータ以外のインバータを示す。 図12は、本発明の直流電圧変圧器を用いて駆動可能な、図1〜図3に示すインバータ以外のインバータを示す。 図13は、本発明の直流電圧変圧器を用いて駆動可能な、図1〜図3に示すインバータ以外のインバータを示す。
図1によれば、電気エネルギを発生する装置は直流電圧発生装置1、直流電圧変圧器2、およびインバータ3を備える。前記直流電圧発生装置1は例えば太陽光発電プラントもしくは燃料電池プラントからなり、出力装置4(+)および5(−)、および前記出力装置に平行に接続されるコンデンサCを備える。
本出願の範囲に属する好ましいインバータ3は電力系統8に単相の電気エネルギを供給する2個の出力装置6および7を備え、前記電力系統8のL側は前記出力装置6に接続され、中性線Nは前記出力装置7に接続される。前記インバータ3は更に、3個の入力装置E1、E2およびE3を備える。前記入力装置E1およびE2間には2個の直列接続のコンデンサC1およびC2が配置され、前記コンデンサC1およびC2の接点は前記入力装置E3に配置される。前記コンデンサC1およびC2は、前記インバータ3の通常のバイポーラ電圧中間回路を形成する。図1に示すように、前記インバータ3はハーフブリッジインバータとして構成され、そのため2個のスイッチS1およびS2を備え、前記2個のスイッチS1およびS2の各々は、端子の一方が前記入力装置E1およびE2にそれぞれ接続され、他方の端子は共有する接点9に接続し、更に前記接点9から平滑チョークもしくは電源チョークL1を介して前記出力装置6に接続する。ダイオードD1、D2は更に、前記2個のスイッチS1、S2の一方にそれぞれ平行接続される。これにより、前記ダイオードD1は前記接点9から前記入力装置E1の方向に電流を流し、前記ダイオードD2は前記入力装置E3から前記接点9の方向に電流を流し、また前記ダイオードは対向する方向に対しては電流を流さない。最後に、前記入力装置E3は前記出力装置7に直接接続され、かつ他方側で接地されて接地端子を構成する。
前記インバータ3は、およそ以下のように動作する。前記スイッチS1、S2が交互にオンオフ切替えされると、前記コンデンサC1のE3に対して正となる側(入力装置E1)が前記接点9および前記電源チョークL1を介して、例えばスイッチ信号の正の半波の間にL側に接続される(まずスイッチS1が閉鎖され、スイッチS2が開放される)。次に、前記スイッチS1が開放されると、電流は前記電源チョークL1、前記コンデンサC2および前記ダイオードD2を流れ続ける。前記電力系統8の負の半波の間(スイッチS1は開放され、まずスイッチS2が閉鎖される)、前記コンデンサC2のE3に対して負となる側(入力装置E2)は、前記接点9および前記チョークL1を介して前記L側に接続され、電流は、前記スイッチS2が閉鎖された後、前記ダイオードD1および前記コンデンサC1を流れ続ける。その結果、前記2個のコンデンサC1、C2は交互に放電され、適合する直流電圧変圧器を用いて、公知の方法により充電される。
上述のような装置は一般的に公知(例えば米国特許公開公報第2007/0047277号、図10)であり、したがって当業者にとっては詳細な記述は不要であるとする。
図1を参照して、本発明の直流電圧変圧器2は、前記直流電圧発生装置の前記2個の出力装置4および5に接続される2個の入力装置10および11、および前記インバータ3の前記入力装置E1、E2およびE3に接続される3個の出力装置12、13および14を備える。前記入力装置10にはスイッチS3が接続され、前記スイッチS3は接点15に接続する。ストレージチョーク16の一方の端子は前記接点15に接続され、前記ストレージチョークの他方の端子は接点17に配置され、前記接点17は第2のスイッチS4を介して前記入力装置11に接続される。更に、前記接点17は第1のダイオードD3を介して前記出力装置12に接続され、前記出力装置13は第2のダイオードD4を介して前記接点15に接続する。前記ダイオードD3は前記出力装置12の方向に、前記ダイオードD4は前記接点15の方向にそれぞれ電流を流すことが可能であり、対向する方向に対しては電流を流さない。その結果、前記直流電圧変圧器2の機能原理は以下となる。
前記スイッチS3およびS4が同時に閉鎖されると、前記ストレージチョーク16は前記直流電圧発生装置1もしくはそのコンデンサCにより充電される。前記スイッチS3、前記ストレージチョーク16および前記スイッチS4は、電気エネルギを前記ストレージチョーク16に蓄積する第1の直列電気回路を形成する。この時、前記ダイオードD3およびD4は、電流が前記コンデンサC1およびC2に対して流入もしくは流出するのを防ぐ。一方、前記2個のスイッチS3およびS4が同時に開放されると、前記ストレージチョーク16は前記ダイオードD3、前記直列接続のコンデンサC1およびC2、および前記ダイオードD4を介して放電する。この段階において、前記ストレージチョーク16は前記部材D3、C1、C2、およびD4とともに、前記ストレージチョーク16を放電もしくは、それにより前記コンデンサC1、C2を充電するための第2の直列電気回路を形成する。前記2個のコンデンサC1、C2が同じ静電容量を有する場合、同一の電圧UC1=UC2が荷電される。
開放状態にある時、前記スイッチS3、S4の電圧負荷は比較的小さい。前記ダイオードD3およびD4が導電状態にある時、前記スイッチS3における電圧は最大でUS3=UC+UC2となり、この場合UCは前記直流電圧発生装置1の出力電圧である。一方、前記スイッチS4における電圧は最大でUS4=UC1となる。
上記に関わらず、上述の前記直流電圧変圧器2は、前記直流電圧発生装置1を比較的広範囲の出力電圧で駆動できるという利点を有する。前記直流電圧変圧器2を設けない場合、前記直流電圧発生装置1が常に、たとえ好ましくない条件下においてでも、前記入力装置E1およびE2に十分に高い出力電圧を供給して、前記コンデンサC1およびC2にグリッド振幅(通常、プラスマイナス約325V)より高い電圧を荷電するようにしなければならない。一方、昇圧用の直流電圧変圧器2を設けた場合、前記直流電圧発生装置1の出力電圧が、前記インバータ3(もしくは前記電力系統8)が少なくとも必要とする電圧より低い場合でも、前記スイッチS3およびS4を駆動できるパルス占有率を選択することにより、前記コンデンサC1、C2における電圧を任意の高さに設定できる。
更に、上述の装置は非常に柔軟に使用できる。これは、C1およびC2における電圧を、S3およびS4に対して選択したパルス占有率に応じて前記コンデンサCにおける入力電圧より高くすること、低くしたりすることが両方可能だからである。前記パルス占有率が0.5より大きい場合、前記直流電圧変圧器は昇圧モードで動作する。前記パルス占有率が0.5より低い場合、前記直流電圧変圧器2は降圧モードで動作する。パルス占有率が0.5である場合、実際には、前記直流電圧発生装置1の出力装置に加えられる電圧は直接供給されることになる。前記インバータスイッチS1およびS2の最大電圧負荷は約2・UC1であり、この場合UC1は前記コンデンサC1における最大電圧である。また、最も単純な場合として、所定の荷電期間の半分の期間、前記スイッチのうち一方のみを高周波でオンのままに保持し、他方をオフに保持してもよい。更に、前記インバータ側において、前記電力系統8に連続して電流を流してもよい。
以上により、本発明の大きな利点として、前記接地点E3を任意で前記直流電圧変圧器2の前記入力装置11に接続可能であり、その結果、前記負の出力装置5(図1)に接続可能であり、また、前記直流電圧変圧器2の前記入力装置10にも任意で接続可能であり、その結果、正側の出力装置5(図2)に接続可能であり、もしくは前記直流電圧発生装置1のその他の端子18(図3)に接続可能であり、また、前記電力系統8の前記中性線Nについても同様である。通常動作においては、それぞれ破線で示され、前記接地点E3を前記直流電圧変圧器2の対応する入力装置もしくは前記直流電圧発生装置1の対応する出力装置に接続する接地線19(図1)もしくは20(図2)もしくは21(図3)には電流が流れない。これは特に、前記ストレージチョーク16および前記部材E3、C1、C2、およびD4が閉鎖電気回路を形成しており、前記接地線19、20、もしくは21を備えないためである。そのため、依然として電流が前記接地線19、20、もしくは21に流れる場合、プラントに不良があると判断してもよい。本発明によれば、好ましくは前記接地線19、20 もしくは21内にブレーカ等形状のモニタ素子を配置し、事前に選択したピーク電流の許容値を超えた場合、プラントを自動的に遮断する。この機能は、前記接地端子E3が、前記直流電圧変圧器2のどの入力装置、もしくは前記直流電圧発生装置1のどの出力装置に接続されても影響を受けない。
公知の方法において、前記スイッチS1〜S4は実際は半導体スイッチとして構成され、ここでは図示しない、スイッチ周波数が例えば16kHz以上の制御装置(マイクロコントローラ、PWMコントローラ等)により駆動されて周期的にオンオフ切替されてもよい。
図4において、前記スイッチS3およびS4を駆動する信号および前記ストレージチョーク16における電流路を例示する。図を参照して、前記2個のスイッチS3、S4は常に同時にオンオフ切替えされているのが分かる。
図5は、図1〜図3を変形した実施例を示し、前記ストレージチョーク16は中央端子もしくはコイルタップ23を介して2個のコイル部材W11およびW12に分割される。この場合、前記接点15が前記タップ23に接続され、その結果、前記タップ23により固定される前記ストレージチョーク16の前記部材W11のみが前記ストレージチョーク16を充電する前記第1の電気回路内に配置されるよう構成し、前記第2の電気回路は、前記ダイオードD4およびD3間に配置される前記ストレージチョーク16全体もしくは前記部材W11+W12を含む。その結果、入力電圧および出力電圧、前記スイッチS3および前記ダイオードD3およびD4の負荷の関係に対応する本発明による回路における電位の更なる最適化が可能となる。導電率が比較的高い場合、S3およびS4に対応するパルス占有率に加えて、構成部材の実効電流および電圧負荷を関係式(W12+W11):W11により調整することが可能である。原則的に、前記タップ23の位置は即時的に選択可能である。前記タップ23の特別な利点は、開放状態にある前記スイッチS3における最大電圧負荷が電圧US3=UC+[−n/(n+1)]・UC1+UC2によってのみ決定され、この場合、n=W12/W11およびW11およびW12は、同時に前記コイルW11およびW12の巻数を示す。前記スイッチS4における電圧負荷は、US4=UC1である。もしくは、前記タップ23を類似の形態で前記スイッチS4に接続してもよい。その他については、図5に示す装置は図1〜図3に示す装置と対応しており、そのため、前記直流電圧変圧器2の前記出力装置14は任意で前記直流電圧発生装置1の前記出力装置4もしくは5、もしくはその他の出力装置に接続してもよい。
本発明の他の実施例を図6および図7に示す。本実施例においては、上述の利点が、本質的には公知のチョークであるが、これまでに知られていない方法で電気的に接続されるストレージチョーク24を備えることにより得られる点で図1〜図5に示す実施例と特に異なる。前記ストレージチョーク24は第1のコイルW1および第2のコイルW2を備え、前記第1のコイルW1および第2のコイルW2は相互に磁気的に結合され、そのため例えば共有のコア25上に巻回される。
図1に示すチョークコイル16と同様に、前記第1のコイルW1は前記2個のスイッチS3、S4間、もしくは前記2個の接点15および17間に電気的に挿入される。更に、前記接点17は図1に示すように前記ダイオードD3を介して前記出力装置12に接続される。一方、前記直流電圧変圧器2の前記入力装置13はダイオードD5を介して前記コイルW2の一方の端子に接続され、前記コイルW2の他方の端子は接点26およびダイオードD6を介して前記接点15に接続する。更に、前記接点26は前記出力装置14に接続される。上述の配置により、以下のような機能が得られる。
前記ストレージチョーク24の前記第1のコイルW1は、前記2個のスイッチS3、S4とともに、前記直流電圧発生装置1の前記出力装置4、5に平行に配置される第1の直列電気回路を形成し、前記スイッチS3、S4が閉鎖されると前記コイルW1に電気エネルギを充電する。この際、前記2個のコイルW1、W2は磁気的に結合しているため、前記コイルW2もまた前記コイルW1を介して充電される。これにより、前記2個のコイルW1、W2の巻線方向は、図6において点線で示す端子において同一の電圧極性が得られるよう選択される。
前記スイッチS3、S4が開放状態にある時、前記2個のコイルW1、W2は、前記コイルW1の一方の端子(接点17)から前記ダイオードD3、前記直列に実装されるコンデンサC1およびC2、前記ダイオードD5、前記コイルW2、前記接点26および前記ダイオードD6を介して、前記コイルW1の他方の端子(接点15)に接続する第2の直列電気回路内に配置される。図1に示す場合と同様に、前記第2の電気回路は閉鎖回路であり、前記コイルW1、W2を同時に放電、もしくは前記コンデンサC1、C2を同時に充電する。更に、前記2個のコイルW1、W2は前記電気回路を介して直流的に接続される。
上記のような回路構成の結果、前記直流電圧変圧器2の前記出力装置14もしくは前記インバータ3の前記出力装置E3を、前記接地線19(図6)もしくは前記接地線20(図7)を介して前記直流電圧変圧器2の前記入力装置11もしくは10に任意で接続することが可能となり、その結果、同様に任意で前記直流電圧発生装置1の前記出力装置5もしくは4に接続することが可能となり、これにより、前記直流電圧発生装置1を前記負の出力装置5(図6)もしくは前記正側の出力装置4(図7)において接地可能である。更に、前記入力装置E3は、図3と同様に、前記直流電圧発生装置1のいずれの中央出力装置に接続してもよい。上述のいずれの場合においても、前記接地線19〜21には前記ストレージチョーク16の充電もしくは放電中にも電流が流れないため、前記接地線19、20、および該当する場合は21は通常の動作においては使用されない。その結果、図1〜図5に示す場合と同様に、前記接地線19〜21内、もしくは前記接地点E3および前記端子4、5、もしくは18のうち1個の間に依然として電流が検出されるということは、プラントもしくは前記直流電圧変圧器2内に不良があることを示しており、プラントをオフにするために利用してもよい。
図1〜図3に示す装置に対する図6に示す装置の利点は、前記スイッチS3の電圧負荷がより低いことによる。前記スイッチS3およびS4が遮断されている場合、前記ダイオードD6は導電性のため、スイッチS3に加えられる最大電圧は電圧UCであり、前記ダイオードD3もまた導電性のため、スイッチS4には電圧UC1が加えられる。一方、図7に示す装置においては、前記スイッチS3における電圧負荷はゼロであり、前記スイッチS4における電圧負荷はUC+UC1となる。
本発明の別途図示しない他の実施例によれば、前記チョークコイル16の前記コイルW1は図5と同様の形態にタップにより2個の部材に分割可能である。これにより、図5に示すように、前記2個のコイル部材を前記第2の電気回路に配置し、かつ前記タップを前記接点15、17のうち一方に接続可能である。その結果、図6および図7に示す実施例における前記スイッチS3の電圧負荷は必要に応じて更に低減される。
図6および図7に示す前記コイルW1、W2の電磁結合は、好ましくは1個の共有するコア上に、必要に応じて相互の上方もしくは下方で巻回されることにより得られる。好ましくは、前記コイルW1、W2は同一の巻数を有し、図6および図7に概略的に示す回路構成においては、実際は前記コア25上に対向する方向に巻回され、これにより充電および放電の際に電流が正しい方向流れる
図8〜図10は、前記直流電圧変圧器2、ここでは特に図6および図7に示す直流電圧変圧器2を、プラグ端子等として構成される複数の端子が設けられる構成部材27として構成する方法を示す。図8に示すように、前記直流電圧変圧器2は、図6および図7とは異なり、前記入力装置10、11および前記出力装置12、13に加えて4個の更なる出力装置28、29、30、および31を備え、出力装置14を備えない。前記端子28は前記入力装置10に直接接続され、前記端子31は入力装置11に直接接続される。更に、前記端子29は前記コイルW2の、前記ダイオードD5および前記接点26に接続する前記端子30から離れた側の端子に接続され、前記端子は図8における接点26とは接続しない。この場合、適合する接続を介して、前記直流電圧発生装置1を任意で前記負極5(図9)もしくは前記正極4(図10)に接地してもよい。
前記負側の出力装置5で接地するのが望ましい場合、前記端子31は図9に示すように接地され、かつ前記インバータ3の前記入力装置E3に接続され、その結果、モニタ素子32を介して前記電力系統8の前記中性線Nに接続される。更に、前記端子29および30は相互に接続される。その結果、前記構成要素27を駆動するため、前記直流電圧発生装置1の前記出力装置4、5を前記入力装置10および11に接続し、前記出力装置12および13を前記インバータ3の前記入力装置E1、E2に接続し、前記端子29、30両方を前記インバータ3の前記入力装置E3に接続することにより、図6に示す回路構成が得られる。
一方、前記直流電圧発生装置1の正側の出力装置で接地するのが望ましい場合、前記端子28は図10に示すように接地され、かつ前記モニタ素子32を介して前記インバータ3の前記入力装置E3に接続される。その他の接続は図9と同様となる。前記構成部材27、もしくはそこに配置される前記直流電圧変圧器2の前記端子28、31を単に接続し直すだけで、前記直流電圧発生装置1を正側の出力装置4で接地するか、負側の出力装置5で接地するか選択可能となる。前記構成部材27のその他の出力装置は、前記直流電圧発生装置1の中央端子を接地してもよい。
図1〜図5に示す前記直流電圧変圧器を用いた場合でも、同様の手順が実行される。
上記においては、ハーフブリッジインバータとして構成される前記インバータ3のみについて記載されているが、当業者にとっては、バイポーラ電圧中間回路を有するその他のインバータを本発明の前記直流電圧変圧器2に接続してもよいことは自明である。これについて、図11〜図13に概略的に示す。図11および図12はそれぞれ、(それぞれが単相で実装される)3レベル回路からなるハーフブリッジインバータ、および中心点を有する3レベル回路からなるインバータを示し、図13は、三相で供給される電力系統8用のインバータを示す。前記3個のインバータは全てバイポーラ電圧中間回路を有し、前記入力装置E1〜E3および前記出力装置6、7は上述の記載に対応する。前述のようなインバータは本質的に公知のものであるため、詳細な説明は不要と考える。
本発明は上述の実施例に制限されるものではなく、上述の実施例は様々に変形してもよい。これは特に、前記インバータ3および前記直流電圧変圧器2が好ましくは図面に示すような一体化した構造体として製造・販売される場合に適用されるが、前記インバータ3および前記直流電圧変圧器2はまた、個別の構成部材として製造・販売してもよい。図8〜図10を参照して上述した実施の形態は、前記直流電圧変圧器1の個々の場合における接地の形態にかかわらず普遍的に使用可能な直流電圧変圧器の大量生産が可能となるため、個別の構成部材としての製造・販売特に適合する。したがって、本発明は直流電圧変圧器2およびインバータ3の結合形態のみではなく、前記直流電圧変圧器2自体にも関する。更に、上述の記載においては本発明の理解に必要な構成部材のみが説明されており、特に、実質的に公知で必要な制御装置、MPPコントローラ等を更に設けてもよいことは明らかである。また、様々な特徴を、上述および図示したものとは異なる他の結合形態で使用してもよいこととする。

Claims (19)

  1. 直流電圧発生装置(1)に接続するための直流電圧変圧器(2)、および前記直流電圧変圧器(2)に接続され、かつ電力供給網(8)に接続するためのインバータ(3)を有し、前記インバータは、前記直流電圧発生装置(1)の端子に接続するための接地端子(E3)にともに接続される直列接続の2個のコンデンサ(C1、C2)を有するバイポーラ電圧中間回路を備え、前記直流電圧変圧器(2)は、少なくとも2個のダイオード(D3、D4)、1個のスイッチ、および前記スイッチが閉鎖されると前記直流電圧発生装置(1)により充電され、前記スイッチが開放されると前記コンデンサ(C1、C2)および前記ダイオード(D3、D4)を介して放電される1個のストレージチョーク(16)を備える、前記電力供給網(8)に電気エネルギを供給する装置であって、一方側において、前記ストレージチョーク(16)および2個のスイッチ(S3、S4)は、前記スイッチ(S3、S4)が閉鎖されると前記直流電圧発生装置(1)に接続され、前記ストレージチョーク(16)を充電する第1の電気回路を形成し、他方側において、前記ストレージチョーク(16)、前記2個のダイオード(D3、D4)および前記2個のコンデンサ(C1、C2)は、前記スイッチ(S3、S4)を開放することにより駆動され、前記コンデンサ(C1、C2)およびダイオード(D3、D4)両方を介して前記ストレージチョーク(16)を同時に放電する第2の電気回路内に配置されることを特徴とする、装置。
  2. 前記第1の電気回路は直列回路であり、前記第1の電気回路において前記ストレージチョーク(16)は前記2個のスイッチ(S3、S4)間に電気的に挿入されることを特徴とする、請求項1に記載の装置。
  3. 前記第2の電気回路は直列回路であり、前記ストレージチョーク(16)の第1の端子から、第1のダイオード(D3)、前記2個のコンデンサ(C1、C2)、および第2のダイオード(D4)を介して、前記ストレージチョーク(16)の第2の端子に接続することを特徴とする、請求項1または請求項2に記載の装置。
  4. 前記ストレージチョーク(16)は分割され、前記2個のスイッチ(S3、S4)の一方に接続されるコイルタップ(23)を備え、前記ストレージチョーク(16)の前記タップ(23)により固定される第1の部材(W11)のみが前記第1の電気回路内に配置され、前記ストレージチョーク(16)の第2の部材(W11+W12)は前記第2の電気回路内に配置されることを特徴とする、請求項1〜請求項3のいずれか1項に記載の装置。
  5. 前記ストレージチョーク(16)は第1のコイル(W1)および第2のコイル(W2)を備え、前記2個のコイル(W1、W2)は磁気結合され、かつ直流的に接続され、前記第1のコイル(W1)は前記2個のスイッチ(S3、S4)とともに前記第1の電気回路を形成し、前記コイル(W1、W2)の両方は前記第2の電気回路内に配置されることを特徴とする、請求項1に記載の装置。
  6. 前記第2の電気回路は直列回路であり、前記第1のコイル(W1)の第1の端子から、前記第1のダイオード(D3)、前記2個のコンデンサ(C1、C2)、第2のダイオード(D5)、前記第2のコイル(W2)、および第3のダイオード(D6)を介して、前記第1のコイル(W1)の第2の端子に接続することを特徴とする、請求項5に記載の装置。
  7. 前記第1のコイル(W1)は分割され、前記2個のスイッチ(S3、S4)の一方に接続されるコイルタップを備え、前記第1のコイルの前記タップにより固定される第1の部材のみが前記第1の電気回路内に配置され、前記第1のコイルの第2の部材は前記第2の電気回路内に配置されることを特徴とする、請求項5または請求項6に記載の装置。
  8. 前記2個のコイル(W1、W2)は共有する1個のコア(16)上に巻回されることを特徴とする、請求項5〜請求項7のいずれか1項に記載の装置。
  9. 前記コイル(W1、W2)は前記コア(16)上に対向して巻回されることを特徴とする、請求項8に記載の装置。
  10. 前記2個のコイル(W1、W2)は同一の巻数を有することを特徴とする、請求項5〜請求項9のいずれか1項に記載の装置。
  11. 前記直流電圧変圧器(2)は、プラグ端子として構成される複数の端子(12、13、28〜31)を備える構成部材(27)として構成され、これにより、前記直流電圧変圧器(2)は前記直流電圧発生装置(1)が必要とする任意の接地に応じて前記インバータ(3)の連動する入力装置に接続可能となることを特徴とする、請求項1〜請求項10のいずれか1項に記載の装置。
  12. 前記直流電圧変圧器(2)は、前記直流電圧発生装置(1)に接続される入力装置(10、11)を、前記インバータ(3)の前記接地端子(E3)に接続される出力装置(14)に接続する接地線(19、20、21)を備えることを特徴とする、請求項1〜請求項11のいずれか1項に記載の装置。
  13. 故障電流を検知するモニタ素子(32)は前記接地線(19、20、21)に接続されることを特徴とする、請求項12に記載の装置。
  14. 前記インバータ(3)はハーフブリッジインバータとして構成されることを特徴とする、請求項1〜請求項13のいずれか1項に記載の装置。
  15. 前記インバータ(3)は、3レベル回路からなるハーフブリッジインバータ(図7)として構成されることを特徴とする、請求項1〜請求項13のいずれか1項に記載の装置。
  16. 前記インバータ(3)は、中心点を有する3レベル回路からなるハーフブリッジインバータ(図8)として構成されることを特徴とする、請求項1〜請求項13のいずれか1項に記載の装置。
  17. 前記インバータ(3)は、前記電力供給網(8)に単相または三相の電気エネルギを供給するよう構成される(図2〜図6または図7)ことを特徴とする、請求項1〜請求項13のいずれか1項に記載の装置。
  18. 電力供給網(8)に電気エネルギを供給し、直流電圧発生装置(1)、およびバイポーラ電圧中間回路(C1、C2)を有するインバータ(3)を配置する装置に用いる直流電圧変圧器であって、請求項1〜請求項13の少なくとも1項に記載の通りに構成されることを特徴とする、直流電圧変圧器。
  19. 前記インバータ(3)と結合して構造体を形成することを特徴とする、請求項18に記載の直流電圧変圧器。
JP2010511483A 2007-06-15 2008-04-12 電力供給網に電気エネルギを供給する装置および前記装置に用いる直流電圧変圧器 Expired - Fee Related JP5127001B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007028078A DE102007028078B4 (de) 2007-06-15 2007-06-15 Vorrichtung zur Einspeisung elektrischer Energie in ein Energieversorgungsnetz und Gleichspannungswandler für eine solche Vorrichtung
DE102007028078.7 2007-06-15
PCT/DE2008/000620 WO2009010025A1 (de) 2007-06-15 2008-04-12 Vorrichtung zur einspeisung elektrischer energie in ein energieversorgungsnetz und gleichspannungswandler für eine solche vorrichtung

Publications (2)

Publication Number Publication Date
JP2010530206A true JP2010530206A (ja) 2010-09-02
JP5127001B2 JP5127001B2 (ja) 2013-01-23

Family

ID=39753492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010511483A Expired - Fee Related JP5127001B2 (ja) 2007-06-15 2008-04-12 電力供給網に電気エネルギを供給する装置および前記装置に用いる直流電圧変圧器

Country Status (9)

Country Link
US (1) US7944091B2 (ja)
EP (1) EP2067230B1 (ja)
JP (1) JP5127001B2 (ja)
KR (1) KR101029198B1 (ja)
CN (1) CN101682194B (ja)
AT (1) ATE482507T1 (ja)
DE (2) DE102007028078B4 (ja)
ES (1) ES2349394T3 (ja)
WO (1) WO2009010025A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013546302A (ja) * 2010-12-17 2013-12-26 クアルコム,インコーポレイテッド 2段電力変換
JP2014523225A (ja) * 2011-07-08 2014-09-08 エスエムエー ソーラー テクノロジー アーゲー Dc/acコンバータ、発電プラント、および、dc/acコンバータのための動作方法
JP2017538616A (ja) * 2014-12-09 2017-12-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag 自動車用ローリング安定化システム

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007029767B3 (de) * 2007-06-22 2008-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wechselrichter
EP2148417B1 (de) * 2008-07-22 2018-01-10 SMA Solar Technology AG Wechselrichterschaltungsanordnung für einen Photovoltaikgenerator mit mehreren eingangs seriell geschalteten Stromrichtern
DE102008048841B8 (de) * 2008-09-25 2010-06-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Trennschaltung für Wechselrichter
DE102008063201A1 (de) * 2008-12-29 2010-07-22 Martin Weinmann Verfahren und Schaltungsanordnung zur Speisung des Spannungszwischenkreises eines Wechselrichters
JP2011078290A (ja) * 2009-10-02 2011-04-14 Tabuchi Electric Co Ltd 電力変換装置および太陽光発電システム
EP2317635A1 (en) * 2009-11-02 2011-05-04 ABB Research Ltd Non-isolated DC-DC converter assembly
US8433528B2 (en) * 2009-12-18 2013-04-30 Rockwell Automation Technologies, Inc. Ground fault detection system and method
EP2367275B2 (en) 2010-03-18 2020-12-23 MARICI Holdings The Netherlands B.V. Non-isolated DC - DC converter for solar power plant
DE102010060463B4 (de) * 2010-11-09 2013-04-25 Sma Solar Technology Ag Schaltungsanordnung zur Potentialeinstellung eines Photovoltaikgenerators und Photovoltaikanlage
JP5282855B2 (ja) * 2010-11-17 2013-09-04 富士電機株式会社 交流−交流変換装置
US8929114B2 (en) * 2011-02-24 2015-01-06 Virginia Tech Intellectual Properties, Inc. Three-level active neutral point clamped zero voltage switching converter
DE102011052768A1 (de) 2011-08-17 2013-02-21 Sma Solar Technology Ag Wechselrichter mit gekoppelten Induktivitäten
DE102012101340B4 (de) 2012-02-20 2015-11-19 Sma Solar Technology Ag Schutz von Photovoltaikmodulen eines Photovoltaikgenerators vor Überspannungen gegenüber Erde
DE102012202855A1 (de) * 2012-02-24 2013-08-29 Robert Bosch Gmbh Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102012202853A1 (de) * 2012-02-24 2013-08-29 Robert Bosch Gmbh Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
DE112012000487T5 (de) * 2012-04-10 2014-01-23 Fuji Electric Co., Ltd Leistungsumwandlungseinrichtung
UA104964C2 (uk) * 2013-03-18 2014-03-25 Володимир Олексійович Кльосов Джерело живлення системи електричного опалювання
CN103259433B (zh) * 2013-05-20 2015-05-13 南京理工大学 基于正激变换器的高频隔离式三电平逆变器
EP2874303B1 (en) * 2013-11-15 2019-01-02 Mitsubishi Electric R & D Centre Europe B.V. DC/AC inverter
FR3027151B1 (fr) * 2014-10-08 2016-12-09 Schneider Electric Ind Sas Circuit electrique transformateur et installation comportant un tel circuit
DE102015105889A1 (de) * 2015-04-17 2016-10-20 Ge Energy Power Conversion Technology Limited Schaltmodul und Umrichter mit wenigstens einem Schaltmodul
US9812867B2 (en) * 2015-06-12 2017-11-07 Black Night Enterprises, Inc. Capacitor enhanced multi-element photovoltaic cell
US10381917B2 (en) * 2017-03-23 2019-08-13 Eaton Intelligent Power Limited Power converter apparatus and methods using adaptive node balancing
US10097109B1 (en) * 2017-07-19 2018-10-09 Futurewei Technologies, Inc. Three-level voltage bus apparatus and method
JP7021478B2 (ja) * 2017-09-04 2022-02-17 オムロン株式会社 太陽光発電システム及び変換器
DE102018201925A1 (de) * 2018-02-07 2019-08-08 Würth Elektronik eiSos Gmbh & Co. KG Vorrichtung zur Gewinnung elektrischer Energie und Energieerzeuger mit einer derartigen Vorrichtung
GB201805517D0 (en) * 2018-04-04 2018-05-16 Rolls Royce Plc Dc-ac converter and method of dc-ac conversion
US10976762B2 (en) * 2018-10-26 2021-04-13 Rolls-Royce North American Technologies, Inc. Control of an electrical power system responsive to sensing a ground fault
CN113904576B (zh) * 2021-10-26 2023-08-08 南京信息工程大学 一种集成升压光伏并网逆变器及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111778A (ja) * 1993-10-08 1995-04-25 Nec Corp Dc−dcコンバータ
JPH11235024A (ja) * 1998-02-09 1999-08-27 Sanyo Denki Co Ltd インバータ装置
JP2000287441A (ja) * 1999-03-31 2000-10-13 Shindengen Electric Mfg Co Ltd 二出力チョッパ回路
JP2003186552A (ja) * 2001-12-21 2003-07-04 Fujitsu Ltd 正負電源発生装置および半導体装置
DE102004037446A1 (de) * 2004-08-02 2006-06-01 Conergy Ag Trafoloser Wechselrichter,für die Umwandlung von solrarem Gleichstrom in sinusförmigen Wechselstrom zur Netzeinspeisung
JP2006238654A (ja) * 2005-02-28 2006-09-07 Seiko Instruments Inc スイッチングレギュレータ
JP2007068385A (ja) * 2005-08-29 2007-03-15 Ind Technol Res Inst トランスレス型系統連係電力変換回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642522C1 (de) 1996-10-15 1998-04-23 Dietrich Karschny Wechselrichter
DE19732218C1 (de) 1997-07-26 1999-03-18 Dirk Schekulin Transformatorlose Wechselrichter-Schaltungsanordnung
US6275392B1 (en) * 2000-09-27 2001-08-14 Rockwell Technologies, Llc Method and apparatus for pre-charge control of VSI
DE10221592A1 (de) 2002-05-15 2003-12-04 Fraunhofer Ges Forschung Wechselrichter sowie Verfahren zum Umwandeln einer elektrischen Gleichspannung in einen Wechselstrom
DE10225020A1 (de) 2002-06-06 2003-12-24 Sma Regelsysteme Gmbh Schaltungsanordnung, Verfahren zur Wechselstromerzeugung
DE10312921A1 (de) * 2003-03-22 2004-10-14 Sma Regelsysteme Gmbh Schaltungsanordnung, Zusatzmodul und Solaranlagen-System
DE102004030912B3 (de) 2004-06-25 2006-01-19 Sma Technologie Ag Verfahren zum Umwandeln einer elektrischen Gleichspannung einer Gleichspannungsquelle, insbesondere einer Photovoltaik-Gleichspannungsquelle in eine Wechselspannung
ATE416508T1 (de) * 2005-10-24 2008-12-15 Conergy Ag Wechselrichter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111778A (ja) * 1993-10-08 1995-04-25 Nec Corp Dc−dcコンバータ
JPH11235024A (ja) * 1998-02-09 1999-08-27 Sanyo Denki Co Ltd インバータ装置
JP2000287441A (ja) * 1999-03-31 2000-10-13 Shindengen Electric Mfg Co Ltd 二出力チョッパ回路
JP2003186552A (ja) * 2001-12-21 2003-07-04 Fujitsu Ltd 正負電源発生装置および半導体装置
DE102004037446A1 (de) * 2004-08-02 2006-06-01 Conergy Ag Trafoloser Wechselrichter,für die Umwandlung von solrarem Gleichstrom in sinusförmigen Wechselstrom zur Netzeinspeisung
JP2006238654A (ja) * 2005-02-28 2006-09-07 Seiko Instruments Inc スイッチングレギュレータ
JP2007068385A (ja) * 2005-08-29 2007-03-15 Ind Technol Res Inst トランスレス型系統連係電力変換回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013546302A (ja) * 2010-12-17 2013-12-26 クアルコム,インコーポレイテッド 2段電力変換
JP2014523225A (ja) * 2011-07-08 2014-09-08 エスエムエー ソーラー テクノロジー アーゲー Dc/acコンバータ、発電プラント、および、dc/acコンバータのための動作方法
JP2017538616A (ja) * 2014-12-09 2017-12-28 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフトZf Friedrichshafen Ag 自動車用ローリング安定化システム

Also Published As

Publication number Publication date
CN101682194B (zh) 2013-05-22
WO2009010025A1 (de) 2009-01-22
DE102007028078B4 (de) 2009-04-16
ES2349394T3 (es) 2010-12-30
US7944091B2 (en) 2011-05-17
ATE482507T1 (de) 2010-10-15
US20090201706A1 (en) 2009-08-13
EP2067230A1 (de) 2009-06-10
EP2067230B1 (de) 2010-09-22
KR101029198B1 (ko) 2011-04-12
DE502008001379D1 (de) 2010-11-04
JP5127001B2 (ja) 2013-01-23
WO2009010025A8 (de) 2009-04-23
KR20090052376A (ko) 2009-05-25
DE102007028078A1 (de) 2008-12-24
CN101682194A (zh) 2010-03-24

Similar Documents

Publication Publication Date Title
JP5127001B2 (ja) 電力供給網に電気エネルギを供給する装置および前記装置に用いる直流電圧変圧器
US8116103B2 (en) Device for feeding electric energy into a power grid and DC converter for such a device
US7957168B2 (en) Inverter
USRE41965E1 (en) Bi-directional multi-port inverter with high frequency link transformer
KR101029163B1 (ko) 전력공급기에 전기에너지를 공급하기 위한 인버터
US8836162B2 (en) Inverter for photovoltaic systems
US9041251B2 (en) Boost converter with multiple inputs and inverter circuit
Araujo et al. Novel grid-connected non-isolated converters for photovoltaic systems with grounded generator
US20150214782A1 (en) Systems and methods for uninterruptible power supplies with generators
US10263429B2 (en) Bidirectional DC-DC converter, power conditioner, and distributed power system
CN103296712B (zh) 用于储能装置的充电电路和为储能装置充电的方法
US20090046491A1 (en) Inverter
CN105453370A (zh) 具有直流电压供电电路的蓄能装置和用于从蓄能装置提供直流电压的方法
JP2009510986A (ja) 2つの直流電流源に対するインバータおよびインバータの駆動方法
Hao et al. A parallel topology for inductive power transfer power supplies
JP5362657B2 (ja) 電力変換装置
CN110855170A (zh) 光伏逆变器及电容放电电路
CN103296714B (zh) 用于储能装置的充电电路以及给储能装置充电的方法
JP4405654B2 (ja) 電力変換装置および発電装置
WO2017216914A1 (ja) 電力変換装置および電力供給システム
Sladić et al. Efficiency considerations and application limits of single-phase active power filter with converters for photoenergy applications
KR20150062999A (ko) 에너지 저장 장치용 충전 회로를 포함하는 전기 구동 시스템, 그리고 에너지 저장 장치의 작동 방법
CN220754780U (zh) 光伏电池旁路电路、光伏接线盒以及光伏组件
JP2024018293A (ja) ハイブリッド型蓄電システム
CN116742934A (zh) 交直流复合辅助电源电路及光伏逆变器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120625

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120724

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees