JP2010519664A - 近接場光ヘッド及び情報記録再生装置 - Google Patents

近接場光ヘッド及び情報記録再生装置 Download PDF

Info

Publication number
JP2010519664A
JP2010519664A JP2009549562A JP2009549562A JP2010519664A JP 2010519664 A JP2010519664 A JP 2010519664A JP 2009549562 A JP2009549562 A JP 2009549562A JP 2009549562 A JP2009549562 A JP 2009549562A JP 2010519664 A JP2010519664 A JP 2010519664A
Authority
JP
Japan
Prior art keywords
magnetic
optical head
field
field optical
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009549562A
Other languages
English (en)
Other versions
JP5324474B2 (ja
Inventor
パク・マジュン
学 大海
雅一 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2009549562A priority Critical patent/JP5324474B2/ja
Publication of JP2010519664A publication Critical patent/JP2010519664A/ja
Application granted granted Critical
Publication of JP5324474B2 publication Critical patent/JP5324474B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1387Means for guiding the beam from the source to the record carrier or from the record carrier to the detector using the near-field effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10534Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording
    • G11B11/10536Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording using thermic beams, e.g. lasers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10552Arrangements of transducers relative to each other, e.g. coupled heads, optical and magnetic head on the same base
    • G11B11/10554Arrangements of transducers relative to each other, e.g. coupled heads, optical and magnetic head on the same base the transducers being disposed on the same side of the carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/1058Flying heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Heads (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Optical Head (AREA)

Abstract

本発明は、導入された光束から近接場光を発生させて、一定方向に回転する磁気記録媒体を加熱すると共に、該磁気記録媒体に磁界を与えて磁化反転を生じさせ情報を記録させる近接場光ヘッドであって、前記磁気記録媒体の表面から所定距離だけ浮上した状態で配置され、磁気記録媒体の表面に対向する対向面を有するスライダと、前記対向面上に形成され、前記近接場光を発生させる近接場光発生素子と、前記近接場光発生素子上に形成された磁極と、前記対向面上に形成された複数の下部配線と、前記複数の下部配線を覆う位置に配置され、前記磁極に接続された薄膜状の磁気回路と、前記磁気回路の両側のうち、前記複数の下部配線が配置されている側とは逆側に配置された複数の上部配線と、前記下部配線、前記磁気回路及び前記上部配線のそれぞれを絶縁する絶縁層と、前記下部配線と前記上部配線とが交互に直列に接続されることにより前記磁気回路の周囲に巻回されたコイルとを備える。

Description

本発明は、近接場光を利用して磁気記録媒体に各種の情報を超高密度で記録することができる近接場光ヘッド及び該近接場光ヘッドを有する情報記録再生装置に関するものである。
近年、コンピュータ機器におけるハードディスク等の容量増加に伴い、単一記録面内における情報の記録密度が増加している。例えば、磁気ディスクの単位面積当たりの記録容量を多くするためには、面記録密度を高くする必要がある。ところが、記録密度が高くなるにつれて、記録媒体上で1ビット当たりの占める記録面積が小さくなっている。このビットサイズが小さくなると、1ビットの情報が持つエネルギーが、室温の熱エネルギーに近くなり、記録した情報が熱揺らぎ等のために反転したり、消えてしまったりする等の熱減磁の問題が生じてしまう。
一般的に用いられてきた面内記録方式では、磁化の方向が記録媒体の面内方向に向くように磁気を記録する方式であるが、この方式では上述した熱減磁による記録情報の消失等が起こり易い。そこで、このような不具合を解消するために、記録媒体に対して垂直な方向に磁化信号を記録する垂直記録方式に移行しつつある。この方式は、記録媒体に対して、単磁極を近づける原理で磁気情報を記録する方式である。この方式によれば、記録磁界が記録膜に対してほぼ垂直な方向を向く。垂直な磁界で記録された情報は、記録膜面内においてN極とS極とがループを作り難いため、エネルギー的に安定を保ち易い。そのため、この垂直記録方式は、面内記録方式に対して熱減磁に強くなっている。
しかしながら、近年の記録媒体は、より大量且つ高密度情報の記録再生を行いたい等のニーズを受けて、さらなる高密度化が求められている。そのため、隣り合う磁区同士の影響や、熱揺らぎを最小限に抑えるために、保磁力の強いものが記録媒体として採用され始めている。そのため、上述した垂直記録方式であっても、記録媒体に情報を記録することが困難になっていた。
そこで、この不具合を解消するために、近接場光により磁区を局所的に加熱して一時的に保磁力を低下させ、その間に書き込みを行うハイブリッド磁気記録方式(近接場光アシスト磁気記録方式)が提供されている。このハイブリッド磁気記録方式は、微小領域と、近接場光ヘッドに形成された光の波長以下のサイズに形成された光学的開口との相互作用により発生する近接場光を利用する方式である。このように、光の回折限界を超えた微小な光学的開口、即ち、近接場光発生素子を有する近接場光ヘッドを利用することで、従来の光学系において限界とされていた光の波長以下となる領域における光学情報を扱うことが可能となる。よって、従来の光情報記録再生装置等を超える記録ビットの高密度化を図ることができる。
なお、近接場光発生素子は、上述した光学的微小開口によるものだけでなく、例えば、ナノメートルサイズに形成された突起部により構成しても構わない。この突起部によっても、光学的微小開口と同様に近接場光を発生させることができる。
上述したハイブリッド磁気記録方式による記録ヘッドとしては、各種のものが提供されているが、その1つとして、光スポットのサイズを縮小して記録密度の増大化を図った磁気記録ヘッドが知られている(例えば、特許文献1(特開2004−158067)及び特許文献2(特開2005−4901)参照)。
この磁気記録ヘッドは、主に主磁極と、補助磁極と、同一平面上で螺旋状に設けられ、その螺旋の中心軸を前記主磁極が通るような構造の導体パターンが絶縁体の内部に形成されたコイル巻線と、照射されたレーザ光から近接場光を発生させる金属散乱体と、金属散乱体に向けてレーザ光を照射する平面レーザ光源と、照射されたレーザ光を集束させるレンズとを備えている。これら各構成品は、ビームの先端に固定されたスライダの先端面に取り付けられている。
主磁極は、一端側が記録媒体に対向した面となっており、他端側が補助磁極に接続されている。つまり、主磁極及び補助磁極は、1本の磁極(単磁極)を垂直方向に配置した単磁極型垂直ヘッドを構成している。また、コイル巻線は、主磁極と補助磁極との間を一部が通過するように補助磁極に固定されている。これら主磁極、補助磁極及びコイル巻線は、全体として電磁石を構成している。
主磁極の先端には、金等からなる上記金属散乱体が取り付けられている。また、金属散乱体から離間した位置に上記平面レーザ光源が配置されると共に、該平面レーザ光源と金属散乱体との間に上記レンズが配置されている。
上述した各構成品は、スライダの先端面側から、補助磁極、コイル巻線、主磁極、金属散乱体、レンズ、平面レーザ光源の順に取り付けられている。
このように構成された磁気記録ヘッドを利用する場合には、近接場光を発生させると同時に記録磁界を印加することで、記録媒体に各種の情報を記録している。
即ち、平面レーザ光源からレーザ光を照射させる。このレーザ光は、レンズによって集束され、金属散乱体に照射される。すると金属散乱体は、内部の自由電子がレーザ光の電場によって一様に振動させられるのでプラズモンが励起されて先端部分に近接場光を発生させる。その結果、記録媒体の磁気記録層は、近接場光によって局所的に加熱され、一時的に保磁力が低下する。
また、上記レーザ光の照射と同時に、コイル巻線の導体パターンに駆動電流を供給することで、主磁極に近接する記録媒体の磁気記録層に対して記録磁界を局所的に印加する。これにより、保磁力が一時的に低下した磁気記録層に各種の情報を記録することができる。つまり、近接場光と磁場との協働により、記録媒体への記録を行うことができる。
更に、上述した磁気記録ヘッドに対して、さらに予熱機構を組み合わせた磁気記録ヘッドも知られている(例えば、特許文献3(特開2005―78689)参照)。
この磁気記録ヘッドは、上述した主磁極と補助磁極との間に、予熱機構である抵抗ヒータを備えている。この抵抗ヒータは、主磁極及び金属散乱体に比べて先端面積が大きいので、加熱する対象領域が広く温度勾配が低い。そのため、抵抗ヒータは、記録媒体の磁気記録層に対して、予め予熱する程度の熱しか加えることができないようになっている。
このように構成された磁気記録ヘッドによれば、予め抵抗ヒータによって磁気記録層を予熱できるので、近接場光を発生させる金属散乱体における発熱を低減することができる。よって、温度上昇による金属散乱体の劣化や、損傷の可能性等を低下させることができ、耐久性の向上化を図ることができる。
しかしながら、上述した従来の磁気記録ヘッドには、まだ以下の課題が残されていた。即ち、上記特許文献1及び2に記載されている磁気記録ヘッドでは、平面レーザ光源から金属散乱体にレーザ光を照射することで近接場光を発生させているが、該近接場光を効率良く発生させるためには、できるだけ金属散乱体の先端にレーザ光を照射する必要がある。
その一方、レーザ光、レンズや平面レーザ光源を、記録媒体に対して干渉しないように配置する必要がある。
そのため、特許文献1に記載されている磁気記録ヘッドは、平面レーザ光源から金属散乱体に向けて斜めにレーザ光を照射すると共に半円形状のレンズを使用することで、上述した条件を満足させている。
ところが、この条件を満足させるために、金属散乱体に対してレーザ光の光軸が斜めになると共に半円形状のレンズを使用せざるを得なかった。そのため、効率良く近接場光を発生させることが難しくなってしまい、レーザ光の出力を上げざるを得なかった。その結果、レーザ平面光源や金属散乱体が過度に発熱する恐れがあり、信頼性に劣るものであった。
また、主磁極に対して所定の間隔を空けた状態で、レンズ及びレーザ平面光源を平行に配置する必要があるが、実際上スライダの先端にこのような配置で作りこむことは困難であり、仮に作りこめたとしてもコンパクトにまとめることができず、小型化を図ることが難しいものであった。
なお、平面レーザ光源やレンズに代えて光導波路を使用したり、ミラーを利用することでレーザ光を金属散乱体に向けて直線で照射させたりすることも考えられるが、より構成が複雑化してしまいやはり小型化を図ることが難しいものであった。
更に、金属散乱体は、走査方向の最後端に位置するように主磁極の外側に設けられているので、磁気記録層に情報を記録する際に、記録磁界を印加している位置に対して効率良く加熱を行うことが困難なものであった。つまり、記録媒体の回転に伴って磁気記録層は、補助磁極、磁極、金属散乱体の順に移動するので、近接場光で加熱される前に記録磁界が印加されてしまう。そのため、記録磁界が印加された領域外に、近接場光による加熱温度のピーク位置がきてしまい、書き込みの信頼性が劣るものであった。
特に、近接場光による温度勾配は、記録媒体の走査方向に対して遅れる傾向にあるので、加熱温度のピーク位置が金属散乱体の真下からずれてしまうと考えられる。この点を考慮すると、実際には加熱温度のピーク位置が記録磁界の印加領域からさらに外れる方向にずれてしまい、正確な書き込みを行えない可能性が高かった。
一方、特許文献3に記載されている磁気記録ヘッドは、主磁極と補助磁極との間に抵抗ヒータ等の予熱機構を備えているので、上述した近接場光を発生させる効率性の問題点、書き込みの信頼性の問題点を解消する構成にはなっているが、その反面、構成品としてさらに予熱機構が加わるので、構成がさらに煩雑になり大型化してしまう不都合があった。
一方、特許文献1と2と3に記載されている磁気記録ヘッドは、同一平面上に導体を螺旋状に巻いたコイル巻線構造を有する。そのコイルの中心軸上で発生する磁界強度は、以下の式(1)で説明することができる。Hは磁界、iはコイルに流れる電流、rはコイルの中心軸から巻線までの距離である。

H=i/2r (1)

磁界強度Hはrに反比例するので、rが大きければ大きいほどHは小さくなり、コイル中心軸から近い巻線と遠い巻線の発生する磁界強度の差が大きい。そのため、流す電流iに対する発生磁界の損失が大きく、磁界発生効率が比較的に悪い。
そこで、本発明は以上の点に鑑みてなされたものであり、小型化を図りながら近接場光を効率良く発生させることができると共に、より強力かつ高効率の磁界を発生させることができる近接場光ヘッドを提供することを目的とする。
上記課題を解決するために本発明の近接場光ヘッドは、導入された光束から近接場光を発生させて、一定方向に回転する磁気記録媒体を加熱すると共に、該磁気記録媒体に磁界を与えて磁化反転を生じさせ情報を記録させる近接場光ヘッドであって、前記磁気記録媒体の表面から所定距離だけ浮上した状態で配置され、磁気記録媒体の表面に対向する対向面を有するスライダと、前記対向面上に形成され、前記近接場光を発生させる近接場光発生素子と、前記近接場光発生素子上に形成された磁極と、前記対向面上に形成された複数の下部配線と、前記複数の下部配線を覆う位置に配置され、前記磁極に接続された薄膜状の磁気回路と、前記磁気回路の両側のうち、前記複数の下部配線が配置されている側とは逆側に配置された複数の上部配線と、前記下部配線、前記磁気回路及び前記上部配線のそれぞれを絶縁する絶縁層と、前記下部配線と前記上部配線とが交互に直列に接続されることにより前記磁気回路の周囲に巻回されるコイルとを備えることを特徴とするものである。
また本発明は、前記近接場光発生素子が前記近接場光を発生させる開口を有し、前記磁極が前記開口を囲む縁部分の一部を構成する第1の磁極及び第2の磁極を備え、前記第1の磁極及び前記第2の磁極は、互いに向い合わせに配置されることを特徴とするものである。
また本発明は、前記磁気回路が、前記第1の磁極と前記第2の磁極とを接続するように形成されていることを特徴とするものである。
また本発明は、前記磁気回路が前記対向面上に複数個形成されており、前記複数個の前記磁気回路の周囲を前記コイルがそれぞれ券回していることを特徴とするものである。
また本発明は、前記磁気回路の周囲を、複数個の前記コイルが券回していることを特徴とするものである。
また本発明は、前記下部配線及び前記上部配線が、一本ずつ絶縁された複数の配線からなることを特徴とするものである。
また本発明は、前記第1の磁極と前記第2の磁極が分離しており、前記第1の磁極と前記第2の磁極にそれぞれ前記磁気回路が形成されており、前記磁気回路の周囲に前記コイルがそれぞれ巻回していることを特徴とするものである。
また本発明は、前記コイルが、前記上部配線及び前記下部配線の積層方向に対して直交するコイル軸の回りで巻回されており、前記コイル軸に対して直交する方向に沿う断面積のそれぞれが、略同一であることを特徴とするものである。
本発明に係る近接場光ヘッドを有する情報記録再生装置の第1実施形態を示す構成図である。 図1に示す近接場光ヘッドの拡大断面図と、コアを中心とした拡大断面図である。 図2に示す近接場光ヘッドを、ディスク面側から見た図である。 図3に示す近接場光ヘッドのコアを端面側から見た斜視図である。 図3に示す近接場光ヘッドの磁気記録部の拡大図と、コイルと磁気回路の断面を示す断面図である。 図5に示すコイルと磁気回路の製造方法を示す断面図である。 本発明に係る近接場光ヘッドの第2実施形態を示す、磁気記録部のディスク面側から見た拡大図である。 本発明に係る近接場光ヘッドの第3実施形態を示す、磁気記録部のディスク面側から見た拡大図である。 本発明に係る近接場光ヘッドの第4実施形態を示す磁気記録部のディスク面側から見た拡大図と断面図である。 図9に示す磁気回路の製造方法を示す断面図である。 本発明に係る近接場光ヘッドの第5実施形態を示す、磁気記録部のディスク面側から見た拡大図である。 本発明に係る近接場光ヘッドの第6実施形態を示す、磁気記録部のディスク面側から見た拡大図と、コイルと磁気回路の断面を示す断面図である。 図12に示す磁気記録部のコイルと磁気回路の断面を示す断面図である。
(実施の形態1)
以下、本発明に係る近接場光ヘッド及び情報記録再生装置の第1実施形態を、図1から図6を参照して説明する。なお、本実施形態の情報記録再生装置1は、磁気記録層d3を有するディスク(磁気記録媒体)Dに対して、面内記録方式で書き込みを行う場合を例に
挙げて説明する。
図1に本実施形態の情報記録再生装置1の概略を示す。情報記録再生装置1は、近接場光ヘッド2と、ディスクDの表面(磁気記録媒体の表面)に平行なXY方向に移動可能とされ、ディスクDの表面に平行で且つ互いに直交する2軸(X軸、Y軸)回りに回動自在な状態で近接場光ヘッド2を先端側で支持するビーム3と、光導波路4の基端側から該光導波路4に対して光束L(図2にしめす)を入射させる光信号コントローラ(光源)5と、ビーム3の基端側を支持すると共に、該ビーム3をディスクDの表面に平行なXY方向に向けてスキャン移動させるアクチュエータ6と、ディスクDを一定方向に回転させるスピンドルモータ(回転駆動部)7と、情報に応じて変調した電流を後述するコイル21に対して供給すると共に、光信号コントローラ5の作動を制御する制御部8と、これら各構成品を内部に収容するハウジング9とを備えている。
ハウジング9は、アルミニウム等の金属材料により、上面視四角形状に形成されていると共に、内側に各構成品を収容する凹部9aが形成されている。また、このハウジング9には、凹部9aの開口を塞ぐように図示しない蓋が着脱可能に固定されるようになっている。凹部9aの略中心には、上記スピンドルモータ7が取り付けられており、該スピンドルモータ7に中心孔を嵌め込むことでディスクDが着脱自在に固定される。凹部9aの隅角部には、上記アクチュエータ6が取り付けられている。このアクチュエータ6には、軸受10を介してキャリッジ11が取り付けられており、該キャリッジ11の先端にビーム3が取り付けられている。そして、キャリッジ11及びビーム3は、アクチュエータ6の駆動によって共に上記XY方向に移動可能とされている。なお、キャリッジ11及びビーム3は、ディスクDの回転停止時にアクチュエータ6の駆動によって、ディスクD上から退避するようになっている。また、近接場光ヘッド2とビーム3とで、サスペンション12を構成している。また、光信号コントローラ5は、アクチュエータ6に隣接するように凹部9a内に取り付けられている。そして、このアクチュエータ6に隣接して、上記制御部8が取り付けられている。
図2(a)には上記近接場光ヘッド2とディスクDの断面図を、図2(b)には図2(a)のコア16とその近傍の拡大図を示し、近接場光ヘッド2の詳細な構造を説明する。
上記近接場光ヘッド2は、導入された光束Lから近接場光Rを発生させてディスクDを加熱すると共に、ディスクDに磁界を与えて磁化反転を生じさせ情報を記録させるものである。即ち、近接場光ヘッド2は、ディスク面D1から所定距離Hだけ浮上した状態で配置され、ディスク面D1に対向する対向面15aを有するスライダ15と、該スライダ15に固定され、近接場光Rを発生させるコア16と、コア16内に光束Lを導入させる光束導入手段17と、コア16に形成された第1の磁極18及び第2の磁極19と、両磁極18、19を接続する磁気回路20とを備えている。
スライダ15は、石英ガラス等の光透過性材料によって、略直方体状に形成されている。このスライダ15は、対向面15aをディスクDに対向させた状態で、ジンバル部25を介してビーム3の先端にぶら下がるように支持されている。このジンバル部25は、ディスク面D1に垂直なZ方向、X軸回り及びY軸回りにのみ変位するように動きが規制された部品である。これによりスライダ15は、上述したようにディスク面D1に平行で且つ互いに直交する2軸(X軸、Y軸)回りに回動自在とされている。
スライダ15の対向面15aには、回転するディスクDによって生じた空気流の粘性から、浮上するための圧力を発生させる凸状部15bが形成されている。本実施形態では、レール状に並ぶように、長手方向に沿って延びた凸状部15bを2つ形成している場合を例にしている。但し、この場合に限定されるものではなく、スライダ15をディスク面D1から離そうとする正圧とスライダ15をディスク面D1に引き付けようとする負圧とを調整して、スライダ15を最適な状態で浮上させるように設計されていれば、どのような凹凸形状でも構わない。なお、この凸状部15bの表面はABS(Air Bearing Surface)と呼ばれる。
スライダ15は、この2つの凸状部15bによってディスク面D1から浮上する力を受けていると共に、ビーム3によってディスク面D1側に押さえ付けられる力を受けている。スライダ15は、この両者の力のバランスによって、上述したようにディスク面D1から所定距離H離間した状態で浮上するようになっている。
更に、コア16の端面16bは、光束Lが内部に導入されたときに近接場光Rを発生させるサイズに形成されている。即ち、コア16の端面16bの開口サイズは、光束Lの波長よりも遥かに微細なサイズ(例えば、一辺が数十nm程度のサイズ)となるように設計されており、通常の伝播光を透過させることがないが、近接場光Rを近傍に漏れ出させることを可能にしている。
また、スライダ15の上面には、コア16の真上に当たる位置にレンズ26が形成されている。このレンズ26は、例えば、グレースケールマスクを用いたエッチングによって形成される非球面のマイクロレンズである。更に、スライダ15の上面には、光ファイバー等の光導波路4が取り付けられている。この光導波路4は、先端が略45度にカットされたミラー面4aとなっており、該ミラー面4aがレンズ26の真上に位置するように取り付け位置が調整されている。そして、光導波路4は、ビーム3及びキャリッジ11等を介して光信号コントローラ5に引き出されて接続されている。
これにより光導波路4は、光信号コントローラ5から入射された光束Lを先端側まで導き、ミラー面4aで反射させて向きを変えた後、レンズ26に出射することができるようになっている。また、出射された光束Lは、レンズ26によって集束した後、スライダ15を透過してコア16の底面16aに導入されるようになっている。即ち、光導波路4及びレンズ26は、上述した光束導入手段17を構成している。
また、スライダ15の先端面15cには、図2及び図3に示すように、ディスクDの磁気記録層d3から漏れ出ている磁界の大きさに応じて電気抵抗が変換する磁気抵抗効果膜27が形成されている。この磁気抵抗効果膜27は、コア16の端面16bと略同じ幅で形成されている。また、この磁気抵抗効果膜27には、図示しないリード膜等を介して制御部8からバイアス電流が供給されている。これにより制御部8は、ディスクDから漏れ出た磁界の変化を電圧の変化として検出することでき、この電圧の変化から信号の再生を行っている。即ち、磁気抵抗効果膜27は、再生素子として機能している。
また、本実施形態のディスクDは、図2に示すように、基板d1上に下地層d2、磁気記録層d3、保護層d4及び潤滑層d5が順に成膜されたものである。基板d1としては、例えば、アルミ基板やガラス基板等である。下地層d2は、磁気記録層d3が薄くても良好な磁気特性をだすためのもので、例えばCr合金系が使用される。磁気記録層d3は、保磁力を高めるため、例えばCoCrPtTaやCoCrPtB等のCoCr系合金が使用される。保護層d4は、磁気記録層d3を保護するためのもので、例えばDLC(ダイヤモンド・ライク・カーボン)膜が使用される。潤滑層d5は、例えば、フッ素系の液体潤滑材が使用される。
図3には、近接場光ヘッド2の対向面15上の構造を示す。また、図4にはコア16の拡大図を示す。
図3及び図4に示すように、コア16に形成された4つの側面16cのうち、ディスクDの移動方向に沿うように並んだ互いに向い合う2つの側面(底面16a及び端面16bが有する4つのうち互いに平行な対辺のうちの1辺をそれぞれ有した状態で向い合う側面)16c上には、上記第1の磁極18及び第2の磁極19が形成されている。両磁極18、19は、例えば、磁性体材料を蒸着等の薄膜成膜技術によって側面16c上に形成されたものである。このように、第1の磁極18及び第2の磁極19が開口を介して互いに向い合わせに配置されることにより、近接場光がディスクDに照射される領域と磁極からの漏れ磁束がディスクDに照射される領域とをより一致させることができるため、近接場光及び磁界の広がりを抑制して書き込みの信頼性を向上することができる。
上記コア16は、スライダ15と同様に石英ガラス等の光透過性材料で形成されており、図4に示すように、底面16aと端面16bと4つの側面(複数の側面)16cとを有する四角錐台状に形成されている。具体的には、互いに平行な辺を有するように平面視長方形状に形成された底面16aと、該底面16aより小さな面積で同一形状(平面視長方形状)に形成され、底面16aから所定距離離間した位置に配された端面16bと、底面16a及び端面16bの頂点をそれぞれ結んで形成された4つの側面16cとを有するように加工されている。
但し、コア16としては、4つの側面16cを有する場合に限定されるものではなく、平面視多角形状(例えば、6角形状や8角形状)の底面及び端面と、これら底面及び端面のそれぞれの頂点を結ぶ複数の側面(例えば、底面及び端面が6角形状の場合には6面)とを有するコアとしても構わない。即ち、底面及び端面が平面視多角形状に形成された角錐台状のコアであれば構わない。なお、底面及び端面は、共に同じ形状でなくても構わない。
このように構成されたコア16は、図2に示すように、底面16aをスライダ15の対向面15aに面接触させた状態で固定されている。この際、互いに対向する2つの側面16cが、スライダ15の長手方向、即ち、ディスクDの移動方向に沿って並ぶように固定されている。なお、コア16とスライダ15とをそれぞれ別々に作製した後、互いを固定しても構わないし、石英ガラス等から一体的に作製しても構わない。特に、一体的に作製することで、製造工程の簡略化、製造時間の短縮化等を図ることができるので、より好ましい。
また、底面16aを対向面15aに面接触させているので、コア16の端面16bも同様にスライダ15の対向面15a及びディスク面D1に対して平行状態となっている。この際、端面16bの高さが凸状部15bの高さと同じになるように、コア16の高さが設定されている。
ここでコア16の端面16bは、上述したように底面16aよりも小さいサイズで該底面16aと同じ形状に形成されているので、4つの側面16cは端面16bに向かうにしたがって向い合う側面16cとの間隔が漸次狭まる斜面状態となっている。特に、コア16の端面16bのサイズは、近接場光Rを発生させる極微小サイズであるので、端面16bにおける両磁極18、19の間隔(磁気ギャップ)Gは非常に近接した状態となっている。つまり、微小な磁気ギャップGとなっている。
また、磁気回路20は、図3に示すように、磁性材料によりスライダ15内にパターニングされて形成されている。この磁気回路20は、両端がそれぞれ第1の磁極18及び第2の磁極19に接続されている。
そして、コイル21は、磁気回路20の一部の周囲を螺旋状に巻回した状態で、形成されている。この際コイル21は、ショートしないように、隣り合う線材間、磁気回路20との間が絶縁状態とされている。また、このコイル21は、ビーム3やキャリッジ11を介して制御部8に電気的に接続されており、該制御部8から情報に応じて変調された電流が供給されるようになっている。即ち、磁気回路20及びコイル21は、全体として電磁石を構成している。
図5(a)にコイル21の磁気回路20に巻回されている詳細な様子を示す。また、図5(b)には図5(a)のA−A´での断面図を、図5(c)にはB−B´の断面図を示す。コイル21は、略円筒上に導体を螺旋状に巻いたコイル、いわゆる、ソレノドコイル構造と類似な構造となっている。
このように、従来の構成のように同一平面上においてコイル21が螺旋状に巻かれている構成ではなく、コイル21が磁気回路20に巻かれる構成である。これにより、コイル21の1巻分のコイル(単コイル)の大きさが他の単コイルの大きさと略同じとなり、一の単コイルによって発生する磁界強度が他の単コイルによって発生する磁界強度よりも極端に低減することがなくなるため、従来の構造よりもコイル21の全体の磁界強度を高めることができる。すなわち、従来の磁気記録ヘッドに搭載されている平面上に導体を螺旋状に巻いたコイル構造よりも、コイル21に流す電流に対する発生磁界の損失が少なくなり、より強力かつ高効率の磁界を発生させることができる。
次に、このように構成された情報記録再生装置1により、ディスクDに各種の情報を記録再生する場合について以下に説明する。
まず、スピンドルモータ7を駆動させてディスクDを一定方向に回転させる。次いで、アクチュエータ6を作動させて、キャリッジ11を介してビーム3をXY方向にスキャンさせる。これにより、図1に示すように、ディスクD上の所望する位置に近接場光ヘッド2を位置させることができる。この際、近接場光ヘッド2は、スライダ15の対向面15aに形成された2つの凸状部15bによって浮上する力を受けると共に、ビーム3等によってディスクD側に所定の力で押さえ付けられる。近接場光ヘッド2は、この両者の力のバランスによって、図2に示すようにディスクD上から所定距離H離間した位置に浮上する。
また、近接場光ヘッド2は、ディスクDのうねりに起因して発生する風圧を受けたとしても、ジンバル部25によってZ方向、XY軸回りに変位することができるようになっているので、うねりに起因する風圧を吸収することができる。そのため、近接場光ヘッド2を安定した状態で浮上させることができる。
ここで、情報の記録を行う場合、制御部8は光信号コントローラ5を作動させると共に、情報に応じて変調した電流をコイル21に供給する。
光信号コントローラ5は、制御部8からの指示を受けて光束Lを光導波路4の基端側から入射させる。入射した光束Lは、光導波路4内を先端側に向かって進み、図2に示すようにミラー面4aで略90度向きを変えて光導波路4内から出射する。出射した光束Lは、レンズ26によって集束された状態でスライダ15内部を透過すると共に、レンズ26の略真下に設けられたコア16の内部に底面16a側から入射する。つまり、光束Lは、光束導入手段17によってスライダ15の上面側から一直線にコア16に向かって導入される。
コア16の内部に導入された光束Lは、底面16a側から端面16b側に向かって進み、図2(b)に示すように、ディスク面D1に対向する端面16bから近接場光Rとして外部に漏れ出す。つまり、コア16の端面16bから近接場光Rを発生させることができる。
このように、スライダ15の上面側からコア16の端面16bに向けて略一直線に光束Lを導入できるので、従来の光の入れ方とは異なり光束Lをスライダ15の上面から容易に導入できると共に、効率良く近接場光Rを発生させることができる。この近接場光Rによって、ディスクDの磁気記録層d3は局所的に加熱されて一時的に保磁力が低下する。
なお、コア16の側面16cに形成された両磁極18、19を光非透過性の材料から形成することが好ましい。こうすることで、両磁極18、19が形成された側面16cからコア16の外部に光束Lが漏れてしまうことを防止でき、光束Lを端面16bにより集光させて、近接場光Rを効率良く発生させることができる。
一方、制御部8によってコイル21に電流が供給されると、電磁石の原理により電流磁界が磁気回路20内に磁束を発生させるので、両磁極18、19間に磁界が生じる。これにより、両磁極18、19間の磁気ギャップGには、図2(b)に示すようにディスクDに向けて磁界が漏れ出す。この際、上述したように磁気ギャップGは、コア16の側面16cに両磁極18、19が形成されていることで、微小な隙間となっている。そのため、磁気ギャップGに発生した漏れ磁界は、ディスクDの磁気記録層d3に対して局所的に作用する。
これにより、近接場光Rによって保磁力が低下した磁気記録層d3の局所的な位置に対して、ピンポイントで漏れ磁界を作用させることができる。なお、この漏れ磁界は、記録する情報に応じて向きが反転する。
そして、ディスクDの磁気記録層d3は、漏れ磁界を受けると、漏れ磁界の向きに応じて磁化の方向が反転する。その結果、ディスクDに情報の記録を行うことができる。つまり、近接場光Rと両磁極18、19で発生した漏れ磁界とを協働させた、近接場光アシスト磁気記録方式により情報の記録を行うことができる。
次に、ディスクDに記録された情報を再生する場合には、スライダ15の先端面15cに形成されている磁気抵抗効果膜27が、ディスクDの磁気記録層d3から漏れ出ている磁界を受けて、その大きさに応じて電気抵抗が変化する。よって、磁気抵抗効果膜27の電圧が変化する。これにより制御部8は、ディスクDから漏れ出た磁界の変化を電圧の変化として検出することができる。そして制御部8は、この電圧の変化から信号の再生を行うことで、情報の再生を行うことができる。
また、近接場光Rを発生させるコア16は、底面16a及び端面16bがディスク面D1やスライダ15の対向面15aと平行になるように設けられているので、光束導入手段17はスライダ15の上面から光束Lを容易且つ確実に導入することができる。
また、スライダ15の対向面15aにコア16を固定すると共に、コア16の側面16cに両磁極18、19を形成するだけで、近接場光Rの発生と漏れ磁界の発生とを同時に達成することができるので、従来のように複雑な構成にすることなく、シンプルな構造にすることができる。よって、構成を簡略化することができ、小型化を図ることができる。
また、コア16の底面16a側から導入された光束Lは、自然と端面16bに向かうので効率良く近接場光Rを発生させることができる。よって、近接場光Rと漏れ磁界とをより効率良く協働させることができる。
更に、従来とは異なり、両磁極18、19の間で近接場光Rを発生させることができるので、漏れ磁界が作用する範囲内に、近接場光Rによる加熱温度のピーク位置を入れることができる。特に、漏れ磁界のピーク位置に対して、近接場光Rによる加熱の温度勾配のピーク位置がずれるとしても、加熱温度のピーク位置を漏れ磁界の範囲内に留めておくことができる。従って、ディスクDの局所的な位置に対して確実に記録を行うことができ、信頼性の向上及びディスクのさらなる高記録密度化を図ることができる。また、第1の磁極18及び第2の磁極19がディスクDの移動方向に沿って並んでいるので、両磁極18、19を確実にディスクDのトラック上に位置させることができる。従って、隣接するトラックに記録された情報に影響を与えることなく、所望するトラックに対して情報を正確に記録することができる
図6は磁気回路20に巻回されるコイル21の製造方法の概略図である。図6(a)は図5(a)のA−A´断面を、図6(b)は図5(a)のB−B´断面を示す。S1からS6の各行は作製ステップを示す。まずステップS1で、スライダ15の対向面15aのコア16近傍に下部配線21aを導電性材料、例えば、Auなどを用い形成する。下部配線21aの成膜はスパッタリングや真空蒸着などの手段で形成することができる。下部配線21aのパターニングは、導電性材料を成膜し、その上にフォトレジストをパターングした後、ドライエッチング法またはウエットエッチング法を用い、行うことができる。また、下部配線21aのパターニングの他の手段として、対向面15a上にフォトレジストをパターニングし、前記パターニングされたフォトレジスト上に導電性材料を成膜した後、リフトオフする方法もある。
次にステップS2において、下部配線21aと磁気回路20の間に配置する下部絶縁層22aを形成する。下部絶縁層22aは、例えば、SU−8のようなフォトレジストなどを用いれば、容易に形成することができる。また、下部絶縁層22aの形成後、上面22cを研磨してもしなくても良いが、研磨をした場合は上面22cが平坦化されることで、常に均一な膜厚を得ることができ、且つパターン精度の良い磁気回路20を下部絶縁層の上に形成することができる。
次にステップS3において、下部絶縁層22aの上に磁気回路20を、パーマロイなどの磁性材料を用い形成する。磁気回路20の成膜はスパッタリングや真空蒸着などの手段で行う。磁気回路20のパターニングは、磁性材料を成膜し、その上にフォトレジストをパターングした後、ドライエッチング法またはウエットエッチング法を用い、行うことができる。また、磁気回路20のパターニングの他の手段として、下部絶縁層22aの上にフォトレジストをパターニングし、前記パターニングされたフォトレジスト上に磁性材料を成膜した後、リフトオフする方法もある。次にステップS4において、磁気回路20と上部配線21bとの絶縁のため、上部絶縁層22bを上記下部絶縁層22aとほぼ同様な材料と方法で形成する。また、上部絶縁層22bは、その形成後上面22dを研磨してもしなくても良いが、研磨をした場合は上面22dが平坦化されることで、常に均一な膜厚を形成することができ、パターン精度の良い上部配線21bと側面配線21c(図省略)を上部絶縁層22bの上面と側面に形成することができる。
次にステップS5において、上部配線21bを下部配線21aと同様な材料と方法で形成する。上部配線21bと側面配線21cは、一つのフォトレジストを用い同時に形成することもできるし、または、先に側面配線21cのみフォトレジストパターニングを行い形成した後、次に上部配線21bを形成しても良い。
最後にステップS6において、上記まで作製したコイル構造21を全部覆うような外部絶縁層22eを、上記の上下部絶縁層22aと22bの形成に用いた同様な材料と方法で形成する。
上述したように本実施形態の近接場光ヘッド2によれば、小型化を図りながら近接場光Rを効率良く発生させることができると共に、より強力かつ高効率の磁界を発生させることができ、書き込みの信頼性を向上することができる。
また、本実施形態の情報記録再生装置1によれば、上述した近接場光ヘッド2を備えているので、該情報記録再生装置1自体の小型化も図ることができ、また、書き込みの信頼性が高まって高品質化を図ることができる。
また、近接場光ヘッド2のコア16は、側面16cと両磁極18、19との間にそれぞれ金属膜が形成されてもよく、両磁極18、19が形成された側面16c以外の全ての側面16c上に金属膜が形成されていても良い。側面16c上に形成された金属膜表面から表面プラズモンが励起され、光強度の強い近接場光Rとなって外部に漏れ出す。コア16の内部に導入された光束Lは端面16bに向かう途中でコア16の外部に漏れることがない。従って、光束Lを無駄なく端面16bに集光することができ、より効率良く光強度の強い近接場光Rを発生することができる。その結果、ディスクDをより効率良く加熱することができ、情報の記録をさらに容易に行うことができる。
また、上記各実施形態では、面内記録方式で記録を行う場合を例にして説明したが、この記録方式に限られず、垂直記録方式にも適用可能なものである。
なお、本実施形態では、コイル21は、上部配線21b及び下部配線21aの積層方向に対して直交するコイル軸の回りで巻回されており、コイル軸に対して直交する方向に沿う断面積のそれぞれは、略同一であるものとして説明した。この場合において、当該「略同一」 には、断面積のそれぞれが完全同一のみならずに、断面積のそれぞれが他の断面積に対して±5%以内に属するものも含まれる。
(実施の形態2)
次に、本発明に係る近接場光ヘッドの第2実施形態について、図7を参照して説明する。なお、第2実施形態において第1実施形態と同一の構成については、同一の符号を付しその説明を省略する。
図5(a)には磁気回路20を単体のコイル21が巻回している構造を示しているが、図7には対向面15a上に磁気回路を、20aと20bのように、複数設けた構造を示す。そうすることで、コイル21を磁気回路20aと20b両方に巻回することができ、図5(a)に示す構造と同様な磁界発生効果が得られると共に、図5(a)に示す構造に比べより強力な漏れ磁界を磁極18と19の間に発生させることができ、より安定的な磁気記録が可能になる。
また、製造方法においても、図5(a)構造の作製時に用いるフォトマスクに、複数の磁気回路とコイル作製パターンを設けることだけで、作製工程が増えることなく、図5(a)構造の作製方法とほぼ同一方法で、図7に示す構造を効率よく作製することができる。
また、磁気回路20aと20bの一部ではなく、ほぼ全体の周囲を単体コイル21で巻回する構造も可能である。
(実施の形態3)
次に、本発明に係る近接場光ヘッドの第3実施形態について、図8を参照して説明する。なお、第3実施形態において第1実施形態と第2実施形態と同一の構成については、同一の符号を付しその説明を省略する。
図8(a)には、単体の磁気回路20の周囲を複数のコイル21がそれぞれ巻回している構造の一例を示す。その効果については、図5(a)に示す構造より更に強力な漏れ磁界を磁極18と19の間に発生させることができ、より安定的な磁気記録が可能になる。
また、作製方法に関しても、作製時に用いるフォトマスクのコイル作製パターンのみを複数に変更するだけで、図5(a)構造の作製方法と同様な方法で効率よく作製することができる。
また、図8(b)には、複数の磁気回路20aと20bの周囲を複数のコイル21がそれぞれ巻回している構造の一例を示す。その効果については、図7に示す構造より更に強力な漏れ磁界を磁極18と19の間に発生させることができ、より安定的な磁気記録が可能になる。また、作製方法に関しても、作製時に用いるフォトマスクのコイル作製パターンのみを複数に変更するだけで、図7構造の作製方法とほぼ同様の方法で効率よく作製することができる。
また、図8(a)と(b)に示す複数のコイル21がすべて直列につながった構造でも良いし、または、複数のコイル21が直列につながった状態で磁気回路20の周囲を全部巻回する構造になっても良いものである。
(実施の形態4)
次に、本発明に係る近接場光ヘッドの第4実施形態について、図9を参照して説明する。なお、第4実施形態において第1実施形態から第3実施形態までと同一の構成については、同一の符号を付しその説明を省略する。
図9(a)には、磁気回路20の周囲に、まずコイル21が巻回され、そのコイル21の一部と磁気回路20の一部の周囲を、更にコイル21´が巻回されている、いわゆるダブルコイル構造の一例を示す。コイル21´はコイル21、磁気回路20とショートしないように絶縁されている。図9(b)には、図9(a)のA−A´での断面図を、図9(c)には、図9(a)のB−B´での断面図を示す。断面B−B´は図5(a)での断面B−B´断面とは異なり、断面A−A´に対し斜めに切ったものである。
図9に示す構造は、図5(a)に示す構造に比べ、より強力な漏れ磁界を磁極18と19の間に発生させることができ、更に安定的な磁気記録が可能になる。
図10は、図9(a)に示す構造の製造方法の概略図(A−A´断面図)である。作製方法は、図5に示すコイル構造21の作製方法と類似であるが、コイル構造21を設ける前にステップS1´とS2´の工程が行われ、下部配線21a´と下部絶縁層22a´を形成する。その形成に関しては、図6のステップS1とS2で示す方法とほぼ同一である。
次に、下部絶縁層22a´上に図6(b)に示す21a、21b、21cからなるコイル構造21を図6のステップS1〜S6と同様な方法で作製する。図10で21cは現れていない。だだし、S6において、ステップS2´での下部絶縁層22a´とほぼ同様な面積になるように上部絶縁層22bを形成する。そうすることで、21a´、21b´、21c´からなるコイル構造21´が磁気回路20と絶縁されるようになる。図10で21c´は現れていない。
次に、ステップS3´を行い、上部絶縁層22e上面と側面に上部配線21b´と図9(c)に図示する側面配線21c´を形成する。その時、コイル構造21の作製と同様に、上部配線21b´と側面配線21c´を同時にパターニングし形成しても良いし、先に、側面配線21c´を形成した後、次に、上部配線21b´を形成しても良い。形成については、図6のステップS3においての上部配線21bと側面配線21cの形成方法と同様である。
最後には、ステップS4´を行い、コイル構造21´の全体を覆うように、外部絶縁層22e´を形成する。形成については、図6のステップS6においての外部絶縁層22eの形成方法とほぼ同様である。
(実施の形態5)
次に、本発明に係る近接場光ヘッドの第5実施形態について、図11を参照して説明する。なお、第5実施形態において第1実施形態から第4実施形態までと同一の構成については、同一の符号を付しその説明を省略する。
図11には、図5(a)に示す磁気回路20が分離され、20cと20dの独立した二つの磁気回路が磁極18と19につながって対向面15a上に配置された構造の一例を示す。また。図5(a)に示すコイル構造と同様なコイル構造21が磁気回路20cと20dの一部の周囲にそれぞれ巻回されている。
図11に示す構造は、図5(a)に示す構造に比べ、磁気回路部を更に縮小することが可能で、更に小型化されたスライダのより狭小な対向面上にも配置させることができる。
また、製造方法に関しては、図5(a)構造の作製時に用いるフォトマスクの、磁気回路作製パターンとコイル作製パターンのみを変更するだけで、図5(a)構造の作製方法と同様な方法で作製が可能である。
(実施の形態6)
次に、本発明に係る近接場光ヘッドの第6実施形態について、図12から図13を参照して説明する。なお、第6実施形態において第1実施形態から第5実施形態までと同一の構成については、同一の符号を付しその説明を省略する。
図12は、第6実施形態においての、コイル121、磁気回路120、及び、絶縁層122a、122b、122eの構成の一例を示す。
図13は、図12(a)のB−B´断面図の四つの例を示す。
図12に示す構造は、図5に示すような、コイル121が磁気回路120に巻かれる構造(ソレノドコイル構造と類似な構造)となっているが、絶縁層122aと122b、の形状が、図5に示す構造の絶縁層(22a、22b、22e)の形状とは異なる点があることにその特徴がある。
一例として、図12(b)(図12(a)のA−A´断面図)と図13(a)(図12(a)のB−B´断面図)に示す絶縁層122aと122bは、対向面15aから離れる方向につれて、その側面1122aと1122bの形状が、対向面15aに対し所定の角度をもつ、斜面形状となっている。そうなることで、磁気回路120の内、前記側面1122a上に成膜される傾斜部1120の厚みを磁気回路120と同様な厚みに形成することができる。また、スパッタ法や蒸着法などの成膜方法を用いる場合、一般的に成膜粒子の方向と略垂直な方向にある面上の成膜が容易であり、成膜粒子の方向と略平行な方向にある面上での成膜は、エッチカバーレジ不良などの原因で、困難な場合が多く、膜の密着力や膜密度が低下する。そのため、絶縁層122aの側面1122aを、図5に示すような、絶縁層(22a、22b、22e)の側面が、対向面15aに対し垂直な形状ではなく、傾斜形状にすることで、傾斜部1120は、側面1122aとの密着力や膜密度が向上する。
また、図13(a)( 図12(a)のB−B´断面図)に示す絶縁層122aと122bは、対向面15aから離れる方向につれて、その側面1122aと1122bの形状が、対向面15aに対し所定の角度をもつ斜面形状となっている。そうなることで、前記側面1122aと1122b上に成膜されるコイル121の側面配線121cは、前述した理由で側面1122a、1122bとの密着力や膜密度が向上すると共に、厚みを、下部配線121aと上部配線121bと同様な厚みに形成することができる。
また、図13(b)( 図12(a)のB−B´断面図)に示すように、絶縁層122aと122bの側面2122aと2122b近傍の構造を階段構造とすることで、側面配線221cは、側面2122a、2122bとの密着力や膜密度が向上すると共に、側面配線221cの厚みを、下部配線121aと上部配線121bの厚みに近く形成することができる。
また、図13(c)(図12(a)のB−B´断面図)に示すように、絶縁層122aと122bの側面3122aと3122b近傍の構造を、斜面形状を有する階段構造とすることで、側面配線321cは、側面3122a、3122bとの密着力や膜密度が向上すると共に、側面配線321cの厚みを、下部配線121aと上部配線121bの厚みに近く形成することができる。
また、図13(d)(図12(a)のB−B´断面図)に示すように、磁気回路120の側面2120を斜面形状に形成することで、絶縁層112bの形成時、側面4121bが自然に斜面形状となる。更に、絶縁層122aと122bの側面4122aと4122bの構造を、斜面形状を有する階段構造とすることで、側面配線421cは、側面4122a、4122bとの密着力や膜密度が向上すると共に、側面配線421cの厚みを、下部配線120aと上部配線120bと同様な厚みに形成することができる。
このように、図12と13に示す構造は、図5に示す構造の特徴を持つと共に、側面1122a、2122a、3122a、4122aと1122b、2122b、3122b、4122bの形状を斜面形状や階段形状にすることで、磁気回路120とコイル121は、途中に膜の密度が低下したり、厚みが薄くなったり、断線したりすることがなくなる。また、コイル121の抵抗値が、膜の密度の低下や厚みのバラツキ、断線により、配線の途中に増加することがない。そのため、コイル121により、効率よく磁気回路120に磁場を発生させることができ、より強力な漏れ磁界を磁極18と19の間に発生させることができる。そのため、更に効率良く、安定的に磁気記録を行うことができる。
図12と13に示す構造は、図5に示す構造と類似な製造方法で製造することができるが、図6のステップS2にて形成した下部絶縁層22aの側面を斜めに加工した後、ステップS3で磁気回路20を形成すると、図12(b)に示すような斜面形状の磁気回路120の傾斜部1120を形成することができる。
また、図6のステップS4の後、絶縁層22aと22bの側面を斜めに加工することで、図13(a)に示す斜面形状の側面1122aと1122bを得ることができる。
上記の斜面形状の加工は、反応性イオンエッチングを利用したドライエッチング法を用いると、容易に加工することができる。
また、図6のステップ2の(b)に示す下部絶縁層22aの面積より、ステップS4の(b)に示す上部絶縁層22bの面積を小さくパターニングすることで、13(b)に示す、階段構造の側面2122aと2122bを形成ことができる。また、その後、側面2122aと2122bを斜めに加工すると、図13(c)のような斜面形状を有する段差構造の側面3122aと3122bを形成することができる。
また、図6のステップS3で形成する磁気回路20を、2層レジストリフトオフ法を利用した、スパッタリングや蒸着などの薄膜形成法を用いると、図13(d)に示すような斜面形状の側面2120を有する磁気回路120を形成することができる。
また、図7、8、9、11に示している構造においても、図12と図13に示す斜面形状や段差形状の側面を持つ絶縁層22a22bを形成することが可能である。また、加工や形成に関しても、図12と図13に示す構造の製造方法と同様な方法を用いることができる。
本発明によれば、小型化を図りながら近接場光を効率良く発生させることができると共に、より強力かつ高効率の磁界を発生させることができる。

Claims (13)

  1. 導入された光束から近接場光を発生させて、一定方向に回転する磁気記録媒体を加熱すると共に、該磁気記録媒体に磁界を与えて磁化反転を生じさせ情報を記録させる近接場光ヘッドであって、
    前記磁気記録媒体の表面から所定距離だけ浮上した状態で配置され、磁気記録媒体の表面に対向する対向面を有するスライダと、
    前記対向面上に形成され、前記近接場光を発生させる近接場光発生素子と、
    前記近接場光発生素子上に形成された磁極と、
    前記対向面上に形成された複数の下部配線と、
    前記複数の下部配線を覆う位置に配置され、前記磁極に接続された薄膜状の磁気回路と、
    前記磁気回路の両側のうち、前記複数の下部配線が配置されている側とは逆側に配置された複数の上部配線と、
    前記下部配線、前記磁気回路及び前記上部配線のそれぞれを絶縁する絶縁層と、
    前記下部配線と前記上部配線とが交互に直列に接続されることにより前記磁気回路の周囲に巻回されたコイルと
    を備えることを特徴とする近接場光ヘッド。
  2. 前記近接場光発生素子は、前記近接場光を発生させる開口を有し
    前記磁極は、前記開口を囲む縁部分の一部を構成する第1の磁極及び第2の磁極を備え、
    前記第1の磁極及び前記第2の磁極は、互いに向い合わせに配置されることを特徴とする請求項1に記載の近接場光ヘッド。
  3. 前記磁気回路が、前記第1の磁極と前記第2の磁極とを接続するように形成されていることを特徴とする請求項2に記載の近接場光ヘッド。
  4. 前記磁気回路が前記対向面上に複数個形成されており、前記複数個の前記磁気回路の周囲を前記コイルがそれぞれ巻回していることを特徴とする請求項1に記載の近接場光ヘッド。
  5. 前記磁気回路の周囲を、複数個の前記コイルが巻回していることを特徴とする請求項1あるいは4に記載の近接場光ヘッド。
  6. 前記下部配線及び前記上部配線が、一本ずつ絶縁された複数の配線からなることを特徴とする請求項1に記載の近接場光ヘッド。
  7. 前記第1の磁極と前記第2の磁極が分離しており、前記第1の磁極と前記第2の磁極にそれぞれ前記磁気回路が形成されており、前記磁気回路の周囲に前記コイルがそれぞれ巻回していることを特徴とする請求項2に記載の近接場光ヘッド。
  8. 前記コイルは、前記上部配線及び前記下部配線の積層方向に対して直交するコイル軸の回りで巻回されており、前記コイル軸に対して直交する方向に沿う断面積のそれぞれは、略同一であることを特徴とする請求項2に記載の近接場光ヘッド。
  9. 前記下部配線と前記上部配線とが、前記絶縁層の特定側面上に形成される側面配線によって交互直列に接続され、前記磁気回路の周囲に巻回された前記コイル形状を構成することを特徴とする請求項1に記載の近接場光ヘッド。
  10. 前記特定側面の少なくとも一部が、前記対向面に対し、所定の角度を持った斜面形状となっていることを特徴とする請求項9に記載の近接場光ヘッド。
  11. 前記特定側面の少なくとも一部が、階段形状となっていることを特徴とする請求項9に記載の近接場光ヘッド。
  12. 前記近接場光ヘッドを製造する工程において、前記磁気回路の幅が、前記対向面から離れる方向につれて順次減少するように形成する工程を含むことを特徴とする請求項1に記載の近接場光ヘッドの製造方法。
  13. 請求項1から14のいずれか1項に記載の近接場光ヘッドと、
    前記磁気記録媒体の表面に平行な方向に移動可能とされ、該磁気記録媒体の表面に平行で且つ互いに直交する2軸回りに回動自在な状態で、前記近接場光ヘッドを先端側で支持するビームと、
    前記スライダに対して平行に配置された状態で該スライダに固定され、入射された光束を前記近接場発生素子に導く光束導入手段と、
    前記光束導入手段に対して前記光束を入射させる光源と、
    前記ビームの基端側を支持すると共に、該ビームを前記磁気記録媒体の表面に平行な方向に向けて移動させるアクチュエータと、
    前記磁気記録媒体を前記一定方向に回転させる回転駆動部と、
    前記コイルに電流を供給すると共に前記光源の作動を制御する制御部とを備えていることを特徴とする情報記録再生装置。
JP2009549562A 2007-02-17 2008-02-15 近接場光ヘッド及び情報記録再生装置 Expired - Fee Related JP5324474B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009549562A JP5324474B2 (ja) 2007-02-17 2008-02-15 近接場光ヘッド及び情報記録再生装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007037233A JP2008204514A (ja) 2007-02-17 2007-02-17 近接場光ヘッド及び情報記録再生装置
JP2007037233 2007-02-17
PCT/SG2008/000057 WO2008100232A1 (en) 2007-02-17 2008-02-15 Near - field optical head and information recording/reproducing apparatus
JP2009549562A JP5324474B2 (ja) 2007-02-17 2008-02-15 近接場光ヘッド及び情報記録再生装置

Publications (2)

Publication Number Publication Date
JP2010519664A true JP2010519664A (ja) 2010-06-03
JP5324474B2 JP5324474B2 (ja) 2013-10-23

Family

ID=39247972

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007037233A Pending JP2008204514A (ja) 2007-02-17 2007-02-17 近接場光ヘッド及び情報記録再生装置
JP2009549562A Expired - Fee Related JP5324474B2 (ja) 2007-02-17 2008-02-15 近接場光ヘッド及び情報記録再生装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007037233A Pending JP2008204514A (ja) 2007-02-17 2007-02-17 近接場光ヘッド及び情報記録再生装置

Country Status (2)

Country Link
JP (2) JP2008204514A (ja)
WO (1) WO2008100232A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05242447A (ja) * 1992-02-27 1993-09-21 Minebea Co Ltd 磁気ヘッド
JP2001093113A (ja) * 1999-09-21 2001-04-06 Tdk Corp 薄膜磁気ヘッドおよびその製造方法
JP2001189002A (ja) * 1999-12-28 2001-07-10 Toshiba Corp 熱アシスト磁気記録方法及び熱アシスト磁気記録装置
JP2001319365A (ja) * 2000-05-10 2001-11-16 Fuji Xerox Co Ltd 浮上記録ヘッド、ディスク装置、および浮上記録ヘッドの製造方法
JP2001325756A (ja) * 2000-03-10 2001-11-22 Fuji Xerox Co Ltd 光磁気素子、光磁気ヘッドおよび磁気ディスク装置
JP2002298302A (ja) * 2001-03-29 2002-10-11 Toshiba Corp 光アシスト磁気記録ヘッド及び光アシスト磁気記録装置
JP2003272103A (ja) * 2002-03-12 2003-09-26 Fuji Xerox Co Ltd 光アシスト磁気記録ヘッドおよび光アシスト磁気記録ディスク装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05242447A (ja) * 1992-02-27 1993-09-21 Minebea Co Ltd 磁気ヘッド
JP2001093113A (ja) * 1999-09-21 2001-04-06 Tdk Corp 薄膜磁気ヘッドおよびその製造方法
JP2001189002A (ja) * 1999-12-28 2001-07-10 Toshiba Corp 熱アシスト磁気記録方法及び熱アシスト磁気記録装置
JP2001325756A (ja) * 2000-03-10 2001-11-22 Fuji Xerox Co Ltd 光磁気素子、光磁気ヘッドおよび磁気ディスク装置
JP2001319365A (ja) * 2000-05-10 2001-11-16 Fuji Xerox Co Ltd 浮上記録ヘッド、ディスク装置、および浮上記録ヘッドの製造方法
JP2002298302A (ja) * 2001-03-29 2002-10-11 Toshiba Corp 光アシスト磁気記録ヘッド及び光アシスト磁気記録装置
JP2003272103A (ja) * 2002-03-12 2003-09-26 Fuji Xerox Co Ltd 光アシスト磁気記録ヘッドおよび光アシスト磁気記録ディスク装置

Also Published As

Publication number Publication date
JP2008204514A (ja) 2008-09-04
JP5324474B2 (ja) 2013-10-23
WO2008100232A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5278887B2 (ja) 近接場光ヘッド及び情報記録再生装置
JP5201571B2 (ja) 記録ヘッド及び情報記録再生装置
US8243558B2 (en) Thermally assisted magnetic head, head gimbal assembly, and hard disk apparatus
JP2006209960A (ja) 磁気記録再生装置
JP6104574B2 (ja) 上部表面上に接合パッドを有する熱アシスト記録組立体
JP5506387B2 (ja) 近接場光ヘッド及び情報記録再生装置
JP5841313B2 (ja) 近接場光ヘッド及び情報記録再生装置
JP2008269757A (ja) 近接場光ヘッド及び情報記録再生装置
US6567347B1 (en) Optical head having a plurality of coil elements connected in parallel to each other
JP4743782B2 (ja) 近接場光記録素子、近接場光ヘッド及び情報記録再生装置
JP2009087508A (ja) 近接場光ヘッド及び情報記録再生装置
JP4569966B2 (ja) 近接場光記録素子、近接場光ヘッド及び情報記録再生装置
JP2009004024A (ja) 近接場光ヘッド及び情報記録再生装置
JP2009140538A (ja) 記録ヘッド及び情報記録再生装置
JP4674817B2 (ja) 近接場光ヘッド及び情報記録再生装置
JP5324474B2 (ja) 近接場光ヘッド及び情報記録再生装置
JP5943417B2 (ja) 近接場光発生素子、近接場光ヘッド、及び情報記録再生装置
JP5611590B2 (ja) 近接場光ヘッド及び情報記録再生装置
KR20020031104A (ko) 자기 코일을 갖는 자기 헤드
JP2010123226A (ja) 近接場光ヘッドおよび情報記録再生装置
JP5097613B2 (ja) 情報記録媒体、情報記録装置、情報記録方法、および該情報記録媒体の製造方法
JP2006344343A (ja) 磁気ヘッド、記録装置
WO2008062676A1 (fr) Élément de génération de lumière à champ de proximité, tête d'èclairage à champ de proximité et dispositif d'enregistrement/lecture d'informations
JP2009099212A (ja) 記録ヘッド及び情報記録再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Ref document number: 5324474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees